BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI Pada bab ini dibahas penelitian-penelitian tentang aljabar maks-plus yang telah dilakukan dan teori-teori yang menunjang penelitian masalah nilai eigen dan vektor eigen yang diperumum untuk matriks atas aljabar maks-plus. 2.1 Tinjauan Pustaka Ide aljabar maks-plus ditemukan pertama kali pada tahun 1950-an tetapi teori aljabar maks-plus mulai berkembang pada tahun 1960-an (Tam [14]). Dalam aljabar maks-plus nilai eigen dan vektor eigen penting dalam penyelesaian suatu sistem ataupun untuk menentukan kestabilan suatu sistem. Penelitian yang dilaksanakan Binding dan Volkmer [3] maupun Cuninghame-Green dan Butkovič [5] menjelaskan tentang masalah nilai eigen dan vektor eigen yang diperumum pada aljabar maks-plus. Pada hasil penelitian yang dituliskan Binding dan Volkmer [3] menjelaskan mengenai masalah nilai eigen dan vektor eigen yang diperumum untuk matriks tak tereduksi nonnegatif. Sedangkan dalam penelitian yang telah dilakukan Elsner dan van den Driessche [6] menjelaskan suatu algoritma metode pangkat untuk menentukan nilai eigen dan vektor eigen. Adapun Cuninghame- Green dan Butkovič [5] dalam penelitiannya telah membahas mengenai masalah nilai eigen dan vektor eigen yang diperumum untuk matriks pada aljabar maksplus. Oleh karena itu, dalam penelitian ini akan dibahas mengenai penyelesaian masalah nilai eigen dan vektor eigen yang diperumum untuk matriks atas aljabar maks-plus. 4

2 2.2 Teori Penunjang Pada bagian ini dijelaskan definisi dan teori untuk mendukung tujuan dari penelitian. Berikut definisi dan teorema tentang struktur aljabar biasa, aljabar maks-plus, matriks atas aljabar maks-plus, graf dalam aljabar maks-plus, nilai eigen dan vektor eigen Struktur Aljabar Biasa Mengacu pada Herstein [9], berikut sifat-sifat aljabar biasa pada operasi penjumlahan dan perkalian. 1. Tertutup Ambil sebarang x, y R, sifat tertutup dipenuhi jika terdapat z 1, z 2 R dan berlaku x + y = z 1. x y = z Assosiatif Ambil sebarang x, y, z R berlaku (x + y) + z = x + (y + z). (x y) z = x (y z). 3. Komutatif Ambil sebarang x, y R berlaku x + y = y + x. x y = y x. 4. Distributif Ambil sebarang x, y, z R berlaku x(y + z) = xy + xz. (x + y)z = xz + yz. 5

3 5. Terdapat elemen identitas yaitu 0 terhadap operasi + dan 1 terhadap operasi dan berlaku x + 0 = 0 + x = x. x 1 = 1 x = x. Berikut tiga definisi dalam aljabar biasa mengacu pada Herstein [9]. Definisi Himpunan G disebut semigrup terhadap operasi biner + dan jika berlaku sifat tertutup dan assosiatif. Definisi Himpunan G disebut monoid terhadap operasi biner + dan jika berlaku sifat tertutup, assosiatif, dan mempunyai elemen identitas. Definisi Himpunan G disebut grup terhadap operasi biner + dan jika memenuhi sifat tertutup, assosiatif, terdapat unsur identitas, dan setiap unsur dalam G memiliki invers. Menurut Subiono [12], berikut definisi mengenai semiring dan semilapangan dalam aljabar biasa. Definisi Suatu semiring (S, +, ) adalah himpunan tak kosong S disertai dengan operasi biner + dan, yang memenuhi aksioma 1. (S, +) adalah semigrup komutatif dengan elemen identitas 0, yaitu x, y, z S memenuhi x + y = y + x (x + y) + z = x + (y + z) x + 0 = 0 + x = x. 2. (S, ) adalah semigrup dengan elemen identitas 1, yaitu x, y, z S memenuhi (x y) z = x (y z) x 1 = 1 x = x. 6

4 3. Sifat penyerap elemen netral 0 terhadap operasi, yaitu x S memenuhi x 0 = 0 x = Operasi distributif terhadap operasi +, yaitu x, y, z S berlaku (x + y) z = (x z) + (y z) x (y + z) = (x y) + (x z). Definisi Suatu semiring komutatif (S, +, ) dinamakan semilapangan bila setiap elemen x di S {0} mempunyai invers terhadap operasi, yaitu untuk setiap x di S {0} ada x 1 sehingga x x 1 = x 1 x = Aljabar Maks-Plus Berikut ini adalah definisi dari aljabar maks-plus menurut Tam [14]. Definisi Aljabar maks-plus adalah aljabar linear atas semiring R = R { }, yang dilengkapi dengan operasi penjumlahan = max dan perkalian = +. Elemen identitas untuk penjumlahan ϵ = dan elemen identitas untuk perkalian e = 0. [8]. Berikut sifat-sifat aljabar maks-plus dengan a, b, c R menurut Heidergott 1. Asosiatif a (b c) = (a b) c a (b c) = (a b) c. 2. Komutatif a b = b a a b = b a. 3. Distributif a (b c) = (a b) (a c). 7

5 4. Terdapat elemen identitas yaitu ϵ = untuk operasi dan e = 0 untuk operasi a ϵ = ϵ a = a a e = e a = a. 5. Idempoten a a = a. Definisi Misalkan a, b R, b disebut invers dari a apabila dan dinotasikan b = a 1. a b = 0 = b a Matriks atas Aljabar Maks-Plus Menurut Farlow [7] dan Tam [14], operasi penjumlahan dan perkalian pada matriks atas aljabar maks-plus atas R sama dengan operasi penjumlahan dan perkalian matriks atas R. Diambil sembarang matriks A dan B dengan elemen dalam R. 1. Operasi Penjumlahan Diambil sebarang matriks A dan B yang berukuran m n, yaitu a 11 a a 1n b 11 b b 1n a A = 21 a a 2n b dan B = 21 b b 2n a m1 a m2... a mn b m1 b m2... b mn. Elemen-elemen pada baris ke-i kolom ke-j dari matriks A dan B dinotasikan a ij dan b ij untuk i = 1, 2,..., m dan j = 1, 2,..., n. Elemen a ij dapat juga dituliskan sebagai [A] ij. Operasi penjumlahan atas R dinotasikan dengan sehingga penjumlahan matriks A dan B dalam dapat ditulis dengan A m n B m n = [A B] ij = (a ij b ij ) = (maks{a ij, b ij }) dengan i = 1,..., m dan j = 1,..., n. 8

6 2. Operasi Perkalian (a) Perkalian matriks dengan matriks Diambil sembarang matriks A yang berukuran m p dan B yang berukuran p n, yaitu a 11 a a 1p b 11 b b 1n a A = 21 a a 2p b dan B = 21 b b 2n a m1 a m2... a mp b p1 b p2... b pn Operasi perkalian atas R dinotasikan dengan sehingga perkalian matriks A dan B atas R dapat ditulis dengan A m p B p n = p (a ik b kj ) = (maks{a i1 +b 1j, a i2 +b 2j,..., a ip +b pj }). k=1 (b) Perkalian skalar dengan matriks Diberikan skalar α R dan sebarang matriks A yang berukuran m n. Perkalian skalar α dengan matriks A dapat ditulis dengan α A = (α a ij ) dengan i = 1,..., m dan j = 1,..., n. Contoh Contoh = = Contoh =

7 Menurut Tam [14] matriks A B jika untuk setiap (a ij ) (b ij ). Untuk setiap matriks-matriks A, B, C, dan vektor-vektor x, y dengan ukuran yang sesuai, serta α, β R dapat ditunjukkan bahwa 1. A (α B) = α (A B), 2. α(a B) = α A α B, 3. x T α y = α (x T y) dengan T adalah transpose, 4. (α β) A = α A β A, 5. A B = A C B C, 6. A B = A C B C, 7. x y = A x A y, 8. A B A B = B. Kemudian, Tam [14] mendefinisikan matriks diagonal dan matriks identitas sebagai berikut. Definisi Misalkan a, b, c,..., adalah bilangan real. Matriks diagonal didefinisikan dengan a ϵ ϵ... ϵ ϵ b ϵ... ϵ diag(a, b, c,...) = ϵ ϵ c... ϵ ϵ ϵ ϵ Dari Definisi 2.2.8, didefinisikan matriks identitas seperti yang dapat dilihat pada Definisi Definisi Matriks identitas adalah suatu matriks diagonal dengan semua nilai diagonalnya sama dengan nol (I = diag(0,..., 0)). 10

8 Dari Definisi 2.2.9, itu berarti I A = A = A I untuk setiap matriks A dan I dengan ukuran-ukuran yang sesuai. Selanjutnya, matriks A 0 = I untuk setiap matriks bujur sangkar. Berdasarkan Cuninghame-Green dan Butkovič [5], didefinisikan matriks permutasi dan matriks permutasi yang diperumum. Setiap matriks yang dapat diperoleh dari matriks identitas dengan permutasi pada baris-baris dan/atau kolom-kolom disebut matriks permutasi. Setiap matriks yang dapat diperoleh dari matriks diagonal dengan permutasi pada baris-baris dan/atau kolom-kolom disebut matriks permutasi yang diperumum. Berdasarkan Tam [14], berikut diberikan definisi mengenai matriks konjugat. Didefinisikan R m n adalah R dengan matriks yang berukuran m n. Definisi Misalkan A = (a ij ) R m n. Konjugat dari matriks A yaitu A = (a ij). Ini diperoleh dari negasi dan transpose matriks A. Secara matematis, A dapat dituliskan dengan A = A T. Definisi Misalkan A R n n, A disebut invertible apabila ada B R n n sedemikian sehingga A B = I = B A. Definisi Misalkan A R n n. A k = } A A {{... A }. k Graf dalam Aljabar Maks-Plus Berikut ini akan dijelaskan beberapa definisi mengenai graf dalam aljabar maks-plus menurut Schutter [10]. Suatu graf G didefinisikan sebagai pasangan (V, E), dengan V adalah suatu himpunan yang anggotanya disebut vertex dan E adalah suatu himpunan pasangan vertex. Anggota dari E disebut edge. Suatu digraf (graf berarah) G didefinisikan sebagai pasangan (V, A), dengan V adalah suatu himpunan vertex dan A adalah suatu himpunan pasangan vertex. Anggota dari A disebut arc. Definisi Misalkan A R n n. Graf precedence dari A dinotasikan oleh G(A) adalah digraf (graf berarah) berbobot dengan vertex 1,..., n dimana terdapat arc (j, i) dengan bobot a ij untuk a ij. 11

9 Graf precedence G(A) dikatakan strongly connected jika untuk setiap dua vertex yang berbeda i, j terdapat sebuah path dari i ke j, dimana pengertian path adalah barisan dari vertex i 1, i 2,..., i k sehingga terdapat sebuah arc dari i j ke i j+1, untuk j = 1,..., k 1. Definisi Suatu matriks A R n n dikatakan tak tereduksi jika graf precedence G(A) adalah strongly connected. Sebaliknya, jika graf precedence G(A) tidak strongly connected, maka matriks A adalah matriks tereduksi. Sebagai contoh, diberikan matriks A dan B yang diambil dari Andersen [1] A = 4 1 B = Gambar 2.1. (a) Graf Precedence G(A) (Kiri), (b) Graf Precedence G(B) (Kanan). Dari gambar 2.1.(a), terlihat bahwa graf precedence G(A) strongly connected, sehingga matriks A merupakan matriks taktereduksi. Sedangkan pada gambar 2.1.(b), terlihat bahwa graf precedence G(B) tidak strongly connected karena tidak terdapat path dari v 3 menuju vertex lainnya, sehingga matriks B merupakan matriks tereduksi Nilai Eigen dan Vektor Eigen Berikut ini pengertian nilai eigen dan vektor eigen dari suatu matriks dalam aljabar maks-plus menurut Subiono [12]. 12

10 Pengertian nilai eigen dan vektor eigen yang bersesuaian dari suatu matriks persegi A yang berukuran n n sebagaimana dijumpai dalam aljabar linear biasa juga dijumpai dalam aljabar maks-plus, yaitu bila diberikan suatu persamaan A x = λ x dalam hal ini masing-masing vektor x R n n dan skalar λ R berturutturut dinamakan vektor eigen dan nilai eigen dari matriks A dengan vektor x (ϵ, ϵ,..., ϵ) T. Subiono dan van der Woude [13] menjelaskan berikut ini merupakan suatu algoritma untuk menentukan nilai eigen dan vektor eigen dari matriks A R n n yang dilakukan secara berulang dari bentuk persamaan linear x(k + 1) = A x(k), k = 0, 1, 2,... (2.1) 1. mulai dari sembarang nilai awal x(0) (ε, ε,..., ε) T, 2. iterasi persamaan (2.1) hingga terdapat bilangan bulat p dan q dengan p > q 0 serta bilangan real c sehingga terjadi suatu perilaku periodik atau memenuhi x(p) = c x(q), 3. hitung nilai eigen λ = c p q, 4. hitung vektor eigen p q v = (λ (p q i) x(q + i 1)). i=1 Definisi (Tam [14]) Diberikan A R n n dan λ R. Didefinisikan (i) V (A, λ) = {x R n A x = λ x}, (ii) Λ(A) = {λ R (A, λ) {ϵ}}, (iii) V (A) = λ (A) (A, λ), (iv) V + (A, λ) = (A, λ) R n, (v) V + (A) = (A) R n. 13

11 2.3 Kerangka Pemikiran Berdasarkan tinjauan pustaka, dapat dibentuk kerangka pemikiran untuk menyelesaikan masalah nilai eigen dan vektor eigen yang diperumum untuk matriks atas aljabar maks-plus. Masalah nilai eigen dan vektor eigen yang diperumum membentuk persamaan A x = λb x di dalam persamaan tersebut ada matriks B yang menyebabkan bentuk yang diperumum. Akan tetapi pada persamaan (2.3) untuk matriks nonnegatif. Dalam masalah nilai eigen dan vektor eigen yang diperumum akan ditentukan sebarang matriks B yang sesuai dengan banyaknya nilai eigen dan vektor eigen. Masalah nilai eigen dan vektor eigen yang diperumum ini mengacu pada Binding dan Volkmer [3]. Dalam masalah nilai eigen dan vektor eigen yang diperumum untuk matriks tak tereduksi dan matriks tereduksi yang mengacu pada Cuninghame- Green dan Butkovič [5] disajikan dalam bentuk A x = λ B x. Adapun untuk menentukan nilai eigen dan vektor eigen mengacu pada algoritma metode pangkat yang telah dijelaskan Elsner dan van den Driessche [6]. 14

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini berisi tinjauan pustaka dan kerangka pemikiran. Tinjauan pustaka berisi penelitian-penelitan yang dilaksanakan dan digunakan sebagai dasar dilaksanakannya penelitian

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS

MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS oleh DIAN RIZKI NURAINI M0111021 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana

Lebih terperinci

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut BAB 3 ALJABAR MAX-PLUS Sebelum membahas Aljabar Max-Plus, akan diuraikan terlebih dahulu beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut dipenuhi oleh suatu Aljabar Max-Plus.

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas tentang semiring, Aljabar Max-Plus, sifat-sifat

BAB II LANDASAN TEORI. Pada bab ini akan dibahas tentang semiring, Aljabar Max-Plus, sifat-sifat BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang semiring, Aljabar Max-Plus, sifat-sifat Aljabar Max-Plus, matriks atas Aljabar Max-Plus, matriks dan graf, nilai eigen dan vektor eigen Aljabar Max-Plus,

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS Tri Anggoro Putro, Siswanto, Supriyadi Wibowo Program Studi Matematika FMIPA UNS Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas

Lebih terperinci

HALAMAN PENGESAHAN PROPOSAL PENELITIAN DOSEN YUNOR

HALAMAN PENGESAHAN PROPOSAL PENELITIAN DOSEN YUNOR HALAMAN PENGESAHAN PROPOSAL PENELITIAN DOSEN YUNOR. Judul Penelitian : Identifikasi Sifat-Sifat Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus..Ketua Pelaksana : a. Nama : Musthofa, M.Sc b.

Lebih terperinci

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif.

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. STRUKTUR ALJABAR SEMIGRUP Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. Contoh 1 (Z, +) merupakan sebuah semigrup. Contoh 2 Misalkan

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks 2. MATRIKS 1. Pengertian Matriks Matriks adalah himpunan skalar yang disusun secara empat persegi panjang menurut baris dan kolom. Matriks diberi nama huruf besar, sedangkan elemen-elemennya dengan huruf

Lebih terperinci

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DEVI SAFITRI 10654004470 FAKULTAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Bilangan Kompleks Bilangan merupakan suatu konsep dalam matematika yang digunakan untuk pencacahan dan pengukuran. Sistem bilangan yang dikenal saat ini merupakan hasil perkembangan

Lebih terperinci

Karakterisasi Nilai Eigen, Vektor Eigen, dan Eigenmode dari Matriks Tak Tereduksi dan Tereduksi dalam Aljabar Max-Plus

Karakterisasi Nilai Eigen, Vektor Eigen, dan Eigenmode dari Matriks Tak Tereduksi dan Tereduksi dalam Aljabar Max-Plus Karakterisasi Nilai Eigen, Vektor Eigen, dan Eigenmode dari Matriks Tak Tereduksi dan Tereduksi dalam Aljabar Max-Plus Himmatul Mursyidah (1213 201 001) Dosen Pembimbing : Dr. Subiono, M.S. Program Magister

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY

PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY Any Muanalifah August 9, 2010 Latar Belakang Latar Belakang Teori himpunan fuzzy berkembang pesat saat ini. Banyak sekali

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS

ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS Maria Ulfa Subiono 2 dan Mahmud Yunus 3 Institut Teknologi Sepuluh Nopember Surabaya 23 e-mail: ulfawsrejo@yahoo.com subiono28@matematika.its.ac.id

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (Discrete-Event System) merupakan suatu sistem yang state space nya berbentuk diskret, sistem yang keadaannya berubah hanya pada waktu

Lebih terperinci

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS SISTEM LINEAR DALAM ALJABAR MAKS-PLUS oleh ANITA NUR MUSLIMAH M01009009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Aljabar Max-Plus Himpunan bilangan riil (R) dengan diberikan opersai max dan plus dengan mengikuti definisi berikut : Definisi II.A.1: Didefinisikan εε dan ee 0, dan untuk himpunan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi + 5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,

Lebih terperinci

SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS 1. PENDAHULUAN

SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS 1. PENDAHULUAN SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS Kiki Aprilia, Siswanto, dan Titin Sri Martini Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret ABSTRAK.

Lebih terperinci

PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS

PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS Casilda Reva Kartika, Siswanto, dan Sutrima Program Studi Matematika

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3 MATRIKS a. Konsep Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegipanjang dan diletakkan di dalam kurung biasa ( ) atau

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sistem kejadian dinamik diskrit (discrete-event dynamic system) merupakan sistem yang keadaannya berubah hanya pada titik waktu diskrit untuk menanggapi terjadinya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (SKD) adalah nama klasifikasi masalah tentang sistem dengan sumber daya berhingga yang digunakan oleh beberapa pengguna untuk mencapai

Lebih terperinci

POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS. 1. Pendahuluan

POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS. 1. Pendahuluan POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS Maryatun, Siswanto, dan Santoso Budi Wiyono Program Studi Matematika FMIPA UNS Abstrak Polinomial dalam aljabar maks-plus dapat dinotasikan sebagai

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

KARAKTERISASI PENYELESAIAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR SUPERTROPICAL

KARAKTERISASI PENYELESAIAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR SUPERTROPICAL TESIS SM 142501 KARAKTERISASI PENYELESAIAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR SUPERTROPICAL Dian Yuliati NRP. 1214 201 002 DOSEN PEMBIMBING Dr. Subiono, M.S. PROGRAM MAGISTER JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS PLUS

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS PLUS KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS PLUS oleh TRI ANGGORO PUTRO M0112100 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika FAKULTAS

Lebih terperinci

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 6 RING (GELANGGANG) Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat suatu Ring, Integral Domain dan Field Tujuan Instruksional

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS PROSIDING ISBN : 978-979-16353-9-4 SISTEM LINEAR DALAM ALJABAR MAKS-PLUS Anita Nur Muslimah 1, Siswanto 2, Purnami Widyaningsih 3 A-1 Jurusan Matematika FMIPA UNS 1 anitanurmuslimah@yahoo.co.id, 2 sis.mipauns@yahoo.co.id,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS Annisa Rahmawati, Siswanto, Muslich Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG

PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG Mira Amalia, Siswanto, dan Bowo Winarno Program Studi Matematika FMIPA UNS Abstrak. Aljabar merupakan cabang ilmu matematika

Lebih terperinci

PENGERTIAN RING. A. Pendahuluan

PENGERTIAN RING. A. Pendahuluan Pertemuan 13 PENGERTIAN RING A. Pendahuluan Target yang diharapkan dalam pertemuan ke 13 ini (pertemuan pertama tentang teori ring) adalah mahasiswa dapat : a. membedakan suatu struktur aljabar merupakan

Lebih terperinci

Semi Modul Interval [0,1] Atas Semi Ring Matriks Fuzzy Persegi

Semi Modul Interval [0,1] Atas Semi Ring Matriks Fuzzy Persegi SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Semi Modul Interval [0,1] Atas Semi Ring Matriks Fuzzy Persegi Subjudul (jika diperlukan) [TNR14, spasi 1] Suroto, Ari Wardayani Jurusan Matematika

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya

Skew- Semifield dan Beberapa Sifatnya Kode Makalah M-1 Skew- Semifield dan Beberapa Sifatnya K a r y a t i Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta E-mail: yatiuny@yahoo.com

Lebih terperinci

Pengolahan Dasar Matriks Bagus Sartono

Pengolahan Dasar Matriks Bagus Sartono Pengolahan Dasar Matriks Bagus Sartono bagusco@gmail.com Departemen Statistika FMIPA IPB Notasi Dasar Matriks A mxn, m A n, [a ij ] mxn : matriks berukuran m x n (m baris, n kolom) a ij adalah elemen matriks

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup BAB 3 DASAR DASAR GRUP Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Lebih terperinci

MENENTUKAN LINTASAN TERPENDEK DENGAN MENGGUNAKAN ALJABAR MAX-PLUS TESIS

MENENTUKAN LINTASAN TERPENDEK DENGAN MENGGUNAKAN ALJABAR MAX-PLUS TESIS UNIVERSITAS INDONESIA MENENTUKAN LINTASAN TERPENDEK DENGAN MENGGUNAKAN ALJABAR MAX-PLUS TESIS DESSY 0906577324 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MAGISTER MATEMATIKA DEPOK JULI

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya; BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Aljabar abstrak merupakan salah satu bidang kajian dalam matematika. Aljabar abstrak merupakan sistem matematika yang terdiri dari suatu himpunan yang dilengkapi oleh

Lebih terperinci

POLINOMIAL ATAS ALJABAR MAX-PLUS INTERVAL

POLINOMIAL ATAS ALJABAR MAX-PLUS INTERVAL POLINOMIAL ATAS ALJABAR MAX-PLUS INTERVAL A-4 Harry Nugroho 1, Effa Marta R 2, Ari Wardayani 3 1,2,3 Program Studi Matematika Universitas Jenderal Soedirman 1 harry_nugroho92@yahoo.com 2 marta_effa, 3

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah

Lebih terperinci

MENENTUKAN EIGEN PROBLEM ALJABAR MAX-PLUS

MENENTUKAN EIGEN PROBLEM ALJABAR MAX-PLUS MENENTUKAN EIGEN PROBLEM ALJABAR MAX-PLUS SKRIPSI Diajukan Kepada Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Kalijaga Yogyakarta untuk Memenuhi Sebagian Syarat Memperoleh Gelar Sarjana

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

BAB I MATRIKS DEFINISI : NOTASI MATRIKS :

BAB I MATRIKS DEFINISI : NOTASI MATRIKS : BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.

Lebih terperinci

PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL

PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL Siswanto Jurusan Matematika FMIPA UNS sis.mipauns@yahoo.co.id Abstrak Misalkan R himpunan bilangan real. Aljabar Max-Plus adalah himpunan

Lebih terperinci

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama.

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama. MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital (huruf besar)

Lebih terperinci

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij) MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

BAB I PENDAHULUAN. aljabar max-plus bersifat assosiatif, komutatif, dan distributif.

BAB I PENDAHULUAN. aljabar max-plus bersifat assosiatif, komutatif, dan distributif. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Aljabar max-plus adalah himpunan R := R { } dilengkapi dengan operasi a b := max(a,b) dan a b := a + b. Elemen identitas penjumlahan dan perkalian berturut-turut

Lebih terperinci

Aplikasi Aljabar Max-Plus Pada Pemodelan Dan Penjadwalan Busway Yang Diintegrasikan Dengan Kereta Api Komuter

Aplikasi Aljabar Max-Plus Pada Pemodelan Dan Penjadwalan Busway Yang Diintegrasikan Dengan Kereta Api Komuter JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 Aplikasi Aljabar Max-Plus Pada Pemodelan Dan Penjadwalan Busway Yang Diintegrasikan Dengan Kereta Api Komuter Kistosil Fahim, Subchan, Subiono Jurusan Matematika,

Lebih terperinci

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang BAB II KAJIAN TEORI Pada Bab II ini berisi kajian teori. Di bab ini akan dijelaskan beberapa definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang mendasari teori kode BCH. A. Grup

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom. Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI DALAM ALJABAR MAKS-PLUS BESERTA APLIKASINYA

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI DALAM ALJABAR MAKS-PLUS BESERTA APLIKASINYA NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI DALAM ALJABAR MAKS-PLUS BESERTA APLIKASINYA oleh BUDI AGUNG PRASOJO M0105001 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

Aljabar Maxplus dan Terapannya

Aljabar Maxplus dan Terapannya Aljabar Maxplus dan Terapannya Version 1.1.1 1 Sepetember 213 Subiono * FMIPA Jurusan Matematika - M Matematika ITS, * Surabaya Subiono Email: subiono28@matematika.its.ac.id Alamat: Jurusan Matematika

Lebih terperinci

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan memahami konsep dari Semigrup dan Monoid

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan memahami konsep dari Semigrup dan Monoid BAB 2 SEMIGRUP DAN MONOID Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan memahami konsep dari Semigrup dan Monoid Tujuan Instruksional Khusus : Setelah

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 Indah Emilia Wijayanti Departemen Matematika FMIPA Universitas

Lebih terperinci

Aljabar Maxplus dan Aplikasinya : Model Sistem Antrian

Aljabar Maxplus dan Aplikasinya : Model Sistem Antrian J. Math. and Its Appl. ISSN: 829-605X Vol. 6, No., May 2009, 49 59 Aljabar Maxplus dan Aplikasinya : Model Sistem Antrian Subiono Jurusan Matematika FMIPA ITS, Surabaya subiono2008@matematika.its.ac.id

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring

IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring Jurnal Barekeng Vol. 7 No. 2 Hal. 41 46 (2013) IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring YOHANA YUNET BAKARBESSY 1, HENRY W. M. PATTY

Lebih terperinci

& & # = atau )!"* ( & ( ( (&

& & # = atau )!* ( & ( ( (& MATRIKS ======PENGERTIAN====== Matriks merupakan Susunan bilangan-bilangan yang membentuk segi empat siku-siku. Susunan bilangan-bilangan tersebut dinamakan entri dalam matriks. Matriks dinotasikan dengan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori

Lebih terperinci

UNIVERSITAS INDONESIA NILAI EIGEN DAN VEKTOR EIGEN DALAM ALJABAR MAX-PLUS TESIS RIDA NOVRIDA

UNIVERSITAS INDONESIA NILAI EIGEN DAN VEKTOR EIGEN DALAM ALJABAR MAX-PLUS TESIS RIDA NOVRIDA UNIVERSITAS INDONESIA NILAI EIGEN DAN VEKTOR EIGEN DALAM ALJABAR MAX-PLUS TESIS Diajukan untuk memenuhi sebagian persyaratan memperoleh gelar magister sains RIDA NOVRIDA 1006786221 FAKULTAS MATEMATIKA

Lebih terperinci

Kajian Aljabar Max-Plus pada Pemodelan dan Penjadwalan Monorel dan Trem yang Terintegrasi di Kota Surabaya

Kajian Aljabar Max-Plus pada Pemodelan dan Penjadwalan Monorel dan Trem yang Terintegrasi di Kota Surabaya Kajian Aljabar Max-Plus pada Pemodelan dan Penjadwalan Monorel dan Trem yang Terintegrasi di Kota Surabaya Oleh: Fatma Ayu Nuning Farida Afiatna Dosen Pembimbing: Dr. Subiono, M.Sc Subchan, Ph.D Latar

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut:

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut: BAB 2 LANDASAN TEORI Pada bab ini dibicarakan mengenai matriks yang berbentuk bujur sangkar dengan beberapa definisi, teorema, sifat-sifat dan contoh sesuai dengan matriks tertentu yang dibicarakan yang

Lebih terperinci

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 =

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 = NAMA : KELAS : 1 2 MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital

Lebih terperinci

Konsep Dasar. Modul 1 PENDAHULUAN

Konsep Dasar. Modul 1 PENDAHULUAN Modul 1 Konsep Dasar M PENDAHULUAN Drs. Suryo Guritno, M.Stats., Ph.D. ateri yang akan dibahas dalam modul ini adalah konsep-konsep dasar aljabar matriks yang meliputi pengertian matriks, vektor dan skalar;

Lebih terperinci

PEMODELAN JARINGAN DAN ANALISA PENJADWALAN KERETA API KOMUTER DI DAOP VI YOGYAKARTA DENGAN MENGGUNAKAN ALJABAR MAX-PLUS SKRIPSI

PEMODELAN JARINGAN DAN ANALISA PENJADWALAN KERETA API KOMUTER DI DAOP VI YOGYAKARTA DENGAN MENGGUNAKAN ALJABAR MAX-PLUS SKRIPSI PEMODELAN JARINGAN DAN ANALISA PENJADWALAN KERETA API KOMUTER DI DAOP VI YOGYAKARTA DENGAN MENGGUNAKAN ALJABAR MAX-PLUS SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Pendidikan

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Pertama)

Sistem Bilangan Kompleks (Bagian Pertama) Sistem Bilangan Kompleks (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu I) Outline 1 Pendahuluan 2 Pengertian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Konvek Definisi 2.1.1. Suatu himpunan C di R n dikatakan konvek jika untuk setiap x, y C dan setiap bilangan real α, 0 < α < 1, titik αx + (1 - α)y C atau garis penghubung

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

Matematika Logika Aljabar Boolean

Matematika Logika Aljabar Boolean Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu

Lebih terperinci

Implementasi Aljabar Max-Plus pada Pemolan dan Penjadwalan Keberangkatan Bus Kota DAMRI (Studi Kasus di Surabaya)

Implementasi Aljabar Max-Plus pada Pemolan dan Penjadwalan Keberangkatan Bus Kota DAMRI (Studi Kasus di Surabaya) Implementasi Aljabar Max-Plus pada Pemolan dan Penjadwalan Keberangkatan Bus Kota DAMRI (Studi Kasus di Surabaya) Kresna Oktafianto, Subiono, Subchan Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

MATRIKS. Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris dan kolom)

MATRIKS. Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris dan kolom) MTRIKS DEFINISI Bentuk umum =(aij),i=,,...m J=,,...m a a a n baris a a..a n baris MTRIKS Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

Pertemuan 2 Matriks, part 2

Pertemuan 2 Matriks, part 2 Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen

Lebih terperinci