UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPA UJIAN AKHIR TAHUN 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPA UJIAN AKHIR TAHUN 2015"

Transkripsi

1 UHMK (UNIVERSITS MUHMMDYH FROF. DR. HMK) LTIHN SOL DN SOLUSI MTEMTIK IP UJIN KHIR THUN 0 I. Pilihlah jawaban yang paling benar!. Diberikan premis-premis seperti berikut. ) Dia bukan pujaan hatiku atau ku berusaha untuk mendapatkannya ) ku tidak berusaha untuk mendapatkannya atau ku memeluknya ) ku tidak memeluknya Kesimpulannya yang sah dari premis premis tersebut adalah.... Dia bukan pujaan hatiku atau ku memeluknya. Dia pujaan hatiku atau ku tidak memeluknya C. Dia pujaan hatiu dan ku berusaha untuk mendapatkannya D. Dia pujaan hatiku E. Dia bukan pujaan hatiku da Solusi: [D] p q ~ q ~ p ~ p q p q q r r... Jadi, kesimpulan dari premis-premis tersebut adalah Dia pujaan hatiku. Ingkaran dari pernyataan Jika Dia tidak gembira maka Dia tidak tersenyum adalah.... Dia tidak gembira dan Dia tersenyum. Dia gembira dan Dia tidak tersenyum C. Dia tidak gembira atau Dia tidak tersenyum D. Jika Dia gembira maka Dia tersenyum E. Dia gembira jika dan hanya jika Dia tersenyum Solusi: [] p q p q Jadi, ingkaran dari pernyataan tersebut adalah Dia tidak gembira dan Dia tersenyum.. entuk sederhana dari C. D. E. 6 Solusi: [] p q q r r... p r r p Husein Tampomas, UHMK, 0

2 7. Nilai dari C D. 9 E. 7 Solusi: [E] 6. entuk sederhana dari. log8 log... log6 log 9 log. log C. D. E. 6 Solusi: [D] log log6 log 6 log 9 log. log 9. log8 log. log 9 log. log log9 log log 6. Misalkan dan adalah akar-akar persamaan kuadrat Persamaan kuadrat 6 p 0 jika 9, maka nilai p C. 8 D. 9 E. Solusi: [C]... () Husein Tampomas, UHMK, 0

3 9... (0 Persamaan () Persamaan () menghasilkan: p p 8 7. Jika persamaan kuadrat p p p nilai p yang memenuhi adalah.... p atau p. p atau p C. p atau p D. p E. p Solusi: [D] p 0 p... () D p p p 0 9 p p 6 p 6 0 p 6 p6 0 p p 0 Husein Tampomas, UHMK, 0 0 mempunyai akar tidak riil, maka batasan p... () Dari () dan () diperoleh p. 8. Paman dan ibi masing-masing memiliki sejumlah uang. Jika Paman memberi Rp0.000,00 kepada ibi, maka uang ibi menjadi dua kali uang Paman yang sisa. Jika ibi memberi uang Rp0.000,00 kepada Paman, maka uang Paman akan menjadi tiga kali uang ibi yang sisa. Jumlah uang Paman dan ibi adalah.... Rp..000,00. Rp ,00 C. Rp..000,00 D. Rp ,00 E. Rp ,00 Solusi: [D] b p b p () p b p b () Dari persamaan () dan () diperoleh b b b b

4 b.000 p Jadi, jumlah uang Paman dan ibi adalah Rp6.000,00 + Rp.000,00 = Rp96.000,00 9. Persamaan lingkaran yang melalui titik (,) dan berpusat pada titik M (, ) adalah..... C. D. E. y 6y 8 0 y 6y 8 0 y 6y 8 0 y 6y 68 0 y 6y 68 0 Solusi: [] Jari-jari lingkaran r 8 Persamaan lingkarannya adalah y 8 y 6y Persamaan garis singgung lingkaran y 0 adalah.... y dan y. y C. y dan y 9 D. y dan y E. y dan y 9 Solusi: [D] y 8y 0 y y 0 m m m m Persamaan garis singgungnya adalah y y m r m y y 8 y dan y y 8y 0 yang tegak lurus dengan garis. Suku banyak f ( ) p 7 6 mempunyai faktor-faktor ( ),( ),dan( ) nilai ( )... Q(,) M (, ).. 6 Husein Tampomas, UHMK, 0

5 C. 7 D. 8 E. 9 Solusi: [-] f p p p 8 8 p 7 f f 9 7. Diketahui suku banyak f a b 6. Jika f sisanya. Nilai a b C. D. 6 E. Solusi: [] f 8a b 6 8 8a b 0 a b... () f a b 6 a b 7... () Persamaan () + Persamaan () menghasilkan: a a b 7 b a b 8 dibagi oleh. Diketahui f 7dan g. Rumus komposisi fungsi.. C. D E Solusi: [C] g o f g f g Diketahui f dan 7 g o f, g o f.... Maka nilai g..., maka Husein Tampomas, UHMK, 0

6 C. D. E. Solusi: [C] 7 g o f g f g g g g. Seorang pedagang dengan modal Rp ,00 membeli tomat dan kentang yang akan diangkut dengan gerobak yang daya angkut tidak lebih dari 00 kg. Tomat dibeli dengan harga Rp.000,00 per kg dan kentang Rp.000,00 per kg. Pedagang tersebut akan mengambil keuntungan dari penjualan tomat dan kentang masing-masing dengan harga Rp.000,00 per kg dan.00,00 per kg. Keuntungan maksimum yang dapat diperoleh adalah.... Rp60.000,00. Rp ,00 C. Rp00.000,00 D. Rp0.000,00 E. Rp00.000,00 Solusi: [C] mbillah banyak tomat dan kentang masing-masing adalah dan y kg. y y y 0, y C Fungsi objektif y 00. () y 00. () f, y y Persamaan () Persamaan () menghasilkan: y 00 y 00 Koordinat titik potong kedua grafik tersebut adalah 00,00. Titik y, f, y y 00, Husein Tampomas, UHMK, 0 Y O y 00 (00,00) 00 y X

7 00, , Jadi, keuntungan maksimum yang dapat diperoleh adalah Rp00.000, Suatu perusahaan meubel menyediakan 8 m kaca dan m papan tripleks per hari. Tiap unit barang jenis I membutuhkan m kaca dan m papan tripleks, sedangkan untuk membuat satu unit barang jenis II dibutuhkan m dan m papan tripleks. arang jenis I dijual dengan harga Rp0.000,00 per unit dan barang jenis II dijual seharga Rp00.000,00 per unit. gar pendapatan dari penjualan kedua jenis barang tersebut mencapai maksimum, maka setiap harinya perusahaan tersebut harus memproduksi sebanyak unit barang jenis I saja.. unit barang jenis I saja. C. 6 unit barang jenis II saja. D. unit barang jenis I dan 9 unit barang jenis II. E. 9 unit barang jenis I dan unit barang jenis II. Solusi: [] mbillah banyak barang jenis I dan II masing-masing adalah dan y buah. y8 y 0 y 0, y C Fungsi objektif y 8. () y. () f, y y Persamaan () Persamaan () menghasilkan: y 6 y 9 Koordinat titik potong kedua grafik tersebut adalah 9,. Titik y, f, y y, , , Jadi, setiap harinya perusahaan tersebut harus memproduksi sebanyak 9 barang jenis I dan barang jenis II. 7. Diketahui matriks nilai dari y..... C. 0, y 8, dan C 9 y 8 0 Y 6 O y 8 (9,) y X 8. Jika C, maka 7 Husein Tampomas, UHMK, 0

8 D. E. Solusi: [D] C 8 y 9 y y 8 y 0 y Jadi, y 8. Diketahui vektor a, b, dan c 6 a b c.... i j k. i j k C. i j k D. i 0 j k E. i 0 j k Solusi: [] a b a b Karena 0 maka 6. Jika a tegak lurus b dan 0, maka 6 a b c i j k Diketahui proyeksi vektor u i a j bk pada vektor v ai b j ak adalah p i j k. Jika adalah sudut antara vektor u dan v 6 dengan cos, maka nilai ab..... C. D. E Husein Tampomas, UHMK, 0

9 Solusi: [-] uv uv cos u cos... () uv v u v u v v p v p... () v v v Dari () dan () diperoleh: v p u cos v a u cos b v a u u Karena cos a dan cos b, maka a b v v 6 a b 6 a a b 6 a a 6 a a a 6 a 6 a a a a a 7 a 0 a b a ab Diketahui vektor u i a j k dan v i 6 j 8k. Jika panjang proyeksi vektor u pada v adalah.. C. D. 6 6, maka nilai a... 9 Husein Tampomas, UHMK, 0

10 E. Solusi: [] 6 a a a a a 6 a. ayangan kurva dengan translasi adalah..... C. D. E. y 6 y 6 y 68 y 68 y Solusi: [C] y, y,8 y 0 Husein Tampomas, UHMK, 0 y 0 oleh pencerminan terhadap garis y kemudian dilanjutkan,8 y, y ", y" " y y" y 0 " y" 0 6 y 0 y 68. Nilai yang memenuhi yang memenuhi pertidaksamaan adalah C. 8 D. 8 log log log

11 E. Solusi: [C] Kasus : ilangan pokok: 0... () Numerus: 0... () log log log log log log log log log log log log log... () 8 Dari () () () menghasilkan... () Kasus : ilangan pokok: () Numerus: 0... (6) log log log log log log log log log log log log log... (7) 8 Dari () (6) (7) menghasilkan... (8) 8 Dari () (8) menghasilkan Husein Tampomas, UHMK, 0

12 . Invers dari persamaan grafik berikut adalah.... y log. y log C. y log Y D. y E. y Solusi: [] 0 0, a a y O y a X Menentukan invers: y log ylog y log y log. Suku ketiga dan suku ke tujuh dari suatu deret aritmetika berturut-turut adalah dan 9. Jumlah dua puluh lima suku pertama deret tersebut adalah C. D. E. 860 Solusi: [] u a b... () u7 9 a 6b 9... () Persamaan () Persamaan () menghasilkan: b6 b a a n Sn a n b S 06.. Suku pertama barisan geometri adalah dan suku ke lima adalah. Suku ketujuh barisan tersebut adalah Husein Tampomas, UHMK, 0

13 C. 9 D. 9 E. Solusi: [] u ar a a r 8 r 6 6 u7 ar 7 6. Tiga buah bilangan membentuk barisan aritmetika. Jika suku kedua barisan itu dikurangi dan suku ketiganya ditambah maka terbentuk barisan geometri yang rasionya. Jumlah ketiga suku barisan geometri tersebut adalah..... C. D. E. Solusi: [] : a b, a, a b G: a b, a, a b dan rasionya r a a b a b a a a b a b a a b... () ab a a b a ab... () Persamaan () Persamaan () menghasilkan: b 6 b a a S a b a a b a 7. Sebuah bola dijatuhkan dari ketinggian meter pada lantai dan memamtul terus menerus di titik yang sama. Setiap kali mengenai lantai, pantulannya mencapai ketinggian sebelumnya. Panjang seluruh lintasan sampai bola tersebut berhenti adalah m. m dari ketinggian Husein Tampomas, UHMK, 0

14 C. 0 m D. 8 m E. m Solusi : [D] Sturun... 0 Snaik... 8 panjang seluruh lintasan sampai bola tersebut berhenti adalah 0 8m 8m. Solusi : [D] h dan r y y S h 8 y panjang seluruh lintasan sampai bola tersebut berhenti adalah 0 8m 8m. 8. Kubus CD.EFGH dengan panjang rusuk cm. P pada sehingga P : P : CG sehingga CQ : QG :. Jarak titik ke garis PQ adalah..... dan Q pada C. 7 D. 7 7 E. Solusi: [E] PC P C PQ PC CQ Q C CQ P Q PQ R P Q R PQ 9. Diberikan kubus CD.EFGH dengan panjang rusuk cm. P merupakan titik tengah D. Jika adalah sudut antara bidang GP dengan bidang alas CD, maka cos... F P E R G Q C D H Husein Tampomas, UHMK, 0

15 C. D. E. Solusi: [-] P P 0 F G PC P Luas PC Luas CD Luas PDC Luas P Luas PC 8 Luas PC P CQ Luas PC 8 8 CQ P GQ QC CG E Q P C D H 8 QC 8 cos GQ 0. Perhatikan gambar segiempat berikut: D C Jika panjang CD = cm. 6 cm C. 6 cm D. 8 6 cm E. 6 6 cm Solusi: [C] cos C D cm. Panjang CD 7 cm. Jika D cm, maka luas sin cos 7 7 Luas CD = 6 Dsin D 7 C Husein Tampomas, UHMK, 0

16 . Himpunan penyelesaian dari persamaan cos 7cos 0 untuk 0 60 adalah ,90,0,0. 0,0,0,0 C. 60,0,0,00 D. 90,0,0,00 E. 0,0,00,60 Solusi: [] cos 7cos 0 cos 7cos 0 cos 7cos 0 cos cos 0 cos (diterima) cos (ditolak) 60 k k 60 0 k 80 0 k 80 k 0 0, 0 k 0,0 k 90,0 Jadi, himpunan penyelesaiannya adalah 0,0,0,0.. Diketahui cos sin... sin, dengan sudut dan lancip. Jika nilai sin, maka nilai C. 0 D. E. Solusi: [E] sin sin cos cos sin sin cos 0 sin cos 0 sin sin cos cos sin Husein Tampomas, UHMK, 0

17 . Nilai dari sin8, sin 7,... cos8, cos7,.. C. D. E. Solusi: [D] sin8, sin7, cos60sin, cos8, cos7, sin 60sin,. Nilai dari lim..... C. D. E. Solusi: [] lim lim. Nilai dari.. C. D. E. Solusi: [E] lim... lim cos0 6. Nilai dari lim... 0 sintan.. 0 C. D. E. 0 7 Husein Tampomas, UHMK, 0

18 Solusi : [C] cos0 sin sin sin lim lim lim lim lim 0 sin tan 0 sin tan 0 tan 0 0 tan Solusi : [C] 0 cos0 lim 0 sintan 7. Sebuah perusahaan menyewakan kursi untuk keperluan pesta. Harga sewa kursi ditetapkan 0 sebesar 0 dalam ribuan rupiah, dengan adalah banyak kursi yang disewa. Total pendapatan maksimum yang dapat diperoleh dari penyewaan kursi tersebut adalah.... Rp8.000,00. Rp6.000,00 C. Rp80.000,00 D. Rp.0.000,00 E. Rp.0.000,00 Solusi: [] ' 0 0 Nilai stasioner fungsi dicapai jika 0 0 ma ribu ' 0, sehingga Jadi, total pendapatan maksimum yang dapat diperoleh dari penyewaan kursi tersebut adalah Rp8.000, Hasil dari d..... C. D. E. Solusi: [] C C C C C 8 Husein Tampomas, UHMK, 0

19 d d C 9. Hasil dari sincos d cossin C C. cossin C C. sin8 sin C D. cos8 cos C 8 E. cos8 cos C 8 Solusi: [E] sin cosd sin8 sin d cos8 cos C C. D. d E. Solusi: [] d d Perhatikan gambar berikut. Y y 6 O X 9 Husein Tampomas, UHMK, 0

20 Integral yang menyatakan luas daerah yang diarsir adalah d d 0 0. d d 0 0 C. d d 0 D. 6 d d 0 E. d d 0 Solusi: [] Persamaan garis yang melalui titik-titik y y,0 dan 0, adalah Integral yang menyatakan luas daerah yang diarsir adalah 6. Luas daerah yang dibatasi oleh kurva. satuan luas. satuan luas C. satuan luas D. satuan luas E. satuan luas Solusi: [] L d d 0 L 0 y, d d 0 0 y, dan sumbu X adalah.... Jika daerah yang diarsir diputar mengelilingi sumbu X sejauh 60 o, maka volume benda putar yang terjadi adalah Y satuan volume y. satuan volume C. 6 X satuan volume O D. 0 satuan volume Y O y X y 0 Husein Tampomas, UHMK, 0

21 0,, 60, 6, 70, E. satuan volume Solusi: [D] Persamaan garisnya adalah y atas-batas integral: d d 0 L d d Husein Tampomas, UHMK, 0 0. Volume benda putar yang dibatasi oleh kurva y dan y kemudian diputar mengelilingi sumbu Y sejauh 60 o adalah.... satuan volume. 8 satuan volume C. satuan volume D. satuan volume E. 8 satuan volume Solusi: [E] atas-batas integral: V y y dy 0 y y dy 6 8 y y Modus data pada histogram adalah... f 6. 60,. 6, 0 C. 6, 8 D. 6, E. 6, Solusi: [C] X Mo 60, 60, 6, 6 O Y y X y

22 6. Median dari data pada tabel di bawah adalah.... 8, Nilai tengah. 9, C. 0, D., E., Solusi: [D] anyak data n 0 dan n sehingga kelas Median adalah 9 9 Me 8, 6 8,, 7. Kuartil atas data pada tabel di bawah adalah.... 9,. 0,0 C.,0 D., E. 0, Solusi: [C] anyak data n 0 dan 0 n sehingga kelas Median adalah Q 9, 9,,6,0 8 Nilai tengah Frekuensi Suatu bilangan terdiri atas angka berbeda akan disusun dari angka-angka 0,,,,, dan. anyaknya bilangan ganjil yang mungkin terbentuk adalah C. 6 D. E. 8 Solusi: [] Frekuensi Jadi, banyaknya bilangan ganjil yang mungkin terbentuk adalah Sebuah kontingen olimpiade matematika yang beranggotakan orang akan dipilih dari siswa putra dan siswa putri. anyak cara membentuk kontingen yang mengikutsertakan paling sedikit satu orang siswa putri adalah..... C. 6 D. 9 E. 0 Solusi: [D] anyak cara membentuk kontingen yang mengikutsertakan paling sedikit satu orang siswa putri adalah C C C C 9 Husein Tampomas, UHMK, 0

23 0. Dua buah dadu dilempar undi bersama-sama. Peluang munculnya jumlah kedua dadu merupakan bilangan prima atau ganjil adalah C. 8 6 D. 9 6 E. 6 Solusi: [D] Ruang sampel S = {(,), (,), (,), (,), (,), (,6),, (6,6)}; n(s) = 6. = jumlah mata dadu ganjil, n() = 8. = jumlah mata dadu prima, n() =. n( ) = jumlah mata dadu ganjil dan prima =. 8 9 P( ) P( ) P( ) P( ) II. Jawablah soal-soal berikut dengan cermat.. Kota dan kota berjarak 60 km. Sebuah bus berangkat dari dan bus lain berangkat dari pada waktu yang sama. Jika kedua bus bergerak dengan arah yang sama, maka keduanya akan bertemu dalam waktu 6 jam. Sebaliknya jika kedua bus bergerak dengan arah yang berlawanan, maka keduanya akan bertemu dalam waktu jam. Tentukan kecepatan bus yang bergerak lebih cepat. Solusi: Kasus : Kedua bus bergerak dengan arah yang sama 6v () 6v... () Persamaan () Persamaan () menghasilkan: 6v 6v 60 v v v 0... () Dadu 60 km Dadu Husein Tampomas, UHMK, 0 6 (,) (,) (,) (,) (,) (,6) (,) (,) (,) (,) (,) (,6) (,) (,) (,) (,) (,) (,6) (,) (,) (,) (,) (,) (,6) (,) (,) (,) (,) (,) (,6) 6 (6,) (6,) (6,) (6,) (6,) (6,6) v C

24 Kasus : Kedua bus bergerak dengan arah yang berlawanan v m... () v n... () Persamaan () + Persamaan () menghasilkan: v v m n 60 v v 0... (6) Persamaan () + Persamaan (6) menghasilkan: v 0 v 0 0 v 0 v 0 Jadi, kecepatan bus yang bergerak lebih cepat adalah bus yang bergerak dari dengan keceparan 0 km/jam.. Tentukan batasan yang memenuhi pertidaksamaan berikut. a. 8 b Solusi: a. 60 km m C v mbillah y, sehingga n v 9y 8y 0 y y 9 0 b. y atau y 9 (diterima) atau (ditolak) Husein Tampomas, UHMK, 0

25 Diketahui matriks, 7 9, dan C. 6 6 a. Jika X, maka tentukan matriks X. b. Jika X c. Jika Solusi: a., maka tentukan matriks X. X C, maka tentukan matriks X. X X 8 X b. X c. X C X X X X C X C X C X C Tentukan luas maksimum daerah yang diarsir pada kurva berikut. Y y y, O X Solusi: Husein Tampomas, UHMK, 0

26 y y 6 Husein Tampomas, UHMK, 0 L L' Nilai stasioner L dicapai jika L' 0, sehingga Lma Diberikan kurva y, tentukan bayangannya a. Jika kurva tersebut dicerminkan terhadap garis y dilanjutkan oleh rotasi sejauh 90 dengan pusat 0,. 0 b. Jika kurva tersebut ditransformasi oleh matriks kemudian didilatasi dengan faktor dengan pusat,0 Solusi: a. b. ' 0 y y' 0 y " 0 y y" 0 y " y y" y y" " " y y 6 ' 0 y' y y " 0 y" 0 y " 0 " y 0 y" y" " "

27 y y " y y" y " y" y " y" " " 6 y y 0 y 7 Husein Tampomas, UHMK, 0

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL B

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL B SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL B. Diberikan premis-premis seperti berikut : ) Jika kurikulum pendidikan sesuai dengan karakter bangsa maka semua anak pandai.

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram dan damai ) Jika Negara tentram dan damai maka

Lebih terperinci

SANGGAR 16 SMA JAKARTA TIMUR

SANGGAR 16 SMA JAKARTA TIMUR SANGGAR 6 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA Senin, 6 Pebruari 5. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah A. Jika semua sampah

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2008

SOAL UN DAN PENYELESAIANNYA 2008 1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan

Lebih terperinci

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

SOAL: MATEMATIKA Kelas : XII Mipa

SOAL: MATEMATIKA Kelas : XII Mipa SOAL: MATEMATIKA Kelas : XII Mipa Pilihlah salah satu jawaban yang tepat! Diberikan premis-preimis:. Jika Siti sakit maka dia pergi ke dokter.. Jika Siti pergi ke dokter maka dia diberi obat. Negasi dari

Lebih terperinci

SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A

SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram damai ) Jika Negara tentram damai maka rakyat makmur sejahtera

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

SANGGAR 16 SMA JAKARTA TIMUR

SANGGAR 16 SMA JAKARTA TIMUR SANGGAR 6 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA Senin, 6 Pebruari 05. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah Jika semua sampah tidak dibuang

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 . Jika SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN / f k 6 9 selalu bernilai negatif untuk setiap, maka k harus memenuhi... k 9 k k 6 k k Solusi: [Jawaban

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan yang

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA UJIAN NASIONAL TAHUN PELAJARAN 007/008 MATEMATIKA (D0) SMA/MA - PROGRAM STUDI IPA KODE : P 5 UTAMA SOAL :. Ingkaran dari pernyataan Beberapa siswa senang belajar matematika adalah... A. Ada siswa tidak

Lebih terperinci

UN SMA IPA 2003 Matematika

UN SMA IPA 2003 Matematika UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan

Lebih terperinci

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 00 Mata Pelajaran : Matematika Kelas : XII IPA Alokasi Waktu : 0

Lebih terperinci

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 0/0 SOAL A. Diketahui premis-premis berikut : Premis : Jika harga elpiji

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-4600 UJIAN SEKOLAH TAHUN PELAJARAN 04/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

Istiyanto.Com Media Belajar dan Berbagi Ilmu

Istiyanto.Com Media Belajar dan Berbagi Ilmu Istiyanto.Com Media Belajar dan Berbagi Ilmu Dapatkan tutorial-tutorial TIK/komputer dan soal-soal Matematika secara mudah dan gratis dengan berlangganan melalui email. SOAL UAN MATEMATIKA JURUSAN BAHASA

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK, TEBO. Perhatikan premis-premis berikut. Premis : Jika bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan

Lebih terperinci

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah 00-008-00- . Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah II Andi tidak pergi sekolah atau Andi bermain bola Kesimpulan yang sah dari premis-premis tersebut adalah.... cuaca cerah

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah...

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah... SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN /. Nilai a yang menyebabkan fungsi kuadrat f x a x ax a a a a a a Solusi: [Jawaban D] a a a. () D a a a a a

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( )

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( ) Nama : Ximple Education No. Peserta : 08-6600-747. Bentuk sederhana dari 6 6 3 3 5 64 7 000 3 A. 36 B. 6 C. D. 6 E. 36 =.. Bentuk sederhana dari ( 6)(6 +3 6) 3 4 A. 3 ( 3 + 4) B. 3 ( 3 + 4) C. ( 3 + 4)

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> 1

DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >>  1 DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> WWW.E-SBMPTN.COM 1 DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> WWW.E-SBMPTN.COM 2 NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut.

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN / LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi : IPA Hari/Tanggal : 9 Maret Jam : PETUNJUK

Lebih terperinci

SOAL TRY OUT MATEMATIKA 2009

SOAL TRY OUT MATEMATIKA 2009 SOAL TRY OUT MATEMATIKA 009. Diberikan premis-premis :. jika semua siswa SMA di DKI Jakarta lulus ujian, maka Pak Gubernur DKI Jakarta sujud syukur. Pak Gubernur DKI Jakarta tidak sujud syukur negasi kesimpulan

Lebih terperinci

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah...

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah... NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut. Premis 1 : Jika 10 bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan ganjil Premis : bukan bilangan ganjil

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

Matematika SMA/MA. Nama : No. Peserta :

Matematika SMA/MA. Nama : No. Peserta : DOKUMEN NEGARA SANGAT RAHASIA Matematika SMA/MA Nama : No. Peserta : 1. Ujian Nasional 2014 Diketahui premis-premis berikut Premis 1: Jika semua pejabat negara kuat imannya, maka korupsi tidak merajalela.

Lebih terperinci

SOLUSI. p q r p q r p q r Jadi, pernyataannya adalah Hujan tidak deras atau angin tidak kencang atau semua pohon tumbang.

SOLUSI. p q r p q r p q r Jadi, pernyataannya adalah Hujan tidak deras atau angin tidak kencang atau semua pohon tumbang. SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

2014 ACADEMY QU IDMATHCIREBON

2014 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/15 April 2014 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Bentuk

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal P Doc. Name: UNSMAIPA008MATP Doc. Version : 0-0 halaman 0. Ingkaran dari pernyataan "Semua anak-anak suka bermain air." Tidak ada anak-anak yang suka bermain air. Semua

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal D0 Doc. Version : 0-06 halaman 0. Ingkaran dari pernataan "Ada bilangan prima adalah bilangan genap." Semua bilangan prima adalah bilangan genap. Semua bilangan prima

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah. . Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan

Lebih terperinci

TRY-OUT 2 XII IPA PAKET 1 (P.01)

TRY-OUT 2 XII IPA PAKET 1 (P.01) TRY-OUT XII IPA PAKET (P.0). Diketahui premis premis sebagai berikut Premis : Harga naik atau permintaan barang naik Premis : Permintaan barang turun atau angka penjualan naik Kesimpulan yang sah adalah.

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

2015 ACADEMY QU IDMATHCIREBON

2015 ACADEMY QU IDMATHCIREBON 2015 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2014/2015 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/04 April 2015 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

PREDIKSI UJIAN NASIONAL 2009

PREDIKSI UJIAN NASIONAL 2009 LEMBAGA PENJAMINAN MUTU PENDIDIKAN (LPMP) PROVINSI DAERAH KHUSUS IBU KOTA JAKARTA Alamat : Jl. Nangka No. 60, Tanjung Barat, Jagakarsa, Jakarta Selatan, Telp. (0) 79, 7099, 7067, Fax. (0) 7067 PREDIKSI

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 00-00-008-0 Hak Cipta 0 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, D, atau E pada jawaban yang benar!. Diketahui premis-premis: () Jika beberapa daerah dilanda banjir, maka beberapa

Lebih terperinci

Matematika IPA UN, Tahun 2015 Retype : Neonjogja.com

Matematika IPA UN, Tahun 2015 Retype : Neonjogja.com Matematika IPA UN, Tahun 0. Diketahui premis-premis berikut:. Saya bermain atau saya tidak gagal dalam ujian.. Saya gagal dalam ujian. Kesimpulan yang sah dari permis-permis tersebut Saya tidak bermain

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-8080 UJIAN SEKOLAH TAHUN PELAJARAN 0/0 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

SOAL DAN SOLUSI UJIAN SEKOLAH UTAMA TAHUN 2013

SOAL DAN SOLUSI UJIAN SEKOLAH UTAMA TAHUN 2013 SOAL DAN SOLUSI UJIAN SEKOLAH UTAMA TAHUN. Diberikan premis-premis berikut!. Mathman belajar tidak serius atau ia dapat mengerjakan semua soal Ujian Nasional dengan benar.. Jika ia dapat mengerjakan semua

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

Solusi: [Jawaban E] Solusi: [Jawaban D]

Solusi: [Jawaban E] Solusi: [Jawaban D] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 0/0 LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi : IPA Hari/Tanggal : Jam : PETUNJUK UMUM. Isilah lembar jawaban tes uji coba Ujian

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN BOGOR SOAL SOLUSI TRY OUT BERSAMA

DINAS PENDIDIKAN KABUPATEN BOGOR SOAL SOLUSI TRY OUT BERSAMA DINAS PENDIDIKAN KABUPATEN BOGOR SOAL SOLUSI TRY OUT BERSAMA Jumat, Pebruari 0. Fungsi kudarat yang persamaannya dinyatakan dalam y m n 6 mempunyai nilai minimum memotong sumbu X di titik A dan Jika absis

Lebih terperinci

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/0 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan - Telepon (0) 77, Fax (0)

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN BOGOR SOAL DAN SOLUSI TRY OUT BERSAMA

DINAS PENDIDIKAN KABUPATEN BOGOR SOAL DAN SOLUSI TRY OUT BERSAMA DINAS PENDIDIKAN KABUPATEN BOGOR SOAL DAN SOLUSI TRY OUT BERSAMA Jumat, Pebruari 0. Fungsi kudarat yang persamaannya dinyatakan dalam y m n 6 mempunyai nilai minimum memotong sumbu X di titik A dan B.

Lebih terperinci

SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR 14 SMA

SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR 14 SMA SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR SMA Sekretariat : SMA Negeri 8, Jl. Pinang Ranti II No. TMII Kec. Makasar Telp. 80097 80060 / Fax. (0) 80097 Kode

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika n bilangan prima ganjil maka n.. Jika n maka n 4. Ingkaran dari kesimpulan

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON SMA / MA MATEMATIKA Program Studi IPS Kerjasama dengan Dinas Pendidikan Provinsi DKI Jakarta,

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

A18 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

A18 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA A8 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M-0/0 Hak Cipta pada Pusat Penilaian Pendidikan-BALITBANG-KEMDIKBUD

Lebih terperinci

2013 ACADEMY QU IDMATHCIREBON

2013 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2012/2013 Jenjang Sekolah : SMA Hari/Tanggal : Rabu/17 April 2013 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Diketahui

Lebih terperinci

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E.

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E. PILIHLAH JAWABAN YANG PALING TEPAT 0. Diketahui : Premis : Jika laut berombak besar, maka nelayan tidak berlayar Premis : Jika nelayan tidak berlayar, maka tidak ada ikan di pasar. Negasi dari kesimpulan

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D , PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA SMK NEGERI KENDAL Alamat : Jl. Boja - Limbangan KM Salamsari, Boja, Kendal Telp.(9) 88 Fax. (9) e-mail : smktelukendal@yahoo.com. Pak

Lebih terperinci

4. Diketahui M = dan N = Bentuk sederhana dari M N adalah... Pilihlah jawaban yang benar.

4. Diketahui M = dan N = Bentuk sederhana dari M N adalah... Pilihlah jawaban yang benar. Pilihlah jawaban yang benar.. Diketahui premis-premis berikut. Premis : Jika terjadi kemarau panjang maka air sulit diperoleh. Premis : Jika air sulit diperoleh maka semua Kesimpulan dari premis-premis

Lebih terperinci

E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA SANGAT RAHASIA Pembahasan soal oleh http://pak-anang.blogspot.com E9 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April

Lebih terperinci

KARTU SOAL UJIAN NASIONAL MADRASAH ALIYAH NEGERI PANGKALPINANG

KARTU SOAL UJIAN NASIONAL MADRASAH ALIYAH NEGERI PANGKALPINANG Jumlah 50 Bentuk Pilihan Ganda Standar Kompetensi : Menggunakan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar : Menggunakan

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

SOAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR 14 SMA

SOAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR 14 SMA SOAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR SMA Sekretariat : SMA Negeri 8, Jl. Pinang Ranti II No. TMII Kec. Makasar Telp. 80097 80060 / Fax. (0) 80097 Kode Pos. 56

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E 1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8

Lebih terperinci

1. Himpunan penyelesaian pertidaksamaan ( 8x 20 ) + 3 ( 6x + 15 ) 4 adalah.. A. { x x -3 } B. { x x 10 } C. { x x 9 } D. { x x 8 } E.

1. Himpunan penyelesaian pertidaksamaan ( 8x 20 ) + 3 ( 6x + 15 ) 4 adalah.. A. { x x -3 } B. { x x 10 } C. { x x 9 } D. { x x 8 } E. 1. Himpunan penyelesaian pertidaksamaan ( 8x 20 ) + 3 ( 6x + 15 ) 4 adalah.. A. { x x -3 } B. { x x 10 } C. { x x 9 } D. { x x 8 } E. { x x 6 } 2. Persamaan grafik fungsi kuadrat yang memotong sumbu X

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci