BAB IV PENGUJIAN PERANGKAT LUNAK DAN ANALISIS HASIL PENGUJIAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV PENGUJIAN PERANGKAT LUNAK DAN ANALISIS HASIL PENGUJIAN"

Transkripsi

1 BAB IV PENGUJIAN PERANGKAT LUNAK DAN ANALISIS HASIL PENGUJIAN Pada bab ini dibahas hasil pengujian yang dilakukan terhadap perangkat lunak sistem alih aksara dengan menggunakan citra hasil cropping sejumlah 321 sebagai datasetnya. Pengujian yang dilakukan meliputi performa sistem alih aksara dalam mengenali baris dan akurasi sistem dalam melakukan alih aksara pada citra uji. Citra uji berupa tulisan tangan diperoleh dari majalah mingguan Panjebar Semangat. Citra dataset dengan citra uji berasal dari seri yang berbeda tetapi dengan judul yang sama yaitu Katuturane Sejarah Pararaton karangan Raden Mas Mangkudimeja. Citra uji didigitalisasi menggunakan scanner dengan pengaturan resolusi sebesar 600 ppi. Gambar citra uji dapat dilihat pada lampiran B Pengenalan Baris Perhitungan baris merupakan pengujian sistem dalam mengenali suatu baris secara sempurna dengan mengubah nilai ambang baris t b. Pengenalan baris secara sempurna didefinisikan dengan kemampuan sistem memisahkan baris tanpa menghilangkan sandhangan maupun pasangan. Perhitungan jumlah baris yang dideteksi digunakan persamaan 3. Pengenalan baris = (3) Tabel Perhitungan jumlah baris Pengenalan Baris Citra Uji t b =0.4 t b =0.45 t b = ,

2 Penggunaan proyeksi vertikal pada citra uji menggunakan aksara tangan dirasa sudah baik untuk menghasilkan batasan baris. Pada Tabel 4.1 dapat dilihat hasil paling tinggi dalam pengenalan baris mencapai 86.95%. Baris yang tidak dikenali biasanya merupakan baris yang memiliki aksara yang sedikit sehingga jumlah pixelnya hitamnya terlalu sedikit. Pemilihan nilai ambang t b memiliki peranan penting dalam penentuan baris. Bila nilai t b terlalu besar maka 1 baris bisa dideteksi menjadi 2 atau lebih baris. Namun, bila t b terlalu kecil maka jumlah yang dikenali semakin sedikit. Selain dipengaruhi oleh oleh nilai ambang dan jumlah aksara penyusun dalam satu baris pasangan dan sandhangan yang berada diatas dan dibawah sebuah aksara dalam satu baris yang banyak menyulitkan menentukan nilai ambang batas baris (t b ) yang tepat. Selain itu jarak antar baris yang tidak sama membuat penentuan nilai offset yang digunakan tidak efektif memisahkan satu baris dengan baris yang lain secara sempurna. Pada gambar 4.1 akan disajikan contoh hasil dari pengenalan baris yang dilakukan. Gambar 4.1 (a) Hasil pengenalan baris yang sempurna, (b) hasil pengenalan baris tidak sempurna pada citra 18

3 4.2. Perhitungan Akurasi Tulisan Tangan Perhitungan akurasi juga dilakukan untuk mengetahui keakuratan sistem alih aksara dalam mengenali aksara dalam citra uji. Perhitungan akurasi dan error rate menggunakan persamaan 4 dan 5. # Hit # CR Akurasi 100% # Hit # MD # FA # CR # DD (4) #Hit = Jumlah aksara Jawa yang berhasil dialih aksarakan dengan benar. #Missed Detection (MD) = Jumlah aksara yang tidak teralih aksarakan. #False Alarm (FA)= Jumlah aksara yang di alih aksarakan salah. #Diversed Detection (DD)= Jumlah aksara yang dialihaksarakan lebih dari 1 aksara tetapi salah satunya benar. #Correct Rejection (CR)= Jumlah aksara yang tidak dikenali karena tidak ada data dalam dataset. # FA # MD # DD ER 100% (5) # Hit # MD # FA # CR # DD ER = error rate Tabel 4.2. Akurasi Dan Erorr Rate Citra Uji Akurasi Citra Uji #MD #FA #DD #CR #HIT ER

4 Hasil yang didapat pada Tabel 4.2 menunjukan kinerja sistem alih aksara Jawa menjadi huruf latin jauh dari target yang telah ditetapkan. Hal ini disebabkan oleh beberapa faktor seperti: 1. Kemiripan aksara Pada saat proses pengujian dijumpai satu aksara dialih aksarakan menjadi beberapa aksara atau aksara tersebut dialih aksarakan menjadi aksara lain. Hal ini disebabkan adanya kemiripan satu aksara dengan aksara yang lain atau hanya memiliki perbedaan pada sandhangan dan pasangan saja. Seperti pada Tabel 4.3. Tabel 4.3.Kemiripan Aksara Citra Uji Citra Dataset Korelasi

5 Ukuran aksara Perbedaan ukuran aksara pada citra uji dengan dataset akan menghasilkan korelasi yang sangat rendah. Kecilnya nilai korelasi ini akan membuat citra yang diuji tidak akan terdeteksi oleh sistem. Gambar 4.1 akan dicari nilai korelasinya dengan aksara yang sama Gambar 4.2. Citra aksara tu Pada Tabel 4.4 akan disajikan hasil korelasi antara aksara tu dengan aksara tu yang mengalami perubahan ukuran. Tabel 4.4. Hasil korelasi aksara yang diperkecil Ukuran Korelasi Aksara Cetak Sebagai pembanding, sistem alih aksara akan diuji menggunakan aksara Jawa cetak nglenggana. Huruf cetak aksara Jawa ini diperoleh dengan menggunakan software Pallawa. Huruf untuk dataset berupa aksara Jawa nglenggana berukuran 14. Pengujian dilakukan dengan cara membandingkan dengan citra uji yang memiliki ukuran huruf sama dan citra uji yang memiliki ukuran huruf yang berbeda. 21

6 Gambar 4.1. Citra aksara Jawa cetak ukuran 14 Gambar 4.3. Citra uji aksara Jawa cetak ukuran (a)12, (b)13, (c)15 dan (d)16. Percobaan cetak_1 merupakan percobaan menggunakan citra uji yang memiliki ukuran font 14. Hasil dari percobaan cetak_1 disajikan dalam Tabel

7 Tabel 4.5. Hasil percobaan cetak_1 t h #MD #FA #DD #CR #HIT Akurasi ER Percobaan cetak_2 merupakan percobaan menggunakan citra uji yang memiliki ukuran font 13. Hasil dari percobaan cetak_1 disajikan dalam Tabel 4.6. Tabel 4.6. Hasil percobaan cetak_2 t h #MD #FA #DD #CR #HIT Akurasi ER Percobaan cetak_3 merupakan percobaan menggunakan citra uji yang memiliki ukuran font 12. Hasil dari percobaan cetak_1 disajikan dalam Tabel 4.7. Tabel 4.7. Hasil percobaan cetak_3 t h #MD #FA #DD #CR #HIT Akurasi ER Percobaan cetak_4 merupakan percobaan menggunakan citra uji yang memiliki ukuran font 15. Hasil dari percobaan cetak_4 disajikan dalam Tabel

8 Tabel 4.8. Hasil percobaan cetak_4 t h #MD #FA #DD #CR #HIT Akurasi ER Percobaan cetak_5 merupakan percobaan menggunakan citra uji yang memiliki ukuran font 16. Hasil dari percobaan cetak_5 disajikan dalam Tabel 4.9. Tabel 4.9. Hasil percobaan cetak_5 t h #MD #FA #DD #CR #HIT Akurasi ER Huruf cetak yang menggunakan ukuran aksara yang sama memiliki hasil yang lebih baik dari pada yang memiliki ukuran berbeda. Kesamaan ukuran akan menghasilkan nilai korelasi antara dataset dan aksara dalam citra uji yang tinggi. Pengubahan ukuran aksara yang dilakukan sangat mempengaruhi akurasi kebenaran sistem. Pengujian sistem untuk huruf cetak juga dilakukan untuk aksara ha yang diberi sandhangan. Aksara untuk citra uji maupun dataset memiliki besar yang sama yaitu berukuran 14 seperti pada gambar 4.2(a). (a) (b) Gambar 4.4. (a) Citra uji (b) hasil pengujian 24

9 Pada t h sebesar 0,97 diperoleh hasil seperti yang ada pada Tabel Tabel 4.10.Hasil pengujian aksara ber-sandhangan t h #MD #FA #DD #CR #HIT Akurasi ER Aksara cetak tidak menghasilkan alih aksara yang baik ketika digunakan untuk mengalih aksarakan aksara yang memiliki sandhangan i, u, o dan h. Pada aksara ber-sandhangan tersebut terjadi pengalih aksaran ganda(#dd). 25

SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON

SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON 30 BAB IV SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON 4.1 Gambaran Umum Sistem Diagram sederhana dari program yang dibangun dapat diilustrasikan dalam diagram konteks berikut. Gambar

Lebih terperinci

Sistem Pendeteksi Orang Tergeletak berbasis sebuah Kamera Pengawas dengan menggunakan metode Template Matching

Sistem Pendeteksi Orang Tergeletak berbasis sebuah Kamera Pengawas dengan menggunakan metode Template Matching Sistem Pendeteksi Orang Tergeletak berbasis sebuah Kamera Pengawas dengan menggunakan metode Template Matching Jemmy Kusuma Candra great.yakuza@gmail.com Ivanna K. Timotius ivanna.timotius@ieee.org Iwan

Lebih terperinci

Pemanfaatan Metode Template Matching untuk Face Tracking secara Real Time di Ruang Tertutup

Pemanfaatan Metode Template Matching untuk Face Tracking secara Real Time di Ruang Tertutup Pemanfaatan Metode Template Matching untuk Face Tracking secara Real Time di Ruang Tertutup Efraim Anggriyono 1, Iwan Setyawan 2, Ivanna K. Timotius 3 Program Studi Teknik Elektro, Fakultas Teknik Elektronika

Lebih terperinci

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Teknologi Komputer yang semakin maju saat ini telah membantu hampir seluruh aspek kehidupan manusia. Teknologi komputer sering digunakan untuk mengatasi berbagai macam

Lebih terperinci

Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang

Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang 17 BAB II REKOGNISI KARAKTER NUMERIK 2.1 Gambaran Singkat Rekognisi Karakter Optik Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang dirancang untuk menerjemahkan teks baik berupa

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Citra digital dalam dunia modern memainkan peran yang sangat penting dalam berbagai bidang kehidupan seperti penyelidikan forensik, pemrosesan asuransi, sistem pengawasan,

Lebih terperinci

: RAHMAT HIDAYAT NPM : : Ilmu Komputer dan Teknologi Informasi

: RAHMAT HIDAYAT NPM : : Ilmu Komputer dan Teknologi Informasi APLIKASI PENGENALAN HURUF TULISAN TANGAN OFFLINE MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Nama : RAHMAT HIDAYAT NPM : 15111783 Fakultas : Ilmu Komputer dan Teknologi Informasi Jurusan : Sistem Informasi

Lebih terperinci

BAB I PENDAHULUAN. mengenai deteksi wajah dengan Differential Evolution Based Neural Network

BAB I PENDAHULUAN. mengenai deteksi wajah dengan Differential Evolution Based Neural Network BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Berdasarkan penelitian yang telah dilakukan oleh Yudistira Dewanata mengenai deteksi wajah dengan Differential Evolution Based Neural Network mendapatkan total

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian BAB I PENDAHULUAN 1.1 Latar Belakang Pada sebuah citra, sangat dimungkinkan terdapat berbagai macam objek. Objek yang ada pun bisa terdiri dari berbagai bentuk dan ukuran. Salah satu objek yang mungkin

Lebih terperinci

1.2 Rumusan Masalah Berdasarkan latar belakang yang telah dibuat diatas, rumusan masalah yang dapat diambil adalah :

1.2 Rumusan Masalah Berdasarkan latar belakang yang telah dibuat diatas, rumusan masalah yang dapat diambil adalah : BAB I PENDAHULUAN 1.1 Latar Belakang Tanda tangan adalah sebuah bentuk khusus dari tulisan tangan yang mengandung karakter khusus dan bentuk-bentuk tambahan yang sering digunakan sebagai bukti vertifikasi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Data E-mail Pada bagian ini akan disajikan detail jumlah keseluruhan dataset yang digunakan untuk penelitian. Dataset diambil CSDMC21 yang disediakan oleh http://www.csmining.org/

Lebih terperinci

BAB I PENDAHULUAN 1.2. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.2. Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Pendahuluan Sejak awal penemuan teknologi komputer sebagai lompatan mutakhir dalam dunia ilmu pengetahuan, komputer telah banyak berperan dalam membantu manusia dalam melakukan berbagai

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sistem jaringan komputer memiliki peran yang sangat penting dalam masyarakat modern karena memungkinkan informasi dapat diakses, disimpan dan dimanipulasi secara online.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Dalam penelitian ini diperlukan sebuah desain dan metode penelitian agar dalam pelaksanaaannya dapat menjadi lebih teratur dan terurut. 3.1. Desain Penelitian Bentuk dari desain

Lebih terperinci

BAB I PENDAHULUAN. banyak kemungkinan tulisan dengan huruf yang khas mempunyai histories

BAB I PENDAHULUAN. banyak kemungkinan tulisan dengan huruf yang khas mempunyai histories BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Keberadaan sebuah tulisan bagi masyarakat, merupakan hal yang penting untuk berkomunikasi dengan orang lain selain dengan bahasa (lisan). Disisi lain banyak

Lebih terperinci

Gambar IV-1. Perbandingan Nilai Korelasi Antar Induk Wavelet Pada Daerah Homogen Untuk Level Dekomposisi Pertama

Gambar IV-1. Perbandingan Nilai Korelasi Antar Induk Wavelet Pada Daerah Homogen Untuk Level Dekomposisi Pertama BAB IV ANALISIS IV.1 Analisis Terhadap Hasil Pengolahan Data Gambar IV-1 menunjukkan peningkatan nilai korelasi dari sebelum transformasi wavelet dengan setelah transformasi wavelet pada level dekomposisi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Menginterprestasi sebuah citra untuk memperoleh diskripsi tentang citra tersebut melalui beberapa proses antara lain preprocessing, segmentasi citra, analisis

Lebih terperinci

BAB III LANDASAN TEORI. 3.1 Metode GLCM ( Gray Level Co-Occurrence Matrix)

BAB III LANDASAN TEORI. 3.1 Metode GLCM ( Gray Level Co-Occurrence Matrix) BAB III LANDASAN TEORI 3.1 Metode GLCM ( Gray Level Co-Occurrence Matrix) Metode GLCM menurut Xie dkk (2010) merupakan suatu metode yang melakukan analisis terhadap suatu piksel pada citra dan mengetahui

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah BAB 3 METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian 3.1.1 Alat Penelitian a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah sebagai berikut: 1) Prosesor Intel (R) Atom (TM) CPU N550

Lebih terperinci

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL Andri STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 andri@mikroskil.ac.id Abstrak

Lebih terperinci

Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Integral Proyeksi

Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Integral Proyeksi Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Sigit Wasista, Siwi Dian Priyanti Jurusan Teknik Elektronika Politeknik Elektronika Negeri Surabaya- Institut Teknologi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Waktu yang digunakan dalam penelitian ini yaitu dalam kurun waktu enam bulan terhitung mulai februari 2012 sampai juli 2012. Tempat yang digunakan

Lebih terperinci

BAB V HASIL PENELITIAN DAN PEMBAHASAN

BAB V HASIL PENELITIAN DAN PEMBAHASAN BAB V HASIL PENELITIAN DAN PEMBAHASAN 5.1 Data Uji Printer forensik merupakan suatu proses identifikasi untuk mengetahui asal dokumen bukti, cara yang dilakukan dengan membandingkan dengan ciri yang terdapat

Lebih terperinci

PERANCANGAN ALAT PEMERIKSA LEMBAR JAWAB KOMPUTER MENGGUNAKAN WEBCAM

PERANCANGAN ALAT PEMERIKSA LEMBAR JAWAB KOMPUTER MENGGUNAKAN WEBCAM PERANCANGAN ALAT PEMERIKSA LEMBAR JAWAB KOMPUTER MENGGUNAKAN WEBCAM OLEH : Teofilus Dwi Santoso 05.50.0005 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS KATOLIK SOEGIJAPRANATA SEMARANG

Lebih terperinci

IDENTIFIKASI JENIS-JENIS RESISTOR MENGGUNAKAN METODE EUCLIDEAN DISTANCE

IDENTIFIKASI JENIS-JENIS RESISTOR MENGGUNAKAN METODE EUCLIDEAN DISTANCE IDENTIFIKASI JENIS-JENIS RESISTOR MENGGUNAKAN METODE EUCLIDEAN DISTANCE SKRIPSI Diajukan Untuk Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer (S. Kom) Pada Jurusan Teknik Informatika

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Memelihara dan meningkatkan tingkat kualitas hidup, mengurangi keterbatasan pemeliharaan akan fasilitas, efisiensi penggunaan sumber daya dan keamanan atas kepemilikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Meteran Air Meteran air merupakan alat untuk mengukur banyaknya aliran air secara terus menerus melalui sistem kerja peralatan yang dilengkapi dengan unit sensor, unit penghitung,

Lebih terperinci

PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION

PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION Jurnal Komputer dan Informatika (KOMPUTA) 29 PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION Raden Sofian Bahri 1, Irfan Maliki 2 1,2 Program Studi Teknik

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1 1. BAB I PENDAHULUAN Latar Belakang Iris mata merupakan salah satu organ internal yang dapat di lihat dari luar. Selaput ini berbentuk cincin yang mengelilingi pupil dan memberikan pola warna pada mata

Lebih terperinci

Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia

Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia Nusantara of Engineering/Vol. 2/ No. 1/ISSN: 2355-6684 65 Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia Rina Firliana, Resty Wulanningrum, Wisnu Sasongko Jurusan Teknik

Lebih terperinci

Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera

Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera Zahir arsya #1, Eru Puspita #2, Ronny Susetyoko #3 # Jurusan Teknik Elektronika, Politeknik Elektronika Negeri

Lebih terperinci

DETEKSI KEBAKARAN BERBASIS WEBCAM SECARA REALTIME DENGAN PENGOLAHAN CITRA DIGITAL

DETEKSI KEBAKARAN BERBASIS WEBCAM SECARA REALTIME DENGAN PENGOLAHAN CITRA DIGITAL DETEKSI KEBAKARAN BERBASIS WEBCAM SECARA REALTIME DENGAN PENGOLAHAN CITRA DIGITAL Ari Sutrisna Permana 1, Koredianto Usman 2, M. Ary Murti 3 Jurusan Teknik Elektro - Institut Teknologi Telkom - Bandung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pengenalan gender pada skripsi ini, meliputi cropping dan resizing ukuran citra, konversi citra

Lebih terperinci

BAB 4 PENGUJIAN DAN EVALUASI. dengan menggunakan 15 tanda tangan yang berasal dari 1 user yang masing masing

BAB 4 PENGUJIAN DAN EVALUASI. dengan menggunakan 15 tanda tangan yang berasal dari 1 user yang masing masing BAB 4 PENGUJIAN DAN EVALUASI 4.1 Pengujian Pengujian tanda tangan dilakukan dengan cara meminta masing masing user untuk melakukan 60 tanda tangan. Lalu kami akan menyeleksi tanda tangan mereka dengan

Lebih terperinci

PERBAIKAN CITRA BER-NOISE MENGGUNAKAN SWITCHING MEDIAN FILTER DAN BOUNDARY DISCRIMINATIVE NOISE DETECTION

PERBAIKAN CITRA BER-NOISE MENGGUNAKAN SWITCHING MEDIAN FILTER DAN BOUNDARY DISCRIMINATIVE NOISE DETECTION PERBAIKAN CITRA BER-NOISE MENGGUNAKAN SWITCHING MEDIAN FILTER DAN BOUNDARY DISCRIMINATIVE NOISE DETECTION Ahmad Saikhu, Nanik Suciati, Widhiantantri S. Jurusan Teknik Informatika, Fakultas Teknologi Informasi,

Lebih terperinci

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan Jurnal Sains & Matematika (JSM) ISSN Kajian 0854-0675 Pustaka Volume14, Nomor 4, Oktober 2006 Kajian Pustaka: 147-153 Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan Februari 2014 sampai dengan Juli 2014 di

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan Februari 2014 sampai dengan Juli 2014 di BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan Februari 2014 sampai dengan Juli 2014 di Laboratorium Pemodelan Fisika, Jurusan Fisika, Fakultas Matematika dan Ilmu

Lebih terperinci

Fitur Bentuk Pada Citra. Achmad Basuki, Nana R PENS-ITS, 2008

Fitur Bentuk Pada Citra. Achmad Basuki, Nana R PENS-ITS, 2008 Fitur Bentuk Pada Citra Achmad Basuki, Nana R PENS-ITS, 008 Materi Fitur Bentuk Deteksi Tepi Histogram Proyeksi Histogram Sudut Aplikasi Pengenalan Angka Fitur Bentuk Fitur bentuk adalah fitur dasar dalam

Lebih terperinci

Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur

Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur Cahya Hijriansyah 1, Achmad Solichin 2 1,2 Program Studi Teknik Informatika

Lebih terperinci

PENGENALAN PLAT NOMOR KENDARAAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS DAN SUPPORT VECTOR MACHINE BERBASIS PENGOLAHAN CITRA DIGITAL

PENGENALAN PLAT NOMOR KENDARAAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS DAN SUPPORT VECTOR MACHINE BERBASIS PENGOLAHAN CITRA DIGITAL PENGENALAN PLAT NOMOR KENDARAAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS DAN SUPPORT VECTOR MACHINE BERBASIS PENGOLAHAN CITRA DIGITAL Silviana Utari, Tjut Awaliyah, M.Kom, Irma Anggraeni, M.Kom

Lebih terperinci

KOREKSI GEOMETRIK. Tujuan :

KOREKSI GEOMETRIK. Tujuan : Tujuan : KOREKSI GEOMETRIK 1. rektifikasi (pembetulan) atau restorasi (pemulihan) citra agar kordinat citra sesuai dengan kordinat geografi 2. registrasi (mencocokkan) posisi citra dengan citra lain atau

Lebih terperinci

1. Pendahuluan. 1.1 Latar Belakang Masalah

1. Pendahuluan. 1.1 Latar Belakang Masalah 1. Pendahuluan 1.1 Latar Belakang Masalah Bahasa Arab adalah salah satu bahasa Internasional yang sekarang banyak digunakan oleh penduduk di dunia terutama di negara-negara bagian Timur Tengah. Bahasa

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah BAB I Pendahuluan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pemalsuan identitas sering kali menjadi permasalahan utama dalam keamanan data, karena itulah muncul teknik-teknik pengamanan data seperti penggunaan

Lebih terperinci

BAB I PENDAHULUAN. masalah, rumusan masalah, tujuan, pembatasan masalah, dan sistematika penulisan

BAB I PENDAHULUAN. masalah, rumusan masalah, tujuan, pembatasan masalah, dan sistematika penulisan BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, identifikasi masalah, rumusan masalah, tujuan, pembatasan masalah, dan sistematika penulisan dari Tugas Akhir ini. 1.1 Latar

Lebih terperinci

BAB V KESIMPULAN DAN SARAN

BAB V KESIMPULAN DAN SARAN BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Pada bab terakhir ini, akan diberikan beberapa simpulan guna menjawab rumusan masalah yang telah dikemukakan pada bab terdahulu, dan juga mencoba untuk memberikan

Lebih terperinci

PEDOMAN SCAN DOKUMEN. Oleh: Azizah PERPUSTAKAAN INSTITUT PERTANIAN BOGOR 2008

PEDOMAN SCAN DOKUMEN. Oleh: Azizah PERPUSTAKAAN INSTITUT PERTANIAN BOGOR 2008 PEDOMAN SCAN DOKUMEN Oleh: Azizah. PERPUSTAKAAN INSTITUT PERTANIAN BOGOR 2008 Pedoman Scan Dokumen I. Pendahuluan Scan adalah suatu cara untuk memindahkan gambar atau benda-benda kedalam wujud digital.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka 2.1.1 Klasifikasi Klasifikasi merupakan proses untuk menemukan model atau fungsi yang menjelaskan atau membedakan konsep atau kelas data, dengan tujuan untuk

Lebih terperinci

Sistem Identifikasi Smartcard-RFID dan Pengenalan Tanda Tangan Menggunakan Metode Backpropagation Dengan Kohonen Sebagai Pembanding

Sistem Identifikasi Smartcard-RFID dan Pengenalan Tanda Tangan Menggunakan Metode Backpropagation Dengan Kohonen Sebagai Pembanding The 13 th Industrial Electronics Seminar 2011 (IES 2011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2011 Sistem Identifikasi Smartcard-RFID dan Pengenalan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan sistematika tahapan yang dilaksanakan selama pembuatan penelitian tugas akhir. Secara garis besar metodologi penelitian tugas akhir ini dapat

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. Spesifikasi minimum dari perangkat keras yang diperlukan agar dapat. Graphic Card dengan memory minimum 64 mb

BAB 4 IMPLEMENTASI DAN EVALUASI. Spesifikasi minimum dari perangkat keras yang diperlukan agar dapat. Graphic Card dengan memory minimum 64 mb BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Spesifikasi Driver 4.1.1 Spesifikasi Perangkat Keras Spesifikasi minimum dari perangkat keras yang diperlukan agar dapat menjalankan driver ini adalah: Prosesor Pentium

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Data mining adalah proses mengeksplorasi dan menganalisis data dalam jumlah besar untuk menemukan pola dan rule yang berarti (Berry & Linoff, 2004). Klasifikasi adalah

Lebih terperinci

VERIFIKASI TANDA TANGAN DENGAN METODE JARINGAN SYARAF TIRUAN HETEROASSOCIATIVE MEMORY ABSTRAK

VERIFIKASI TANDA TANGAN DENGAN METODE JARINGAN SYARAF TIRUAN HETEROASSOCIATIVE MEMORY ABSTRAK VERIFIKASI TANDA TANGAN DENGAN METODE JARINGAN SYARAF TIRUAN HETEROASSOCIATIVE MEMORY Disusun oleh : Fabiola Zita Devy C. 0722085 Jurusan Teknik Elektro, Fakultas Teknik,, Jl.Prof.Drg.Suria Sumantri, MPH

Lebih terperinci

Sistem Pengenalan Karakter pada Plat Kendaraan Bermotor Menggunakan Profile Projection dan Algoritma Korelasi

Sistem Pengenalan Karakter pada Plat Kendaraan Bermotor Menggunakan Profile Projection dan Algoritma Korelasi Jurnal Komputer Terapan, Vol 1, No 2, November 2015, 109-119 109 Jurnal Politeknik Caltex Riau http://jurnal.pcr.ac.id Sistem Pengenalan Karakter pada Plat Kendaraan Bermotor Menggunakan Profile Projection

Lebih terperinci

UKDW BAB 1 PENDAHULUAN

UKDW BAB 1 PENDAHULUAN BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Musik merupakan hal yang paling banyak disukai oleh kebanyakan orang di seluruh dunia ini. Ada berbagai aliran musik yang tercipta dari berbagai belahan dunia.

Lebih terperinci

TINJAUAN PUSTAKA ,...(1)

TINJAUAN PUSTAKA ,...(1) 3 TINJAUAN PUSTAKA Dalam bab ini akan dibahas teori-teori yang mendasari penelitian ini. Dimulai dari teori dan konsep citra digital, deteksi pola lingkaran dengan Circle Hough Transform (CHT), ekstrasi

Lebih terperinci

PENERAPAN ALGORITMA PRINCIPLE COMPONENT ANALYSIS (PCA) DAN FITUR RGB UNTUK PELACAKAN JENIS DAN WARNA BUAH

PENERAPAN ALGORITMA PRINCIPLE COMPONENT ANALYSIS (PCA) DAN FITUR RGB UNTUK PELACAKAN JENIS DAN WARNA BUAH IJCCS, Vol.x, No.x, Julyxxxx, pp. 1~5 ISSN: 1978-1520 1 PENERAPAN ALGORITMA PRINCIPLE COMPONENT ANALYSIS (PCA) DAN FITUR RGB UNTUK PELACAKAN JENIS DAN WARNA BUAH 1 Suta Wijaya, 2 Hendri, 3 Gasim Jurusan

Lebih terperinci

PERANCANGAN DAN PEMBUATAN PERANGKAT LUNAK KLASIFIKASI TEKSTUR DENGAN MENGGUNAKAN ANALISA PAKET WAVELET

PERANCANGAN DAN PEMBUATAN PERANGKAT LUNAK KLASIFIKASI TEKSTUR DENGAN MENGGUNAKAN ANALISA PAKET WAVELET PERANCANGAN DAN PEMBUATAN PERANGKAT LUNAK KLASIFIKASI TEKSTUR DENGAN MENGGUNAKAN ANALISA PAKET WAVELET Sarwosri, Rully Soelaiman, dan Esther Hanaya Jurusan Teknik Informatika, Fakultas Teknologi Informasi,

Lebih terperinci

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING Mohamad Aditya Rahman, Ir. Sigit Wasista, M.Kom Jurusan Teknik Elektronika, Politeknik Elektronika Negeri Surabaya

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Rancangan antarmuka (interface) program terdiri dari form cover, form

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Rancangan antarmuka (interface) program terdiri dari form cover, form BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Rancangan Antarmuka (interface) Program Rancangan antarmuka (interface) program terdiri dari form cover, form testing dan form training (untuk programer). 4.1.1

Lebih terperinci

BAB IV PENGUKURAN DAN ANALISA

BAB IV PENGUKURAN DAN ANALISA 50 BAB IV PENGUKURAN DAN ANALISA Pengukuran dan analisa dilakukan untuk mengetahui apakah rancangan rangkaian yang telah dibuat bekerja sesuai dengan landasan teori yang ada dan sesuai dengan tujuan pembuatan

Lebih terperinci

BAB 5 FAKTOR PENGUJIAN

BAB 5 FAKTOR PENGUJIAN BAB 5 FAKTOR PENGUJIAN Faktor pengujian adalah hal-hal (faktor-faktor) yang diperhatikan selama pengujian. Terdapat 15 faktor di dalam pengujian, tetapi tidak semua faktor yang mungkin digunakan, hal ini

Lebih terperinci

IDENTIFIKASI CITRA BILANGAN DESIMAL 0-9 BERBASIS LEARNING VECTOR QUANTIZATION SECARA REAL TIME

IDENTIFIKASI CITRA BILANGAN DESIMAL 0-9 BERBASIS LEARNING VECTOR QUANTIZATION SECARA REAL TIME Jurnal POROS TEKNIK, Volume 4, No. 1, Juni 2012 : 24-29 IDENTIFIKASI CITRA BILANGAN DESIMAL 0-9 BERBASIS LEARNING VECTOR QUANTIZATION SECARA REAL TIME Gunawan Rudi Cahyono (1) (1) Staf Pengajar Jurusan

Lebih terperinci

Klasifikasi kelompok usia berdasarkan citra wajah menggunakan algoritma neural network dengan fitur face anthropometry dan kedalam kerutan

Klasifikasi kelompok usia berdasarkan citra wajah menggunakan algoritma neural network dengan fitur face anthropometry dan kedalam kerutan Klasifikasi kelompok usia berdasarkan citra wajah menggunakan algoritma neural network dengan fitur face anthropometry dan kedalam kerutan Nur Hayatin Teknik Informatika, Universitas Muhammadiyah Malang

Lebih terperinci

PENGENALAN RAMBU LALU LINTAS MENGGUNAKAN METODE TEMPLATE MATCHING INTEGRAL PROYEKSI

PENGENALAN RAMBU LALU LINTAS MENGGUNAKAN METODE TEMPLATE MATCHING INTEGRAL PROYEKSI PENGENALAN RAMBU LALU LINTAS MENGGUNAKAN METODE TEMPLATE MATCHING INTEGRAL PROYEKSI Muhammad Sofi i 1, Edy Mulyanto 2 1,2 Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro Jl.Nakula

Lebih terperinci

DETEKSI WAJAH METODE VIOLA JONES PADA OPENCV MENGGUNAKAN PEMROGRAMAN PYTHON

DETEKSI WAJAH METODE VIOLA JONES PADA OPENCV MENGGUNAKAN PEMROGRAMAN PYTHON DETEKSI WAJAH METODE VIOLA JONES PADA OPENCV MENGGUNAKAN PEMROGRAMAN PYTHON Dedi Ary Prasetya 1, Imam Nurviyanto 2 1,2 Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol

Lebih terperinci

REALISASI PERANGKAT LUNAK UNTUK IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR LOCAL LINE BINARY PATTERN (LLPB)

REALISASI PERANGKAT LUNAK UNTUK IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR LOCAL LINE BINARY PATTERN (LLPB) REALISASI PERANGKAT LUNAK UNTUK IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR LOCAL LINE BINARY PATTERN (LLPB) Elfrida Sihombing (0922019) Jurusan Teknik Elektro Universitas

Lebih terperinci

SISTEM VERIFIKASI ONLINE MENGGUNAKAN BIOMETRIKA WAJAH

SISTEM VERIFIKASI ONLINE MENGGUNAKAN BIOMETRIKA WAJAH SISTEM VERIFIKASI ONLINE MENGGUNAKAN BIOMETRIKA WAJAH I Nyoman Piarsa, Riza Hisamuddin Staff Pengajar Teknik Elektro, Fakultas Teknik, Universitas Udayana Kampus Bukit Jimbaran, Bali, 80361 Email: manpits@ee.unud.ac.id

Lebih terperinci

BAB II LANDASAN TEORI. bahasa Jawa yang pada dasarnya terdiri atas dua puluh aksara pokok (nglegena),

BAB II LANDASAN TEORI. bahasa Jawa yang pada dasarnya terdiri atas dua puluh aksara pokok (nglegena), BAB II LANDASAN TEORI 2.1 Aksara Jawa Carakan (Abjad/Aksara Jawa) adalah huruf yang digunakan dalam ejaan bahasa Jawa yang pada dasarnya terdiri atas dua puluh aksara pokok (nglegena), yang ditunjukkan

Lebih terperinci

Pada Bab III akan dijelaskan metode untuk memperoleh besaran fisis dari citra

Pada Bab III akan dijelaskan metode untuk memperoleh besaran fisis dari citra BAB III METODOLOGI Pada Bab III akan dijelaskan metode untuk memperoleh besaran fisis dari citra yang telah dilakukan pengolahan citra digital. Dimulai dari teknik pengambilan citra, teknik pengolahan

Lebih terperinci

yang standar. Tugas akhir ini lebih berorientasi pada pengenalan fiturnya, sehingga pembahasan lebih ditekankan pada ekstraksi fitur bentuk geometri.

yang standar. Tugas akhir ini lebih berorientasi pada pengenalan fiturnya, sehingga pembahasan lebih ditekankan pada ekstraksi fitur bentuk geometri. 1 PENGENALAN KARAKTER TEKS MENGGUNAKAN METODE NEURAL NETWORK BACKPROPAGATION Titis Hayuning Widya Pramesti, email: titishayuning@gmail.com Jurusan Teknik Elektro, Fakultas Teknik Universitas Brawijaya

Lebih terperinci

BAB II TINJAUAN PUSTAKA. teori yang sesuai dengan penelitian printer forensik

BAB II TINJAUAN PUSTAKA. teori yang sesuai dengan penelitian printer forensik BAB II TINJAUAN PUSTAKA Pada bagian ini akan menguraikan tentang tinjauan pustaka dan landasan teori yang sesuai dengan penelitian printer forensik 2.1 Tinjauan Pustaka Penelitian printer forensik untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengenalan Marka Jalan Marka jalan merupakan suatu penanda bagi para pengguna jalan untuk membantu kelancaran jalan dan menghindari adanya kecelakaan. Pada umumnya marka jalan

Lebih terperinci

Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6. Intan Nur Lestari

Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6. Intan Nur Lestari Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6 Intan Nur Lestari Fakultas Teknologi Industri Universitas Gunadarma Jl. Margonda Raya, 100, Pondok Cina, Depok

Lebih terperinci

APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK

APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK Wiratmoko Yuwono Jurusan Teknologi Informasi Politeknik Elektronika Negeri Surabaya-ITS Jl. Raya ITS, Kampus ITS, Sukolilo Surabaya 60111

Lebih terperinci

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA Seminar Nasional Teknologi Terapan SNTT 2013 (26/10/2013) COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA Isnan Nur Rifai *1 Budi Sumanto *2 Program Diploma Elektronika & Instrumentasi Sekolah

Lebih terperinci

PEMBUATAN WEB SERVICE SEBAGAI LAYANAN PENDETEKSI KONTEN PORNOGRAFI PADA CITRA DIGITAL DENGAN METODE IMAGE ZONING

PEMBUATAN WEB SERVICE SEBAGAI LAYANAN PENDETEKSI KONTEN PORNOGRAFI PADA CITRA DIGITAL DENGAN METODE IMAGE ZONING PEMBUATAN WEB SERVICE SEBAGAI LAYANAN PENDETEKSI KONTEN PORNOGRAFI PADA CITRA DIGITAL DENGAN METODE IMAGE ZONING Oleh: Lourensius Bisma (5210100155) Dosen Pembimbing: Dr.Eng. Febriliyan Samopa, S.Kom.,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Metode Penelitian Menurut Arikunto (1988), metode penelitian adalah cara yang digunakan oleh peneliti dalam mengumpulkan data penelitiannya. Data yang dikumpulkan bisa berupa

Lebih terperinci

Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru.

Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru. 1 Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru. Amilia Khoiro Masruri dan Budi Setiyono Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi

Lebih terperinci

PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL

PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL Mawaddah Aynurrohmah, Andi Sunyoto STMIK AMIKOM Yogyakarta email : andi@amikom.ac.id Abstraksi Perkembangan teknologi

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis Sistem Dalam proses pembuatan suatu sistem mutlak dilakukan analisis terhadap sistem yang akan dibangun, analisis yang dilakukan untuk membangun aplikasi perbandingan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Artificial Neural Network atau jaringan syaraf tiruan merupakan bidang yang sangat berkembang saat ini. Pemanfaatan teknologi mesin dan computer yang tidak terbatas

Lebih terperinci

Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Produk Menggunakan Webcam

Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Produk Menggunakan Webcam Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Menggunakan Webcam Albert Haryadi [1], Andrizal,MT [2], Derisma,MT [3] [1] Jurusan Sistem Komputer Fakultas Teknologi Informasi Universitas Andalas,

Lebih terperinci

BAB III ANALISIS. 3.1 Dekomposisi Citra Digital yang Akan Disisipi Watermark

BAB III ANALISIS. 3.1 Dekomposisi Citra Digital yang Akan Disisipi Watermark BAB III ANALISIS Bab ini membahas analisis terhadap proses penyisipan watermark dan ekstraksi watermark, analisis terhadap kebutuhan perangkat lunak yang akan dibangun untuk memecahkan masalah yang telah

Lebih terperinci

Perancangan Sistem Pemantau dan Penentuan Tempat Parkir Berdasarkan Digital Image Processing

Perancangan Sistem Pemantau dan Penentuan Tempat Parkir Berdasarkan Digital Image Processing 1 Perancangan Sistem Pemantau dan Penentuan Tempat Parkir Berdasarkan Digital Image Processing Ria A. Makalalag, A.S.M. Lumenta ST, MT., S.R.U.A. Sompie ST, MT., B.A. Sugiarso ST, MT. Jurusan Teknik Elektro-FT,

Lebih terperinci

BAB IV METODE PENELITIAN. Beberapa peralatan yang digunakan dalam penelitian ini adalah: 5.86GT/s, Cache 12MB, Quad-Core, Socket LGA1366 (No HSF)

BAB IV METODE PENELITIAN. Beberapa peralatan yang digunakan dalam penelitian ini adalah: 5.86GT/s, Cache 12MB, Quad-Core, Socket LGA1366 (No HSF) BAB IV METODE PENELITIAN 4.1. Peralatan yang Digunakan Beberapa peralatan yang digunakan dalam penelitian ini adalah: a. Satu unit komputer dengan spesifikasi utama processor Xeon 2.4GHz, QPI 5.86GT/s,

Lebih terperinci

Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine Transform Untuk Aplikasi Login

Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine Transform Untuk Aplikasi Login The 13 th Industrial Electronics Seminar 011 (IES 011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 6, 011 Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine

Lebih terperinci

Pertemuan 2 Representasi Citra

Pertemuan 2 Representasi Citra /29/23 FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 2 Representasi Citra Representasi Citra citra Citra analog Citra digital Matrik dua dimensi yang terdiri

Lebih terperinci

DETEKSI SISI CITRA TOMOGRAFI SINAR X MENGGUNAKAN OPERATOR LAPLACE. Supurwoko, Sarwanto Pendidikan Fisika FKIP UNS Surakarta ABSTRAK

DETEKSI SISI CITRA TOMOGRAFI SINAR X MENGGUNAKAN OPERATOR LAPLACE. Supurwoko, Sarwanto Pendidikan Fisika FKIP UNS Surakarta ABSTRAK DETEKSI SISI CITRA TOMOGRAFI SINAR X MENGGUNAKAN OPERATOR LAPLACE Supurwoko, Sarwanto Pendidikan Fisika FKIP UNS Surakarta ABSTRAK Dari penelitian terdahulu (Supurwoko, 2004) diketahui bahwa citra tomografi

Lebih terperinci

Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE

Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan dengan Bahasa Pemograman Java Eclipse IDE Fiqih Ismawan Dosen Program Studi Teknik Informatika, FMIPA Universitas Indraprasta

Lebih terperinci

ULANGAN AKHIR SEMESTER GENAP TAHUN PELAJARAN 2011 / 2012

ULANGAN AKHIR SEMESTER GENAP TAHUN PELAJARAN 2011 / 2012 Mata Pelajaran : TIK Kelas : VIII (DELAPAN) Hari, tanggal : Jum at,.. 2012 Waktu : 60 Menit ULANGAN AKHIR SEMESTER GENAP TAHUN PELAJARAN 2011 / 2012 1. Fungsi yang digunakan untuk menghitung penjumlahan

Lebih terperinci

Scientific Journal of Informatics Vol. 2, No. 1, Mei 2015

Scientific Journal of Informatics Vol. 2, No. 1, Mei 2015 Scientific Journal of Informatics Vol. 2, No. 1, Mei 2015 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 JUDUL ARTIKEL Identifikasi Kualitas Beras dengan Citra Digital Arissa

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak metode yang bisa digunakan untuk pengkodean sebuah nama, metode yang sering dipakai adalah metode Soundex. Metode Soundex yang sering digunakan masih

Lebih terperinci

PENGUKURAN GETARAN PADA POROS MODEL VERTICAL AXIS OCEAN CURRENT TURBINE (VAOCT) DENGAN METODE DIGITAL IMAGE PROCESSING

PENGUKURAN GETARAN PADA POROS MODEL VERTICAL AXIS OCEAN CURRENT TURBINE (VAOCT) DENGAN METODE DIGITAL IMAGE PROCESSING PRESENTASI TESIS (P3) PENGUKURAN GETARAN PADA POROS MODEL VERTICAL AXIS OCEAN CURRENT TURBINE (VAOCT) DENGAN METODE DIGITAL IMAGE PROCESSING HEROE POERNOMO 4108204006 LATAR BELAKANG Pengaruh getaran terhadap

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi.,Volume,. Bulan.. ISSN :

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi.,Volume,. Bulan.. ISSN : Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) Edisi.,Volume,. Bulan.. ISSN : 289-933 ANALISIS METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK PENGENALAN SEL KANKER OTAK Novita Handayani Teknik Informatika

Lebih terperinci

HASIL DAN PEMBAHASAN. Gambar 3 Ilustrasi pencarian titik pusat dan jari-jari pupil. Segmentasi

HASIL DAN PEMBAHASAN. Gambar 3 Ilustrasi pencarian titik pusat dan jari-jari pupil. Segmentasi 4 Perangkat keras berupa Notebook: Processor intel Core i3 2.2 GHz. RAM kapasitas 2. GB. Harddisk Kapasitas 5 GB. Monitor pada resolusi 1366 x 768 piksel. Merek Acer Aspire 475. Perangkat lunak berupa:

Lebih terperinci

ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS

ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS Egi Badar Sambani 1), Neneng Sri Uryani 2), Rifki Agung Kusuma Putra 3) Jurusan Teknik Informatika,

Lebih terperinci

PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL. Abstrak

PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL. Abstrak PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL Annisa Hayatunnufus [1], Andrizal,MT [2], Dodon Yendri,M.Kom [3] Jurusan Sistem Komputer Fakultas Teknologi Informasi Universitas

Lebih terperinci

BAB IV IMPLEMENTASI DAN UJI COBA. Pengenalan Pola dengan Algoritma Eigen Image, dibutuhkan spesifikasi

BAB IV IMPLEMENTASI DAN UJI COBA. Pengenalan Pola dengan Algoritma Eigen Image, dibutuhkan spesifikasi BAB IV IMPLEMENTASI DAN UJI COBA 4.1 Kebutuhan Sistem Sebelum melakukan implementasi dan menjalankan aplikasi Model Pengenalan Pola dengan Algoritma Eigen Image, dibutuhkan spesifikasi perangkat lunak

Lebih terperinci

Pengembangan Aplikasi Presensi Sidik Jari dengan menggunakan Alihragam Wavelet dan Jarak Euclidean di Dinas Pendidikan Kabupaten Wonogiri

Pengembangan Aplikasi Presensi Sidik Jari dengan menggunakan Alihragam Wavelet dan Jarak Euclidean di Dinas Pendidikan Kabupaten Wonogiri Makalah Pengembangan Aplikasi Presensi Sidik Jari dengan menggunakan Alihragam Wavelet dan Jarak Euclidean di Dinas Pendidikan Kabupaten Wonogiri disusun oleh : RANDI GUSTAMA PUTRA PROGRAM STUDI TEKNIK

Lebih terperinci

Aplikasi Pembesaran Citra Menggunakan Metode Nearest Neighbour Interpolation

Aplikasi Pembesaran Citra Menggunakan Metode Nearest Neighbour Interpolation Aplikasi Pembesaran Citra Menggunakan Metode Nearest Neighbour Interpolation Daryanto 1) 1) Prodi Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Jember Email: 1) daryanto@unmuhjember.ac.id

Lebih terperinci