BAB II LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI Dalam bab ini diuraikan dua subbab yaitu tinjauan pustaka dan landasan teori. Subbab tinjauan pustaka memuat hasil-hasil penelitian yang telah dilakukan. Subbab landasan teori memuat teori-teori yang digunakan dalam penelitian. 2.1 Tinjauan Pustaka Jika jumlah fasilitas pelayanan lebih sedikit dibandingkan dengan jumlah pelanggan maka akan terjadi antrian (Taha [9]). Waktu mengantri yang terlalu lama menyebabkan pelanggan jenuh, sehingga enggan kembali berkunjung (Fitrie [4]). Menurut Taylor [10] dilihat dari desain fasilitas pelayanan terdapat empat struktur antrian, yaitu single channel single phase (satu antrian satu pelayanan), multi channel single phase (beberapa antrian satu pelayanan single), multi channel multi phase (beberapa antrian beberapa pelayanan pararel), single channel multi phase (satu antrian beberapa pelayanan seri). Sistem antrian telah menarik perhatian para peneliti sejak 1909 ketika Erlang pertama kali menganalisis masalah fluktuasi permintaan fasilitas telefon dan keterlambatan pelayanannya (Gross dan Harris [5]). Pei-Chun dan Ann Shawing [3] meneliti efisiensi layanan ATM dari 26 lembaga keuangan mencakup hubungan dengan pelayanan bank di Taiwan dengan menentukan model dan ukuran kinerja sistem antriannya. Bakari et al. [1] melakukan penelitian sistem antrian pada ATM di salah satu bank Nigeria dengan menentukan model antrian di bawah kondisi steady-state dan menentukan ukuran kinerja sistemnya. Sugito [8] menentukan model antrian dan ukuran kinerja sistem pada antrian kereta api di Stasiun Besar Cirebon dan Stasiun Cirebon Prujakan. 4

2 2.2 Landasan Teori Berikut adalah teori-teori yang melandasi penelitian ini. Teori yang digunakan antara lain, deskripsi antrian, struktur dasar model antrian, notasi Kendall-Lee, faktor sistem antrian, distribusi Poisson, distribusi eksponensial, ukuran steady-state, model antrian, dan uji kecocokan distribusi Sistem Antrian Sebuah sistem antrian adalah suatu himpunan pelanggan, pelayan dan suatu aturan yang mengatur pelayanan kepada pelanggan. Sedangkan keadaan sistem menunjuk pada jumlah pelanggan yang berada dalam suatu fasilitas pelayanan, termasuk dalam antriannya. Salah satu populasi adalah jumlah pelanggan yang datang pada fasilitas pelayanan. Besarnya populasi merupakan jumlah pelanggan yang memerlukan pelayanan. Proses antrian dimulai saat pelanggan-pelanggan yang memerlukan pelayanan mulai datang. Mereka berasal dari suatu populasi yang disebut sebagai sumber masukan. Proses antrian sendiri merupakan suatu proses yang berhubungan dengan kedatangan pelanggan pada suatu fasilitas pelayanan, menunggu dalam baris antrian jika belum dapat dilayani, dilayani dan akhirnya meninggalkan fasilitas tersebut sesudah dilayani. Menurut Kakiay [6], ada empat struktur dalam sistem antrian antara lain: 1. Single Channel Single Phase Subjek pemanggilan dalam pelanggan yang dilayani dalam sebuah antrian akan membentuk antrian tiap satu barisan antrian dan selanjutnya akan berhadapan dengan satu fasilitas pelayanan. Model Single Channel Single Phase dapat dilihat pada Gambar 2.1 5

3 Gambar 2.1. Single Channel Single Phase 2. Single Channel Multiple Phase Subjek pemanggilan dalam pelanggan yang dilayani dalam sebuah antrian akan masuk dan membentuk satu barisan antrian dan selanjutnya akan berhadapan dengan satu fasilitas pelayanan kemudian membentuk barisan antrian lagi sampai pelayanan selesai. Model Single Channel Multiple Phase dapat dilihat pada Gambar 2.2 Gambar 2.2. Single Channel Multiple Phase 3. Multiple Channel Single Phase Subjek pemanggilan dalam pelanggan yang dilayani dalam sebuah antrian akan masuk dan membentuk satu barisan antrian dan selanjutnya akan berhadapan dengan beberapa fasilitas pelayanan identik secara paralel. Model Multiple Channel Single Phase dapat dilihat pada Gambar 2.3 Gambar 2.3. Multiple Channel Single Phase 6

4 4. Multiple Channel Multi Phase Subjek pemanggilan dalam pelanggan yang dilayani dalam sebuah antrian akan masuk dan membentuk beberapa barisan antrian dan selanjutnya akan berhadapan dengan beberapa fasilitas pelayanan identik secara paralel kemudian membentuk barisan antrian lagi sampai pelayanan selesai. Model Multiple Channel Multiple Phase dapat dilihat pada Gambar 2.4 Gambar 2.4. Multiple Channel Multiple Phase Notasi Kendall-Lee Karakteristik sistem antrian dinotasikan dengan notasi Kendall-Lee. Notasi tersebut untuk mengidentifikasikan model dan asumsi yang harus dipenuhi. Bentuk umum notasi tersebut dituliskan oleh Taha [9] dalam bentuk (a/b/c) : (d/e/f), dimana notasi a sampai dengan f berturut - turut merupakan distribusi kedatangan, distribusi pelayanan, jumlah fasilitas pelayanan, disiplin pelayanan, jumlah maksimum yang diizinkan dalam sistem dan ukuran sumber pemanggilan. Notasi a sampai f dapat digantikan oleh simbol yang diberikan dalam Tabel

5 Tabel 2.1. Simbol pengganti notasi Kendall-Lee Karakteristik Antrian Simbol Keterangan Distribusi M Eksponensial waktu antar kedatangan D Konstan atau deterministik E k GI Erlang atau gamma dengan parameter k General (umum) Distribusi M Eksponensial waktu pelayanan D Konstan atau deterministik E k G Erlang atau gamma dengan parameter k General (umum) Disiplin antrian FIFO First In First Out (pertama masuk pertama dilayani) LIFO Last In First Out (terakhir masuk pertama dilayani) SIRO Service In Random Order (pelayanan secara acak) Faktor Sistem Antrian Menurut Kakiay [6], terdapat beberapa faktor penting yang terkait erat dengan sistem antrian yaitu 1. Distribusi waktu antar kedatangan Pola kedatangan para pelanggan biasanya diperhitungkan melalui waktu antar kedatangan, yaitu waktu antar kedatangan dua pelanggan yang berurutan pada suatu fasilitas pelayanan. Kedatangan pelanggan mengikuti suatu proses dengan distribusi probabilitas tertentu. Distribusi probabilitas yang sering memenuhi adalah distribusi Poisson, dimana kedatangan bersifat bebas dan tidak berpengaruh oleh kedatangan sebelum atau se- 8

6 sudahnya. Berdasarkan asumsi distribusi Poisson tersebut, menunjukkan bahwa kedatangan pelanggan atau barang sifatnya acak dan memiliki laju kedatangan sebesar lambda (λ) merupakan jumlah pelanggan yang datang dalam satuan waktu. Pada sistem antrian, distribusi kedatangan merupakan faktor penting yang berpengaruh besar terhadap kelancaran pelayanan. Pola kedatangan terbagi dua, yaitu kedatangan secara individu (single arrivals) dan kedatangan secara berkelompok (bulk arrivals). 2. Distribusi lama waktu pelayanan Pola pelayanan ditentukan oleh lama waktu pelayanan, yaitu waktu yang dibutuhkan untuk melayani pelanggan pada fasilitas pelayanan. Distribusi probabilitas yang banyak digunakan dalam teori antrian untuk menggambarkan lama waktu pelayanan adalah distribusi eksponensial, dimana variabelnya berdiri bebas tanpa memori masa lalu. Laju pelayanan diberi simbol µ merupakan jumlah pelanggan yang dapat dilayani dalam satuan waktu, sedangkan rata-rata waktu yang diperlukan untuk melayani setiap pelanggan adalah 1. Bentuk pelayanan terbagi menjadi dua, yaitu pelayan- µ an secara individual (single service) dan pelayanan secara kelompok (bulk service). 3. Fasilitas pelayanan Fasilitas pelayanan berkaitan erat dengan baris antrian yang akan dibentuk. Desain fasilitas pelayanan ini dapat dibagi dalam tiga bentuk, yaitu (a) Bentuk series, dalam satu garis lurus ataupun garis melingkar. (b) Bentuk paralel, dalam beberapa garis lurus yang antara yang satu dengan yang lain paralel. (c) Bentuk network station, yang dapat di desain secara series dengan pelayanan lebih dari satu pada setiap stasiun. Bentuk ini dapat juga dilakukan secara paralel dengan stasiun yang berbeda-beda. 9

7 4. Disiplin pelayanan Disiplin pelayanan berkaitan erat dengan urutan pelayanan bagi pelanggan yang memasuki fasilitas pelayanan. Disiplin pelayanan ini terbagi dalam tiga bentuk, yaitu (a) Pertama datang, pertama dilayani (FIFO = First In First Out). (b) Terakhir datang, pertama kali yang dilayani (LIFO = Last In First Out). (c) Pelayanan dalam random order (SIRO = Service In Random Order). 5. Ukuran dalam antrian Besarnya antrian pelanggan yang akan memasuki fasilitas pelayanan pun perlu diperhatikan. Ada dua desain yang dapat dipilih untuk menentukan besarnya antrian, yaitu (a) Ukuran kedatangan secara tidak terbatas (infinite queue). (b) Ukuran kedatangan secara terbatas (finite queue). 6. Sumber pemanggilan Dalam fasilitas pelayanan, yang berperan sebagai sumber pemanggilan dapat berupa mesin maupun manusia. Bila ada sejumlah mesin yang rusak maka sumber pemanggilan akan berkurang dan tidak dapat melayani pelanggan. Ada dua jenis sumber pemanggilan, yaitu (a) Sumber panggilan terbatas (finite calling source). (b) Sumber panggilan tak terbatas (infinite calling source) Distribusi Poisson dan Distribusi Eksponensial Menurut Gross dan Harris [5], jumlah kedatangan yang terjadi pada interval waktu t adalah variabel acak yang mengikuti suatu distribusi Poisson dengan parameter λt dan peluang n pelanggan dalam sistem adalah p n (t) = e λt (λt) n, n = 0, 1, 2,... ; 0 λ, (2.1) n! 10

8 dengan n adalah frekuensi kedatangan per satuan waktu, λt adalah rata-rata kedatangan pelanggan per satuan waktu t, e adalah bilangan Euler (e = 2, ), dan p n (t) adalah peluang n pelanggan dalam sistem pada waktu t. Jika jumlah kedatangan mengikuti distribusi Poisson maka suatu variabel random waktu antar kedatangan mengikuti distribusi eksponensial (Gross dan Harris [5]). Misalkan t adalah interval waktu sejak terjadinya kejadian terakhir, maka cdf untuk t adalah probabilitas nilai waktu antar kedatangan yang dinyatakan dengan T lebih kecil dari t atau dapat dinyatakan F (t) = P (T < t) (2.2) = 1 P (T t). Probabilitas waktu antar kedatangan lebih besar dari t sama dengan probabilitas tidak adanya pelanggan yang datang pada waktu t atau p 0 (t) dengan 0 adalah indeks yang menunjukkan jumlah pelanggan dalam sistem. Persamaan (2.2) dapat dituliskan kembali menjadi F (t) = P (T < t) = 1 P (T t) = 1 p 0 (t). Diasumsikan bahwa banyaknya pelanggan yang datang mengikuti distribusi Poisson, maka probabilitas bahwa tidak ada pelanggan yanng datang selama waktu t dinyatakan sebagai p 0 (t) = e λt (λt) 0 0! = e λt. Sehingga fungsi distribusi komulatif (cdf ) untuk t dinyatakan sebagai F (t) = 1 e λt. Fungsi densitas probabilitas (pdf ) untuk t adalah turunan parsial pertama 11

9 dari fungsi densitas komulatifnya, sehingga pdf dari t adalah F (t) f(t) = t = (1 e λt ) t = λe λt. Terlihat bahwa fungsi densitas probabilitas untuk t mengikuti distribusi eksponensial dengan parameter λ atau waktu antar kedatangan berdistribusi eksponensial Ukuran Kesetimbangan (Steady State) Menurut Taha [9], probabilitas steady-state dari P n untuk n pelanggan dalam sistem yang ditentukan yaitu λ < µ. Ukuran-ukuran kinerja yang terpenting dari situasi antrian setelah terpenuhi kondisi kesetimbangan yang dipergunakan untuk menganalisis situasi antrian adalah rata-rata banyaknya pelanggan yang menunggu dalam antrian dan rata-rata lama waktu menunggu dalam antrian. Oleh karena itu diperoleh persamaan kesetimbangan ρ = λ cµ < 1, dengan λ adalah laju kedatangan pelanggan dan µ adalah laju pelayanan pelanggan. Setelah kondisi kesetimbangan steady-state tercapai, dapat dihitung ukuranukuran dari kinerja situasi antrian tersebut. Adapun notasi dalam kondisi steadystate yaitu L s : ekspektasi jumlah pelanggan dalam sistem, L q : ekspektasi jumlah pelanggan dalam antrian, W s : ekspektasi waktu menunggu dalam sistem, W q : ekspektasi waktu menunggu dalam anttrian. 12

10 2.2.6 Model Antrian (M/M/1) : (F IF O/ / ) Model antrian (M/M/1) : (GD/ / ) adalah model antrian dengan waktu antar kedatangan berdistribusi eksponensial dan lama waktu pelayanan berdistribusi eksponensial dengan jumlah pelayan adalah satu. Menurut Taha [9], model ini merupakan model pelayanan tunggal tanpa batas kapasitas baik dari kapasitas sistem maupun kapasitas sumber masukkan. Asumsi pada model ini adalah laju kedatangan dan laju pelayanan konstan, yaitu λ n = λ dan µ n = µ untuk semua n. Dengan mendefinisikan ρ = λ, diperoleh nilai probabilitas terdapat n pe- µ langgan dalam sistem yaitu P n = ρ n P 0, n = 0, 1, 2,.... Dalam penentuan P n dengan menggunakan fakta bahwa jumlah semua nilai P n untuk n = 0, 1, 2,... sama dengan 1 diperoleh P 0 (1 + ρ + ρ ) = 1 Dengan mengasumsikan ρ < 1, deret geometri akan memiliki jumlahan ( 1 ), sehingga 1 ρ 1 P 0 ( 1 ρ ) = 1 atau P 0 = 1 ρ. Dengan demikian diperoleh rumus umum untuk probabilitas terdapat n pelanggan dalam sistem adalah sebagai berikut P n = (1 ρ)ρ n, n = 0, 1, 2,.... Keadaan dimana ρ < 1, atau λ < µ menunjukkan bahwa laju kedatangan harus secara ketat lebih kecil daripada laju pelayanan di suatu fasilitas pelayanan agar sistem tersebut mencapai stabilitas (steady-state). Hal ini masuk akal karena dalam kondisi lainnya, ukuran antrian akan meningkat menjadi tak hingga sehingga kondisi steady-state tidak dapat tercapai (Taha [9]). 13

11 Ekspresi untuk L s, L q, W s dan W q pada model ini yaitu L s = ρ 1 ρ, L q = L s ρ = ρ 1 ρ ρ = ρ2 1 ρ, W s = L s λ = 1 ρ λ 1 ρ = ρ λ(1 ρ), W q = L q λ = 1 ρ 2 λ 1 ρ = ρ 2 λ(1 ρ) Model Antrian (M/M/c) : (F IF O/ / ) Dalam model antrian ini sering dijumpai dua atau lebih jalur atau stasiun pelayanan yang tersedia untuk menangani pelanggan yang datang. Dengan asumsi pelanggan menunggu pelayanan membentuk satu jalur dan akan dilayani pada stasiun pelayanan yang tersedia pertama kali pada saat itu. Model antrian jalur berganda banyak ditemukan pada sebagian besar bank. Para pelanggan tiba dengan laju konstan λ dan maksimum c pelanggan dapat dilayani secara bersamaan dan laju pelayanan adalah µ. Pengaruh penggunaan c pelayan yang paralel adalah mempercepat laju pelayanan dengan memungkinkan dilakukanya beberapa pelayanan secara bersamaan. Jika jumlah pelanggan dalam sistem adalah n dimana n c, maka laju pelayanan gabungan dari sarana tersebut sama dengan cµ. Sedangkan jika n < c, maka laju pelayanan adalah nµ. Dengan memisalkan r = λ dan ρ = r = λ, Taha [9] menentukan µ c µc nilai probabilitas terdapat n pelanggan saat n < c dalam model ini adalah dan untuk n c P n = ρ n P 0 = λ n µ(2µ)(3µ)...(nµ) P 0 = λn n!µ n P 0 P n = ρ n P 0 = λ n c!c n c µ P 0. n 14

12 Jika diambil r = λ µ dan ρ = r c maka nilai P 0 ditentukan dari n=0 P n = 1 yang memberikan c 1 P 0 = { n=0 λ n n!µ + n n=c r n c!c n c } 1. Dengan mengambil m = n c diperoleh r n = rc ( r c!c n c c! c )n c n=c n=c = rc ( r c! c )m Sehingga diperoleh nilai P 0 yaitu n=0 = rc c! m=0 1 1 r, ( r c = ρ < 1). c c 1 λ n P 0 = { n!µ + rc 1 n c! 1 r } 1, ( r c = ρ < 1). c Ekspresi untuk ekspektasi jumlah pelanggan dalam antrian L q sebagai berikut dengan m = n c diperoleh L q = L q = (n c)p n, n=c+1 r c ρ c!(1 ρ) 2 P 0. diperoleh Kemudian dapat ditentukan semua ukuran kinerja sistem antrian pada model ini yaitu L s, W s dan W q sebagai berikut L s = L q + r W q = L q λ W s = W q + 1 µ Uji Kecocokan Distribusi Uji kecocokan distribusi yang digunakan untuk menguji data waktu antar kedatangan dan lama waktu pelayanan teller adalah uji Kolmogorov. Uji Kolmogorov merupakan suatu uji yang digunakan untuk menguji hipotesis tentang 15

13 kecocokan data pada suatu distribusi. Pada uji tersebut akan diketahui apakah data waktu antar kedatangan dan lama waktu pelayanan teller berdistribusi eksponensial. Langkah pengujian diuraikan sebagai berikut. 1. Menentukan hipotesis H 0 : Data yang diamati berdistribusi eksponensial, H 1 : Data yang diamati tidak berdistribusi eksponensial. 2. Menentukan taraf signifikansi Taraf signifikansi α sebesar 5%. 3. Kriteri uji H 0 ditolak jika nilai D > nilai D tabel. 4. Statistik uji D = sup S(x) F 0 (x), x = 0, 1, 2,..., x dengan S(x) adalah distribusi kumulatif data sampel (fungsi distribusi empiris), F 0 (x) adalah distribusi kumulatif dari distribusi yang dihipotesiskan (fungsi distribusi tertentu). 2.3 Kerangka Pemikiran Berdasarkan tinjauan pustaka dapat disusun suatu kerangka pemikiran yang telah dituliskan. Pada penelitian ini diterapkan sistem antrian yang diawali dengan pengambilan data dari suatu proses antrian pada bagian teller di Bank Tabungan Negara (BTN) Kantor Cabang Surakarta. Setelah itu, dilakukan pengecekan kondisi kesetimbangan (steady-state), dimana harus memenuhi kondisi kesetimbangan (steady-state) (ρ = λ cµ < 1), selanjutnya di cek uji kecocokan ditribusi untuk menentukan model yang sesuai berdasarkan data yang telah dikumpulkan. Kemudian menentukan model dan ukuran kinerja sistem antrian bagian teller di Bank Tabungan Negara (BTN) Kantor Cabang Surakarta. 16

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam pelayanan ada beberapa faktor penting pada sistem antrian yaitu pelanggan dan pelayan, dimana ada periode waktu sibuk maupun periode dimana pelayan menganggur. Dan waktu dimana

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Antrian Teori antrian adalah teori yang menyangkut studi sistematis dari antrian atau baris-baris penungguan. Formasi baris-baris penungguan ini tentu saja merupakan suatu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 14 BAB 2 LANDASAN TEORI 2.1. Pendahuluan Antrian adalah kejadian yang sering dijumpai dalam kehidupan seharihari. Menunggu di depan loket untuk mendapatakan tiket kereta api, menunggu pengisian bahan bakar,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Antrian Sistem antrian adalah merupakan keseluruhan dari proses para pelanggan atau barang yang berdatangan dan memasuki barisan antrian yang seterusnya memerlukan pelayanan

Lebih terperinci

ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG SEMARANG ABSTRACT

ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG SEMARANG ABSTRACT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 761-770 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 8 BAB II TINJAUAN PUSTAKA.1 PROFIL UMUM PENGADILAN NEGERI SEMARANG Pengadilan Negeri Semarang merupakan sebuah lembaga peradilan di lingkungan peradilan umum yang berkedudukan di Kota Semarang dan berfungsi

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1. Metode Pengambilan Sampling 2.1.1. Populasi Populasi adalah kelompok elemen yang lengkap, yang biasanya berupa orang, objek, transaksi, atau kejadian dimana kita tertarik untuk

Lebih terperinci

ANALISIS ANTRIAN DALAM OPTIMALISASI SISTEM PELAYANAN KERETA API DI STASIUN PURWOSARI DAN SOLO BALAPAN

ANALISIS ANTRIAN DALAM OPTIMALISASI SISTEM PELAYANAN KERETA API DI STASIUN PURWOSARI DAN SOLO BALAPAN ANALISIS ANTRIAN DALAM OPTIMALISASI SISTEM PELAYANAN KERETA API DI STASIUN PURWOSARI DAN SOLO BALAPAN SKRIPSI Oleh : SITI ANISAH 24010211130026 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

ANALISIS SISTEM PELAYANAN DI STASIUN TAWANG SEMARANG DENGAN METODE ANTRIAN

ANALISIS SISTEM PELAYANAN DI STASIUN TAWANG SEMARANG DENGAN METODE ANTRIAN ANALISIS SISTEM PELAYANAN DI STASIUN TAWANG SEMARANG DENGAN METODE ANTRIAN SKRIPSI Oleh: NURSIHAN 24010210110001 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG 2015 ANALISIS

Lebih terperinci

BAB II KAJIAN TEORI. dalam pembahasan model antrean dengan disiplin pelayanan Preemptive,

BAB II KAJIAN TEORI. dalam pembahasan model antrean dengan disiplin pelayanan Preemptive, BAB II KAJIAN TEORI Pada bab ini akan dijabarkan tentang dasar-dasar yang digunakan dalam pembahasan model antrean dengan disiplin pelayanan Preemptive, mencangkup tentang teori antrean, pola kedatangan

Lebih terperinci

PENENTUAN MODEL DAN PENGUKURAN KINERJA SISTEM PELAYANAN PT. BANK NEGARA INDONESIA (PERSERO) Tbk. KANTOR LAYANAN TEMBALANG ABSTRACT

PENENTUAN MODEL DAN PENGUKURAN KINERJA SISTEM PELAYANAN PT. BANK NEGARA INDONESIA (PERSERO) Tbk. KANTOR LAYANAN TEMBALANG ABSTRACT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 741-749 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENENTUAN MODEL DAN PENGUKURAN KINERJA SISTEM PELAYANAN PT.

Lebih terperinci

OPTIMALISASI SISTEM ANTRIAN PELANGGAN PADA PELAYANAN TELLER DI KANTOR POS (STUDI KASUS PADA KANTOR POS CABANG SUKOREJO KENDAL)

OPTIMALISASI SISTEM ANTRIAN PELANGGAN PADA PELAYANAN TELLER DI KANTOR POS (STUDI KASUS PADA KANTOR POS CABANG SUKOREJO KENDAL) OPTIMALISASI SISTEM ANTRIAN PELANGGAN PADA PELAYANAN TELLER DI KANTOR POS (STUDI KASUS PADA KANTOR POS CABANG SUKOREJO KENDAL) Diyan Mumpuni 1, Bambang Irawanto 2, Dr. Sunarsih 3 1,2,3 Jurusan Matematika

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 17 BAB 2 LANDASAN TEORI 2.1 Pengantar Fenomena menunggu untuk kemudian mendapatkan pelayanan, seperti halnya nasabah yang menunggu pada loket bank, kendaraan yang menunggu pada lampu merah, produk yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Antrian 2.1.1. Sejarah Teori Antrian. Teori antrian adalah teori yang menyangkut studi matematis dari antrian atau baris-baris penungguan. Teori antrian berkenaan dengan

Lebih terperinci

BAB II KAJIAN TEORI. probabilitas, teori antrean, model-model antrean, analisis biaya antrean, uji

BAB II KAJIAN TEORI. probabilitas, teori antrean, model-model antrean, analisis biaya antrean, uji BAB II KAJIAN TEORI Bab ini menjabarkan beberapa kajian literatur yang digunakan untuk analisis sistem antrean. Beberapa hal yang akan dibahas berkaitan dengan teori probabilitas, teori antrean, model-model

Lebih terperinci

ANALISIS ANTRIAN MULTI CHANNEL MULTI PHASE PADA ANTRIAN PEMBUATAN SURAT IZIN MENGEMUDI DENGAN MODEL ANTRIAN (M/M/c):( )

ANALISIS ANTRIAN MULTI CHANNEL MULTI PHASE PADA ANTRIAN PEMBUATAN SURAT IZIN MENGEMUDI DENGAN MODEL ANTRIAN (M/M/c):( ) Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 2 (2015), hal 127-134 ANALISIS ANTRIAN MULTI CHANNEL MULTI PHASE PADA ANTRIAN PEMBUATAN SURAT IZIN MENGEMUDI DENGAN MODEL ANTRIAN (M/M/c):(

Lebih terperinci

MODEL EKSPONENSIAL GANDA PADA PROSES STOKASTIK (STUDI KASUS DI STASIUN PURWOSARI)

MODEL EKSPONENSIAL GANDA PADA PROSES STOKASTIK (STUDI KASUS DI STASIUN PURWOSARI) Model Eksponensial (Sugito) MODEL EKSPONENSIAL GANDA PADA PROSES STOKASTIK (STUDI KASUS DI STASIUN PURWOSARI) Sugito 1, Yuciana Wilandari 2 1,2 Staf Pengajar Jurusan Statistika FSM Undip sugitozafi@undip.ac.id,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 13 BAB 2 LANDASAN TEORI 2.1 Pendahuluan Antrian merupakan kejadian yang sering dijumpai dalam kehidupan seharihari. Menunggu di depan kasir untuk membayar barang yang kita beli, menunggu pengisian bahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Antrian Teori antrian pertama kali disusun oleh Agner Krarup Erlang yang hidup pada periode 1878-1929. Dia merupakan seorang insinyur Demark yang bekerja di industri telepon.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Antrian Suatu antrian ialah suatu garis tunggu dari nasabah yang memerlukan layanan dari satu atau lebih fasilitas pelayanan. Kejadian garis tunggu timbul disebabkan oleh

Lebih terperinci

MODEL ANTRIAN BUS ANTAR KOTA DI TERMINAL TIRTONADI

MODEL ANTRIAN BUS ANTAR KOTA DI TERMINAL TIRTONADI MODEL ANTRIAN BUS ANTAR KOTA DI TERMINAL TIRTONADI Wadzkur Rahmaan Luthfi Syarifudin, Hasih Pratiwi, Supriyadi Wibowo Program Studi Matematika Fakultas Matematika dan Ilmu pengetahuan Alam Universitas

Lebih terperinci

ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG SEMARANG

ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG SEMARANG ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG SEMARANG SKRIPSI Oleh: MERLIA YUSTITI 24010210120023 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG 2014

Lebih terperinci

PENENTUAN MODEL ANTRIAN BUS ANTAR KOTA DI TERMINAL MANGKANG. Dwi Ispriyanti 1, Sugito 1. Abstract

PENENTUAN MODEL ANTRIAN BUS ANTAR KOTA DI TERMINAL MANGKANG. Dwi Ispriyanti 1, Sugito 1. Abstract PENENTUAN MODEL ANTRIAN BUS ANTAR KOTA DI TERMINAL MANGKANG Dwi Ispriyanti 1, Sugito 1 1 Staf Pengajar Jurusan Statistika FMIPA UNDIP Abstract In daily activities, we often face in a situation of queueing.

Lebih terperinci

BAB II. Landasan Teori

BAB II. Landasan Teori BAB II Landasan Teori Antrian merupakan waktu tunggu yang dialami pelanggan untuk mencapai tujuan, dikarenakan jumlah pelanggan melebihi kapasitas layanan yang tersedia. Waktu tunggu yang terlalu lama

Lebih terperinci

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan BAB II LANDASAN TEORI Pada bab ini diuraikan tentang dasar-dasar yang diperlukan dalam pembahasan model antrian dengan working vacation pada pola kedatangan berkelompok (batch arrival) satu server, mencakup

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 24 BAB 2 LANDASAN TEORI 2.1 Pendahuluan Ilmu pengetahuan tentang bentuk antrian, yang sering disebut sebagai teori antrian (queueing theory) merupakan sebuah bagian penting operasi dan juga alat yang sangat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB ANDASAN TEORI. Teori Antrian Sistim ekonomi dan dunia usaha (bisnis) sebagian besar beroperasi dengan sumber daya yang relatif terbatas.sering terjadi pada orang, barang, dan komponen harus menunggu

Lebih terperinci

ANALISIS SISTEM ANTRIAN PADA BANK MANDIRI CABANG AMBON Analysis of Queue System on the Bank Mandiri Branch Ambon

ANALISIS SISTEM ANTRIAN PADA BANK MANDIRI CABANG AMBON Analysis of Queue System on the Bank Mandiri Branch Ambon Jurnal Barekeng Vol. 8 No. 1 Hal. 45 49 (2014) ANALISIS SISTEM ANTRIAN PADA BANK MANDIRI CABANG AMBON Analysis of Queue System on the Bank Mandiri Branch Ambon SALMON NOTJE AULELE Staf Jurusan Matematika,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI Menunggu dalam suatu antrian adalah hal yang sering terjadi dalam kehidupan sehari-hari khususnya dalam sebuah sistem pelayanan tertentu. Dalam pelaksanaan pelayanan pelaku utama dalam

Lebih terperinci

Pendahuluan. Teori Antrian. Pertemuan I. Nikenasih Binatari. Jurusan Pendidikan Matematika FMIPA UNY. September 6, 2016

Pendahuluan. Teori Antrian. Pertemuan I. Nikenasih Binatari. Jurusan Pendidikan Matematika FMIPA UNY. September 6, 2016 Pendahuluan Pertemuan I Jurusan Pendidikan Matematika FMIPA UNY September 6, 2016 Diskusi Pendahuluan Pertemuan Pertama : Metode Pembelajaran : Small Group Discussion, Discovery learning. Diskusikan dengan

Lebih terperinci

ANALISIS DAN SIMULASI SISTEM ANTRIAN PADA BANK ABC

ANALISIS DAN SIMULASI SISTEM ANTRIAN PADA BANK ABC Saintia Matematika ISSN: 2337-9197 Vol. 2, No. 2 (2014), pp. 147 162. ANALISIS DAN SIMULASI SISTEM ANTRIAN PADA BANK ABC Faradhika Arwindy, Faigiziduhu Buulolo, Elly Rosmaini Abstrak. Kejadian antrian

Lebih terperinci

IDENTIFIKASI MODEL ANTRIAN BUS RAPID TRANSIT (BRT) PADA HALTE OPERASIONAL BRT SEMARANG.

IDENTIFIKASI MODEL ANTRIAN BUS RAPID TRANSIT (BRT) PADA HALTE OPERASIONAL BRT SEMARANG. ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 593-601 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian IDENTIFIKASI MODEL ANTRIAN BUS RAPID TRANSIT (BRT) PADA HALTE

Lebih terperinci

Riska Sismetha, Marisi Aritonang, Mariatul Kiftiah INTISARI

Riska Sismetha, Marisi Aritonang, Mariatul Kiftiah INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6, No. 01 (2017), hal 51-60. ANALISIS MODEL DISTRIBUSI JUMLAH KEDATANGAN DAN WAKTU PELAYANAN PASIEN INSTALASI RAWAT JALAN RUMAH SAKIT IBU DAN

Lebih terperinci

ANALISIS ANTRIAN DALAM OPTIMALISASI SISTEM PELAYANAN KERETA API DI STASIUN PURWOSARI DAN SOLO BALAPAN

ANALISIS ANTRIAN DALAM OPTIMALISASI SISTEM PELAYANAN KERETA API DI STASIUN PURWOSARI DAN SOLO BALAPAN ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 669-677 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS ANTRIAN DALAM OPTIMALISASI SISTEM PELAYANAN KERETA

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Antrian Suatu antrian ialah suatu garis tunggu dari nasabah yang memerlukan layanan dari satu atau lebih fasilitas pelayanan. Kejadian garis tunggu timbul disebabkan oleh

Lebih terperinci

PENERAPAN TEORI ANTRIAN PADA PELAYANAN TELLER BANK X KANTOR CABANG PEMBANTU PURI SENTRA NIAGA

PENERAPAN TEORI ANTRIAN PADA PELAYANAN TELLER BANK X KANTOR CABANG PEMBANTU PURI SENTRA NIAGA ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2016, Halaman 81-90 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENERAPAN TEORI ANTRIAN PADA PELAYANAN TELLER BANK X KANTOR CABANG

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini diuraikan tentang dasar-dasar yang diperlukan dalam pembahasan

BAB II KAJIAN PUSTAKA. Pada bab ini diuraikan tentang dasar-dasar yang diperlukan dalam pembahasan BAB II KAJIAN PUSTAKA Pada bab ini diuraikan tentang dasar-dasar yang diperlukan dalam pembahasan model antrian M/M/1/N dengan retensi pelanggan yang membatalkan antrian, mencakup tentang model antrian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau BAB II TINJAUAN PUSTAKA 2.1 Proses Stokastik Menurut Gross (2008), proses stokastik adalah himpunan variabel acak Semua kemungkinan nilai yang dapat terjadi pada variabel acak X(t) disebut ruang keadaan

Lebih terperinci

ANALISIS MODEL WAKTU ANTAR KEDATANGAN DAN WAKTU PELAYANAN PADA BAGIAN PENDAFTARAN INSTALASI RAWAT JALAN RSUP Dr. KARIADI SEMARANG

ANALISIS MODEL WAKTU ANTAR KEDATANGAN DAN WAKTU PELAYANAN PADA BAGIAN PENDAFTARAN INSTALASI RAWAT JALAN RSUP Dr. KARIADI SEMARANG ANALISIS MODEL WAKTU ANTAR KEDATANGAN DAN WAKTU PELAYANAN PADA BAGIAN PENDAFTARAN INSTALASI RAWAT JALAN RSUP Dr. KARIADI SEMARANG Vita Dwi Rachmawati 1, Sugito 2, Hasbi Yasin 3 1 Alumni Jurusan Statistika

Lebih terperinci

PENENTUAN MODEL DAN PENGUKURAN KINERJA SISTEM. PELAYANAN PT. BANK NEGARA INDONESIA (PERSERO) Tbk. KANTOR LAYANAN TEMBALANG

PENENTUAN MODEL DAN PENGUKURAN KINERJA SISTEM. PELAYANAN PT. BANK NEGARA INDONESIA (PERSERO) Tbk. KANTOR LAYANAN TEMBALANG PENENTUAN MODEL DAN PENGUKURAN KINERJA SISTEM PELAYANAN PT. BANK NEGARA INDONESIA (PERSERO) Tbk. KANTOR LAYANAN TEMBALANG SKRIPSI Oleh: MASFUHURRIZQI IMAN 24010210141002 JURUSAN STATISTIKA FAKULTAS SAINS

Lebih terperinci

Analisis Sistem Antrian Pada Pelayanan Poli Kandungan Dan Ibu Hamil Di Rumah Sakit X Surabaya

Analisis Sistem Antrian Pada Pelayanan Poli Kandungan Dan Ibu Hamil Di Rumah Sakit X Surabaya Analisis Sistem Antrian Pada Pelayanan Poli Kandungan Dan Ibu Hamil Di Rumah Sakit X Surabaya Zarah Ayu Annisa 1308030058 Dosen Pembimbing : Dra. Sri Mumpuni R., MT PENDAHULUAN Antrian Meningkatnya kebutuhan

Lebih terperinci

BAB II KAJIAN TEORI. analisis sistem antrean pada penelitian. Beberapa hal yang akan dibahas berkaitan

BAB II KAJIAN TEORI. analisis sistem antrean pada penelitian. Beberapa hal yang akan dibahas berkaitan BAB II KAJIAN TEORI Bab ini menjabarkan beberapa kajian literatur yang digunakan untuk analisis sistem antrean pada penelitian. Beberapa hal yang akan dibahas berkaitan dengan teori probabilitas, teori

Lebih terperinci

Antrian adalah garis tunggu dan pelanggan (satuan) yang

Antrian adalah garis tunggu dan pelanggan (satuan) yang Pendahuluan Antrian Antrian adalah garis tunggu dan pelanggan (satuan) yang membutuhkan layanan dari satu atau lebih pelayan (fasilitas pelayanan). Masalah yang timbul dalam antrian adalah bagaimana mengusahakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1. Teori Antrian Menunggu dalam suatu antrian adalah hal yang sering terjadi dalam kehidupan kita sehari-hari. Teori Antrian (Queueing Theory), meliputi studi matematika dari antrian

Lebih terperinci

SISTEM ANTRIAN PADA PELAYANAN CUSTOMER SERVICE PT. BANK X ABSTRACT

SISTEM ANTRIAN PADA PELAYANAN CUSTOMER SERVICE PT. BANK X ABSTRACT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 71-80 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian SISTEM ANTRIAN PADA PELAYANAN CUSTOMER SERVICE PT. BANK X Melati

Lebih terperinci

Penelpon menunggu dilayani. A.K. Erlang tahun Teori Antrian

Penelpon menunggu dilayani. A.K. Erlang tahun Teori Antrian Banyaknya penelpon di waktu sibuk(jam kerja) Operator telepon terbatas Penelpon menunggu dilayani Teoriyang menyangkut studi matematis dari antrianantrian A.K. Erlang tahun 1910 Teori Antrian Proses antrian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Antrian Siapapun yang pernah pergi berbelanja ke supermarket atau ke bioskop mengalami ketidaknyamanan dalam mengantri. Dalam hal mengantri, tidak hanya manusia saja

Lebih terperinci

ANALISIS SISTEM ANTREAN PELAYANAN DI KANTOR PERTANAHAN KOTA SEMARANG ABSTRACT

ANALISIS SISTEM ANTREAN PELAYANAN DI KANTOR PERTANAHAN KOTA SEMARANG ABSTRACT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 719-729 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS SISTEM ANTREAN PELAYANAN DI KANTOR PERTANAHAN KOTA

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN KERANGKA PEMIKIRAN. Herjanto (2008:2) mengemukakan bahwa manajemen operasi merupakan

BAB II TINJAUAN PUSTAKA DAN KERANGKA PEMIKIRAN. Herjanto (2008:2) mengemukakan bahwa manajemen operasi merupakan BAB II TINJAUAN PUSTAKA DAN KERANGKA PEMIKIRAN 2.1 Tinjauan Pustaka 2.1.1 Manajemen Operasi 2.1.1.1 Pengertian Manajemen Operasi Herjanto (2008:2) mengemukakan bahwa manajemen operasi merupakan kegiatan

Lebih terperinci

BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dilakukan di Kantor Penjualan Senayan City PT Garuda Indonesia (Persero) Tbk yang berlokasi di Senayan City, Jakarta. Penelitian dilakukan

Lebih terperinci

Teori Antrian. Aminudin, Prinsip-prinsip Riset Operasi

Teori Antrian. Aminudin, Prinsip-prinsip Riset Operasi Teori Antrian Aminudin, Prinsip-prinsip Riset Operasi Contoh Kendaraan berhenti berderet-deret menunggu di traffic light. Pesawat menunggu lepas landas di bandara. Surat antri untuk diketik oleh sekretaris.

Lebih terperinci

Teori Antrian. Prihantoosa Pendahuluan. Teori Antrian : Intro p : 1

Teori Antrian. Prihantoosa  Pendahuluan.  Teori Antrian : Intro p : 1 Pendahuluan Teori Antrian Prihantoosa pht854@yahoo.com toosa@staff.gunadarma.ac.id Last update : 14 November 2009 version 1.0 http://openstat.wordpress.com Teori Antrian : Intro p : 1 Tujuan Tujuan : Meneliti

Lebih terperinci

BAB II KAJIAN TEORI. analisis sistem antrean dalam penelitian. Adapun hal-hal yang di kaji meliputi

BAB II KAJIAN TEORI. analisis sistem antrean dalam penelitian. Adapun hal-hal yang di kaji meliputi BAB II KAJIAN TEORI Pada bab ini menguraikan tentang kajian literatur yang diperlukan dalam analisis sistem antrean dalam penelitian. Adapun hal-hal yang di kaji meliputi teori antrean, model-model antrean,

Lebih terperinci

ANALISIS MODEL JUMLAH KEDATANGAN DAN WAKTU PELAYANAN PADA KASUS TPPRI RSUP Dr. KARIADI SEMARANG

ANALISIS MODEL JUMLAH KEDATANGAN DAN WAKTU PELAYANAN PADA KASUS TPPRI RSUP Dr. KARIADI SEMARANG ANALISIS MODEL JUMLAH KEDATANGAN DAN WAKTU PELAYANAN PADA KASUS TPPRI RSUP Dr. KARIADI SEMARANG Friska Irnas Adiyani 1, Sugito 2, Triastuti Wuryandari 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff

Lebih terperinci

BAB III METODE PENELITIAN. Jl. Panjang No.25 Jakarta Barat. Penelitian dilakukan selama 2 Minggu, yaitu

BAB III METODE PENELITIAN. Jl. Panjang No.25 Jakarta Barat. Penelitian dilakukan selama 2 Minggu, yaitu BAB III METODE PENELITIAN A. Waktu Dan Tempat Penelitian Penelitian dilakukan di PT Plaza Toyota Green Garden yang berlokasi di Jl. Panjang No.25 Jakarta Barat. Penelitian dilakukan selama 2 Minggu, yaitu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Antrian 2.1.1 Definisi Antrian Antrian adalah suatu garis tunggu dari nasabah yang memerlukan layanan dari satu atau lebih pelayanan. Kejadian garis tunggu timbul disebabkan

Lebih terperinci

PENERAPAN TEORI ANTRIAN PADA PT. BANK RAKYAT INDONESIA (PERSERO) TBK (STUDI KASUS: KANTOR LAYANAN CERENTI) TUGAS AKHIR

PENERAPAN TEORI ANTRIAN PADA PT. BANK RAKYAT INDONESIA (PERSERO) TBK (STUDI KASUS: KANTOR LAYANAN CERENTI) TUGAS AKHIR PENERAPAN TEORI ANTRIAN PADA PT. BANK RAKYAT INDONESIA (PERSERO) TBK (STUDI KASUS: KANTOR LAYANAN CERENTI) TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Dasar Teori Antrian Dalam kehidupan sehari-hari, antrian (queueing) sangat sering ditemukan. Mengantri sering harus dilakukan jika kita menunggu giliran misalnya mengambil

Lebih terperinci

BAB 8 TEORI ANTRIAN (QUEUEING THEORY)

BAB 8 TEORI ANTRIAN (QUEUEING THEORY) BAB 8 TEORI ANTRIAN (QUEUEING THEORY) Analisis pertama kali diperkenalkan oleh A.K. Erlang (93) yang mempelajari fluktuasi permintaan fasilitas telepon dan keterlambatan annya. Saat ini analisis banyak

Lebih terperinci

ANALISIS ANTRIAN PADA MCDONALD PUSAT GROSIR CILILITAN (PGC) (Untuk Memenuhi Tugas Operational Research)

ANALISIS ANTRIAN PADA MCDONALD PUSAT GROSIR CILILITAN (PGC) (Untuk Memenuhi Tugas Operational Research) 2013 ANALISIS ANTRIAN PADA MCDONALD PUSAT GROSIR CILILITAN (PGC) (Untuk Memenuhi Tugas Operational Research) Disusun oleh: Dian Fitriana Arthati (09.5934), Dede Firmansyah (09.5918), Eka Fauziah Rahmawati

Lebih terperinci

ANALISIS SISTEM ANTRIAN KERETA API DI STASIUN BESAR CIREBON DAN STASIUN CIREBON PRUJAKAN. Sugito 1, Marissa Fauzia 2

ANALISIS SISTEM ANTRIAN KERETA API DI STASIUN BESAR CIREBON DAN STASIUN CIREBON PRUJAKAN. Sugito 1, Marissa Fauzia 2 Analisis Sistem Antrian (Sugito) ANALISIS SISTEM ANTRIAN KERETA API DI STASIUN BESAR CIREBON DAN STASIUN CIREBON PRUJAKAN Sugito 1, Marissa Fauzia 2 1 Staf Pengajar Program Studi Statistika FMIPA UNDIP

Lebih terperinci

BAB II LANDASAN TEORI. Ada tiga komponen dalam sistim antrian yaitu : 1. Kedatangan, populasi yang akan dilayani (calling population)

BAB II LANDASAN TEORI. Ada tiga komponen dalam sistim antrian yaitu : 1. Kedatangan, populasi yang akan dilayani (calling population) BAB II LANDASAN TEORI 2.1 Karakteristik Sistem Antrian Ada tiga komponen dalam sistim antrian yaitu : 1. Kedatangan, populasi yang akan dilayani (calling population) 2. Antrian 3. pelayanan Masing-masing

Lebih terperinci

Riset Operasional. Tahun Ajaran 2014/2015 ~ 1 ~ STIE WIDYA PRAJA TANA PASER

Riset Operasional. Tahun Ajaran 2014/2015  ~ 1 ~ STIE WIDYA PRAJA TANA PASER Dari sebuah artikel BUDAYA ANTRI MEMBERI BANYAK MANFAAT, kalimat pembuka dari kata seorang guru di Australia menyatakan, Kami tidak terlalu khawatir jika anak-anak sekolah dasar kami tidak pandai matematika

Lebih terperinci

MODEL ANTRIAN PADA STASIUN PENGISIAN DAN PENGANGKUTAN BULK ELPIJI (SPPBE) PT USAHA GAS ELPINDO PONTIANAK DENGAN NOTASI KENDALL-LEE

MODEL ANTRIAN PADA STASIUN PENGISIAN DAN PENGANGKUTAN BULK ELPIJI (SPPBE) PT USAHA GAS ELPINDO PONTIANAK DENGAN NOTASI KENDALL-LEE Buletin Ilmiah at. tat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 387-396 ODEL ANTRIAN PADA TAIUN PENGIIAN DAN PENGANGKUTAN BULK ELPIJI (PPBE) PT UAHA GA ELPINDO PONTIANAK DENGAN NOTAI KENDALL-LEE

Lebih terperinci

MAKALAH REKAYASA TRAFIK TEORI ANTRI

MAKALAH REKAYASA TRAFIK TEORI ANTRI MAKALAH REKAYASA TRAFIK TEORI ANTRI Oleh TT 2D Bibba Nur Aristya 1231130009 Dewi Sekar Putih 1231130042 Dinari Gustiana Cita D. 1231130006 D3 TEKNIK TELEKOMUNIKASI POLITEKNIK NEGERI MALANG 2014 KATA PENGANTAR

Lebih terperinci

ANALISIS SISTEM ANTREAN PELAYANAN DI KANTOR PERTANAHAN KOTA SEMARANG SKRIPSI. Oleh: LENTI AGUSTINA LIANASARI TAMBUNAN

ANALISIS SISTEM ANTREAN PELAYANAN DI KANTOR PERTANAHAN KOTA SEMARANG SKRIPSI. Oleh: LENTI AGUSTINA LIANASARI TAMBUNAN ANALISIS SISTEM ANTREAN PELAYANAN DI KANTOR PERTANAHAN KOTA SEMARANG SKRIPSI Oleh: LENTI AGUSTINA LIANASARI TAMBUNAN 24010210141006 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

BAB IV PEMBAHASAN. pertanyaan pada perumusan masalah. Hal-hal yang dijelaskan dalam bab ini

BAB IV PEMBAHASAN. pertanyaan pada perumusan masalah. Hal-hal yang dijelaskan dalam bab ini BAB IV PEMBAHASAN Bab ini menguraikan hasil penelitian dan pembahasan untuk menjawab pertanyaan pada perumusan masalah. Hal-hal yang dijelaskan dalam bab ini mencakup pemeriksaan steady state, uji distribusi,

Lebih terperinci

IDENTIFIKASI MODEL ANTRIAN PADA ANTRIAN BUS KAMPUS UNIVERSITAS ANDALAS PADANG

IDENTIFIKASI MODEL ANTRIAN PADA ANTRIAN BUS KAMPUS UNIVERSITAS ANDALAS PADANG Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 44 51 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND IDENTIFIKASI MODEL ANTRIAN PADA ANTRIAN BUS KAMPUS UNIVERSITAS ANDALAS PADANG ZUL AHMAD ERSYAD, DODI DEVIANTO

Lebih terperinci

Teller 1. Teller 2. Teller 7. Gambar 3.1 Proses antrian pada sistem antrian teller BRI Cik Ditiro

Teller 1. Teller 2. Teller 7. Gambar 3.1 Proses antrian pada sistem antrian teller BRI Cik Ditiro Berikut ini adalah pembahasan mengenai sistem antrian teller BRI Cik Ditiro dan optimasinya berdasarkan model tingkat aspirasi. Deskripsi mengenai sistem antrian teller BRI Cik Ditiro dapat diuraikan sebagai

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian dilakukan di PT. ABB Sakti Industri IA Turbocharging Jalan

BAB III METODE PENELITIAN. Penelitian dilakukan di PT. ABB Sakti Industri IA Turbocharging Jalan BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dilakukan di PT. ABB Sakti Industri IA Turbocharging Jalan Danau Agung 1 Blok A4, Sunter Agung Jakarta Utara. Penelitian dilakukan selama

Lebih terperinci

Sesi XVI METODE ANTRIAN (Queuing Method)

Sesi XVI METODE ANTRIAN (Queuing Method) Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XVI METODE ANTRIAN (Queuing Method) e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Pendahuluan Teori

Lebih terperinci

BAB II TINJAUAN PUSTAKA 1. PENGERTIAN TEORI ANTRIAN

BAB II TINJAUAN PUSTAKA 1. PENGERTIAN TEORI ANTRIAN BAB II TINJAUAN PUSTAKA A. TEORI ANTRIAN 1. PENGERTIAN TEORI ANTRIAN Semua jenis bisnis terutama bisnis jasa menginginkan pelanggan untuk menunggu di beberapa titik proses layanan (Dickson et al., 2005).

Lebih terperinci

TEORI ANTRIAN MATA KULIAH RISET OPERASIONAL Pertemuan Ke-13. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

TEORI ANTRIAN MATA KULIAH RISET OPERASIONAL Pertemuan Ke-13. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia TEORI ANTRIAN MATA KULIAH RISET OPERASIONAL Pertemuan Ke-13 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pendahuluan (1) Pertamakali dipublikasikan pada tahun 1909 oleh Agner

Lebih terperinci

BAB III PEMBAHASAN. Dalam skripsi ini akan dibahas tentang model antrean satu server dengan

BAB III PEMBAHASAN. Dalam skripsi ini akan dibahas tentang model antrean satu server dengan BAB III PEMBAHASAN Dalam skripsi ini akan dibahas tentang model antrean satu server dengan disiplin antrean Preemptive dengan pola kedatangan berdistribusi Poisson dan waktu pelayanan berdistribusi Eksponensial.

Lebih terperinci

ANALISIS ANTRIAN PASIEN INSTALASI RAWAT JALAN POLIKLINIK LANTAI 1 DAN 2 RSUD CENGKARENG, JAKARTA

ANALISIS ANTRIAN PASIEN INSTALASI RAWAT JALAN POLIKLINIK LANTAI 1 DAN 2 RSUD CENGKARENG, JAKARTA ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 1, Tahun 2016, Halaman 211-220 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS ANTRIAN PASIEN INSTALASI RAWAT JALAN POLIKLINIK LANTAI

Lebih terperinci

JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman Online di:

JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman Online di: JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman 415-424 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS ANTRIAN RAWAT JALAN POLIKLINIK LANTAI 1, LANTAI 3 DAN PENDAFTARAN RSUP

Lebih terperinci

BERKELOMPOK ( BATCH ARRIVAL ) SKRIPSI. Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Negeri Yogyakarta

BERKELOMPOK ( BATCH ARRIVAL ) SKRIPSI. Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Negeri Yogyakarta MODEL ANTRIAN SATU SERVER DENGAN POLA KEDATANGAN BERKELOMPOK ( BATCH ARRIVAL ) SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Berdasarkan uraian yang telah dikemukakan pada Bab 1, permasalahan

BAB II TINJAUAN PUSTAKA. Berdasarkan uraian yang telah dikemukakan pada Bab 1, permasalahan BAB II TINJAUAN PUSTAKA 2.1. Pendahuluan Berdasarkan uraian yang telah dikemukakan pada Bab 1, permasalahan yang teridentifikasi adalah bagaimana melihat performansi antrian hauler pada jalan 7F. Oleh

Lebih terperinci

Unnes Journal of Mathematics

Unnes Journal of Mathematics UJM 3 (1) (2014) Unnes Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS PROSES ANTRIAN MULTIPLE CHANNEL SINGLE PHASE DI LOKET ADMINISTRASI DAN RAWAT JALAN RSUP Dr. KARIADI SEMARANG

Lebih terperinci

TEORI ANTRIAN PERTEMUAN #10 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI

TEORI ANTRIAN PERTEMUAN #10 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI TEORI ANTRIAN PERTEMUAN #10 TKT101 PENGANTAR TEKNIK INDUSTRI 6623 TAUFIQUR RACHMAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS ESA UNGGUL KEMAMPUAN AKHIR YANG DIHARAPKAN Mampu membandingkan

Lebih terperinci

ANALISIS ANTRIAN PASIEN INSTALASI RAWAT JALAN RSUP. Dr. KARIADI BAGIAN POLIKLINIK, LABORATORIUM, DAN APOTEK

ANALISIS ANTRIAN PASIEN INSTALASI RAWAT JALAN RSUP. Dr. KARIADI BAGIAN POLIKLINIK, LABORATORIUM, DAN APOTEK ANALISIS ANTRIAN PASIEN INSTALASI RAWAT JALAN RSUP Dr. KARIADI BAGIAN POLIKLINIK, LABORATORIUM, DAN APOTEK SKRIPSI Oleh: RANY WAHYUNINGTIAS J2E 008 049 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA

Lebih terperinci

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari banyak terlihat kegiatan mengantri seperti, pasien

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari banyak terlihat kegiatan mengantri seperti, pasien BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak terlihat kegiatan mengantri seperti, pasien yang ingin periksa ke dokter, orang yang mengantri beli bensin di SPBU, orang

Lebih terperinci

MODEL ANTRIAN YULIATI, SE, MM

MODEL ANTRIAN YULIATI, SE, MM MODEL ANTRIAN YULIATI, SE, MM Model Antrian Teori antrian pertama kali diciptakan oleh A.K. Erlang seorang ahli matematik Denmark pada tahun 1909. Sejak itu penggunaan model antrian mengalami perkembangan

Lebih terperinci

DESKRIPSI SISTEM ANTRIAN PADA KLINIK DOKTER SPESIALIS PENYAKIT DALAM

DESKRIPSI SISTEM ANTRIAN PADA KLINIK DOKTER SPESIALIS PENYAKIT DALAM DESKRIPSI SISTEM ANTRIAN PADA KLINIK DOKTER SPESIALIS PENYAKIT DALAM Deiby T. Salaki 1) 1) Program Studi Matematika FMIPA Universitas Sam Ratulangi Jl. Kampus Unsrat Manado, 95115 e-mail: deibytineke@yahoo.co.id

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 7: Teori Antrian Statistika FMIPA Universitas Islam Indonesia Pendahuluan Teori Antrian Pendahuluan Beberapa contoh antrian: 1 Nasabah bank menunggu pelayanan di teller atau customer service 2 Pelanggan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Permasalahan Transportasi Transportasi adalah suatu bagian yang integral dari hampir seluruh kegiatan manusia, sehingga secara prinsip sukarlah membedakan sebab dan akibatnya

Lebih terperinci

JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman Online di:

JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman Online di: JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman 369-374 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS ANTRIAN PASIEN INSTALASI RAWAT JALAN RSUP Dr. KARIADI BAGIAN POLIKLINIK,

Lebih terperinci

APLIKASI TEORI ANTRIAN UNTUK PENGAMBILAN KEPUTUSAN PADA SISTEM ANTRIAN PELANGGAN DI BANK JATENG CABANG REMBANG

APLIKASI TEORI ANTRIAN UNTUK PENGAMBILAN KEPUTUSAN PADA SISTEM ANTRIAN PELANGGAN DI BANK JATENG CABANG REMBANG APLIKASI TEORI ANTRIAN UNTUK PENGAMBILAN KEPUTUSAN PADA SISTEM ANTRIAN PELANGGAN DI BANK JATENG CABANG REMBANG Skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi

Lebih terperinci

ANALISIS MODEL WAKTU ANTAR KEDATANGAN DAN WAKTU PELAYANAN PADA BAGIAN PEMBAYARAN KASIR INSTALASI RAWAT INAP RSUP Dr KARIADI SEMARANG

ANALISIS MODEL WAKTU ANTAR KEDATANGAN DAN WAKTU PELAYANAN PADA BAGIAN PEMBAYARAN KASIR INSTALASI RAWAT INAP RSUP Dr KARIADI SEMARANG ANALISIS MODEL WAKTU ANTAR KEDATANGAN DAN WAKTU PELAYANAN PADA BAGIAN PEMBAYARAN KASIR INSTALASI RAWAT INAP RSUP Dr KARIADI SEMARANG Anisa Alfiani Rahayu 1, Sugito 2, Sudarno 2 1 Alumni Jurusan Statistika

Lebih terperinci

ANALISIS ANTRIAN PENGUNJUNG DAN KINERJA SISTEM DINAS KEPENDUDUKAN DAN PENCATATAN SIPIL KOTA SEMARANG

ANALISIS ANTRIAN PENGUNJUNG DAN KINERJA SISTEM DINAS KEPENDUDUKAN DAN PENCATATAN SIPIL KOTA SEMARANG ANALISIS ANTRIAN PENGUNJUNG DAN KINERJA SISTEM DINAS KEPENDUDUKAN DAN PENCATATAN SIPIL KOTA SEMARANG SKRIPSI Disusun Oleh: FAHRA PRACENDI ASTRELITA 24010211140080 JURUSAN STATISTIKA FAKULTAS SAINS DAN

Lebih terperinci

ANALISIS SISTEM ANTRIAN SERI PADA FASILITAS PELAYANAN KESEHATAN DAN OPTIMALISASINYA

ANALISIS SISTEM ANTRIAN SERI PADA FASILITAS PELAYANAN KESEHATAN DAN OPTIMALISASINYA ANALISIS SISTEM ANTRIAN SERI PADA FASILITAS PELAYANAN KESEHATAN DAN OPTIMALISASINYA (Studi Kasus di Puskesmas Ungaran Kabupaten Semarang) skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar

Lebih terperinci

SISTEM ANTRIAN PENGISIAN BAHAN BAKARSEPEDA MOTOR PADA SPBU PT. FIKRI DARMAWAN KABUPATEN MELAWI

SISTEM ANTRIAN PENGISIAN BAHAN BAKARSEPEDA MOTOR PADA SPBU PT. FIKRI DARMAWAN KABUPATEN MELAWI Buletin Ilmiah ath. tat. dan Terapannya (Bimaster) Volume 6, No. (7), hal 3. ITE ANTRIAN PENGIIAN BAHAN BAKAREPEDA OTOR PADA PBU PT. FIKRI DARAWAN KABUPATEN ELAWI ri Rezeki Permatasari, Helmi, Hendra Perdana

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pelayanan Yang dimaksud pelayanan pada area anti karat adalah banyaknya output pallet yang dapat dihasilkan per hari pada area tersebut. Peningkatan pelayanan dapat dilihat dari

Lebih terperinci

ANTRIAN. pelayanan. Gambar 1 : sebuah sistem antrian

ANTRIAN. pelayanan. Gambar 1 : sebuah sistem antrian ANTRIAN Jika permintaan terhadap suatu jasa melebihi suplai, akan mengakibatkan terjadi antrian. Masalah tersebut dapat terjadi pada berbagai keadaan. Sebagai contoh Kendaraan menunggu lampu lalu lintas,

Lebih terperinci

11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN

11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN 11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN 11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 2 Pendahuluan Perhatikan beberapa situasi berikut ini: Kendaraan berhenti berderet-deret

Lebih terperinci

BAB III METODE PENELITIAN. Kebon Jeruk yang berlokasi di Jl. Raya Perjuangan Kav.8 Kebon Jeruk Jakarta

BAB III METODE PENELITIAN. Kebon Jeruk yang berlokasi di Jl. Raya Perjuangan Kav.8 Kebon Jeruk Jakarta BAB III METODE PENELITIAN A. Waktu Dan Tempat Penelitian Penelitian dilakukan di Instalasi Farmasi Rawat Jalan Siloam Hospitals Kebon Jeruk yang berlokasi di Jl. Raya Perjuangan Kav.8 Kebon Jeruk Jakarta

Lebih terperinci

KAJIAN ANTRIAN TIPE M/M/ DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT

KAJIAN ANTRIAN TIPE M/M/ DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT KAJIAN ANTRIAN TIPE M/M/ DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT QUEUES ANALYSIS M/M/ TYPE WITH SLOW AND FAST PHASE SERVICE SYSTEM Oleh: Erida Fahma Nurrahmi NRP. 1208 100 009 Dosen Pembimbing:

Lebih terperinci

Analisis Sistem Antriam Multi Channel Multi Phase Pada Kantor Badan Penyelenggara Jaminan Sosial (BPJS) Regional I Medan

Analisis Sistem Antriam Multi Channel Multi Phase Pada Kantor Badan Penyelenggara Jaminan Sosial (BPJS) Regional I Medan Analisis Sistem Antriam Multi Channel Multi Phase Pada Kantor Badan Penyelenggara Jaminan Sosial (BPJS) Regional I Medan Firdaus Tarigan 1, Susiana 2 1 Mahasiswa Jurusan Matematika, UNIMED E-mail: f_trg@ymail.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA. teori antrean, model-model antrean, uji distribusi Kolmogorov-Smirnov,

BAB II TINJAUAN PUSTAKA. teori antrean, model-model antrean, uji distribusi Kolmogorov-Smirnov, BAB II TINJAUAN PUSTAKA Bab ini menjabarkan beberapa kajian literatur yang digunakan untuk analisis sistem antrean pada penelitian. Beberapa hal yang akan dibahas berkaitan dengan teori antrean, model-model

Lebih terperinci

SISTEM ANTRIAN PADA PELAYANAN TIKET KERETA API DI STASIUN SOLO BALAPAN

SISTEM ANTRIAN PADA PELAYANAN TIKET KERETA API DI STASIUN SOLO BALAPAN SISTEM ANTRIAN PADA PELAYANAN TIKET KERETA API DI STASIUN SOLO BALAPAN oleh RENI DWI PUSPITASARI M0111068 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains

Lebih terperinci