BAB IV MANIFESTASI PANAS BUMI DI GUNUNG RAJABASA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV MANIFESTASI PANAS BUMI DI GUNUNG RAJABASA"

Transkripsi

1 BAB IV MANIFESTASI PANAS BUMI DI GUNUNG RAJABASA IV.1 TINJAUAN UMUM Manifestasi panas bumi adalah keluaran fluida panas bumi dari reservoar ke permukaan melalui rekahan atau melalui suatu unit batuan yang permeabel (Wohletz dan Heiken, 1992). Kemunculan manifestasi ini tergantung dari kondisi reservoar termasuk fluida panas bumi dan proses-proses yang terjadi pada fluida panas bumi tersebut. Manifestasi permukaan dari suatu sistem panas bumi di daerah gunung api merupakan fitur penting yang dapat diteliti pertama kali pada tahap penyelidikan pendahuluan dan penyelidikan lanjutan dalam tahapan kegiatan pengusahaan panas bumi. Pada tahap ini, sistem panas bumi di suatu daerah dikaji secara hidrogeokimia dengan cara pengambilan sampel air dan gas untuk memperkirakan temperatur dan komposisi fluida reservoar (Wohletz dan Heiken, 1992). Manifestasi panas bumi di permukaan dapat dibagi menjadi manifestasi aktif (keluaran fluida) dan manifestasi fosil (alterasi batuan). Contoh manifestasi aktif adalah mata air panas, fumarola, kolam lumpur, tanah beruap, geiser, dan lainlain. Contoh manifestasi fosil adalah alterasi batuan. Di daerah penelitian, sampel air dan gas diambil dari manifestasi panas bumi aktif. Sampel air dianalisis untuk mengetahui kandungan unsur, senyawa, dan isotop stabilnya, sedangkan sampel gas dianalisis untuk mengetahui kandungan gas yang dikeluarkan oleh manifestasi tersebut. Data hasil analisis ini digunakan untuk mengetahui asal fluida panas bumi, karakteristik fluida panas bumi di reservoar, dan proses pada fluida panas bumi di bawah permukaan. IV.2 STUDI KHUSUS IV.2.1 Lokasi Studi khusus dilakukan pada setiap manifestasi panas bumi yang ditemukan di kaki Gunung, terutama di kaki gunung bagian selatan dan utara. Lokasi 26

2 LS studi khusus di bagian utara Gunung termasuk ke dalam Desa Sumur Kumbang dan Desa Kecapi, Kecamatan Kalianda, sedangkan lokasi studi khusus di bagian selatan Gunung termasuk ke dalam Desa Waymuli, Kecamatan Kalianda dan Desa Kunjir, Kecamatan, Kabupaten Lampung Selatan BT Gambar IV.1 Lokasi manifestasi di Gunung. IV.2.2 Manifestasi Panas Bumi Di Gunung, lima manifestasi panas bumi ditemukan di kaki gunung bagian utara dan selatan (Gambar IV.1). Kelima manifestasi ini berupa mata air hangat, mata air panas, geiser, kolam lumpur, dan fumarola (Gambar IV.2). Pada setiap manifestasi dilakukan pengamatan manifestasi (penentuan lokasi dan kenampakan manifestasi), pengukuran karakteristik manifestasi (temperatur, ph, dan debit), dan pengambilan sampel fluida (air dan gas) yang hasilnya terangkum pada Tabel IV.1. 27

3 Gambar IV.2 Manifestasi panas bumi di Gunung, (a) Mata air hangat (AP-1.1), (b) Mata air hangat Sumur Kumbang (AP-1.2), (c) Mata air hangat Kecapi (AP-2.4), (d) Kolam lumpur dan fumarola Kunjir (AP-2.5), (e) Geiser Gunung Botak (AP-1.3) saat geiser muncul, (f) Geiser Gunung Botak (AP-1.3) saat geiser tidak muncul. 28

4 29 Tabel IV.2 Lokasi dan karakteristik manifestastasi panas bumi di Gunung. No. Nama Koordinat Kode Lokasi LS BT Jenis Manifestasi , ,5 AP-1.1 Mata air hangat 2 Sumur , ,3 AP-1.2 Mata air Kumbang hangat 3 Kecapi 4 Gunung Botak , ,8 AP-2.4 Mata air panas Tanggal Pengambilan Sampel 22 Januari Januari Januari , ,7 AP-1.3 Geiser 22 Januari Kunjir , ,8 AP-2.5 Kolam Lumpur 23 Januari 2011 Jenis Sampel Temperatur ( C) Fumarola Gas 100, 0 ph Debit (ml/s) Karakteristik Manifestasi Udara Mani festasi Air 20,3 25,7 4, Air jernih, sedikit bau belerang. Air 22,5 35,4 4,82 2,5 Air jernih, sedikit bau belerang, terlihat gelembung-gelembung, terdapat endapan sinter silika. Air 23,0 56,0 2, Air agak keruh, bau belerang kuat, banyak endapan sulfur. Air ,0 6, Mata air, air jernih, tidak tercium bau belerang, muncul tiap 10 menit sekali dengan tinggi 50 cm selama 5 menit, terdapat endapan sinter silika. Air , 1, Tanah di sekitarnya 0 hangat, air keruh, bau belerang kuat, banyak lumpur panas, terdapat endapan silika residu. - - Lubang keluaran gas, terdengar suara gemuruh, asap berwarna putih. 29

5 IV.2.3 Tata Cara Pengambilan Sampel Air, Isotop dan Gas Pengambilan sampel dilakukan berdasarkan prosedur yang disebutkan di dalam Nicholson (1993). IV Pengambilan Sampel Air Peralatan yang dibutuhkan adalah gelas ukur, kertas saring 40 μm, corong, larutan HNO 3 5 N, pipet tetes, kertas lakmus, botol plastik (untuk setiap manifestasi dibutuhkan dua botol), dan cool box. Sampel air diambil sebanyak 500 ml (untuk dua botol dan setiap botol 250 ml) di lokasi manifestasi dengan temperatur tertinggi dan keluaran langsung. Air dimasukkan ke dalam botol plastik dengan disaring. Sampel air di botol plastik pertama langsung ditutup, sedangkan botol kedua diasamkan dengan cara diberi larutan HNO 3 5 N hingga ph larutan di bawah 2. Langkah selanjutnya adalah memberi keterangan di setiap botol yang meliputi kode sampel, temperatur, ph, diasamkan atau tidak, dan jenis sampel (air, isotop atau gas). Sampel air ini kemudian disimpan di dalam cool box. IV Pengambilan Sampel Isotop Peralatan yang dibutuhkan hampir sama dengan peralatan untuk mengambil sampel air, tetapi botol yang digunakan adalah botol kaca. Peralatan tambahan yang diperlukan adalah kertas dan selotip. Sampel air diambil sebanyak 100 ml (untuk satu botol) di lokasi manifestasi dengan temperatur tertinggi menggunakan gelas ukur dan disaring dengan kertas saring seperti pengambilan sampel air di atas. Botol langsung ditutup dan dilapisi seluruh bagiannya dengan kertas dan selotip untuk menghindari kontaminasi cahaya. Langkah selanjutnya adalah memberi keterangan di setiap botol yang meliputi kode sampel, temperatur, ph, dan jenis sampel (air, isotop atau gas). Sampel isotop ini kemudian disimpan di dalam cool box. IV Pengambilan Sampel Gas Peralatan yang dibutuhkan adalah tabung Giggenbach, larutan NaOH 5 N, corong, selang silikon, tabung pipa, dan busa. Tabung Giggenbach diisi dengan larutan NaOH 5 N yang kemudian divakum pada tekanan -5 bar. Untuk mengambil gas dari manifestasi, peralatan yang digunakan adalah rangkaian corong, selang silikon, dan tabung Giggenbach yang saling dihubungkan. Corong diletakkan di atas 30

6 manifestasi dan perlu ditunggu cukup lama agar gas terkumpul dan mengalir melalui selang. Saat gas sudah mengalir di selang, katup tabung Giggenbach dibuka sedikit demi sedikit agar gas masuk ke dalam tabung Giggenbach. Selama proses pemasukan gas, tabung Giggenbach digoyang pelan agar gas yang masuk larut ke dalam larutan NaOH. Setelah 15 hingga 20 menit, katup tabung Giggenbach ditutup lalu selang dilepaskan dari tabung Giggenbach. Untuk penyimpanan, tabung Giggenbach dimasukkan ke dalam tabung pipa yang sudah dilapisi busa di bagian dalamnya. Langkah selanjutnya adalah memberi keterangan di setiap tabung Giggenbach dan tabung pipa yang meliputi kode sampel, temperatur, dan jenis sampel (air, isotop atau gas). IV.2.4 Hasil Analisis Sampel Sampel air dan gas yang diambil dari manifestasi panas bumi Gunung dianalisis kimia air, isotop stabil, dan kimia gas di laboratorium. Hasil analisis ini ditampilkan pada Tabel IV.3 hingga IV.5. Tabel IV.3 Hasil analisis kimia air. Manifestasi Lokasi AP-1.1 Utara Gunung AP-1.2 Sumur Kumbang Utara Gunung AP-2.4 Kecapi Utara Gunung AP-1.3 Gunung Botak Selatan Gunung AP-2.5 Kunjir Selatan Gunung SiO 2 (mg/kg) 102,50 89,28 104,43 123,93 360,21 Ca 2+ (mg/kg) 24,73 121,60 97,00 401,70 141,20 Mg 2+ (mg/kg) 4,86 20,10 13,70 267,00 54,30 Na + (mg/kg) 14,85 32,08 63, ,00 95,40 K + (mg/kg) 15,15 18,6 23,93 402,43 18,91 Li + (mg/kg) 0,00 0,00 0,00 2,24 0,30 NH 3 (mg/kg) 13,33 14,17 13,13 12,00 66,67 Cl - (mg/kg) 50,10 64,52 82, ,58 223,70 2- SO 4 (mg/kg) 88,51 389,66 365,52 795, ,68 - HCO 3 (mg/kg) 13,82 26,57 0,00 66,96 0,00 CO 2 (mg/kg) , ,07 B (mg/kg) 1,07 1,29 0,69 7,34 3,86 ph Lab 4,66 4,81 2,91 6,59 2,35 Kesetimbangan Kation (meq) 2,67 9,59 9,32 267,85 9,95 Kesetimbangan Anion (meq) 3,44 10,30 9,95 242,76 61,39 Kesetimbangan Ion (%) 12,71 3,54 3,26 4,91 67,63 31

7 Tabel IV.4 Hasil analisis isotop stabil. Manifestasi Lokasi δd ( ) δ 18 O ( ) AP-1.1 Utara Gunung -42,8 ± 1,7-6,77 ± 0,23 AP-1.2 Sumur Kumbang Utara Gunung -45,0 ± 0,9-7,41 ± 0,17 AP-2.4 Kecapi Utara Gunung -42,8 ± 0,4-6,88 ± 0,22 AP-1.3 Gunung Botak Selatan Gunung -27,6 ± 0,6-4,66 ± 0,31 AP-2.5 Kunjir Selatan Gunung -5,7 ± 0,7-0,79 ± 0,09 Tabel IV.5 Hasil analisis kimia gas. Manifestasi Lokasi Gas Unit (% mol) SG 01 Kunjir Selatan Gunung He 0,000 H 2 0,014 O 2 + Ar 3,257 N 2 2,654 CH 4 0,100 CO 0,000 CO 2 7,815 SO 2 0,000 H 2 S 0,172 HCl 0,000 H 2 O 85,988 IV.2.4 Analisis Geokimia IV Tipe Air Fluida panas bumi dibedakan berdasarkan kandungan anion utamanya yaitu Cl (klorida), SO 4 (sulfat), dan HCO 3 (bikarbonat). Berdasarkan pengeplotan kandungan ketiga anion tersebut, manifestasi panas bumi Gunung menunjukkan tiga tipe air (Gambar IV.3). Tipe yang pertama adalah tipe air klorida yang ditunjukkan oleh fluida dari manifestasi geiser di Gunung Botak. Tipe air ini menunjukkan air reservoar yang dicirikan oleh ph mendekati netral (6,59), jernih, dan keterdapatan endapan sinter silika di dekat manifestasi. Tipe air panas yang kedua adalah tipe air sulfat yang ditunjukkan oleh fluida dari manifestasi kolam lumpur Kunjir. Tipe air ini terbentuk akibat kondensasi gas H 2 S (uap air dan volatil lainnya) ke dalam air tanah dekat permukaan (steam heated 32

8 water). Pada sistem panas bumi bertopografi tinggi, air sulfat merupakan upflow dari reservoar. Tipe air ini memiliki ph asam (2,35). Tipe air yang ketiga adalah tipe klorida-sulfat ber-ph asam yang ditunjukkan oleh manifestasi mata air hangat dan Sumur Kumbang serta mata air panas Kecapi. Tipe air seperti ini dapat terbentuk akibat pencampuran air reservoar dengan air kondensat atau pencampuran air meteorik dengan air magmatik. Untuk itu, data isotop dan geoindikator digunakan untuk mengkonfirmasi adanya proses pencampuran ini. Keterangan: Sumur Kumbang Kecapi Gunung Botak Kunjir Gambar IV.3 Tipe air pada manifestasi panas bumi Gunung berdasarkan diagram Cl-SO 4 -HCO 3. IV Geoindikator Klorida (Cl - ), litium (Li + ), dan boron (B) merupakan unsur konservatif di dalam sistem panas bumi dan termasuk unsur terlarut yang dapat digunakan untuk mengetahui asal fluida panas bumi. Berdasarkan hasil pengeplotan kandungan ketiga unsur tersebut pada diagram segitiga Cl-Li-B, sistem panas bumi Gunung terdiri dari tiga reservoar. Reservoar pertama terletak di kaki utara Gunung yaitu yang mengeluarkan mata air hangat dan Sumur Kumbang serta mata air panas 33

9 Kecapi. Reservoar ini menunjukkan nilai B/Cl antara 0,02-0,07. Proses yang terjadi pada fluida di reservoar ini adalah proses interaksi dengan batuan sekitar yang dicirikan oleh kandungan Li dan B yang hampir sama (Gambar IV.4). Nilai rasio yang rendah mencirikan bahwa manifestasi yang keluar merupakan upflow dari reservoar. Hal ini dibuktikan oleh nilai rasio Na/K kurang dari 15, Na/Ca antara 0.5-1, Cl/SO 4 antara 0,45-1,53, dan HCO 3 /SO 4 antara 0,00-0,25 (Tabel IV.6). Keterangan: Sumur Kumbang Kecapi Gunung Botak Kunjir Gambar IV.4 Diagram Cl-Li-B yang menunjukkan tiga reservoar pada Sistem Panas Bumi Gunung. Reservoar kedua terletak di Gunung Botak yaitu di kaki selatan Gunung dan mengeluarkan manifestasi geiser Gunung Botak. Reservoar ini menunjukkan nilai Cl yang lebih tinggi dibandingkan dengan manifestasi lain dan memiliki nilai rasio B/Cl sekitar 0,01 (Gambar IV.4). Lokasi geiser Gunung Botak yang berada di pantai mengindikasikan bahwa ada kemungkinan fluida di manifestasi ini sudah bercampur dengan air laut. Pada kimia air, hal ini diindikasikan oleh konsentrasi unsur terlarut yang lebih tinggi dibandingkan konsentrasi unsur terlarut air panas lainnya. Manifestasi dari reservoar kedua ini merupakan upflow dari reservoar. Hal ini ditunjukkan oleh nilai rasio Na/Ca, Na/K, Cl/SO 4, dan HCO 3 /SO 4 yang rendah (Tabel IV.6). Reservoar ketiga adalah reservoar Kunjir yang mengeluarkan manifestasi kolam lumpur dan fumarola Kunjir. Tipe air di manifestasi ini adalah air sulfat yang merupakan steam heated water. Proses pemanasan oleh uap (kondensasi) ini dapat 34

10 ditunjukkan oleh nilai SO 4, NH 3, dan B yang tinggi (Nicholson, 1993). Tipe air ini sudah mengalami proses interaksi dengan batuan sekitar sehingga nilai B dan Li meningkat dengan rasio B/Cl sekitar 0,057 (Gambar IV.4). Pada sistem panas bumi bertopografi tinggi seperti di Gunung, air sulfat merupakan upflow dari reservoar. Tabel IV.6 Nilai rasio unsur-unsur yang menunujukkan aliran upflow di setiap manifestasi panas bumi Gunung. Sumur Gunung Lokasi Kecapi Kunjir Kumbang Botak Kode Lokasi AP 1-1 AP 1-2 AP 2-4 AP 1-3 AP 2-5 Na (mg/kg) 14,85 32, ,4 K (mg/kg) 15,15 18,6 23,93 402,43 18,91 Ca (mg/kg) 24,73 121, ,7 141,2 Cl (mg/kg) 50,1 64,52 82, ,58 223,7 SO 4 (mg/kg) 88,51 389,66 365,52 795, ,68 HCO 3 (mg/kg) 13,82 26,57 0,00 66,96 0,00 Na/K 1,67 2,93 4,48 20,91 8,58 Na/Ca 1,05 0,46 1,13 21,47 1,18 Cl/SO 4 1,53 0,45 0,61 27,22 0,23 HCO 3 /SO 4 0,25 0,11 0,00 0,13 0,00 IV Isotop Stabil Analisis isotop yang digunakan adalah isotop deuterium (δd atau δ 2 H) dan oksigen-18 (δ 18 O). Isotop stabil ini diaplikasikan untuk mengetahui proses dan asal fluida panas bumi (Nicholson, 1993). Menurut Craig (1963 dalam Nicholson, 1993), kandungan δd di fluida panas bumi memiliki nilai yang hampir sama dengan air meteoriknya sementara nilai δ 18 O di fluida panas bumi lebih positif daripada air meteorik. Hal ini menunjukkan, bahwa fluida panas bumi berasal dari air meteorik (Craig dkk., 1956 dan Craig, 1963 dalam Nicholson, 1993). Hasil analisis isotop stabil yang digambarkan pada Gambar IV.5 memperkuat pernyataan mengenai keberadaan tiga reservoar di sistem panas bumi Gunung. Ketiga reservoar tersebut adalah reservoar 1 yang mengeluarkan mata air hangat dan Sumur Kumbang, serta mata air panas Kecapi, 35

11 reservoar 2 yang mengeluarkan geiser Gunung Botak, dan reservoar 3 yang mengeluarkan kolam lumpur dan fumarola Kunjir. Berdasarkan pengeplotan kandungan δd dan δ 18 O setiap manifestasi, fluida panas bumi di Gunung memiliki kandungan δd dan δ 18 O yang tidak berbeda jauh dengan air meteorik (Gambar IV.5). Sedikit pergeseran nilai δ 18 O menunjukkan bahwa fluida panas bumi telah mengalami interaksi dengan batuan sekitar. Hasil pengeplotan kandungan δd dan δ 18 O pada Gambar IV.5 menunjukkan keterdapatan tiga kelompok reservoar yang berbeda. Gambar IV.5 Data isotop stabil manifestasi Gunung. Kelompok yang pertama terdiri dari mata air hangat dan Sumur Kumbang serta mata air panas Kecapi. Kelompok ini memiliki nilai δd antara - 44,60 hingga -41,50 dan δ 18 O antara -7,28 hingga -6,59 (Gambar IV.5). Proses interaksi antara fluida dengan batuan sekitar menyebabkan terjadinya penambahan nilai δ 18 O relatif terhadap air meteorik. Reaksi antara batuan dengan fluida di kedalaman menyebabkan pertukaran oksigen dengan isotop yang lebih berat akan terkonsentrasi dalam fase larutan (Nicholson, 1993). 36

12 Kelompok kedua ditunjukkan oleh geiser Gunung Botak. Nilai δd dan δ 18 O di geiser Gunung Botak adalah -27,60 dan -4,66 (Tabel IV.3). Air panas ini, dari kimia air, merupakan pencampuran antara air klorida dengan air laut tetapi data isotop stabilnya tidak menunjukkan keterdapatan pencampuran dengan air laut tersebut. Kelompok ketiga ditunjukkan oleh kolam lumpur Kunjir yang mempunyai nilai δd -5,70 dan δ 18 O -0,79. Air ini mempunyai kandungan isotop paling berat di antara manifestasi yang lain. Peningkatan nilai δ 18 O dan δd menunjukkan adanya proses steam heating atau surface evaporation. IV Sumber Gas Gas pada fluida panas bumi berasal dari fluida magmatik (magmatic origin), misalnya H 2 S dan SO 2, air meteorik (meteoric origin), misalnya He dan Ar, serta batuan, misalnya CO 2 pada batuan karbonat. Pengeplotan kandungan relatif N 2 -He- Ar dilakukan untuk menentukan asal gas pada fluida panas bumi. Gambar IV.6 Penentuan sumber gas pada sistem panas bumi Gunung berdasarkan diagram N 2 -He-Ar. Kandungan gas H 2 S dan CO 2 menunjukkan sumber magmatik tetapi gas yang diambil dari Kunjir menunjukkan nilai H 2 S dan CO 2 yang rendah. Hal ini menunjukkan bahwa gas di Gunung tidak berasal dari sumber magmatik. Berdasarkan kandungan relatif He, N 2, dan Ar (Gambar IV.6), gas yang diambil dari fumarola Kunjir berasal dari meteorik (meteoric origin). 37

13 IV Temperatur Reservoar Geotermometer merupakan suatu perhitungan untuk memperkirakan temperatur reservoar pada suatu sistem panas bumi. Geotermometer unsur terlarut digunakan berdasarkan variasi kandungan beberapa unsur dalam fluida panas bumi yang hadir sebagai fungsi dari temperatur, misalnya SiO 2, rasio Na/K, dan lain-lain. Selain unsur terlarut, temperatur reservoar juga dapat diperkirakan berdasarkan kandungan gas dan isotop stabil δd dan δ 18 O. Berdasarkan kandungan fluida panas bumi, tiga reservoar diindentifikasi terbentuk pada sistem panas bumi Gunung. Reservoar 1 (, Sumur Kumbang, dan Kecapi) mempunyai temperatur yang diperkirakan berdasarkan keberadaan endapan sinter silika di sekitar mata air hangat Sumur Kumbang, yaitu sekitar 260 C. Geotermometer unsur terlarut tidak bisa digunakan karena air di reservoar 1 merupakan immature water. Keterangan: Sumur Kumbang Kecapi Gunung Botak Kunjir Gambar IV.7 Geotermometer Na-K-Mg untuk menentukan temperatur reservoar 2 (Gunung Botak). Perkiraan temperatur reservoar 2 (Gunung Botak) dilakukan dengan menggunakan dua metode. Metode yang pertama adalah geotermometer unsur terlarut Na-K-Mg karena geiser Gunung Botak merupakan air klorida yang termasuk partial mature. Berdasarkan hasil pengeplotan nilai Na, K, dan Mg dari geiser Gunung Botak, temperatur reservoar yang didapatkan adalah 220 C (Gambar IV.7). 38

14 Metode yang kedua adalah keberadaan endapan sinter silika yang menunjukkan temperatur di bawah permukaan sekitar 260 C berdasarkan solubilitas silika (Nicholson, 1993). Berdasarkan kedua metode di atas, temperatur di reservoar ini diperkirakan antara 220 C hingga 260 C. Karena kolam lumpur Kunjir merupakan air sulfat, maka temperatur reservoar 3 diperkirakan dengan menggunakan geotermometer gas CO 2, karena CO 2 adalah gas yang paling dominan pada sistem panas bumi Gunung. Geotermometer CO 2 tidak dipengaruhi oleh proses kondensasi sehingga dapat digunakan pada manifestasi fumarola dengan temperatur di atas 100 C, dan hanya dapat digunakan pada sistem panas bumi lingkungan vulkanik, seperti di sistem panas bumi Gunung (Arnorsson dkk., 1983 dalam Nicholson, 1993). Perhitungan temperatur reservoar berdasarkan geotermometer CO 2 dilakukan dengan menggunakan rumus berikut: Dengan trial dan error, nilai temperatur reservoar 3 adalah 260 C. Perkiraan temperatur di ketiga reservoar pada sistem panas bumi Gunung dirangkum dalam Tabel IV.7. IV Kedalaman Reservoar Kedalaman setiap reservoar dilakukan dengan menggunakan dua metode. Metode pertama menggunakan data statistik pengukuran temperatur reservoar di beberapa lokasi pemboran lapangan panas bumi di Indonesia yang dikemukakan oleh Hochstein dan Sudarman (2008, Gambar IV.7). Metode kedua menggunakan data gradien panas bumi di lokasi panas bumi Gunung yaitu sebesar 1,73-2,85 C/10 m (Pusat Survei Geologi, 1992 dalam Pusat Survei Geologi, 2009). Kedalaman setiap reservoar pada sistem panas bumi Gunung ditampilkan pada Tabel IV.7. 39

15 Gambar IV.8 Penentuan kedalaman reservoar berdasarkan data statistik kedalaman reservoar dan hasil pengukuran temperatur di beberapa lokasi pemboran lapangan panas bumi di Indonesia (Hochstein dan Sudarman, 2008). Tabel IV.7 Perkiraan temperatur dan kedalaman reservoar di reservoar 1 (, Sumur Kumbang, dan Kecapi), reservoar 2 (Gunung Botak), dan reservoar 3 (Kunjir). Reser voar Lokasi Temperatur Kedalaman Reservoar Metode T ( C) Metode h (m) 1, Sumur Kumbang, Kecapi Keberadaan endapan sinter silika 2 Gunung Botak Geotermometer Na-K-Mg Keberadaan endapan sinter silika 3 Kunjir Geotermometer CO Data statistik Hochstein dan Sudarman (2008) 1400 Gradien panas bumi Data statistik Hochstein dan 1400 Sudarman (2008) Gradien panas bumi Data statistik Hochstein dan 1400 Sudarman (2008) Gradien panas bumi

16 IV.2.4 Model Sistem Panas Bumi Model tentatif sistem panas bumi di Gunung dibuat berdasarkan lokasi manifestasi, tipe air, asal fluida, geotermometer, dan kedalaman reservoar (Gambar IV.9). Dilihat dari topografi dan sumber panasnya, sistem panas bumi di Gunung merupakan sistem panas bumi yang berasosiasi dengan gunung api strato andesitik (Hochstein, 1991). Sistem panas bumi Gunung dapat digambarkan pada Gambar IV.9. Sumber panas pada sistem panas bumi Gunung merupakan sumber panas vulkanogenik yang berasal dari intrusi magma. Berdasarkan kondisi geologi, magma ini sendiri berasal dari dua sumber berbeda, yaitu sumber panas Gunung Botak dan Gunung. Panas dari kedua sumber panas ini dialirkan ke tiga reservoar, yaitu reservoar Sumur Kumbang, Gunung Botak, dan Kunjir. Reservoar Sumur Kumbang dan Kunjir kemungkinan besar mendapatkan suplai panas dari sumber panas Gunung, sedangkan reservoar Gunung Botak mendapat suplai panas dari sumber panas Gunung Botak (Gambar IV.9). Keterangan: Transfer panas Air Cl (reservoar) Sumber Panas Gunung Botak Sumber Panas Gunung Air meteorik (dingin) Air kondensat Gambar IV.9 Model tentatif sistem panas bumi di Gunung (tidak berskala). 41

17 Air meteorik di kaki utara Gunung terserap ke bawah permukaan dan terpanaskan oleh intrusi magma Gunung. Air meteorik ini kemudian terpanaskan, naik, dan terkumpul di reservoar Sumur Kumbang dengan temperatur 260 C. Batuan reservoar diperkirakan berada di kedalaman 1000 hingga 1500 meter dan merupakan breksi piroklastik dari Satuan Piroklastik Aliran Cugung. Di dekat permukaan, fluida panas bumi akan mengalami kondensasi dan membentuk air klorida sulfat yang keluar sebagai manifestasi mata air hangat dan Sumur Kumbang serta mata air panas Kecapi. Air meteorik di kaki selatan Gunung terserap ke bawah permukaan dan terpanaskan oleh intrusi magma Gunung Botak. Air laut dari Teluk Lampung juga terserap ke bawah permukaan dan terpanaskan oleh intrusi magma Gunung Botak. Air meteorik dan air laut ini kemudian terpanaskan, naik, dan terkumpul di Reservoar Gunung Botak dengan temperatur 220 C hingga 260 C. Batuan reservoar diperkirakan berada di kedalaman 1000 hingga 1500 meter dan merupakan breksi piroklastik dari Satuan Piroklastik Aliran Cugung. Di dekat permukaan, fluida panas bumi membentuk air klorida yang keluar sebagai manifestasi geiser Gunung Botak. Air meteorik di kaki selatan Gunung terserap ke bawah permukaan dan terpanaskan oleh intrusi magma Gunung. Air meteorik ini kemudian terpanaskan, naik, dan terkumpul di reservoar Kunjir dengan temperatur 260 C. Di dekat permukaan, fluida panas bumi akan mengalami kondensasi dan membentuk air sulfat yang keluar sebagai manifestasi kolam lumpur Kunjir. Gas dan uap air dari bawah permukaan mengalami migrasi secara cepat ke permukaan dan muncul sebagai manifestasi fumarola Kunjir. Batuan reservoar diperkirakan berada di kedalaman 1000 hingga 1500 meter dan merupakan breksi piroklastik dari Satuan Piroklastik Aliran Cugung. Sedangkan batuan yang berperan sebagai batuan penudung (caprock) diperkirakan berupa breksi piroklastik dari Satuan Piroklastik Aliran Cugung yang berada di atas reservoar. Batuan ini diperkirakan mengalami proses alterasi sehingga membentuk mineral lempung yang sesuai untuk membentuk lapisan tidak permeabel pada batuan penudung. 42

BAB IV SISTEM PANAS BUMI DAN GEOKIMIA AIR

BAB IV SISTEM PANAS BUMI DAN GEOKIMIA AIR BAB IV SISTEM PANAS BUMI DAN GEOKIMIA AIR 4.1 Sistem Panas Bumi Secara Umum Menurut Hochstein dan Browne (2000), sistem panas bumi adalah istilah umum yang menggambarkan transfer panas alami pada volume

Lebih terperinci

BAB IV GEOKIMIA AIR PANAS

BAB IV GEOKIMIA AIR PANAS 4.1 Tinjauan Umum. BAB IV GEOKIMIA AIR PANAS Salah satu jenis manifestasi permukaan dari sistem panas bumi adalah mata air panas. Berdasarkan temperatur air panas di permukaan, mata air panas dapat dibedakan

Lebih terperinci

BAB IV KARAKTERISTIK AIR PANAS DI DAERAH TANGKUBAN PARAHU BAGIAN SELATAN, JAWA BARAT

BAB IV KARAKTERISTIK AIR PANAS DI DAERAH TANGKUBAN PARAHU BAGIAN SELATAN, JAWA BARAT BAB IV KARAKTERISTIK AIR PANAS DI DAERAH TANGKUBAN PARAHU BAGIAN SELATAN, JAWA BARAT 4.1 Tinjauan Umum Manifestasi permukaan panas bumi adalah segala bentuk gejala sebagai hasil dari proses sistem panasbumi

Lebih terperinci

BAB IV MANIFESTASI PERMUKAAN PANASBUMI DI DATARAN TINGGI DIENG DAN SEKITARNYA

BAB IV MANIFESTASI PERMUKAAN PANASBUMI DI DATARAN TINGGI DIENG DAN SEKITARNYA BAB IV MANIFESTASI PERMUKAAN PANASBUMI DI DATARAN TINGGI DIENG DAN SEKITARNYA 4.1 Tinjauan umum Sistem panasbumi yang ada di Indonesia umumnya berasal dari sistem afiliasi volkanik. Sistem ini ditandai

Lebih terperinci

BAB I PENDAHULUAN I.1 LATAR BELAKANG

BAB I PENDAHULUAN I.1 LATAR BELAKANG BAB I PENDAHULUAN I.1 LATAR BELAKANG Indonesia merupakan salah satu negara yang memiliki potensi panas bumi terbesar di dunia. Potensi panas bumi di Indonesia mencapai 29.038 MW atau setara dengan 40%

Lebih terperinci

BAB IV GEOKIMIA AIR PANAS DI DAERAH GUNUNG KROMONG DAN SEKITARNYA, CIREBON

BAB IV GEOKIMIA AIR PANAS DI DAERAH GUNUNG KROMONG DAN SEKITARNYA, CIREBON BAB IV GEOKIMIA AIR PANAS DI DAERAH GUNUNG KROMONG DAN SEKITARNYA, CIREBON 4.1 Tinjauan Umum Pada metoda geokimia, data yang digunakan untuk mengetahui potensi panasbumi suatu daerah adalah data kimia

Lebih terperinci

BAB III METODE PENELITIAN. panasbumi di permukaan berupa mataair panas dan gas. penafsiran potensi panasbumi daerah penelitian.

BAB III METODE PENELITIAN. panasbumi di permukaan berupa mataair panas dan gas. penafsiran potensi panasbumi daerah penelitian. BAB III METODE PENELITIAN 3.1. Objek Penelitian Objek yang akan diamati dalam penelitian ini adalah manifestasi panasbumi di permukaan berupa mataair panas dan gas. Penelitian dikhususkan kepada aspek-aspek

Lebih terperinci

BAB 3 PENGOLAHAN DAN INTERPRETASI DATA

BAB 3 PENGOLAHAN DAN INTERPRETASI DATA BAB 3 PENGOLAHAN DAN INTERPRETASI DATA 3.1 Data Geokimia Seperti yang telah dibahas pada bab 1, bahwa data kimia air panas, dan kimia tanah menjadi bahan pengolahan data geokimia untuk menginterpretasikan

Lebih terperinci

BAB V KIMIA AIR. 5.1 Tinjauan Umum

BAB V KIMIA AIR. 5.1 Tinjauan Umum BAB V KIMIA AIR 5.1 Tinjauan Umum Analisa kimia air dapat dilakukan untuk mengetahui beberapa parameter baik untuk eksplorasi ataupun pengembangan di lapangan panas bumi. Parameter-parameter tersebut adalah:

Lebih terperinci

Potensi Panas Bumi Berdasarkan Metoda Geokimia Dan Geofisika Daerah Danau Ranau, Lampung Sumatera Selatan BAB I PENDAHULUAN

Potensi Panas Bumi Berdasarkan Metoda Geokimia Dan Geofisika Daerah Danau Ranau, Lampung Sumatera Selatan BAB I PENDAHULUAN BAB I PENDAHULUAN I.1 Latar Belakang Indonesia merupakan negara yang memiliki sumber daya energi yang melimpah dan beraneka ragam, diantaranya minyak bumi, gas bumi, batubara, gas alam, geotermal, dll.

Lebih terperinci

BAB VI INTERPRETASI DATA GEOKIMIA

BAB VI INTERPRETASI DATA GEOKIMIA BAB VI INTERPRETASI DATA GEOKIMIA Pada Tahun 2008, tim dari kelompok penelitian Program Panas Bumi, Pusat Sumber Daya Geologi, melakukan penyelidikan geokimia pada daerah lapangan panas bumi Tambu. Penyelidikan

Lebih terperinci

BAB III PENGOLAHAN DAN INTERPRETASI DATA

BAB III PENGOLAHAN DAN INTERPRETASI DATA BAB III PENGOLAHAN DAN INTERPRETASI DATA III.1 Data Geokimia Dengan menggunakan data geokimia yang terdiri dari data kimia manifestasi air panas, data kimia tanah dan data udara tanah berbagai paramater

Lebih terperinci

BAB IV MANIFESTASI PANAS BUMI CIMANDIRI

BAB IV MANIFESTASI PANAS BUMI CIMANDIRI BAB IV MANIFESTASI PANAS BUMI CIMANDIRI 4.1 LATAR BELAKANG Lembah Sungai Cimandiri telah diketahui banyak peneliti merupakan daerah yang dipengaruhi oleh struktur geologi atau lebih dikenal dengan Zona

Lebih terperinci

BAB IV PENENTUAN POTENSI PANAS BUMI

BAB IV PENENTUAN POTENSI PANAS BUMI Potensi Panas Bumi Berdasarkan Metoda Geokimia Dan Geofisika Daerah Danau Ranau, Lampung Sumatera Selatan BAB IV PENENTUAN POTENSI PANAS BUMI IV.1 Kehilangan Panas Alamiah Dalam penentuan potensi panas

Lebih terperinci

BAB 5 PENGOLAHAN DAN INTERPRETASI DATA GEOKIMIA

BAB 5 PENGOLAHAN DAN INTERPRETASI DATA GEOKIMIA BAB 5 PENGOLAHAN DAN INTERPRETASI DATA GEOKIMIA Pengolahan dan interpretasi data geokimia untuk daerah panas bumi Bonjol meliputi penentuan tipe fluida panas bumi dan temperatur reservoar panas bumi. Analisis

Lebih terperinci

PATIR - BATAN. Satrio, Wibagiyo, Neneng L., Nurfadhlini

PATIR - BATAN. Satrio, Wibagiyo, Neneng L., Nurfadhlini PATIR - BATAN Satrio, Wibagiyo, Neneng L., Nurfadhlini Indonesia memiliki potensi energi panas bumi yaitu sebesar 27000 MW baru dimanfaatkan 1100 MW. Pemerintah mentargetkan kontribusi energi panas bumi

Lebih terperinci

BAB V PENGOLAHAN DAN INTERPRETASI DATA GEOKIMIA

BAB V PENGOLAHAN DAN INTERPRETASI DATA GEOKIMIA BAB V PENGOLAHAN DAN INTERPRETASI DATA GEOKIMIA Tujuan metode geokimia digunakan dalam penelitian eksplorasi energi panasbumi adalah untuk mengkaji kemungkinan pengembangan sumber daya panasbumi. Parameter

Lebih terperinci

BAB 4 PENENTUAN POTENSI PANAS BUMI

BAB 4 PENENTUAN POTENSI PANAS BUMI BAB 4 PENENTUAN POTENSI PANAS BUMI 4.1 Hilang Panas Alamiah Besar potensi panas bumi dapat diperkirakan melalui perhitungan panas alamiah yang hilang melalui keluaran manifestasi panas bumi (natural heat

Lebih terperinci

SURVEI PENDAHULUAN PANAS BUMI GEOLOGI DAN GEOKIMIA

SURVEI PENDAHULUAN PANAS BUMI GEOLOGI DAN GEOKIMIA SURVEI PENDAHULUAN PANAS BUMI GEOLOGI DAN GEOKIMIA PULAU WETAR, PROVINSI MALUKU Robertus S.L.S, Herry S, Andri Eko A. W. Kelompok Penyelidikan Panas Bumi Pusat Sumber Daya Geologi SARI Secara umum Pulau

Lebih terperinci

PENYELIDIKAN GEOKIMIA DAERAH PANAS BUMI MASSEPE KABUPATEN SINDENRENG RAPPANG PROVINSI SULAWESI SELATAN

PENYELIDIKAN GEOKIMIA DAERAH PANAS BUMI MASSEPE KABUPATEN SINDENRENG RAPPANG PROVINSI SULAWESI SELATAN PENYELIDIKAN GEOKIMIA DAERAH PANAS BUMI MASSEPE KABUPATEN SINDENRENG RAPPANG PROVINSI SULAWESI SELATAN Bangbang Sulaeman 1, Andri Eko Ari. W 1, Supeno 1 1 Kelompok Program Penelitian Panas Bumi ABSTRAK

Lebih terperinci

Penyelidikan Pendahuluan Panas Bumi Kabupaten Nunukan, Kabupaten Bulungan, dan Kabupaten Malinau, Provinsi Kalimantan Timur

Penyelidikan Pendahuluan Panas Bumi Kabupaten Nunukan, Kabupaten Bulungan, dan Kabupaten Malinau, Provinsi Kalimantan Timur Penyelidikan Pendahuluan Panas Bumi Kabupaten Nunukan, Kabupaten Bulungan, dan Kabupaten Malinau, Provinsi Kalimantan Timur Dahlan, Dikdik R., dan Edi M. KP Panas Bumi, Pusat Sumber Daya Geologi, Badan

Lebih terperinci

PENYELIDIKAN GEOKIMIA DAERAH PANAS BUMI TAMBU KABUPATEN DONGGALA, SULAWESI TENGAH

PENYELIDIKAN GEOKIMIA DAERAH PANAS BUMI TAMBU KABUPATEN DONGGALA, SULAWESI TENGAH PENYELIDIKAN GEOKIMIA DAERAH PANAS BUMI TAMBU KABUPATEN DONGGALA, SULAWESI TENGAH Dedi Kusnadi 1, Anna Y 1 1 Kelompok Program Penelitian Panas Bumi, Pusat Sumber Daya Geologi ABSTRAK Penyelidikan geokimia

Lebih terperinci

V.2.4. Kesetimbangan Ion BAB VI. PEMBAHASAN VI.1. Jenis Fluida dan Posisi Manifestasi pada Sistem Panas Bumi VI.2.

V.2.4. Kesetimbangan Ion BAB VI. PEMBAHASAN VI.1. Jenis Fluida dan Posisi Manifestasi pada Sistem Panas Bumi VI.2. DAFTAR ISI HALAMAN JUDUL... i LEMBAR PENGESAHAN.... ii HALAMAN PERNYATAAN... iii KATA PENGANTAR. iv SARI... v ABSTRACT... vi DAFTAR ISI vii DAFTAR GAMBAR... x DAFTAR TABEL xiv BAB I. PENDAHULUAN. 1 I.1.

Lebih terperinci

PENGUJIAN UAP/MONITORING SUMUR PANAS BUMI MATALOKO, NUSA TENGGARA TIMUR TAHUN 2006

PENGUJIAN UAP/MONITORING SUMUR PANAS BUMI MATALOKO, NUSA TENGGARA TIMUR TAHUN 2006 PENGUJIAN UAP/MONITORING SUMUR PANAS BUMI MATALOKO, NUSA TENGGARA TIMUR TAHUN Dahlan, Soetoyo Kelompok Program Penelitian Panas Bumi ABSTRAK Dalam rangka pengembangan lanjut lapangan panas bumi Mataloko,

Lebih terperinci

Analisis Geokimia Fluida Manifestasi Panas Bumi Daerah Maribaya

Analisis Geokimia Fluida Manifestasi Panas Bumi Daerah Maribaya Analisis Geokimia Fluida Manifestasi Panas Bumi Daerah Maribaya Oleh: Extivonus K.Fr (12012060) 1. GEOLOGI REGIONAL Daerah Maribaya terletak di utara Kota Bandung dan berdekatan dengan Lembang. Secara

Lebih terperinci

KATA PENGANTAR. Penelitian dengan judul Pendugaan Suhu Reservoar Lapangan Panas. Bumi X dengan Metode Multikomponen dan Pembuatan Model Konseptual

KATA PENGANTAR. Penelitian dengan judul Pendugaan Suhu Reservoar Lapangan Panas. Bumi X dengan Metode Multikomponen dan Pembuatan Model Konseptual iii KATA PENGANTAR Puji syukur penyusun panjatkan kehadirat Tuhan Yang Maha Esa, karena berkat rahmat dan kuasa-nya penyusun dapat menyelesaikan proposal tugas akhir ini. Penelitian dengan judul Pendugaan

Lebih terperinci

BAB V ALTERASI PERMUKAAN DAERAH PENELITIAN

BAB V ALTERASI PERMUKAAN DAERAH PENELITIAN BAB V ALTERASI PERMUKAAN DAERAH PENELITIAN 5.1 Tinjauan Umum Alterasi hidrotermal adalah suatu proses yang terjadi sebagai akibat dari adanya interaksi antara batuan dengan fluida hidrotermal. Proses yang

Lebih terperinci

Pengujian Uap/Monitoring Sumur Panas Bumi MT-2, MT-3, dan MT-4 Mataloko Kabupaten Ngada, Nusa Tenggara Timur Tahun 2005

Pengujian Uap/Monitoring Sumur Panas Bumi MT-2, MT-3, dan MT-4 Mataloko Kabupaten Ngada, Nusa Tenggara Timur Tahun 2005 Pengujian Uap/Monitoring Sumur Panas Bumi MT-, MT-3, dan MT- Mataloko Kabupaten Ngada, Nusa Tenggara Timur Tahun Oleh: Bangbang Sulaeman, Syuhada Arsadipura, dan Dahlan Sub Direktorat Panas Bumi SARI Monitoring

Lebih terperinci

PENYELIDIKAN GEOKIMIA PANAS BUMI DAERAH LOMPIO KABUPATEN DONGGALA, SULAWESI TENGAH Oleh: Dedi Kusnadi, Supeno, dan Sumarna SUBDIT PANAS BUMI

PENYELIDIKAN GEOKIMIA PANAS BUMI DAERAH LOMPIO KABUPATEN DONGGALA, SULAWESI TENGAH Oleh: Dedi Kusnadi, Supeno, dan Sumarna SUBDIT PANAS BUMI PENYELIDIKAN GEOKIMIA PANAS BUMI DAERAH LOMPIO KABUPATEN DONGGALA, SULAWESI TENGAH Oleh: Dedi Kusnadi, Supeno, dan Sumarna SUBDIT PANAS BUMI SARI Penyelidikan geokimia panas bumi di daerah Lompio dan sekitarnya

Lebih terperinci

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI MAPOS, KABUPATEN MANGGARAI TIMUR, PROVINSI NUSA TENGGARA TIMUR

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI MAPOS, KABUPATEN MANGGARAI TIMUR, PROVINSI NUSA TENGGARA TIMUR PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI MAPOS, KABUPATEN MANGGARAI TIMUR, PROVINSI NUSA TENGGARA TIMUR Lano Adhitya Permana, Dede Iim Setiawan Kelompok Penyelidikan Panas Bumi, Pusat

Lebih terperinci

GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI GERAGAI KABUPATEN TANJUNG JABUNG TIMUR PROVINSI JAMBI

GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI GERAGAI KABUPATEN TANJUNG JABUNG TIMUR PROVINSI JAMBI GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI GERAGAI KABUPATEN TANJUNG JABUNG TIMUR PROVINSI JAMBI Dedi Kusnadi, Lano Adhitya Permana, Dikdik Risdianto Kelompok Penyelidikan Panas Bumi, Pusat Sumber Daya Geologi

Lebih terperinci

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN BONE DAN KABUPATEN SOPPENG, PROVINSI SULAWESI SELATAN

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN BONE DAN KABUPATEN SOPPENG, PROVINSI SULAWESI SELATAN PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN BONE DAN KABUPATEN SOPPENG, PROVINSI SULAWESI SELATAN Eddy Mulyadi, Arif Munandar Kelompok Penyelidikan Panas Bumi, Pusat Sumber

Lebih terperinci

BAB II TEORI DASAR 2.1. Metode Geologi

BAB II TEORI DASAR 2.1. Metode Geologi BAB II TEORI DASAR 2.1. Metode Geologi Metode geologi yang dipergunakan adalah analisa peta geologi regional dan detail. Peta geologi regional menunjukkan tatanan geologi regional daerah tersebut, sedangkan

Lebih terperinci

TUGAS AKHIR GEOLOGI DAERAH WAYMULI DAN SEKITARNYA SERTA GEOKIMIA FLUIDA PANAS BUMI DI GUNUNG RAJABASA, KABUPATEN LAMPUNG SELATAN, PROVINSI LAMPUNG

TUGAS AKHIR GEOLOGI DAERAH WAYMULI DAN SEKITARNYA SERTA GEOKIMIA FLUIDA PANAS BUMI DI GUNUNG RAJABASA, KABUPATEN LAMPUNG SELATAN, PROVINSI LAMPUNG TUGAS AKHIR GEOLOGI DAERAH WAYMULI DAN SEKITARNYA SERTA GEOKIMIA FLUIDA PANAS BUMI DI GUNUNG RAJABASA, KABUPATEN LAMPUNG SELATAN, PROVINSI LAMPUNG Diajukan sebagai syarat kelulusan tingkat Sarjana Strata

Lebih terperinci

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, PROVINSI NUSA TENGGARA TIMUR. Dahlan, Eddy M., Anna Y.

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, PROVINSI NUSA TENGGARA TIMUR. Dahlan, Eddy M., Anna Y. MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, PROVINSI NUSA TENGGARA TIMUR Dahlan, Eddy M., Anna Y. KP Panas Bumi, Pusat Sumber Daya Geologi, Badan Geologi SARI Lapangan panas bumi Mataloko

Lebih terperinci

SURVEI PENDAHULUAN GEOLOGI DAN GEOKIMIA PANAS BUMI KABUPATEN BANGGAI DAN KABUPATEN BANGGAI KEPULAUAN PROVINSI SULAWESI TENGAH

SURVEI PENDAHULUAN GEOLOGI DAN GEOKIMIA PANAS BUMI KABUPATEN BANGGAI DAN KABUPATEN BANGGAI KEPULAUAN PROVINSI SULAWESI TENGAH SURVEI PENDAHULUAN GEOLOGI DAN GEOKIMIA PANAS BUMI KABUPATEN BANGGAI DAN KABUPATEN BANGGAI KEPULAUAN PROVINSI SULAWESI TENGAH Eddy Mulyadi, Arif Munandar Kelompok Penyelidikan Panas Bumi, Pusat Sumber

Lebih terperinci

SISTEM PANAS BUMI DAERAH WANAYASA, BANJARNEGARA

SISTEM PANAS BUMI DAERAH WANAYASA, BANJARNEGARA Vol. 13 No. 1 (2017) Hal. 43-49 p-issn 1858-3075 e-issn 2527-6131 SISTEM PANAS BUMI DAERAH WANAYASA, BANJARNEGARA GEOTHERMAL SYSTEM OF WANAYASA REGION, BANJARNEGARA Sachrul Iswahyudi Email: sachrul.iswahyudi@unsoed.ac.id

Lebih terperinci

BAB I PENDAHULUAN. Zona Bogor (Van Bemmelen, 1949). Zona Bogor sendiri merupakan antiklinorium

BAB I PENDAHULUAN. Zona Bogor (Van Bemmelen, 1949). Zona Bogor sendiri merupakan antiklinorium BAB I PENDAHULUAN I.1. Latar Belakang Masalah Bantarkawung merupakan salah satu kecamatan yang ada di Kabupaten Brebes bagian selatan. Kecamatan ini berbatasan langsung dengan Kabupaten Cilacap di sebelah

Lebih terperinci

Bab I Pendahuluan I.1 Latar Belakang

Bab I Pendahuluan I.1 Latar Belakang Bab I Pendahuluan I.1 Latar Belakang Daerah Sumatera merupakan salah satu daerah yang memiliki tatanan geologi sangat kompleks, baik dari segi sedimentologi, vulkanologi, tektonik dan potensi sumber daya

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN. yang diambil dari beberapa manifestasi yang tersebar di sekitar area lapangan panas

BAB V HASIL DAN PEMBAHASAN. yang diambil dari beberapa manifestasi yang tersebar di sekitar area lapangan panas BAB V HASIL DAN PEMBAHASAN 5.1 Metode Geokimia Analisis kimia menggunakan data sekunder berupa data kimia unsur dari sampel air yang diambil dari beberapa manifestasi yang tersebar di sekitar area lapangan

Lebih terperinci

GEOLOGI DAN GEOKIMIA DAERAH BANDA NEIRA DAN HUBUNGANNYA TERHADAP SISTEM PANAS BUMI KEPULAUAN BANDA

GEOLOGI DAN GEOKIMIA DAERAH BANDA NEIRA DAN HUBUNGANNYA TERHADAP SISTEM PANAS BUMI KEPULAUAN BANDA GEOLOGI DAN GEOKIMIA DAERAH BANDA NEIRA DAN HUBUNGANNYA TERHADAP SISTEM PANAS BUMI KEPULAUAN BANDA Lano Adhitya Permana, Andri Eko Ari Wibowo, Edy Purwoto Kelompok Penyelidikan Panas Bumi, Pusat Sumber

Lebih terperinci

Tanggapan Laporan Masyarakat Kepulan Asap dari dalam Tanah di Gedangsari GunungKidul

Tanggapan Laporan Masyarakat Kepulan Asap dari dalam Tanah di Gedangsari GunungKidul Tanggapan Laporan Masyarakat Kepulan Asap dari dalam Tanah di Gedangsari GunungKidul Bersama ini kami sampaikan tanggapan atas laporan masyarakat adanya kepulan asap di Desa Sampang, Gedangsari, Kabupaten

Lebih terperinci

Karakterisasi Temperatur Bawah Permukaan Daerah NZU : Integrasi Data Geotermometer, Mineral Alterasi dan Data Pengukuran Temperatur Bawah Permukaan

Karakterisasi Temperatur Bawah Permukaan Daerah NZU : Integrasi Data Geotermometer, Mineral Alterasi dan Data Pengukuran Temperatur Bawah Permukaan Karakterisasi Temperatur Bawah Permukaan Daerah NZU : Integrasi Data Geotermometer, Mineral Alterasi dan Data Pengukuran Temperatur Bawah Permukaan Nisrina Zaida Ulfa (1), Dr. Ir. Johanes Hutabarat, M.si

Lebih terperinci

BAB IV STUDI KHUSUS GEOKIMIA TANAH DAERAH KAWAH TIMBANG DAN SEKITARNYA

BAB IV STUDI KHUSUS GEOKIMIA TANAH DAERAH KAWAH TIMBANG DAN SEKITARNYA BAB IV STUDI KHUSUS GEOKIMIA TANAH DAERAH KAWAH TIMBANG DAN SEKITARNYA IV.1 TINJAUAN UMUM Pengambilan sampel air dan gas adalah metode survei eksplorasi yang paling banyak dilakukan di lapangan geotermal.

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 49 BAB V HASIL DAN PEMBAHASAN 5.1. Geokimia 5.1.1. Hasil Penelitian Sampel Air dan Gas Berdasarkan hasil pengambilan sampel air dan gas yang telah dilakukan oleh Tim Survey Geokimia Pusat Sumber Daya Geologi

Lebih terperinci

BAB 6 PEMBAHASAN POTENSI PANAS BUMI DAERAH PENELITIAN

BAB 6 PEMBAHASAN POTENSI PANAS BUMI DAERAH PENELITIAN BAB 6 PEMBAHASAN POTENSI PANAS BUMI DAERAH PENELITIAN 6. 1 Hilang Panas Alamiah Dalam penentuan potensi panas bumi disuatu daerah diperlukan perhitungan kehilangan panas alamiah. Hal ini perlu dilakukan

Lebih terperinci

GEOLOGI DAN GEOKIMIA PANAS BUMI DAERAH PERMIS KABUPATEN BANGKA SELATAN, PROVINSI BANGKA BELITUNG S A R I

GEOLOGI DAN GEOKIMIA PANAS BUMI DAERAH PERMIS KABUPATEN BANGKA SELATAN, PROVINSI BANGKA BELITUNG S A R I GEOLOGI DAN GEOKIMIA PANAS BUMI DAERAH PERMIS KABUPATEN BANGKA SELATAN, PROVINSI BANGKA BELITUNG Dede Iim Setiawan, Lano Adhitya Kelompok Penyelidikan Panas Bumi, Pusat Sumber Daya Geologi S A R I Keterdapatan

Lebih terperinci

BAB I PENDAHULUAN. pembentuk tanah yang intensif adalah proses alterasi pada daerah panasbumi.

BAB I PENDAHULUAN. pembentuk tanah yang intensif adalah proses alterasi pada daerah panasbumi. BAB I PENDAHULUAN I.1. Latar Belakang Salah satu faktor yang menyebabkan terjadinya tanah longsor adalah tingkat ketebalan tanah yang tinggi dengan kekuatan antar material yang rendah. Salah satu pembentuk

Lebih terperinci

BAB I PENDAHULUAN. Pulau Jawa (Busur Sunda) merupakan daerah dengan s umber daya panas

BAB I PENDAHULUAN. Pulau Jawa (Busur Sunda) merupakan daerah dengan s umber daya panas BAB I PENDAHULUAN I.1 Latar Belakang Pulau Jawa (Busur Sunda) merupakan daerah dengan s umber daya panas bumi terbesar (p otensi cadangan dan potensi diketahui), dimana paling tidak terdapat 62 lapangan

Lebih terperinci

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN MINAHASA UTARA DAN KOTA BITUNG - PROVINSI SULAWESI UTARA SARI

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN MINAHASA UTARA DAN KOTA BITUNG - PROVINSI SULAWESI UTARA SARI PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN MINAHASA UTARA DAN KOTA BITUNG - PROVINSI SULAWESI UTARA Dede Iim Setiawan, Eddy Mulyadi, Herry Sundhoro Kelompok Penyelidikan

Lebih terperinci

BAB III ALTERASI HIDROTERMAL BAWAH PERMUKAAN

BAB III ALTERASI HIDROTERMAL BAWAH PERMUKAAN BAB III ALTERASI HIDROTERMAL BAWAH PERMUKAAN III.1 Teori Dasar III.1.1 Sistem Panasbumi Sistem geotermal merupakan sistem perpindahan panas dari sumber panas ke permukaan melalui proses konveksi air meteorik

Lebih terperinci

Bab IV Sistem Panas Bumi

Bab IV Sistem Panas Bumi Bab IV Sistem Panas Bumi IV.1 Dasar Teori Berdasarkan fluida yang mengisi reservoir, sistem panas bumi dibedakan menjadi 2, yaitu sistem panas bumi dominasi air dan sistem panasbumi dominasi uap. 1. Sistem

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Kompleks Gunung Api Arjuno Welirang (KGAW) merupakan bagian dari rangkaian gunung api aktif di Pulau Jawa yang berada di bagian selatan ibukota Surabaya, Jawa Timur.

Lebih terperinci

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI AMOHOLA, KABUPATEN KONAWE SELATAN PROVINSI SULAWESI TENGGARA

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI AMOHOLA, KABUPATEN KONAWE SELATAN PROVINSI SULAWESI TENGGARA PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI AMOHOLA, KABUPATEN KONAWE SELATAN PROVINSI SULAWESI TENGGARA Anna Yushantarti dan Yuanno Rezky Kelompok Penyelidikan Panas Bumi, Pusat Sumber

Lebih terperinci

PERCOBAAN VII PEMBUATAN KALIUM NITRAT

PERCOBAAN VII PEMBUATAN KALIUM NITRAT I. Tujuan Percobaan ini yaitu: PERCOBAAN VII PEMBUATAN KALIUM NITRAT Adapun tujuan yang ingin dicapai praktikan setelah melakukan percobaan 1. Memisahkan dua garam berdasarkan kelarutannya pada suhu tertentu

Lebih terperinci

STUDI GEOKIMIA AIR PANAS AREA PROSPEK PANASBUMI GUNUNG KENDALISODO KABUPATEN SEMARANG, PROVINSI JAWA TENGAH. Yoga Aribowo*, Heri Nurohman**)

STUDI GEOKIMIA AIR PANAS AREA PROSPEK PANASBUMI GUNUNG KENDALISODO KABUPATEN SEMARANG, PROVINSI JAWA TENGAH. Yoga Aribowo*, Heri Nurohman**) STUDI GEOKIMIA AIR PANAS AREA PROSPEK PANASBUMI GUNUNG KENDALISODO KABUPATEN SEMARANG, PROVINSI JAWA TENGAH Yoga Aribowo*, Heri Nurohman**) Abstract Fluid geochemistry is a useful method to analyse lateral

Lebih terperinci

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, KABUPATEN NGADA, NTT TAHUN

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, KABUPATEN NGADA, NTT TAHUN MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, KABUPATEN NGADA, NTT TAHUN 2012-2014 Anna Yushantarti, S.Si dan Santia Ardi M., ST Kelompok Penyelidikan Panas Bumi, Pusat Sumber Daya Geologi,

Lebih terperinci

DAFTAR ISI. Halaman HALAMAN JUDUL...i. HALAMAN PENGESAHAN...ii. HALAMAN PERSEMBAHAN...iii. UCAPAN TERIMAKASIH...iv. KATA PENGANTAR...vi. SARI...

DAFTAR ISI. Halaman HALAMAN JUDUL...i. HALAMAN PENGESAHAN...ii. HALAMAN PERSEMBAHAN...iii. UCAPAN TERIMAKASIH...iv. KATA PENGANTAR...vi. SARI... DAFTAR ISI Halaman HALAMAN JUDUL...i HALAMAN PENGESAHAN...ii HALAMAN PERSEMBAHAN...iii UCAPAN TERIMAKASIH...iv KATA PENGANTAR...vi SARI...vii DAFTAR ISI...viii DAFTAR GAMBAR...xii DAFTAR TABEL...xv BAB

Lebih terperinci

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, KABUPATEN NGADA, PROVINSI NUSA TENGGARA TIMUR TAHUN 2015

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, KABUPATEN NGADA, PROVINSI NUSA TENGGARA TIMUR TAHUN 2015 MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, KABUPATEN NGADA, PROVINSI NUSA TENGGARA TIMUR TAHUN 2015 Anna Yushantarti, Nizar Muhamad Nurdin, dan Muhammad Kholid Kelompok Penyelidikan

Lebih terperinci

SURVEI PENDAHULUAN DAERAH PANAS BUMI KABUPATEN MAHAKAM HULU DAN KABUPATEN KUTAI KARTANEGARA, PROVINSI KALIMANTAN TIMUR

SURVEI PENDAHULUAN DAERAH PANAS BUMI KABUPATEN MAHAKAM HULU DAN KABUPATEN KUTAI KARTANEGARA, PROVINSI KALIMANTAN TIMUR SURVEI PENDAHULUAN DAERAH PANAS BUMI KABUPATEN MAHAKAM HULU DAN KABUPATEN KUTAI KARTANEGARA, PROVINSI KALIMANTAN TIMUR Eddy Mulyadi dan Arif Munandar Kelompok Penyelidikan Panas Bumi, Pusat Sumber Daya

Lebih terperinci

PENYISIHAN KESADAHAN dengan METODE PENUKAR ION

PENYISIHAN KESADAHAN dengan METODE PENUKAR ION PENYISIHAN KESADAHAN dengan METODE PENUKAR ION 1. Latar Belakang Kesadahan didefinisikan sebagai kemampuan air dalam mengkonsumsi sejumlah sabun secara berlebihan serta mengakibatkan pengerakan pada pemanas

Lebih terperinci

PENENTUAN TIPE FLUIDA SUMBER MATA AIR PANASDI KECAMATAN GUNUNG TALANG, KABUPATEN SOLOK

PENENTUAN TIPE FLUIDA SUMBER MATA AIR PANASDI KECAMATAN GUNUNG TALANG, KABUPATEN SOLOK PENENTUAN TIPE FLUIDA SUMBER MATA AIR PANASDI KECAMATAN GUNUNG TALANG, KABUPATEN SOLOK Rahmatul Hidayat, Ardian Putra Laboratorium Fisika Bumi, Jurusan Fisika FMIPA Universitas Andalas Kampus Unand, Limau

Lebih terperinci

BAB I PENDAHULUAN. Perubahan kimia airtanah dipengaruhi oleh faktor geologi dan faktor antropogen.

BAB I PENDAHULUAN. Perubahan kimia airtanah dipengaruhi oleh faktor geologi dan faktor antropogen. 1 BAB I PENDAHULUAN I.1. Latar Belakang Kimia airtanah menunjukkan proses yang mempengaruhi airtanah. Perubahan kimia airtanah dipengaruhi oleh faktor geologi dan faktor antropogen. Nitrat merupakan salah

Lebih terperinci

UNIVERSITAS PENDIDIKAN GANESHA

UNIVERSITAS PENDIDIKAN GANESHA TUGAS KIMIA DASAR LAPORAN PRAKTIKUM REAKSI REAKSI KIMIA OLEH : KELOMPOK 7 1.Ida Ayu Putu Sri Puspitawati 2.Putu Devi Yani 1213031023 1213031017 3.Lalu Tio Noval Wiratama 1213031006 UNIVERSITAS PENDIDIKAN

Lebih terperinci

Bab VI Larutan Elektrolit dan Nonelektrolit

Bab VI Larutan Elektrolit dan Nonelektrolit Bab VI Larutan Elektrolit dan Nonelektrolit Sumber: Dokumentasi Penerbit Air laut merupakan elektrolit karena di dalamnya terdapat ion-ion seperti Na, K, Ca 2, Cl, 2, dan CO 3 2. TUJUAN PEMBELAJARAN Setelah

Lebih terperinci

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT DI SUSUN OLEH : NAMA : IMENG NIM : ACC 109 011 KELOMPOK : 2 ( DUA ) HARI / TANGGAL : SABTU, 28 MEI 2011

Lebih terperinci

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI G. KAPUR KABUPATEN KERINCI PROVINSI JAMBI

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI G. KAPUR KABUPATEN KERINCI PROVINSI JAMBI PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI G. KAPUR KABUPATEN KERINCI PROVINSI JAMBI Yuanno Rezky, Andri Eko Ari. W, Anna Y. Kelompok Program Peneylidikan Panas Bumi SARI Daerah panas

Lebih terperinci

SURVEI TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI SAJAU KABUPATEN BULUNGAN, PROVINSI KALIMANTAN UTARA

SURVEI TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI SAJAU KABUPATEN BULUNGAN, PROVINSI KALIMANTAN UTARA SURVEI TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI SAJAU KABUPATEN BULUNGAN, PROVINSI KALIMANTAN UTARA Andri Eko Ari Wibowo, Mochamad Nur Hadi, Suwarno Kelompok Penyelidikan Panas Bumi, Pusat Sumber

Lebih terperinci

kimia ASAM-BASA III Tujuan Pembelajaran

kimia ASAM-BASA III Tujuan Pembelajaran KTSP K-13 kimia K e l a s XI ASAM-BASA III Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami mekanisme reaksi asam-basa. 2. Memahami stoikiometri

Lebih terperinci

BAB I PENDAHULUAN. dan perekonomian. Data Kementerian ESDM (2014) menyatakan bahwa

BAB I PENDAHULUAN. dan perekonomian. Data Kementerian ESDM (2014) menyatakan bahwa 1 BAB I PENDAHULUAN I.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan hidup masyarakat dengan penggunaan tertinggi urutan ketiga setelah bahan bakar minyak dan gas. Kebutuhan energi listrik

Lebih terperinci

MONITORING SUMUR EKSPLORASI PANAS BUMI MT-2 MATALOKO KABUPATEN NGADA, NUSA TENGGARA TIMUR (TAHAP 1-6), 2004 Oleh: Bangbang Sulaeman dan Dedi Kusnadi

MONITORING SUMUR EKSPLORASI PANAS BUMI MT-2 MATALOKO KABUPATEN NGADA, NUSA TENGGARA TIMUR (TAHAP 1-6), 2004 Oleh: Bangbang Sulaeman dan Dedi Kusnadi MONITORING SUMUR EKSPLORASI PANAS BUMI MT-2 MATALOKO KABUPATEN NGADA, NUSA TENGGARA TIMUR (TAHAP 1-6), 2004 Oleh: Bangbang Sulaeman dan Dedi Kusnadi SUBDIT PANAS BUMI ABSTRACT The monitoring of MT-2 Mataloko

Lebih terperinci

KARAKTERISTIK MATA AIR PANAS DAERAH PANAS BUMI DESA AKESAHU GAMSUNGI KECAMATAN JAILOLO TIMUR KABUPATEN HALMAHERA BARAT PROPINSI MALUKU UTARA

KARAKTERISTIK MATA AIR PANAS DAERAH PANAS BUMI DESA AKESAHU GAMSUNGI KECAMATAN JAILOLO TIMUR KABUPATEN HALMAHERA BARAT PROPINSI MALUKU UTARA JURNAL DINTEK. VOL 9 NO 2 SEPTEMBER 2016. 1-5 KARAKTERISTIK MATA AIR PANAS DAERAH PANAS BUMI DESA AKESAHU GAMSUNGI KECAMATAN JAILOLO TIMUR KABUPATEN HALMAHERA BARAT PROPINSI MALUKU UTARA Herry Djainal

Lebih terperinci

ABSTRAK. : Panas bumi, Geokimia, Reservoar panas bumi, Geoindikator Cl-HCO3-SO4, Geotermometer Silika, Binary Cycle

ABSTRAK. : Panas bumi, Geokimia, Reservoar panas bumi, Geoindikator Cl-HCO3-SO4, Geotermometer Silika, Binary Cycle ABSTRAK ANALISIS KANDUNGAN KIMIA MATA AIR PANAS DI DAERAH PARIANGAN KABUPATEN TANAH DATAR PROVINSI SUMATERA BARAT UNTUK PENENTUAN KARAKTERISTIK RESERVOAR PANAS BUMI Indonesia memiliki sumber energi panas

Lebih terperinci

ABSTRAK. Kata kunci : Panas bumi, reservoar, geotermometer, Pembangkit Listrik Tenaga Panas bumi.

ABSTRAK. Kata kunci : Panas bumi, reservoar, geotermometer, Pembangkit Listrik Tenaga Panas bumi. ABSTRAK ANALISIS KANDUNGAN KIMIA MATA AIR PANAS DI DAERAH MAPOS KABUPATEN MANGGARAI TIMUR PROVINSI NUSA TENGGARA TIMUR UNTUK PENENTUAN KARAKTERISTIK RESERVOAR PANAS BUMI Panas bumi merupakan salah satu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sumber-Sumber Air Sumber-sumber air bisa dikelompokkan menjadi 4 golongan, yaitu: 1. Air atmosfer Air atmesfer adalah air hujan. Dalam keadaan murni, sangat bersih namun keadaan

Lebih terperinci

MODUL I Pembuatan Larutan

MODUL I Pembuatan Larutan MODUL I Pembuatan Larutan I. Tujuan percobaan - Membuat larutan dengan metode pelarutan padatan. - Melakukan pengenceran larutan dengan konsentrasi tinggi untuk mendapatkan larutan yang diperlukan dengan

Lebih terperinci

Penentuan Kesadahan Dalam Air

Penentuan Kesadahan Dalam Air Penentuan Kesadahan Dalam Air I. Tujuan 1. Dapat menentukan secara kualitatif dan kuantitatif kation (Ca²+,Mg²+) 2. Dapat membuat larutan an melakukan pengenceran II. Latar Belakang Teori Semua makhluk

Lebih terperinci

Survei Terpadu Geologi Daerah Panas Bumi Kalawat, Kabupaten Minahasa Utara, Provinsi Sulawesi Utara SARI

Survei Terpadu Geologi Daerah Panas Bumi Kalawat, Kabupaten Minahasa Utara, Provinsi Sulawesi Utara SARI Survei Terpadu Geologi Daerah Panas Bumi Kalawat, Kabupaten Minahasa Utara, Provinsi Sulawesi Utara Andri Eko Ari Wibowo 1) dan Dikdik Risdianto 1) 1) KP.Panas Bumi, Pusat Sumber Daya Geologi SARI Sistem

Lebih terperinci

TINJAUAN UMUM DAERAH PENELITIAN

TINJAUAN UMUM DAERAH PENELITIAN BAB III TINJAUAN UMUM DAERAH PENELITIAN 3.1 Tambang Zeolit di Desa Cikancra Tasikmalaya Indonesia berada dalam wilayah rangkaian gunung api mulai dari Sumatera, Jawa, Nusatenggara, Maluku sampai Sulawesi.

Lebih terperinci

LOGO. Analisis Kation. By Djadjat Tisnadjaja. Golongan V Gol. Sisa

LOGO. Analisis Kation. By Djadjat Tisnadjaja. Golongan V Gol. Sisa LOGO Analisis Kation Golongan V Gol. Sisa By Djadjat Tisnadjaja 1 Golongan kelima Magnesium, natrium, kalium dan amonium Tidak ada reagensia umum untuk kation-kation golongan ini Kation-kation gol kelima

Lebih terperinci

(25-50%) terubah tetapi tekstur asalnya masih ada.

(25-50%) terubah tetapi tekstur asalnya masih ada. ` BAB IV ALTERASI HIDROTHERMAL 4.1 Pendahuluan Mineral alterasi hidrotermal terbentuk oleh adanya interaksi antara fluida panas dan batuan pada suatu sistem hidrotermal. Oleh karena itu, mineral alterasi

Lebih terperinci

SURVEI GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI TAMIANG HULU KABUPATEN ACEH TAMIANG, PROVINSI ACEH

SURVEI GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI TAMIANG HULU KABUPATEN ACEH TAMIANG, PROVINSI ACEH SURVEI GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI TAMIANG HULU KABUPATEN ACEH TAMIANG, PROVINSI ACEH oleh Dedi Kusnadi, dan Moch. Nur Hadi Kelompok Penelitian Panas Bumi Pusat Sumber Daya Geologi SARI Daerah

Lebih terperinci

PENYELIDIKAN GEOKIMIA PANAS BUMI LAU SIDEBUK-DEBUK KABUPATEN KARO SUMATERA UTARA. Juliper Nainggolan ABSTRACT

PENYELIDIKAN GEOKIMIA PANAS BUMI LAU SIDEBUK-DEBUK KABUPATEN KARO SUMATERA UTARA. Juliper Nainggolan ABSTRACT PENYELIDIKAN GEOKIMIA PANAS BUMI LAU SIDEBUK-DEBUK KABUPATEN KARO SUMATERA UTARA Juliper Nainggolan ABSTRACT This study aims to look at the potential of geothermal energy in Lau-debuk Sidebuk with geochemical

Lebih terperinci

SISTEM PANASBUMI: KOMPONEN DAN KLASIFIKASINYA. [Bagian dari Proposal Pengajuan Tugas Akhir]

SISTEM PANASBUMI: KOMPONEN DAN KLASIFIKASINYA. [Bagian dari Proposal Pengajuan Tugas Akhir] SISTEM PANASBUMI: KOMPONEN DAN KLASIFIKASINYA [Bagian dari Proposal Pengajuan Tugas Akhir] III.1. Komponen Sistem Panasbumi Menurut Goff & Janik (2000) komponen sistem panasbumi yang lengkap terdiri dari

Lebih terperinci

: Komposisi impurities air permukaan cenderung tidak konstan

: Komposisi impurities air permukaan cenderung tidak konstan AIR Sumber Air 1. Air laut 2. Air tawar a. Air hujan b. Air permukaan Impurities (Pengotor) air permukaan akan sangat tergantung kepada lingkungannya, seperti - Peptisida - Herbisida - Limbah industry

Lebih terperinci

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN KAMPAR DAN KUANTAN SINGINGI, PROVINSI RIAU

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN KAMPAR DAN KUANTAN SINGINGI, PROVINSI RIAU PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN KAMPAR DAN KUANTAN SINGINGI, PROVINSI RIAU Anna Yushantarti, Lano Adhitya Permana, dan Dikdik Risdianto Kelompok Penyelidikan Panas

Lebih terperinci

BAB III METODE PENELITIAN. 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian. Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang-

BAB III METODE PENELITIAN. 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian. Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang- 18 BAB III METODE PENELITIAN 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang- Cihideung. Sampel yang diambil adalah CAF. Penelitian

Lebih terperinci

BAB 6. Jika ke dalam air murni ditambahkan asam atau basa meskipun dalam jumlah. Larutan Penyangga. Kata Kunci. Pengantar

BAB 6. Jika ke dalam air murni ditambahkan asam atau basa meskipun dalam jumlah. Larutan Penyangga. Kata Kunci. Pengantar Kimia XI SMA 179 BAB 6 Larutan Penyangga Tujuan Pembelajaran: Setelah mempelajari bab ini, Anda diharapkan mampu: 1. Menjelaskan pengertian larutan penyangga dan komponen penyusunnya. 2. Merumuskan persamaan

Lebih terperinci

Wardaya College IKATAN KIMIA STOIKIOMETRI TERMOKIMIA CHEMISTRY. Part III. Summer Olympiad Camp Kimia SMA

Wardaya College IKATAN KIMIA STOIKIOMETRI TERMOKIMIA CHEMISTRY. Part III. Summer Olympiad Camp Kimia SMA Part I IKATAN KIMIA CHEMISTRY Summer Olympiad Camp 2017 - Kimia SMA 1. Untuk menggambarkan ikatan yang terjadi dalam suatu molekul kita menggunakan struktur Lewis atau 'dot and cross' (a) Tuliskan formula

Lebih terperinci

Tabel klasifikasi United State Department of Agriculture (USDA) fraksi tanah (Notohadiprawiro, 1990).

Tabel klasifikasi United State Department of Agriculture (USDA) fraksi tanah (Notohadiprawiro, 1990). LAMPIRAN 74 Lampiran 1. Klasifikasi fraksi tanah menurut standar Internasional dan USDA. Tabel kalsifikasi internasional fraksi tanah (Notohadiprawiro, 1990). Fraksi Tanah Diameter (mm) Pasir 2.00-0.02

Lebih terperinci

BAB I PENDAHULUAN. Tatanan Geologi Lapangan Panas Bumi Kamojang

BAB I PENDAHULUAN. Tatanan Geologi Lapangan Panas Bumi Kamojang 1 BAB I PENDAHULUAN I.1. Tatanan Geologi Lapangan Panas Bumi Kamojang Lapangan panas bumi Kamojang terletak 42 km arah tenggara kota Bandung, Jawa Barat. Lapangan ini membentang pada deretan pegunungan

Lebih terperinci

BAB I PENDAHULUAN. Cekungan Air Tanah Magelang Temanggung meliputi beberapa wilayah

BAB I PENDAHULUAN. Cekungan Air Tanah Magelang Temanggung meliputi beberapa wilayah BAB I PENDAHULUAN I.1 Latar Belakang Cekungan Air Tanah Magelang Temanggung meliputi beberapa wilayah administrasi di Kabupaten Temanggung, Kabupaten dan Kota Magelang. Secara morfologi CAT ini dikelilingi

Lebih terperinci

LOGO ANALISIS KUALITATIF KATION DAN ANION

LOGO ANALISIS KUALITATIF KATION DAN ANION LOGO ANALISIS KUALITATIF KATION DAN ANION By Djadjat Tisnadjaja 1 Jenis analisis Analisis makro Kuantitas zat 0,5 1 g Volume yang dipakai sekitar 20 ml Analisis semimikro Kuatitas zat sekitar 0,05 g Volume

Lebih terperinci

BAB II METODE PENELITIAN

BAB II METODE PENELITIAN BAB II METODE PENELITIAN 2.1. Metode Geologi Metode geologi yang dipergunakan adalah analisa peta geologi regional dan lokal. Peta geologi regional menunjukkan tatanan geologi regional daerah tersebut.

Lebih terperinci

BAB 2 TEORI DASAR 2.1 Metode Geologi

BAB 2 TEORI DASAR 2.1 Metode Geologi BAB 2 TEORI DASAR 2.1 Metode Geologi Metode geologi yang dipakai adalah analisis peta geologi regional dan lokal dari daerah penelitian. Untuk peta geologi regional, peta yang dipakai adalah peta geologi

Lebih terperinci

LEMBARAN SOAL 5. Pilih satu jawaban yang benar!

LEMBARAN SOAL 5. Pilih satu jawaban yang benar! LEMBARAN SOAL 5 Mata Pelajaran : KIMIA Sat. Pendidikan : SMA Kelas / Program : XI IPA ( SEBELAS IPA ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Ruang lingkup penelitian ini adalah Ilmu Kimia Analisis.

BAB III METODOLOGI PENELITIAN. Ruang lingkup penelitian ini adalah Ilmu Kimia Analisis. BAB III METODOLOGI PENELITIAN 3.1 Ruang Lingkup Penelitian Ruang lingkup penelitian ini adalah Ilmu Kimia Analisis. 3.2 Lokasi dan Waktu Penelitian Penelitian ini telah dilakukan pada tanggal 18 hingga

Lebih terperinci

BAB 3 METODE PERCOBAAN

BAB 3 METODE PERCOBAAN BAB 3 METODE PERCOBAAN 3.1. Tempat dan Waktu Pelaksanaan Pelaksanaan Analisis dilaksanakan di Laboratorium PT PLN (Persero) Sektor Pembangkitan dan Pengendalian Pembangkitan Ombilin yang dilakukan mulai

Lebih terperinci

KONDISI LINGKUNGAN PASCA PENGEBORAN SUMUR EKSPLORASI AT-1 DAN AT-2 DI LAPANGAN PANAS BUMI ATADAI, LEMBATA, NUSA TENGGARA TIMUR

KONDISI LINGKUNGAN PASCA PENGEBORAN SUMUR EKSPLORASI AT-1 DAN AT-2 DI LAPANGAN PANAS BUMI ATADAI, LEMBATA, NUSA TENGGARA TIMUR SARI KONDISI LINGKUNGAN PASCA PENGEBORAN SUMUR EKSPLORASI AT-1 DAN AT-2 DI LAPANGAN PANAS BUMI ATADAI, LEMBATA, NUSA TENGGARA TIMUR Oleh : Soetoyo Kelompok Program Penelitian Panas Bumi Pusat Sumber Daya

Lebih terperinci

Kelas : XI IPA Guru : Tim Guru HSPG Tanggal : Senin, 23 Mei 2016 Mata pelajaran : Kimia Waktu : WIB

Kelas : XI IPA Guru : Tim Guru HSPG Tanggal : Senin, 23 Mei 2016 Mata pelajaran : Kimia Waktu : WIB Kelas : XI IPA Guru : Tim Guru HSPG Tanggal : Senin, 23 Mei 2016 Mata pelajaran : Kimia Waktu : 10.15 11.45 WIB Petunjuk Pengerjaan Soal Berdoa terlebih dahulu sebelum mengerjakan! Isikan identitas Anda

Lebih terperinci