PERTEMUAN Logika Matematika

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERTEMUAN Logika Matematika"

Transkripsi

1 3-1 PERTEMUAN 3 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengamu : Dr. Suarman matdis@netcourrier.com HP : Judul Pokok Bahasan Tujuan Pembelajaran : 3. Logika Matematika 3.1. Kuantor Universal dan Kuantor Eksistensial 3.. Argumen : a) Mengerti aa yang dimaksud dengan fungsi roosisi. b) Mengerti aa yang dimaksud dengan kuantor universal dan mengetahui definisi untuk menetakan nilai kebenaran untuk ernyataan kuantor universal. c) Mengerti aa yang dimaksud dengan kuantor eksistensial dan mengetahui definisi untuk menetakan nilai kebenaran untuk ernyataan kuantor eksistensial. d) Daat mengubah ernyataan kuantor universal ke dalam ernyataan kuantor eksistensial dan sebaliknya. e) Daat menuliskan negasi dari ernyataan kuantor universal dan kuantor eksistensial. f) Mengerti erbedaan antara argumen valid dan invalid. 3. Logika Matematika Misalkan P(x) meruakan sebuah ernyataan yang mengandung variabel x dan D adalah sebuah himunan (sembarang kumulan obyek). Kita menyebut P sebuah fungsi roosisi (dalam D) jika untuk setia x di D, P(x) adalah roosisi. Misalkan P(n) adalah ernyataan n adalah bilangan ganjil dan D adalah himunan bilangan bulat ositif. Maka P adalah fungsi roosisi dengan daerah asal embicaraan D karena untuk setia n di D, P(n) adalah roosisi (yakni, untuk setia n di D, P(n) bisa bernilai benar atau salah tetai tidak keduanya). Sebagai contoh, jika n = 1, kita eroleh roosisi 1 adalah bilangan ganjil bernilai benar. Jika n =, kita eroleh roosisi adalah bilangan ganjil bernilai salah. 3.1 Kuantor Universal dan Kuantor Eksistensial Definisi 3.1 : Kuantor Universal Misalkan P adalah fungsi roosisi dengan daerah asal D. Pernyataan untuk setia x, P(x) dikatakan ernyataan kuantor universal. Pernyataan itu daat dinyatakan dengan simbol sebagai x, P(x) di mana simbol berarti untuk setia. Simbol disebut kuantor universal.

2 3- Pernyataan x, P(x) adalah benar jika P(x) benar untuk setia x di D. Dan ernyataan x, P(x) adalah salah jika P(x) salah untuk sedikitnya satu x di D. Sebuah nilai x di D yang membuat P(x) salah disebut contoh enentang (counter exemle) bagi ernyataan x, P(x ). Catatan : Cara lain untuk menuliskan untuk setia x, P(x) adalah untuk semua x, P(x) dan untuk sembarang x, P(x). Contoh 3.1 : Tulislah setia ernyataan yang diberikan dengan simbol. a. Untuk setia x, x 0 b. Untuk semua x, jika x>1 maka x >1 a. x, x 0 b. x, x 1 x 1 Contoh 3. : Tentukan nilai kebenaran dari setia ernyataan yang diberikan. Daerah asal embicaraannya adalah himunan bilangan real. a. Untuk setia x, x 0 b. Untuk semua x, x -1>0 a. Pernyataan tersebut benar karena untuk setia bilangan real x, adalah benar bahwa kuadrat x bernilai ositif atau nol. b. Pernyataan tersebut salah karena jika x = 1 maka roosisi 1-1 >0 salah. Definisi 3. : Kuantor Eksistensial Misalkan P adalah fungsi roosisi dengan daerah asal D. Pernyataan untuk beberaa x, P(x) dikatakan ernyataan kuantor eksistensial. Pernyataan itu daat dinyatakan dengan simbol sebagai x, P(x) di mana simbol berarti untuk beberaa. Simbol disebut kuantor eksistensial. Pernyataan x, P(x) adalah benar jika P(x) benar untuk sedikitnya satu x di D. Dan ernyataan x, P(x) adalah salah jika P(x) salah untuk setia x di D. Catatan : Cara lain untuk menuliskan untuk beberaa x, P(x) adalah untuk aling sedikit satu x, P(x) dan terdaat x yang sedemikian, sehingga P(x). Contoh 3.3 : Tulislah setia ernyataan yang diberikan dengan simbol. a. Untuk beberaa x, x 0. b. Untuk aling sedikit satu x, jika x>1 maka x >1.

3 3-3 c. Untuk setia x, untuk beberaa y, x <y+1. a. x, x 0 b. x, x 1 x 1 c. x, y, x y 1 Contoh 3.4 : Tentukan nilai kebenaran dari setia ernyataan yang diberikan. Daerah asal embicaraannya adalah himunan bilangan real. a. Untuk beberaa x, x+1 > 0 b. Untuk aling sedikit satu x, x <0 a. Pernyataan tersebut benar karena jika x = maka roosisi +1 >0 benar. b. Pernyataan tersebut salah karena untuk setia bilangan real x, adalah salah bahwa kuadrat x bernilai negatif. Teorema 3.1 : Memerumum Hukum De Morgan untuk Logika Jika P sebuah fungsi roosisi, setia asangan ada a) dan b) berikut memunyai nilai kebenaran yang sama. a) x, P(x); x, P(x ) b) x, P(x); x, P(x ) Contoh 3.5 : Tuliskan negasi dari masing-masing roosisi yang diberikan. a. Untuk setia x, x >x b. Untuk beberaa x, x >x a. Untuk beberaa x, tidak benar bahwa x >x. b. Untuk setia x, tidak benar bahwa x >x. Latihan Soal 3.1 Tentukan nilai kebenaran dari setia ernyataan yang diberikan. Daerah asal embicaraannya adalah himunan bilangan real. a. Untuk setia y, y >1 b. Untuk beberaa x, x >4 c. Untuk setia x, untuk setia y, x <y+1 d. Untuk beberaa x, untuk beberaa y, x <y+1 e. Untuk setia x, untuk setia y, x +y = 4 f. Untuk beberaa x, untuk beberaa y, x +y = 4 3. Tulislah negasi dari masing-masing roosisi ada Soal Misalkan P(x) adalah fungsi roosisi x adalah bilangan rasional dan misalkan Q(x) adalah fungsi roosisi x adalah bilangan ositif. Daerah asal embicaraan adalah himunan bilangan real. Nyatakan ernyataan

4 3-4 x (P(x) dengan kata-kata. Q(x)) (Q(x) P(x)) 3. Argumen Sebuah argumen adalah suatu deret roosisi yang dituliskan sebagai 1 3 n Proosisi 1,, 3,, n disebut hiotesis (atau remis) dan roosisi disebut konklusi. Argumen di atas dikatakan valid jika konklusi mengikuti hiotesis, yakni, jika 1,, 3,., dan n adalah benar, maka juga asti benar. Kebalikannya kita sebut argumen invalid. Suatu argumen adalah valid karena bentuknya bukan karena isinya. Contoh 3.6 : Tentukanlah aakah argumen valid. Kita bentuk tabel kebenaran untuk semua roosisi yang terlibat. B B B B B B S S B S S B B S B S S B S S Tabel 3.1 Kita mengamati aabila hiotesis dan adalah benar, maka konklusi juga benar, sehingga argumen tersebut valid. Contoh 3.7 : Nyatakan aakah argumen Jika = 3, maka saya lulus matematika diskrit Saya lulus matematika diskrit 3 valid. Jika kita misalkan : = 3 dan : saya lulus matematika diskrit maka argumen tersebut bisa dituliskan sebagai

5 3-5 Karena salah maka andaikan tersebut tidak valid. dan benar tidak mungkin benar. Jadi argumen Latihan Soal ) 3.4 Misalkan : Saya rajin belajar : Saya mendaat nilai A r : Saya menjadi kaya Rumuskan argument yang diberikan dengan simbol dan nyatakan aakah masingmasing argumen tersebut valid. a. Jika saya rajin belajar, maka saya mendaat nilai A Saya rajin belajar Saya mendaat nilai A. b. Jika saya rajin belajar atau saya menjadi kaya, maka saya mendaat nilai A Saya mendaat nilai A Saya tidak rajin belajar, maka menjadi kaya. 3.5 Nyatakan aakah setia argumen yang diberikan adalah valid a. e. ( ) (r s) r s b. f. ( r) ( r) ( r) c. ( ) (r s g r s d. ( r) ( r) ( ) r Daftar Pustaka R. Johnsonbaugh, Matematika Diskrit Jilid 1, Prenhallindo, 1998.

PERTEMUAN Logika Matematika

PERTEMUAN Logika Matematika 2-1 PERTEMUAN 2 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : matdis@netcourrier.com HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 2. Logika Matematika

Lebih terperinci

Bab 5 Proposisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM TEORI PENUNJANG

Bab 5 Proposisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM TEORI PENUNJANG Bab 5 Proosisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM 1. Memahami tentang Inferensi 2. Memahami tentang Argumentasi dan roosisi 3. Memahami dan menyelesaikan ermasalahan Inferensi TEORI

Lebih terperinci

PERTEMUAN Logika Matematika

PERTEMUAN Logika Matematika 1-1 PERTEMUAN 1 Nama Mata Kuliah : Matematika Diskrit ( 3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : matdis@netcourrier.com HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 1. Logika Matematika

Lebih terperinci

PENDAHULUAN Drs. C. Jacob, M.Pd

PENDAHULUAN Drs. C. Jacob, M.Pd PENDAHULUAN Drs. C. Jacob, M.Pd Email: cjacob@ui.edu. Pengantar Umum Untuk mengerti matematika tertulis, kita harus mengerti aa yang membuat suatu argumen matematis benar, yaitu, suatu bukti. Untuk elajaran

Lebih terperinci

INGKARAN DARI PERNYATAAN

INGKARAN DARI PERNYATAAN HAND-OUT Student Name : Subject : Matematika Wajib Grade/Class : / Toic : Logika Matematika Date : Teacher(s) : Mr. Daniel Kristanto Semester : 2 Parent s Signature : LOGIKA MATEMATIKA Kalimat logika matematika

Lebih terperinci

BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai

BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai BAB V KESIMPULAN Berdasarkan uraian ada Bab III dan Bab IV maka daat disimulkan sebagai berikut 1. Keluarga emetaan K C,δ (R, R) dan L C,δ (R, R) adalah beberaa bentuk keluarga emetaan demi linear dari

Lebih terperinci

ARGUMEN DAN METODE PENARIKAN KESIMPULAN

ARGUMEN DAN METODE PENARIKAN KESIMPULAN 1 ARGUMEN DAN METODE PENARIKAN KESIMPULAN Argumen adalah rangkaian ernyataan-ernyataan yang memunyai ungkaan ernyataan enarikan kesimulan (inferensi). Argumen terdiri dari ernyataanernyataan yang terdiri

Lebih terperinci

Hasil Kali Dalam Berbobot pada Ruang L p (X)

Hasil Kali Dalam Berbobot pada Ruang L p (X) Hasil Kali Dalam Berbobot ada Ruang L () Muhammad Jakfar, Hendra Gunawan, Mochammad Idris 3 Universitas Negeri Surabaya, muhammadjakfar@unesa.ac.id Institut Teknologi Bandung, hgunawan@math.itb.ac.id 3

Lebih terperinci

Bab 1 LOGIKA MATEMATIKA

Bab 1 LOGIKA MATEMATIKA LOGIKA MATEMATIKA ab 1 Dalam setia melakukan kegiatan sering kita dituntut untuk menggunakan akal dan ikiran. Akal dan ikiran yang dibutuhkan harus memunyai ola ikir yang teat, akurat, rasional, logis,

Lebih terperinci

KALKULUS PREDIKAT KALIMAT BERKUANTOR

KALKULUS PREDIKAT KALIMAT BERKUANTOR 1 KALKULUS PREDIKAT KALIMAT BERKUANTOR A. PREDIKAT DAN KALIMAT BERKUANTOR Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Dalam ilmu logika, kalimat-kalimat

Lebih terperinci

Matematika Industri I

Matematika Industri I LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan (Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: hgunawan@math.itb.ac.id. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang

Lebih terperinci

bab 1 Logika MATEMATIKA

bab 1 Logika MATEMATIKA bab 1 Logika MATEMATIKA, RINGKASAN MATERI A. PERNYATAAN DAN INGKARANNYA Pengertian Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah saja. Pernyataan biasanya dinotasikan dengan huruf

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 1 Matematika Logika - Latihan Soal halaman 1 1. Misalkan adalah ernyataan yang bernilai benar dan adalah ernyataan yang benar. Dari tiga ernyataan berikut: (1) (2) ( yang bernilai benar

Lebih terperinci

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas Matematika Persamaan dan Fungsi Kuadrat - Persamaan Kuadrat - Soal Uraian Do Name: ARMAT Version : - halaman. Nyatakan ersamaan-ersamaan berikut ke dalam bentuk baku kemudian tentukan nilai

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan

Lebih terperinci

Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup.

Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. LOGIKA MATEMATIKA Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. Beberapa hal yang digunakan dalam logika

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah

Lebih terperinci

LOGIKA MATEMATIKA (Pendalaman Materi SMA)

LOGIKA MATEMATIKA (Pendalaman Materi SMA) LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM

BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM 3.1. Pengembangan Teorema Dalam enelitian dan erancangan algoritma ini, akan dibahas mengenai beberaa teorema uji rimalitas yang terbaru. Teorema-teorema

Lebih terperinci

EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR

EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR Elma Rahayu Manuharawati Jurusan Matematika Fakultas Matematika Ilmu Pengetahuan Alam Universitas Negeri Surabaya 603 Jurusan Matematika Fakultas

Lebih terperinci

Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor

Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan

Lebih terperinci

BAB 2 PENGANTAR LOGIKA PROPOSISIONAL

BAB 2 PENGANTAR LOGIKA PROPOSISIONAL BAB 2 PENGANTAR LOGIKA PROPOSISIONAL 1. Pendahuluan Dilihat dari bentuk struktur kalimatnya, suatu pernyataan akan memiliki bentuk susunan minimal terdiri dari subjek diikuti predikat kemudian dapat diikuti

Lebih terperinci

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran

1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran Modul 1 Logika Matematika Pendahuluan Pada Modul ini akan dibahas materi yang berkaitan dengan logika proposisi dan logika predikat, serta berbagai macam manipulasi didalamnya. Tujuan Instruksional Umum

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 0 PAKET Pilihan Ganda: Pilihlah satu jawaban yang aling teat.. Ingkaran dari ernyataan Jika emerintah menghauskan kebijakan subsidi bahan bakar minyak

Lebih terperinci

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan

Lebih terperinci

LOGIKA. /Nurain Suryadinata, M.Pd

LOGIKA. /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a. LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta

Lebih terperinci

BAB III DASAR DASAR LOGIKA

BAB III DASAR DASAR LOGIKA BAB III DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2

Lebih terperinci

PTI 206 Logika. Semester I 2007/2008. Ratna Wardani

PTI 206 Logika. Semester I 2007/2008. Ratna Wardani PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Materi Logika Predikatif Fungsi proposisi Kuantor : Universal dan Eksistensial Kuantor bersusun 2 Logika Predikat Logika Predikat adalah perluasan dari

Lebih terperinci

kusnawi.s.kom, M.Eng version

kusnawi.s.kom, M.Eng version Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.0.0.2009 Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi - Satisfiable(Contingent).

Lebih terperinci

PENARIKAN KESIMPULAN/ INFERENSI

PENARIKAN KESIMPULAN/ INFERENSI PENARIKAN KESIMPULAN/ INFERENSI Proses penarikan kesimpulan dari beberapa proposisi disebut inferensi (inference). Argumen Valid/Invalid Kaidah-kaidah Inferensi Modus Ponens Modus Tollens Silogisme Hipotesis

Lebih terperinci

ARGUMENTASI. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.

ARGUMENTASI. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. ARGUMENTASI Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 1 + 2 = 3 b. Kuala

Lebih terperinci

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1 2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki

Lebih terperinci

SIMAK UI 2010 Matematika Dasar

SIMAK UI 2010 Matematika Dasar SIMAK UI 00 Matematika Dasar Kode Soal 307 Doc. Name: SIMAKUI00MATDAS307 Version: 0-0 halaman 0. Dua buah dadu dilemar secara bersamaan. x adalah angka yang keluar dari dadu ertama. y adalah angka yang

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D]

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D] UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. SBMPTN MADAS 4 Jika fungsi f x a x x c menyinggung sumbu x di x, maka a A. B. C. D. 5 E. 7 Solusi: [D] 6 f x a x x c f ' x

Lebih terperinci

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya. PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan

Lebih terperinci

BAB I LOGIKA MATEMATIKA

BAB I LOGIKA MATEMATIKA BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan Matematika & Analisis Real Matematika berurusan dengan gagasan, yang mungkin merupakan abstraksi atau sari dari sesuatu yang terdapat

Lebih terperinci

BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial

BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial BAB III KUANTOR Untuk mengubah kalimat tebuka menjadi kalimat deklaratif, selain dengan jalan mengganti variabel dengan konstanta, dapat juga dilakukan dengan menggunakan kuantor, yaitu dengan menggunakan

Lebih terperinci

MATEMATIKA DISKRIT LOGIKA

MATEMATIKA DISKRIT LOGIKA MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.

Lebih terperinci

Logika Matematika. Modul 1 PENDAHULUAN

Logika Matematika. Modul 1 PENDAHULUAN Modul Logika Matematika Prof. Dr. Wahyudin M PENDAHULUAN atematika adalah suatu bidang studi yang hasil-hasilnya memberikan bantuan bersifat asti dan teliti dalam alur ikiran yang jelas. Namun demikian,

Lebih terperinci

DASAR DASAR LOGIKA. Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.

DASAR DASAR LOGIKA. Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2 + 2 = 4

Lebih terperinci

KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA. Disusun Oleh : Dra. Noeryanti, M.Si 31 MODUL LOGIKA MATEMATIKA

KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA. Disusun Oleh : Dra. Noeryanti, M.Si 31 MODUL LOGIKA MATEMATIKA KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 31 DAFTAR ISI Cover pokok bahasan... 31 Daftar isi.... 3 Judul Pokok Bahasan... 33.1. Pengantar... 33.. Kompetensi... 33.3

Lebih terperinci

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali

Lebih terperinci

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya

Lebih terperinci

LOGIKA. Arum Handini Primandari

LOGIKA. Arum Handini Primandari LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian

Lebih terperinci

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses. Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,

Lebih terperinci

Logika Predikat 1. Kita akan memulai bagian ini dengan dua argumen.

Logika Predikat 1. Kita akan memulai bagian ini dengan dua argumen. Logika Predikat 1 III. Logika Predikat Kita akan memulai bagian ini dengan dua argumen. Premis Konklusi Premis Konklusi A: Semua orang menyukai Ali. B: Budi menyukai Ali. C: Cecep menyukai Ali. D: Seseorang

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA

Lebih terperinci

LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek

Lebih terperinci

KUANTIFIKASI Nur Insani, M.Sc

KUANTIFIKASI Nur Insani, M.Sc KUANTIFIKASI Nur Insani, M.Sc Pada validitas : Banyak argumen valid, namun validitasnya tak dapat diuji dengan alat uji validitas yang ada. 2 Bagaimana Validitas Argumen ini? Semua kucing adalah hewan

Lebih terperinci

I. PERNYATAAN DAN NEGASINYA

I. PERNYATAAN DAN NEGASINYA 1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

Jadi penting itu baik, tapi jadi baik jauh lebih penting

Jadi penting itu baik, tapi jadi baik jauh lebih penting LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari

Lebih terperinci

Teori Dasar Logika (Lanjutan)

Teori Dasar Logika (Lanjutan) Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah

Lebih terperinci

PEMBUKTIAN PERNYATAAN LOGIKA PROPOSISI DENGAN MENGGUNAKAN RULES OF INFERENCE

PEMBUKTIAN PERNYATAAN LOGIKA PROPOSISI DENGAN MENGGUNAKAN RULES OF INFERENCE Jurnal Comutech & Bisnis, Vol. 3, No. 2, Desember 2009, 100-104 ISSN Pembuktian 1978-9629 Pernyataan Logika Proosisi...(Dadi Rosadi, Praswidhianingsih) PEMBUKTIAN PERNYATAAN LOGIKA PROPOSISI DENGAN MENGGUNAKAN

Lebih terperinci

TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P. Hasil Telaah

TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P. Hasil Telaah TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P Nama Matakuliah: Logika Matematika. SKS : 2 Semester : 7 Penulis : Drs. Mujono, M.Pd. I. Tinjauan matakuliah: tidak ada Hasil Telaah II. Sajian Materi: a. Relevansi

Lebih terperinci

untuk mempelajari matematika lebih lanjut. Untuk menunjang kemampuankemampuan tersebut diharapkan Anda dapat menguasai beberapa kompetensi khusus

untuk mempelajari matematika lebih lanjut. Untuk menunjang kemampuankemampuan tersebut diharapkan Anda dapat menguasai beberapa kompetensi khusus ix S Tinjauan Mata Kuliah elamat bertemu, selamat belajar, dan selamat berdiskusi dalam mata kuliah Matematika Dasar 1. Mata kuliah PEMA4102/Matematika Dasar 1 dengan bobot 3 sks ini sering pula dinamakan

Lebih terperinci

LANDASAN MATEMATIKA Handout 4 (Kuantor)

LANDASAN MATEMATIKA Handout 4 (Kuantor) LANDASAN MATEMATIKA Handout 4 (Kuantor) Tatik Retno Murniasih, S.Si., M.Pd. tretnom@unikama.ac.id / tatikretno@gmail.com Standar Kompetensi Mahasiswa dapat mengerti dan memahami kuantor sehingga dapat

Lebih terperinci

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi

Lebih terperinci

Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences

Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences Materi-3 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences 1 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika Ada 3 sifat, yaitu: 1. Valid 2.

Lebih terperinci

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif Daftar Isi TINJAUAN MATA KULIAH... i MODUL 1: LOGIKA MATEMATIKA 1.1 Pernyataan, Negasi, DAN, ATAU, dan Hukum De Morgan...... 1.3 Latihan... 1.18 Rangkuman... 1.20 Tes Formatif 1...... 1.20 Jaringan Logika

Lebih terperinci

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1 LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir

Lebih terperinci

BILANGAN BERPANGKAT DAN BENTUK AKAR

BILANGAN BERPANGKAT DAN BENTUK AKAR BILANGAN BERPANGKAT DAN BENTUK AKAR 1. Bilangan Berpangkat Sederhana Dalam kehidupan sehari-hari kita sering menemui perkalian bilangan-bilangan dengan faktorfaktor yang sama. Misalkan kita temui perkalian

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2014

TRY OUT UN MATEMATIKA SMA IPA 2014 TRY OUT UN MATEMATIKA SMA IPA 4 Berilah tanda silang () ada huruf a, b, c, d, atau e di dean jawaban yang benar!. Diketahui remis-remis berikut. Jika Yudi rajin belajar maka ia menjadi andai. Jika Yudi

Lebih terperinci

KALIMAT BERKUANTOR. Pertemuan 4 Senin, 11 Maret 2013

KALIMAT BERKUANTOR. Pertemuan 4 Senin, 11 Maret 2013 KALIMAT BERKUANTOR Pertemuan 4 Senin, 11 Maret 2013 Pokok Bahasan 1. Predikat dan kalimat berkuantor 2. Ingkaran kalimat berkuantor 3. Kalimat berkuantor ganda 4. Aplikasi logika matematika dalam ilmu

Lebih terperinci

PROPOSITION LOGIC LOGIKA INFORMATIKA. Properties of Sentences Inference Methods Quantifier Sentences. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta

PROPOSITION LOGIC LOGIKA INFORMATIKA. Properties of Sentences Inference Methods Quantifier Sentences. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 1 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 2 Properties of Sentences Adalah sifat-sifat yang dimiliki

Lebih terperinci

Argumen premis konklusi jika dan hanya jika Tautolog

Argumen premis konklusi jika dan hanya jika Tautolog INFERENSI LOGIKA Argumen adalah suatu pernyataan tegas yang diberikan oleh sekumpulan proposisi P 1, P 2,...,P n yang disebut premis (hipotesa/asumsi) dan menghasilkan proposisi Q yang lain yang disebut

Lebih terperinci

Integral dan Persamaan Diferensial

Integral dan Persamaan Diferensial Sudaryatno Sudirham Studi Mandiri Integral dan Persamaan Diferensial ii Darublic BAB 3 Integral (3) (Integral Tentu) 3.. Luas Sebagai Suatu Integral. Integral Tentu Integral tentu meruakan integral yang

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Nama : Yogi Sindy Prakoso NRP : 106 100 015 Jurusan : Matematika FMIPA-ITS Pembimbing : Drs. Suhud Wahyudi, M.Si Dra. Titik Mudiati, M.Si Abstrak Grah adalah

Lebih terperinci

LOGIKA MATEMATIKA I. PENDAHULUAN

LOGIKA MATEMATIKA I. PENDAHULUAN LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan

Lebih terperinci

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi 1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah

Lebih terperinci

MAKALAH SEMINAR PENDIDIKAN MATEMATIKA PENARIKAN AKAR PANGKAT TIGA DARI BILANGAN BULAT DENGAN HASIL HAMPIRAN

MAKALAH SEMINAR PENDIDIKAN MATEMATIKA PENARIKAN AKAR PANGKAT TIGA DARI BILANGAN BULAT DENGAN HASIL HAMPIRAN MAKALAH SEMINAR PENDIDIKAN MATEMATIKA PENARIKAN AKAR PANGKAT TIGA DARI BILANGAN BULAT DENGAN HASIL HAMPIRAN OLEH LUKMANUDIN D07.090.5 PROGRAM STUDY PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Lebih terperinci

NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG

NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

MATEMATIKA DISKRIT. Logika

MATEMATIKA DISKRIT. Logika MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi

Lebih terperinci

PERSAMAAN KUADRAT. Untuk suatu kuadrat sempurna x bx c, nilai c diperoleh dengan membagi koefisien x dengan 2, kemudian mengkuadratkan hasilnya.

PERSAMAAN KUADRAT. Untuk suatu kuadrat sempurna x bx c, nilai c diperoleh dengan membagi koefisien x dengan 2, kemudian mengkuadratkan hasilnya. PERSAMAAN KUADRAT Bab. Bentuk Umum : a b c 0, a 0, a, b, c Real Menyelesaikan ersamaan kuadrat :. dg. Memfaktorkan : a b c a ( a )( a q) q a q = a ( q) a dimana : b = + q dan c, Jika ac 0 dan q berbeda

Lebih terperinci

KOMPARASI PENGGUNAAN METODE TRUTH TABLE DAN PROOF BY FALSIFICATION DALAM PENENTUAN VALIDITAS ARGUMEN. Abstrak

KOMPARASI PENGGUNAAN METODE TRUTH TABLE DAN PROOF BY FALSIFICATION DALAM PENENTUAN VALIDITAS ARGUMEN. Abstrak Komparasi Penggunaan Metode Truth Table Dan Proof By Falsification Untuk Penentuan Validitas Argumen (Yani Prihati) KOMPARASI PENGGUNAAN METODE TRUTH TABLE DAN PROOF BY FALSIFICATION DALAM PENENTUAN VALIDITAS

Lebih terperinci

Program Studi Teknik Informatika STMIK Tasikmalaya

Program Studi Teknik Informatika STMIK Tasikmalaya Materi Kuliah Logika Matematika Oleh: Dadang Mulyana Program Studi Teknik Informatika STMIK Tasikmalaya dadang mulyana 2013 1 Info Dosen Nama : Dadang Mulyana Alamat : Ciamis HP. :- E-mail tugas : dadangstmik@gmail.com

Lebih terperinci

induksi matematik /Nurain Suryadinata, M.Pd

induksi matematik /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

Logika Pembuktian. Matematika Informatika 3 Onggo

Logika Pembuktian. Matematika Informatika 3 Onggo Logika Pembuktian Matematika Informatika 3 Onggo Wr @OnggoWr Metode Pembuktian 1. Metode Pembuktian Langsung (Direct Proof) 2. Metode Pembuktian Tak-Langsung (Indirect Proof) a. Proof by Contrapositive

Lebih terperinci

Materi Kuliah IF2091 Struktur Diskrit. Pengantar Logika. Oleh: Rinaldi Munir. Program Studi Informatika STEI - ITB

Materi Kuliah IF2091 Struktur Diskrit. Pengantar Logika. Oleh: Rinaldi Munir. Program Studi Informatika STEI - ITB Materi Kuliah IF2091 Struktur Diskrit Pengantar Logika Oleh: Rinaldi Munir Program Studi Informatika STEI - ITB 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti

Lebih terperinci

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T BAB I PENDAHULUAN. Latar Belakang dan Permasalahan Bidang ilmu analisis meruakan salah satu cabang ilmu matematika yang di dalamnya banyak membicarakan konse, aksioma, teorema, lemma disertai embuktian

Lebih terperinci

KUANTOR. A. Fungsi Pernyataan

KUANTOR. A. Fungsi Pernyataan A. Fungsi Pernyataan KUANTOR Definisi : Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Fungsi pernyataan

Lebih terperinci

Kuliah 2 1. LOGIKA (LOGIC) Matematika Diskrit. Dr.-Ing. Erwin Sitompul

Kuliah 2 1. LOGIKA (LOGIC) Matematika Diskrit. Dr.-Ing. Erwin Sitompul Kuliah 2 1. LOGIKA (LOGIC) Dr.-Ing. http://zitompul.wordpress.com Solusi Pekerjaan Rumah (PR 1) Dua pedagang barang kelontong mengeluarkan semboyan dagang untuk menarik pembeli. Pedagang pertama mengumbar

Lebih terperinci

3.1 TEOREMA DASAR ARITMATIKA

3.1 TEOREMA DASAR ARITMATIKA 3. TEOREMA DASAR ARITMATIKA Definisi 3. Suatu bilangan bulat > disebut (bilangan) rima, jia embagi ositif bilangan tersebut hanya dan. Jia bilangan bulat lebih dari satu buan bilangan rima disebut (bilangan)

Lebih terperinci