BAB II GENERATOR SINKRON 3 FASA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II GENERATOR SINKRON 3 FASA"

Transkripsi

1 BAB II GENERATOR SINKRON 3 FASA 2.1 Umum Banyak energi listrik yang dibangkitkan dengan menggunakan generator sinkron. Oleh sebab itu generator sinkron memegang peranan penting dalam sebuah pusat pembangkit listrik. Mesin Sinkron dapat bekerja sebagai generator apabila kumparan jangkarnya (stator) menghasilkan daya arus bolak-balik. Generator sinkron (alternator) merupakan sebuah mesin sinkron yang berfungsi mengubah energi mekanik berupa putaran menjadi energi listrik bolak-balik (AC). Definisi generator sinkron, mempunyai makna bahwa rotor generator sinkron yang terdiri dari belitan medan dengan suplai arus searah akan menghasilkan medan magnet yang diputar dengan kecepatan yang sama dengan kecepatan putar rotor. Dikatakan generator sinkron karena jumlah putaran rotornya sama dengan jumlah putaran medan magnet (medan putar) pada stator. Kecepatan sinkron ini dihasilkan dari kecepatan putar rotor dengan kutub-kutub magnet yang berputar dengan kecepatan yang sama dengan medan putar pada stator. Mesin sinkron tidak dapat start sendiri karena kutub-kutub yang berat dan tidak dapat tiba-tiba mengikuti kecepatan medan putar pada waktu saklar terhubung dengan jala-jala oleh sebab itu diperlukan suatu alat bantu start (prime mover).generator sinkron dibagi menjadi dua jenis, yaitu generator sinkron 1 fasa dan generator sinkron 3 fasa [4]. 6

2 2.2 Konstruksi Generator Sinkron Konstruksi generator sinkron sama dengan motor sinkron yaitu mesin sinkron pada dasarnya generator sinkron mengkonversi energi mekanik menjadi energi listrik bolak-balik. Secara umum, konstruksi generator sinkron terdiri dari stator (bagian yang diam) dan rotor (bagian yang bergerak). Keduanya merupakan rangkaian magnetik yang berbentuk simetris dan silindris yang berkaitan. Selain itu generator sinkron memiliki celah udara ruang antara stator dan rotor yang berfungsi sebagai tempat berputarnya rotor dan tempat terjadinya fluksi atau induksi energi listrik dari rotor ke stator. Pada Gambar 2.1 dapat dilihat konstruksi dari sebuah generator sinkron secara umum : Gambar 2.1 Konstruksi generator sinkron secara umum A. Rotor Rotor merupakan bagian berputar yang berfungsi untuk membangkitkan medan magnet yang menghasilkan tegangan dan akan di induksikan ke stator. Pada rotor 7

3 terdapat kutub-kutub magnet dengan lilitannya yang dialiri arus searah, melewati cincin geser dan sikat. Generator sinkron memiliki dua tipe rotor, yaitu : 1.) Rotor yang berbentuk kutub sepatu (salient pole) 2.) Rotor yang berbentuk kutub dengan celah udara sama rata (cylindrical) 1. Rotor kutub menonjol (Salient Pole Rotor) Rotor tipe ini mempunyai kutub yang jumlahnya banyak. Kumparan dibelitkan pada tangkai kutub, dimana kutub-kutub diberi laminasi untuk mengurangi panas yang ditimbulkan oleh rugi-rugi arus Eddy, kumparankumparan medannya terdiri dari bilah tembaga persegi. Kutub menonjol ditandai dengan rotor berdiameter besar dan panjang serta sumbunya pendek. Selain itu jenis kutub salient pole, kutub magnetnya menonjol keluar dari permukaan rotor. Belitan-belitan medan dihubung seri. Ketika belitan medan ini disuplai oleh eksiter, maka kutub yang berdekatan akan membentuk kutub yang berlawanan. Bentuk kutub menonjol generator sinkron tampak seperti Gambar 2.2 berikut : Gambar 2.2 Rotor Kutub Menonjol Generator Sinkron 8

4 Rotor kutub menonjol umumnya digunakan pada generator sinkron dengan kecepatan putaran rendah dan sedang. Generator sinkron tipe seperti ini biasanya dikopel oleh mesin diesel atau turbin air pada sistem pembangkit listrik. Rotor kutub menonjol baik digunakan untuk putaran rendah dan sedang karena : a. Konstruksi kutub menonjol tidak terlalu kuat untuk menahan tekanan mekanis apabila diputar dengan kecepatan tinggi. b. Kutub menonjol akan mengalami rugi-rugi yang besar dan bersuara bising jika diputar dengan kecepatan tinggi. 2. Rotor kutub tak menonjol dengan celah udara sama rata (Rotor Silinder) Rotor tipe ini dibuat dari plat baja berbentuk silinder yang mempunyai sejumlah slot sebagai tempat kumparan. Karena adanya slot-slot dan juga kumparan medan yang terletak pada rotor maka jumlah kutub pun sedikit yang dapat dibuat. Belitan-belitan medan dipasang pada alur-alur di sisi luarnya dan terhubung seri yang dienerjais oleh eksiter. Gambar bentuk kutub silinder generator sinkron tampak seperti pada Gambar 2.3 berikut: Gambar 2.3 Rotor Kutub tak Menonjol Generator Sinkron 9

5 Dimana rotor terdiri dari beberapa komponen utama yaitu : a. Slip Ring Slip ring merupakan cincin logam yang melingkari poros rotor tetapi dipisahkan oleh isolasi tertentu. Dibuat dari bahan kuningan atau tembaga yang dipasang pada poros dengan memakai bahan isolasi. Terminal kumparan rotor dipasangkan ke-slip ring ini kemudian dihubungkan kesumber arus searah melalui sikat (brush) yang letaknya menempel pada slip ring. b. Sikat Sebagaian dari generator sinkron ada yang memiliki sikat ada juga yang tidak memiliki sikat. Sikat pada generator sinkron berfungsi sebagai saklar putar untuk mengalirkan arus DC ke-kumparan medan pada rotor generator sikron. Sikat terbuat dari bahan karbon tertentu. c. Kumpara rotor (kumparan medan) Kumparan medan merupakan unsure yang memegang peranan utama dalam menghasilkan medan magnet. Kumparan ini mendapat arus searah dari sumber eksitasi tertentu. d. Poros Rotor Poros rotor merupakan tempat meletakkan kumparan medan, dimana pada poros tersebut telah terbentuk slot-slot secara paralel terhadap poros rotor. 10

6 B. Stator Stator adalah bagian generator yang diam dan berfungsi sebagai tempat untuk menerima induksi magnet dari rotor. Arus bolak-balik (AC) yang menuju ke beban disalurkan melalui armatur, komponen ini berbentuk sebuah rangka silinder dengan lilitan kawat konduktor yang sangat banyak. Armatur selalu diam (tidak bergerak). Oleh karena itu, komponen ini juga disebut dengan stator. Lilitan armatur generator dalam wye dan titik netral dihubungkan ke tanah. Lilitan dalam wye dipilih karena: 1. Meningkatkan daya output. 2. Menghindari dan meminimalisir tegangan harmonik, sehingga tegangan line tetap sinusoidal dalam kondisi beban apapun. Stator dari mesin sinkron terbuat dari bahan ferromagnetik yang berbentuk dan di laminasi untuk mengurangi rugi-rugi arus pusar. Dengan inti ferromagnetik yang bagus berarti permeabilitas dan resistivitas dari bahan tinggi. Pada Gambar 2.4 berikut memperlihatkan alur stator tempat kumparan jangkar Gambar 2.4 Inti dalam Stator dan Alur Pada Stator 11

7 Stator terdiri dari beberapa komponen utama, yaitu: a. Rangka stator Rangka stator merupakan rumah (kerangka) yang menyangga inti jangkar generator. b. Inti Stator Inti stator terbuat dari laminasi-laminasi baja campuran atau besi magnetic khusus terpasang ke rangka stator. c. Alur (slot) dan Gigi Alur dan gigi merupakan tempat meletakkan kumparan stator. Ada 3 (tiga) bentuk alur stator yaitu terbuka, setengah terbuka, dan tertutup seperti pada gambar 2.5 berikut : Gambar 2.5 Bentuk-bentuk alur d. Kumparan Stator (Kumparan Jangkar) Kumparan jangkar biasanya terbuat dari tembaga. Kumparan ini merupakan tempat timbulnya ggl induksi [5]. 12

8 2.3 Prinsip Kerja Generator Sinkron Adapun prinsip kerja dari suatu generator sinkron adalah: 1. Kumparan medan yang terdapat pada rotor dihubungkan dengan sumber eksitasi tertentu yang akan mensuplai arus searah terhadap kumparan medan. Dengan adanya arus searah yang mengalir melalui kumparan medan maka akan menimbulkan fluksi yang besarnya terhadap waktu adalah tetap. 2. Unit penggerak mula (Prime Mover) yang sudah terkopel dengan rotor segera dioperasikan sehingga memutar rotor pada kecepatan nominalnya persamaan (2.1) dimana : nn = 120ff pp (2.1) n = Kecepatan putar rotor (rpm) p = Jumlah kutub rotor f = frekuensi (Hz) 3. Perputaran rotor tersebut sekaligus akan memutar medan magnet yang dihasilkan oleh kumparan medan. Medan putar yang dihasilkan pada rotor, akan diinduksikan pada kumparan jangkar sehingga pada kumparan jangkar yang terletak di stator akan dihasilkan fluks magnetik yang berubahubah besarnya terhadap waktu. Adanya perubahan fluks magnetik yang melingkupi suatu kumparan akan menimbulkan ggl induksi pada ujungujung kumparan tersebut, hal tersebut sesuai dengan persamaan berikut dimana : ee = NN dd dddd. (2.2) ee = NN dd mmmmmmmm sin ωωωω dddd.. (2.3) 13

9 ee = NNNN mmmmmmmm cccccccccc.. (2.4) ωω = 2ππππ (2.5) ee = NN(2ππππ)Ø mmmmmmmm cos ωωωω. (2.6) ff = nnnn.. (2.7) 120 ee = NN 2ππ nnnn 120 Ø mmmmmmmm cos ωωωω (2.8) EE mmmmmmmm = NN 2.3,14. nnnn 120 Ø mmmmmmmm (2.9).. (2.10).. (2.11). (2.12) EE eeeeee = CCCCØ (2.13) Dimana: E = ggl induksi (Volt) C = Konstanta n = Putaran (rpm) N = Jumlah belitan p = Jumlah kutub f = Frequensi (Hz) Ø = Fluks magnetik (weber) 14

10 Untuk generator sinkron tiga phasa, digunakan tiga kumparan jangkar yang ditempatkan di stator yang disusun dalam bentuk tertentu, sehingga susunan kumparan jangkar yang sedemikian akan membangkitkan tegangan induksi pada ketiga kumparan jangkar yang besarnya sama tapi berbeda fasa satu sama lain. Setelah itu ketiga terminal kumparan jangkar siap dioperasikan untuk menghasilkan energi listrik [2]. 2.4 Reaksi Jangkar Bila generator sinkron (alternator) melayani beban yang terhubung ke terminal generator maka pada belitan stator akan mengalir arus, sehigga timbul medan magnet pada belitan stator yang akan berinteraksi dengan medan rotor. Medan magnet ini akan mendistorsi medan magnet yang dihasilkan belitan rotor sehingga menghasilkan fluks resultan. Seperti yang dijelaskan pada Gambar 2.6 : Gambar 2.6 Model Reaksi Jangkar 15

11 Pada Gambar 2.6.a. Medan magnet yang berputar akan menghasilkan tegangan induksi E a. Bila generator melayani beban dengan induktif, maka arus pada stator akan tertinggal seperti pada Gambar 2.6.b. Arus stator tadi akan meghasilkan medan magnet sendiri B s dan tegangan stator E stat, seperti pada Gambar 2.6.c. Vektor penjumlahan antara B S dan B R akan menjadi B net dan penjumlahan E stat dan E a, akan menghasilkan Ø, V pada terminal jangkar. Saat beban terhubung ke beban induktif, arus jangkar akan tertinggal terhadap tegangan jangkar. Arus pada belitan stator akan menghasilkan medan magnet B s, yang kemudian kan menghasilkan tegangan stator E stat. Dua tegangan yaitu tegangan jangkar E a dan tegangan reaksi jangkar E stat akan menghasilkan V t, dimana ditunjukkan pada persamaan (2.14) V t = E a + E stat...(2.14) Tegangan Reaksi Jangkar E stat = - j X Ia Sehingga persaman 2.14 dapat ditulis kembali pada persamaan (2.15). V t = E a -jxi a...(2.15) Selain pengaruh reaksi jangkar ini, pengurangan tegangan induksi generator sinkron juga karena adanya tahanan R a dan Induktansi belitan stator X a,,dan penjumlahan X dan Xa sering disebut Reaktansi Sinkron Xs, sehingga persamaan (2.15) dapat ditulis kembali sebagai persamaan (2.16). V t = E a -jxi a -jx a I a - I a R a...(2.16) Lalu menjadi persamaan (2.17) 16

12 V t = E a -jx s I a - I a R a...(2.17) Dimana: V t = Tegangan terminal jangkar E a = Tegangan Jangkar Estat = Tegangan Reaksi Jangkar R a = Tahanan Jangkar B S = Medan Magnet Stator B R = Medan Magnet Rotor X s = Reaktansi Sinkron I a = Arus Jangkar [4]. 2.5 Sistem Eksitasi Berdasarkan cara penyaluran arus searah pada rotor generator sinkron, sistem eksitasi terdiri dari dua sistem yaitu sistem eksitasi dengan menggunakan sikat (brushless excitation) dan sistem eksitasi tanpa menggunakan sikat (brushless). Ada dua jenis sistem eksitasi dengan menggunakan sikat yaitu : 1. Sistem eksitasi konvensional (menggunakan generator arus searah). 2. Sistem eksitasi statis. Sedangkan sistem eksitasi tanpa menggunakan sikat terdiri dari : 1. Sistem eksitasi dengan menggunakan baterai. 2. Sistem eksitasi dengan menggunakan Permanen Magnet Generator (PMG). Berikut sistem eksitasi menggunakan sikat: 1. Sistem Eksitasi Konvensional (Menggunakan Generator Arus Searah) 17

13 Untuk sistem eksitasi yang konvensional, arus searah diperoleh dari sebuah generator arus searah berkapasitas kecil yang disebut eksiter. Generator sinkron dan generator arus serah tersebut terkopel dalam satu poros, sehingga putaran generator arus searah sama dengan putaran generator sinkron. Tegangan yang dihasilkan oleh generator arus searah ini diberikan kebelitan rotor generator sinkron melalui sikat karbon dan slip ring. Akibatnya arus searah mengalir ke dalam rotor atau kumparan medan dan menimbulkan medan magnet yang diperlukan untuk dapat menghasilkan tegangan arus bolak-balik pada kumparan utama yang terletak di stator generator sinkron. Pada generator konvensional ini ada beberapa kerugian yaitu generator arus searah merupakan beban tambahan untuk penggerak mula. Penggunaan slip ring dan sikat menimbulkan masalah ketika digunakan untuk mensuplai sumber arus searah padabelitan medan generator sinkron. Terdapat sikat arang yang menekan slip ring sehingga timbul rugi gesekan pada generator utamanya. Selain itu pada generator arus searah juga terdapat sikat karbon yang menekan komutator. Selama pemakaian slip ring dan sikat harus diperiksa secara teratur, generator arus searah juga memiliki keandalan yang rendah. Karena hal-hal seperti diatas dipikirkan hubungan lain dan dikenal apa yang dikenal sebagai generator sinkron static exciter (penguat statis). Gambar 2.7 adalah sistem eksitasi yang menggunakan generator arus searah. 18

14 Gambar 2.7 Sistem Eksitasi Menggunakan Generator Arus Searah 2 Sistem Eksitasi Statis Sistem eksitasi statis menggunakan peralatan eksitasi yang tidak bergerak (static), artinya peralatan eksitasi tidak ikut berputar bersama dengan rotor generator sinkron. Sistem eksitasi statis (static excitation sistem) atau disebut juga dengan self excitation merupakan sistem eksitasi yang tidak memerlukan generator tambahan sebagai sumber eksitasi generator sinkron. Sumber eksitasi pada sistem eksitasi statis berasal dari tegangan output generator itu sendiri yang disearahkan terlebih dahulu dengan menggunakan penyearah thyristor. Pada mulanya pada rotor ada sedikit magnet sisa, magnet sisa ini akan menimbulkan tegangan pada stator tegangan ini kemudian masuk dalam penyearah dan dimasukkan kembali pada rotor akibatnya medan magnet yang dihasilkan makin besar dan tegangan AC naik demikian seterusnya sampai dicapai tegangan nominal dari generator AC tersebut. Biasanya penyearah itu mempunyai pengatur sehingga tegangan generator dapat diatur konstan. Bersama dengan penyearah, blok tersebut sering disebut AVR. 19

15 Dibandingkan dengan generator yang konvensional generator dengan sistem eksitasi statis memang sudah jauh lebih baik yaitu tidak ada generator arus searah (yang keandalannya rendah) dan beban generator arus searah pada penggerak mula hilang. Eksiter diganti dengan eksiter yang tidak berputar yaitu penyearah karena itu disebut eksiter statis. Gambar 2.8 berikut adalah sistem eksitasi statis. Gambar 2.8 Sistem eksitasi statis Untuk keperluan eksitasi awal pada generator sinkron, maka sistem eksitasi statis dilengkapi dengan field flashing. Hal ini dibutuhkan karena generator sinkron tidak memiliki sumber arus dan tegangan sendiri untuk mensuplai kumparan medan. Penggunaan slip ring dan sikat pada eksitasi ini menyebabkan sistem eksitasi ini tidak efisien dan efektif. 20

16 Sedangkan sistem eksitasi tanpa menggunakan sikat : 1. Sistem Eksitasi Menggunakan Baterai Sistem eksitasi tanpa sikat diaplikasikan pada generator sinkron, dimana suplai arus searah kebelitan medan dilakukan tanpa melalui sikat. Arus searah untuk suplai eksitasi untuk awal start generator digunakan suplai dari baterai, yang sering dinamakan penguat mula, dimana arus ini selanjutnya disalurkan ke belitan medan AC exiter. Tegangan keluaran dari generator sinkron ini disearahkan oleh penyearah yang menggunakan dioda, yang disebut rotating rectifier, yang diletakkan pada bagian poros ataupun pada bagian dalam dari rotor generator sinkron, sehingga rotating rectifier tersebut ikut berputar sesuai dengan putaran rotor, seperti pada gambar 2.9 berikut: Gambar 2.9 Sistem Eksitasi Dengan Menggunakan Baterai Dari Gambar 2.9 diatas, untuk menghindari adanya kontak geser pada bagian rotor generator sinkron, maka penguat medan generator dirancang sedemikian sehingga arus searah yang dihasilkan dari penyearah langsung 21

17 disalurkan kebagian belitan medan dari generator utama. Hal ini dimungkinkan karena dioda penyearah ditempatkan pada bagian poros yang dimiliki bersamasama oleh rotor generator utama dan penguat medannya. Arus medan pada generator utama dikontrol oleh arus yang mengalir pada kumparan medan penguat (eksiter). 2. Sistem Eksitasi Menggunakan Pemanen Magnet Generator Suatu generator sinkron harus memiliki sebuah medan magnet yang berputar agar generator tersebut menghasilkan tegangan pada statornya. Medan magnet ini dapat dihasilkan dari belitan rotor yang disuplai dengan sumber listrik arus searah. Cara lain untuk menghasilkan medan magnet pada rotor adalah dengan menggunakan magnet permanen sebagai sumber eksitasinya ini disebut dengan Permanen Magnet Generator (PMG). Generator sinkron yang berkapasitas besar biasanya menggunakan sistem eksitasi brushless yang dilengkapi dengan permanen magnet generator. Hal ini dimaksudkan agar sistem eksitasi dari generator sama sekali tidak tergantung pada sumber daya listrik dari luar mesin itu. Pada Gambar 2.10 dapat dilihat bentuk skematik dari sistem eksitasi dengan menggunakan Permanen Magnet Generator. 22

18 Gambar 2.10 Sistem Eksitasi Dengan Menggunakan Permanen Magnet Generator Dari Gambar 2.17, bahwa pada bagian mesin yang berputar (rotor) terdapat magnet permanen, kumparan jangkar generator eksitasi, kumparan medan generator utama. Hal ini memungkinkan generator tersebut tidak menggunakan slip ring dan sikat dalam pengoperasiannya sehingga lebih efektif dan efisiensi [9]. 2.6 Rangkaian Ekivalen Stator terdiri dari belitan-belitan. Suatu belitan konduktor akan terdiri dari tahanan dan induktansi X maka rangkaian ekivalen suatu generator sinkron dapat Ra Ia dibuat seperti Gambar 2.11 Gambar 2.11 Rangkaian ekivalen generator sinkron 23

19 Dengan melihat Gambar 2.11 maka tegangan generator sinkron dapat ditulis pada persamaan (2.18). E a = V + jx ar I a + jx La I a + R a I a...(2.18) Dan persamaan terminal generator sinkron dapat ditulis pada persamaan (2.19) V t = E a jx ar I a jx La I a R a I a...(2.19) Dengan menyatakan reaktansi reaksi jangkar dan reaktansi fluks bocor sebagai reaktansi sinkron, atau X s = X ar + X La, maka menjadi persamaan (2.20). V t = E a jx s I a R a I a [Volt].....(2.20) Dimana: V t = Tegangan Terminal E a = Tegangan Induksi X s = Reaktansi Sinkron I a = Arus Jangkar R a = Tahanan Jangkar X ar = Reaktansi Jangkar X La = Reaktansi Fluks Bocor Gambar 2.12 Penyederhanaan rangkaian ekivalen generator sinkron Karena tegangan yang dibangkitkan oleh generator sinkron adalah tegangan bolak-balik tiga fasa maka gambar yang menunjukkan hubungan 24

20 tegangan induksi perfasa dengan tegangan terminal generator akan ditunjukkan pada Gambar 2.13 berikut: Gambar 2.13 Rangkaian ekivalen generator sinkron 3 fasa Sementara itu, rangkaian ekivalen generator sinkron tiga fasa untuk tiap jenis hubungan ditunjukkan oleh Gambar 2.14 berikut ini: [8]. Gambar 2.14 Rangkaian ekivalen belitan stator generator sinkron 3 fasa (a). Belitan-Y, (b). Belitan- 25

21 2.7 Rangkaian Belitan Belitan Stator Ada dua jenis belitan stator yang banyak digunakan untuk generator sinkron 3 phasa, yaitu: 1. Belitan satu lapis (Single Layer Winding). 2. Belitan berlapis ganda (Double Layer Winding). 1. Belitan satu lapis (Single Layer Winding). Gambar 2.15 Belitan satu lapis (Single Layer Winding). Gambar 2.15 memperlihatkan belitan satu lapis karena hanya ada satu sisi lilitan di dalam masing - masing alur. Bila kumparan tiga phasa dimulai pada Sa, Sb, dan Sc dan berakhir di Fa, Fb, dan Fc bisa disatukan dalam dua cara, yaitu hubungan bintang dan segitiga. Antar kumparan phasa dipisahkan sebesar 120 derajat listrik atau 60 derajat mekanik, satu siklus ggl penuh akan dihasilkan bila rotor dengan 4 kutub berputar 180 derajat mekanis. Satu siklus ggl penuh menunjukkan 360 derajat listrik [5]. 26

22 2. Belitan berlapis ganda (Double Layer Winding). Kumparan jangkar yang diperlihatkan pada Gambar 2.15 hanya mempunyai satu lilitan per kutub per phasa, akibatnya masing masing kumparan hanya dua lilitan secara seri. Bila alur-alur tidak terlalu lebar, masing-masing penghantar yang berada dalam alur akan membangkitkan tegangan yang sama. Masing masing tegangan phasa akan sama untuk menghasilkan tegangan per penghantar dan jumlah total dari penghantar per phasa. Dalam kenyataannya cara seperti ini tidak menghasilkan cara yang efektif dalam penggunaan inti stator, karena variasi kerapatan fluks dalam inti dan juga melokalisir pengaruh panas dalam daerah alur dan menimbulkan harmonik. Untuk mengatasi masalah ini, generator praktisnya mempunyai kumparan terdistribusi dalam beberapa alur per kutub per phasa. Gambar 2.16 memperlihatkan bagian dari sebuah kumparan jangkar yang secara umum banyak digunakan [5]. Gambar 2.16 Belitan berlapis ganda (Double Layer Winding) 27

23 2.7.2 Belitan Rotor Rotor berfungsi untuk membangkitkan medan magnet yang kemudian tegangan dihasilkan dan akan diinduksikan ke stator. Generator sinkron memiliki dua tipe rotor, yaitu : 1).Rotor berbentuk kutub sepatu (salient pole) 2).Rotor berbentuk kutub dengan celah udara sama rata (cylindrical) Perbedaan utama antara keduanya adalah salient pole rotor digerakkan oleh turbin hidrolik kecepatan rendah sedangkan cylindrical rotor digerakkan oleh turbin uap berkecepatan tinggi. Bentuk rotor yang terdapat pada generator sinkron dapat dilihat pada Gambar 2.17 berikut (a) Rotor Kutub Menonjol (b) Rotor Silinder Gambar 2.17 Bentuk Rotor 2.8 Karakteristik Generator Sinkron 3 Fasa Karakteristik Beban Nol Karakteristik tanpa beban (beban nol) pada generator sinkron dapat ditentukan dengan melakukan test beban nol (open circuit) yang memiliki langkah-langkah sebagai berikut : 28

24 a.) Generator diputar pada kecepatan nominal (n) b.) Tidak ada beban yang terhubung pada terminal c.) Arus medan (If) dinaikkan dari nol hingga maksimum secara bertahap d.) Catat harga tegangan terminal (Vt) pada setiap harga arus medan (If) yang terlihat pada gambar 2.18 di bawah ini: Gambar 2.18 Rangkaian Test Tanpa Beban Dari Gambar dapat diperoleh persamaan umum generator pada persamaan (2.21). E 0 = V t + I a (R a + jx s )...(2.21) Pada hubungan generator terbuka (beban nol), I a = 0. Maka persamaannya menjadi persamaan (2.22). E 0 = Vt = CnØ.....(2.22) Karena tidak ada beban yang terpasang, maka Ø yang dihasilkan hanya Ø f. Sehingga menjadi persamaan (2.23) E 0 = CnØ f...(2.23) Dari persamaan (2.23) menjadi persamaan (2.24) E 0 = CnI f... (2.24) Nilai Cn adalah konstan sehingga persamaan menjadi persamaan (2.25) E 0 = k 1.I f... (2.25) 29

25 Dimana: E 0 = Tegangan pada saat beban nol C = Konstanta I f = Arus Medan I a = Arus Jangkar n = Jumlah Putaran R a = Tahanan Jangkar X s = Reaktansi Sinkron Pengujian beban nol terkait dengan karakteristik beban nol yaitu hubungan antara tegangan induksi E a dengan arus penguat /eksitasi I f. pada pengujian beban nol, rotor generator diputar pada kecepatan nominal dan terminal jangkar dalam keadaan terbuka. Arus medan I f diatur bertahap nol hingga diperoleh harga tegangan induksi E a. bersekitar kurang lebih 125% dari tegangan nominal generator. Pada kondisi ini arus jangkar I a = 0 dan tegangan induksi E a = V t. sehingga pembacaan tegangan induksi jangkar dengan pengaruh variasi medan eksitasi digambarkan karakteristik hubung terbuka dari generator atau OCC (Open-Circuit Characteristic). Yang terlihat pada gambar 2.19 dibawah: Gambar 2.19 Karakteristik Hubung Terbuka (OCC) Dari Gambar 2.19 di atas terlihat bahwa pada awalnya kurva berbentuk hampir benar-benar linear. Hingga pada harga-harga arus medan yang tinggi, 30

26 bentuk kurva mulai terlihat saturasi. Inti besi yang tidak jenuh dalam bingkai mesin sinkron memiliki reluktansi beberapa ratus kali lebih rendah daripada reluktansi air gap. Sehingga pertama-tama hampir seluruh MMF melewati celah udara dan peningkatan fluksi yang terjadi linear. Ketika inti besi mengalami saturasi, reluktansi besi meningkat secara drastis dan fluksi meningkat lebih lambat dengan peningkatan nilai MMF. Bentuk linear dari grafik OCC disebut karakteristik air gap line [5] Karakteristik Hubung Singkat Untuk menentukan karakteristik dan parameter generator sinkron yang dihubung singkat terdapat beberapa langkah yang harus dilakukan antara lain : a.) Generator diputar pada kecepatan nominal b.) Atur arus medan (I f ) pada nol c.) Hubung singkat terminal d.) Ukur arus armatur (I a ) pada setiap peningkatan arus medan (If) Dimana, rangkaian test hubung singkat pada generator sinkron akan diperlihatkan pada Gambar 2.20 berikut. Gambar 2.20 Rangkaian Hubung Singkat 31

27 Dari Gambar, persamaan umum generator sinkron dihubung singkat adalah persamaan (2.26) E a = V t + I a (R a + jx s )... (2.26) Pada saat generator sinkron dihubung singkat, V t = 0 dan I a = I sc. Maka persamaan menjadi persamaan (2.27) E a = I sc (R a + jx s )... (2.27) E a = CnØ maka persamaan nya menjadi persamaan (2.28). CnØ = I sc (R a + jx s )... (2.28) Karena Cn dan (R a + jx s ) bernilai konstan, maka persamaan nya menjadi persamaan (2.29) Cn = k 1... (2.29) sehingga menjadi persamaan (2.30) (R a + jx s ) = k 2... (2.30) Sehingga menjadi persamaan (2.31) k 1.I f = I sc. k 2... (2.32) sehingga menjadi persamaan (2.33) II ssss = KK 1 KK 2 II ff... (2.34) Pengujian hubung singkat terkait dengan karakteristik hubung singkat yaitu hubungan antara arus jangkar I a dengan arus penguat/eksitasi I f. Pada pengujian hubung singkat mula-mula arus medan dibuat menjadi nol dan terminal jangkar dihubung singkat. Lalu arus jangkar diperbesar dengan menaikkan secara bertahap arus medan hingga tercapai nilai arus jangkar maksimum. 32

28 Pada karakteristik generator hubung singkat bentuk kurva adalah linear. Hal ini disebabkan oleh medan magnet yang terjadi sangat kecil sehingga inti besi tidak mengalami saturasi. Gambar 2.21 berikut ini akan memperlihatkan karakteristik hubung singkat pada generator sinkron [5]. Gambar 2.21 Karakteristik Hubung Singkat Ketika generator dihubung singkat, arus armatur pada persamaan (2.35) II aa = II ssss = EE aa RR aa +jj XX ss... (2.35) Harga Mutlaknya adalah pada persamaan (2.36) II aa = Dimana: EE aa RR 2 aa +JJXX 2 ss...(2.36) I sc =Arus Hubung Singkat C = Konstanta I f = Arus Medan X s = Reaktansi Sinkron I a = Arus Jangkar n = Jumlah Putaran R a = Tahanan Jangkar E a = Tegangan Induksi 33

29 2.8.3 Karakteristik Berbeban Beberapa langkah untuk menentukan parameter generator sinkron berbeban antara lain sebagai berikut : a.) Generator diputar pada kecepatan nominal (n) b.) Beban (Z L ) terpasang pada terminal generator sinkron c.) Arus medan (I f ) dinaikkan dari nol hingga maksimum secara bertahap d.) Catat tegangan terminal (V t ) pada setiap peningkatan arus medan (I f ) yang terlihat pada gambar 2.22 berikut: Gambar 2.22 Rangkaian Generator Sinkron Berbeban Dari Gambar 2.22 diperoleh persamaan umum generator sinkron berbeban pada persamaan (2.37) E a = V t + I a (R a + jx s )... (2.37) Sehingga menjadi persamaan (2.38) V t = E a - I a (R a + jx s )... (2.38) Dimana : V t = Tegangan Terminal R a = Tahanan Jangkar I a = Arus Jangkar X s = Reaktansi Sinkron E a = Tegangan Induksi 34

30 Dalam keadaan berbeban arus jangkar akan mengalir dan mengakibatkan terjadinya reaksi jangkar. Reaksi jangkar bersifat reaktif karna itu dinyatakan sebagai reaktansi, dan disebut reaktansi magnetisasi (X m ). reaktansi ini bersamasama dengan reaktansi fluks bocor (X a ) yang dikenal dengan reaktansi sinkron (X s ). Pada generator berbeban, I a = I L bernilai konstan karena beban (Z L ) tetap.terlihat pada gambar 2.23 di bawah ini: Gambar 2.23 Karakteristik Generator Sinkron Berbeban Watak berbeban suatu generator sinkron merupakan penggambaran dari hubungan antara tegangan terminal (V t ) dan arus medan (I a ) dimana beban generator tetap, dan jumlah putaran tetap [5]. 2.9 Pengaturan Tegangan Terminal Gambar 2.24 Prinsip Kerja Generator sinkron 3 fasa 35

31 Dimana tegangan terminal dituntut untuk bekerja stabil dalam sistem. Seperti pada gambar 2.24 Seiring perubahan beban maka akan mengalir arus beban (I a ) yg berubah-ubah sesuai dengan perubahan beban. Yang berpengaruh pada tahanan (R a ) dan reaktansi sinkron (X s ) atau yang disebut dengan impedansi sinkron (Z s ). arus beban akan merubah harga tegangan induksi jangkar (E a ) sesuai dengan persamaan (2.20) yaitu V t = E a - I a (R a + jx s ). oleh sebab itu untuk menjaga tegangan terminal agar tetap stabil seiring dengan perubahan arus beban yaitu dengan mengatur tegangan induksinya (E a ). dimana tegangan induksi seperti persamaan (2.13) dimana E a =CnØ pada beban nol. Sehingga untuk mengatur tegangan induksi dilakukan dengan mengatur jumlah putaran (n) dan fluksi magnetik (Ø). Pengaturan jumlah putaran mengakibatkan Penggerak mula (Prime Mover). karena kecepatan putaran rotor diputar dengan menggunakan energi mekanis yang berasal dari penggerak mula. Penggerak mula dioperasikan dengan menggunakan energi primer (Ep) dan energi sekunder (Es) yang berhubungan dengan bahan bakar. Sedangkan pengaturan fluksi magnetik berdasarkan eksitasi yang diberikan. Yaitu dengan memberikan tegangan DC (V f ) pada kumparan medan. Pada rangkaian tertutup akan mengalir arus DC (I f ). Arus DC yang mengalir pada kumparan medan akan menimbulkan medan magnet (B) yang menghasilkan Fluksi yang besarnya sama terhadap waktu. Ketika rotor diputar oleh penggerak mula maka fluks akan ikut berputar sehingga akan timbul medan putar yang akan memotong kumparan jangkar sehingga dihasilkan ggl induksi pada kumparan stator akibat adanya peristiwa induksi elektromagnetik. 36

32 2.10 Rugi-Rugi Generator Sinkron Rugi-rugi yangterdapat pada generator sinkron dibagi menjadi beberapa bagian diantaranya : 1. Rugi-rugi tembaga rotor dan stator (copper losses) 2. Rugi-rugi inti (core losses) 3. Rugi-rugi mekanik (mechanical losses) 4. Rugi-rugi nyasar (stray losses) Rugi-rugi angin dan gesekan dipengaruhi oleh ukuran dan bentuk dari bagian yang berputar, rancangan sudu kipas rotor, desain bantalan (bearing) dan susunan rumah (housing) mesin. Rugi yang hilang tersebut berupa daya yang diperlukan untuk memutarkan kipas guna mensirkulasi udara pendingin dan gesekan bantalan dan sikat. Rugi-rugi inti dan besi (P i ) disebabkan oleh fluksi utama mesin dan terjadi terutama pada gigi-gigi stator (jangkar), pada bagian inti jangkar dekat gigi-gigi stator dan pada permukaan kutub rotor. Inti stator umumnya dibentuk dari laminasi tipis baja silikon yang terisolasi satu sama lain untuk membatasi rugirugi histeresis dan arus eddy pada baja. Rugi-rugi mekanik dan inti sering digabung bersama yang disebut dengan rugi-rugi beban nol pada mesin. Pada keadaan beban nol, daya input mesin digunakan untuk mengatasi rugi-rugi ini. Oleh karena itu pengukuran daya input stator. 2 Rugi-rugi tembaga rotor (P RCL = I.Rf f ) dihitung dari arus medan dan tahanan arus searah dari kumparan penguat pada suhu 75 0 C. Jatuh tegangan pada cincin kolektor sikat umumnya diabaikan, tapi bisa juga disertakan dalam rugi- 37

33 rugi penguat. Rugi-rugi tembaga kumparan jangkar (P SCL = 3I A 2.RA ) pada umumnya dihitung dari tahanan arus searah kumparan jangkar pada suhu 75 0 Gambar 2.25 Diagram Aliran daya Generator sinkron Dari gambar 2.25 dapat dilihat bahwa persamaan (2.39) di bawah ini: PPPPPPPP = 3xx VV tt xxii ll xxxxxxxxxx.. (2.39) Maka semakin baik faktor daya yang dihasilkan maka daya out put juga semakin besar, dengan kata lain rugi rugi yang dihasilkan menjadi lebih kecil. Maka dari Persamaan 2.39 dapat disimpulkan semakin baik faktor daya, maka efisiensi yang dihasilkan juga semakin baik [1] Pengaruh Faktor Daya Terhadap Regulasi dan Efisiensi Adapun faktor yang menjadi keunggulan generator sinkron dibandingkan dengan generator yang lain adalah tingkat regulasi tegangan (VR) adalah suatu ukuran kemampuan dari sebuah generator untuk menjaga tegangan terminal tetap konstan walaupun terjadi perubahan beban. Regulasi tegangan dapat didefenisikan dengan persamaan (2.40) 38

34 VVVV = EE ff VV tt VV tt Dimana: xx100%...(2.40) E f = Tegangan terminal generator pada saat beban nol Vt = Tegangan terminal generator pada saat beban penuh [volt] Seperti halnya dengan mesin-mesin listrik lainnya, maupun transformator, maka efisiensi generator sinkron dapat dituliskan sebagai persamaan (2.41). ηη = PP oooooo PP oooooo +PP iiii xx100%...(2.41) dimana : P in = P out + Σ rugi P P out = daya keluaran P in = daya masukan 2.12 Faktor Daya Dalam sistem listrik AC/Arus Bolak-Balik ada tiga jenis daya yang dikenal, khususnya untuk beban yang memiliki impedansi (Z), yaitu: Daya semu (S), VA (Volt Amper) Daya aktif (P), Watt Daya reaktif (Q), VAR (Volt Amper Reaktif) Untuk rangkaian listrik AC, bentuk gelombang tegangan dan arus sinusoida, besarnya daya setiap saat tidak sama. Maka daya yang merupakan daya rata-rata diukur dengan satuan Watt. Daya ini membentuk energi aktif persatuan waktu dan dapat diukur dengan kwh meter dan juga merupakan daya nyata atau daya aktif (daya yang sebenarnya) yang digunakan oleh beban. 39

35 Sedangkan daya semu dinyatakan dengan satuan Volt-Ampere (disingkat, VA), menyatakan kapasitas peralatan listrik, seperti yang tertera pada peralatan generator dan transformator. Pada suatu instalasi, khususnya di pabrik/industri juga terdapat beban tertentu seperti motor listrik, yang memerlukan bentuk lain dari daya, yaitu daya reaktif (VAR) untuk membuat medan magnet atau dengan kata lain daya reaktif adalah daya yang terpakai sebagai energi pembangkitan flux magnetik sehingga timbul magnetisasi dan daya ini dikembalikan ke sistem karena efek induksi elektromagnetik itu sendiri, sehingga daya ini sebenarnya merupakan beban (kebutuhan) pada suatu sistim tenaga listrik. Gambar 2.26 Segitiga Daya Faktor daya atau faktor kerja adalah perbandingan antara daya aktif (watt) dengan daya semu/daya total (VA), atau cosinus sudut antara daya aktif dan daya semu/daya total (lihat Gambar 2.26). Daya reaktif yang tinggi akan meningkatkan sudut ini dan sebagai hasilnya faktor daya akan menjadi lebih rendah. Faktor daya selalu lebih kecil atau sama dengan satu. Faktor daya menggambarkan sudut phasa antara daya aktif dan daya semu. Faktor daya yang rendah merugikan karena mengakibatkan arus beban tinggi. Perbaikan faktor daya ini menggunakan kapasitor [5]. 40

36 Besarnya daya reaktif yang diperlukan untuk mengubah faktor daya dari cos φ 1 menjadi cos φ 2 dapat ditentukan dengan persamaan (2.42) ΔQ = P Tan (φ 1 φ 2 ) VAR... (2.42) Gambar 2.27 Perbaikan Faktor Daya Kemudian besar nilai kapasitornya dapat dihitung dengan persamaan (2.43) Dimana : CC pppppppppppppp = QQ = μμμμ. (2.43) 3VV 2 2ππππ φ 1 : adalah faktor daya sebelum diperbaiki φ 2 : adalah faktor daya sesudah diperbaiki ΔC perfasa : Besar nilai kapasitor perfasa ΔQ : Jumlah daya reaktif yang dibutuhkan untuk memperbaiki faktor daya (VAR) Bertambahnya beban yang dilayani generator identik dengan bertambahnya daya nyata atau daya reaktif yang mengalir dari generator. Maka pertambahan beban akan menambah arus saluran yang mengalir dari generator, pertambahan arus saluran ini akan mempengaruhi nilai tegangan terminal Vt. hal yang berpengaruh terutama oleh factor daya beban, seperti pada Gambar 2.28, diperlihatkan diagram fasor untuk penambahan beban dengan faktor daya tertinggal, faktor daya 41

37 satu, dan faktor daya terdahulu, dimana Vt' adalah tegangan terminal setelah beban dengan faktor daya yang sama ditambahkan, dan Vt menyatakan tegangan terminal pada saat awal. (a) (b) (c) Gambar 2.28 Perubahan fasor untuk berbagai beban yang berubah (a) Induktif, (b) Resistif, (c) Kapasitif. 42

38 Terlihat bahwa untuk beban induktif, pertambahan beban akan mengurangi tegangan terminal akan mengecil. Begitu juga jika beban resistif ditambahkan maka tegangan terminal juga akan mengecil. Jika beban kapasitif ditambahkan, maka tegangan terminal cenderung membesar [8] Regulasi Tegangan Jika pada sebuah generator dilakukan pengukuran tegangan dalam keadaan tanpa beban dan berbeban, ternyata terdapat perbedaan dari hasil pengukuran tersebut. Dimana terlihat bahwa dengan berubahnya beban maka tegangan terminal dari generator juga akan berubah. Perubahan besarnya (magnitude) tegangan tidak hanya tergantung dari besarnya beban, tetapi juga dipengaruhi cos φ beban. Pengaturan tegangan (voltage regulation) dari suatu generator sinkron dapat didefinisikan sebagai perubahan tegangan terminal dari beban nol (no-load) ke beban penuh (full-load) dengan menjaga eksitasi medan dan putaran tetap, dibagi dengan tegangan beban penuh (full-load). Dimana tegangan pada terminal dari generator sinkron tergantung dari beban yang terpasang dan juga faktor daya (power factor) beban tersebut. Pengaturan tegangan ini dinyatakan dalam persen (%) dari tegangan nominal dan perbedaan tegangan bukan secara vektor, tetapi besaran yang dinyatakan dalam persamaan (2.44) diketahui: VVVV = EE ff VV tt VV tt xx100% (2.44) VR = Regulasi Tegangan V t = Tegangan Terminal E f = Tegangan Induksi 43

39 Perlu dicatat bahwa E - V adalah selisih aritmatik bukan selisih fasor. 0 FL Faktor faktor yang mempengaruhi regulasi tegangan sebuah generator sinkron antara lain : a.) Jatuh tegangan akibat I a R a pada belitan jangkar b.) Jatuh tegangan akibat I a X L c.) Perubahan tegangan akibat reaksi jangkar Gambar 2.29 menunjukkan pengaruh perubahan beban terhadap perubahan tegangan terminal dengan faktor daya (power factor) yang berbeda. Gambar 2.29 Pengaruh Perubahan beban terhadap tegangan terminal Dari Gambar 2.29 dapat dilihat bahwa perubahan tegangan terminal karena reaksi jangkar bergantung pada arus beban ) dan faktor daya (PF) dari beban. (IL Untuk beban dengan faktor daya mendahului (leading), tegangan terminal tanpa beban lebih kecil daripada tegangan terminal beban penuh. Oleh karena itu, regulasi tegangan bernilai negatif. Untuk beban dengan faktor daya tertinggal (lagging), tegangan terminal tanpa beban lebih besar daripada tegangan terminal beban penuh. 44

40 Maka, regulasi tegangan bernilai positif. Sedangkan untuk beban dengan faktor daya 1 (unity), nilai tegangan terminal tanpa beban hampir sama dengan nilai tegangan terminal beban penuh. Oleh karena itu, regulasi tegangan bernilai mendekati 0 persen [5] Penentuan Parameter Generator Sinkron 3 Fasa Dari test : - Ea dari test beban nol (Open Circuit) - Ia dari test hubung singkat (Short Circuit) Diperoleh Reaktansi Xd (d-axis) sehinga di dapat persamaan Dari test : XX dd = tttttttttttttttt bbbbbbbbbb nnnnnn uuuuuuuuuu aaaaaaaa mmmmmmmmmm tttttttttttttttt aaaaaaaa huuuuuuuuuu ssssssssssssss uuuuuuuuuu aaaaaaaa mmmmmmmmmm yyyyyyyy ssssssss - tegangan dan arus dari Test Slip Diperoleh Reaktansi Xq (q-axis) sehinga di dapat persamaan XX dd = XX qq = Dari Test Berbeban : tttttttttttttttt tttttttttttttttt mmmmmmmmmmmmmmmm pppppppppppppp (vvvvvvvv) aaaaaaaa jjjjjjjjjjjjjj mmmmmmmmmmmmmm pppppppppppppp (aaaaaaaaaa) tttttttttttttttt tttttttttttttttt mmmmmmmmmmmmmm pppppppppppppp (vvvvvvvv) aaaaaaaa jjjjjjjjjjjjjj mmmmmmmmmmmmmmmm pppppppppppppp (aaaaaaaaaa) - V t (Tegangan Terminal) E f = Tegangan Beban Nol - I a (Arus Jangkar) VR = Regulasi Tegangan - P out (Daya Output) η = Efisiensi 45

41 2.15 Metode Penentuan Tegangan Terminal Generator Sinkron Metode Blondel (Two Reaction Theory) Dalam pengaturan tegangan dengan metode EMF, Reaksi jangkar dihitung dengan cara diekivalensikan terhadap tegangan reaktansi jangkar, dalam bentuk ini adalah pengembangan dari konsep reaktansi sinkron. Ini memungkinkan hanya digunakan pada mesin non salient pole. Dimana celah udaranya dianggap uniform dan reluktansi rangkaian magnetik adalah benar-benar konstan. Dalam mesin salient pole, mmf jangkar tidak dapat ditentukan hanya dengan mengandalkan reaktansi ekivalennya, karena celah udaranya tidak uniform dan reluktansi sepanjang kutub d-axis lebih kecil dari q-axis [3]. Perbedaaan harga reluktansi dalam kutub dan antar kutubnya membuat analisa mesin rotor salient pole benar-benar berbeda dari mesin rotor silinder. Disini pengaruh salient pole dapat dihitung dengan bantuan two reaction theory seperti yang diusulkan oleh BLONDEL. Teori ini menyatakan bahwa arus jangar I harus diselesaikan dalam bentuk dua komponen, yakni F ad (I d ), dalam waktu q- axis dengan E f (sebagai komponen magnetising atau demagnetising) yang hanya menghasilkan perubahan kekuatan fluksi medan. Komponen yang kedua, adalah F aq (I q ) yang sefasa dengan E f (cross magnetising) dan hanya menghasilkan distorsi dari fluksi medan [6]. 46

42 Gambar 2.30 Diagram fasor teori dua reaksi dari mesin sinkron salient pole komponen mmf jangkar F ad dan F aq dapat diambil sebagai komponen yang dihasilkan oleh arus jangkar I yang sefasa denga F ad dan F aq, misalnya masingmasing I d dan I q. Dimana : I d = I sin θ... (2.45) I q = I cos θ... (2.46) Θ = sudut fasa internal ingat bahwa banyaknya d-axis adalah satu, sehingga efek magnetiknya sepanjang sumbu kutub medan. Dalam hal ini, F ad dan I d berada pada d-axis. Banyaknya sumbu q-axis juga adalah satu dimana F aq dan I q berada pada q-axis tersebut. Pada metode EMF, mmf jangkar ditempatkan oleh q-axis yang lagging terhadap tegangan induksi. Dengan demikian, komponen mmf jangkar dapat diuraikan menjadi E ad dan E aq dengan lagging 90 o, terhadap masing-masing F ad dan F aq (I d dan I q ). Dari gambar 2.30 diatas, E ad adalah tegangan induksi dari kumparan jangkar ke d-axis dari reaksi jangkar F ad, sehingga dapat ditulis: E ad = -j.c.k d.f ad = -j.x ad.i d... (2.47) E aq = -j.c.k q.f aq = -j.x aq.i q... (2.48) 47

43 Disini X ad dan X aq adalah sebanding dengan konstanta dan dapat didesain sebagai reaktansi jangkar pada masing-masing d-axis dan q-axis. Drop tegangan reaktansi X at pada kumparan dapat ditulis: -j.i.x at = -j ( I d + I q ).X at = -j. I d. X at. j. I q. X at... (2.49) Disini drop tersebut boleh dikombinasikan dengan ekivalen reaksi jangkar emd untuk menentukan reaktansi sinkron d dan q-axis. Dengan demikian, X d = X at + X ad = reaktansi sinkrin pada d-axis... (2.50) X q = X at + X aq = reaktansi sinkrin pada q-axis... (2.51) Reaktansi leakage jangkar X at sudah dianggap sama pada d-axis dan q-axis. a. diagram fasor dua reaksi generator sinkron b. Versi yang disederhanakan Gambar 2.31 Diagram fasor dua reaksi generator sinkron disederhanakan Jadi yang perlu diingat dan dicatat perbedaan metode emf dengan metode dua reaksi, metode emf memperkenalkan konsep reaktansi sinkron (X s ) yang dihitung untuk seluruh reaktansi jangkar, sedangkan metode dua reaksi memperkenalkan konsep dua reaksi, satu diasosiasikan dengan d-axis komponen dari mmf jangkar, dan satu lagi dengan q-axis komponen mmf jangkar. Dari gambar 2.30 dapat ditulis : 48

44 E f = V t + Ia.R + j. I d. X d + j. I q. X q... (2.52) Dalam menggunakan diagram fasor gambar 2.30 arus jangkar I, harus diselesaikan dalam komponen d-axis dan q-axis. Prosedur ini seperti yang telah dianalisa dalam mengambil persamaan dimana diproleh harga E f. Dengan demikian, pengaturan tegangan untuk generator sinkron salient pole dapat dicari [3]. Dimana: V t = Tegangan Terminal R = Tahanan jangkar X q = Reaktansi q-axis E f = Tegangan Induksi I d = Arus pada d-axis X d = Reaktansi d-axis I a = Arus Jangkar I q = Arus pada q-axis 1. Menghitung X d Pengukuran reaktansi sinkron pada d-axis (X d ), dapat ditentukan dari test beban nol dan test hubung singkat. Dimana persamaannya adalah : XX dd = tttttttttttttttt bbbbbbbbbb nnnnnn uuuuuuuuuu aaaaaaaa mmmmmmmmmm tttttttttttttttt aaaaaaaa huuuuuuuuuu ssssssssssssss uuuuuuuuuu aaaaaaaa mmmmmmmmmm yyyyyyyy ssssssss. (2.53) 2. Menghitung X q Sedangkan untuk mengukur reaktansi sinkron pada q-axis (X q ) dapat ditentukan dengan beberapa cara, yakni: Dengan metode test slip Test arus lagging maksimum a. Dengan metode test slip Dari Test ini, harga X d dan X q dapat ditentukan. Caranya dengan memutar mesin sinkron pada suatu kecepatan dibawah harga kecepatan sinkronnya. 49

45 Kumparan medannya, tetap dibiarkan dalam keadaan terbuka, kemudian kumparan jangkar dihubungkan ke sumber tegangan yang direduksi 20% bsampai 40% dari harga ratingnya, dan rate frekuensinya dipengaruhi melalui terminal jangkar. Pada kondisi ini kecepatan relatif konstan antara kutub medan dengan mmf jangkar, adalah sama dengan perbedaan antara kecepatan sinkronnya dengan kecepatan rotornya. Sehingga dikenal juga dengan test slip. Pada suatu keadaan dimana bentuk gelombang mmf jangkar segaris dengan sumbu kutub medan. Maka reluktansi yang diberikan oleh mmf jangkar adalah minimum, dan pada keadaan ini tegangan terminal jangkar sefasa dibagi oleh arus yang dihasilkannya, akan memberikan harga X d. Gambar 2.32 Osilograph Test Slip Setelah ¼ siklus gelombang slip, bentuk gelombang mmf jangkar berada pada q-axis, dimana reluktansinya yang yang dihasilkan mmf jangkar adalah maksimum. Pada keadaan ini perbandingan antara tegangan terminal jangkar perfasa dengan hubungannya arus jangkar perfasa akan memberikan harga X q. XX dd = tttttttttttttttt tttttttttttttttt mmmmmmmmmmmmmmmm pppppppppppppp (vvvvvvvv ) aaaaaaaa jjjj nnnnnnnnnn mmmmmmmmmmmmmm pppppppppppppp (aaaaaaaaaa ).. (2.54) 50

46 XX qq = tttttttttttttttt tttttttttttttttt mmmmmmmmmmmmmm pppppppppppppp (vvvvvvvv ) aaaaaaaa jjjjjjjjjjjjjj mmmmmmmmmmmmmmmm pppppppppppppp (aaaaaaaaaa ).(2.55) Karena tegangan terminal jangkar yang digunakan adalah kecil (tidak menghasilkan harga saturasi), maka harga reaktansi yang ditentukanpun harga yang belum mencapai saturasi. Dalam test ini harga slip dibuat sekecil mungkin sehingga harga yang diperoleh kurang sesuai, karena harga reaktansi yang diperoleh tergantung dari kejenuhan inti dan slip. Dengan demikian test ini hanya cocok digunakan untuk menentukan perbandingan antara X d dan X q. Jadi harga X d yang digunakan adalah dari test beban nol dan hubung singkat [3]. Maka X q dapat dicari dengan : Misalkan : X d = reaktansi d-axis dari test slip X q = reaktansi q-axis dari test slip X d = reaktansi d-axis dari test beban nol dan hubung singkat Maka: XX dd XX qq = XX dd XX qq..(2.56) XX qq = XX qq XX dd. XX dd (2.57) b. Test Arus Lagging Maksimum pada test ini, sebuah mesin sinkron disinkronkan dengan sebuah infinite bus, dan bekerja dengan kecepatan sinkronnya dengan beban nol ( dimana motor sinkron akan menjadi motor reluktansi). Dan arus medan, polaritasnya dibalik untuk selanjutnya dihubungkan kembali ke terminal medannya. Arus medan yang telah dibalik polaritasnya ini, dinaikkan kembali sampai dicapai rotor berhenti. Pada saat ini dicatat arus jangkar I, tegangan terminal jangkar Vt (ketika arus 51

47 jangkar maksimum dan stabil). dan reaktansi sinkronnya, diberikan oleh persamaan : XX qq = VVVV (tttttttttttttttt tttttttttttttttt pppppppppppppp ) aaaaaaaa jjjjjjjjjjjjjj pppppppppppppp (II).(2.58) Keuntungan dari metode ini, adalah harga X q yang dihasilkan mendekati harga sebenarnya [3]. 52

BAB II GENERATOR SINKRON TIGA PHASA. berupa putaran menjadi energi listrik bolak-balik (AC).

BAB II GENERATOR SINKRON TIGA PHASA. berupa putaran menjadi energi listrik bolak-balik (AC). BAB II GENERATOR SINKRON TIGA PHASA 2.1 Umum Hampir semua energi listrik dibangkitkan dengan menggunakan generator sinkron. Oleh sebab itu generator sinkron memegang peranan penting dalam sebuah pusat

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

BAB II GENERATOR SINKRON 3 FASA

BAB II GENERATOR SINKRON 3 FASA BAB II GENERATOR SINKRON 3 FASA 2.1 Umum Genetaror sinkron merupakan pembangkit listrik yang banyak digunakan. Oleh sebab itu generator sinkron memegang peranan penting dalam sebuah pusat pembangkit listrik.

Lebih terperinci

DA S S AR AR T T E E ORI ORI

DA S S AR AR T T E E ORI ORI BAB II 2 DASAR DASAR TEORI TEORI 2.1 Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator)

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY)

ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY) ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY) Selamat Aryadi (1), Syamsul Amien (2) Konsentrasi Teknik

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator sinkron (alternator) adalah mesin listrik yang digunakan untuk mengubah energi mekanik menjadi energi listrik dengan perantara induksi medan magnet. Perubahan

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Rujukan penelitian yang pernah dilakukan untuk mendukung penulisan tugas akhir ini antara lain sebagai berikut : a. Berdasarkan hasil penelitian yang telah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perubahan beban terhadap karakteristik generator sinkron 3 fasa PLTG Pauh

BAB II TINJAUAN PUSTAKA. perubahan beban terhadap karakteristik generator sinkron 3 fasa PLTG Pauh BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Rujukan penelitian yang pernah dilakukan untuk mendukung penulisan skripsi ini antara lain: Sepannur Bandri (2013), melakukan penelitian mengenai analisa pengaruh

Lebih terperinci

POLITEKNIK NEGERI SRIWIJAYA BAB II TINJAUAN PUSTAKA

POLITEKNIK NEGERI SRIWIJAYA BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Generator Sinkron Tegangan output dari generator sinkron adalah tegangan bolak balik, karena itu generator sinkron disebut juga generator AC. Perbedaan prinsip antara generator

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Generator Generator adalah salah satu jenis mesin listrik yang digunakan sebagai alat pembangkit energi listrik dengan cara menkonversikan energi mekanik menjadi energi listrik.

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA BAB III 3 METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian ini akan dilakukan di Laboratorium Konversi Energi Listrik, Departemen Teknik Elektro, Fakultas Teknik,. Penelitian dilaksanakan selama dua bulan

Lebih terperinci

ABSTRAK. Kata Kunci: pengaturan, impedansi, amperlilit, potier. 1. Pendahuluan. 2. Generator Sinkron Tiga Fasa

ABSTRAK. Kata Kunci: pengaturan, impedansi, amperlilit, potier. 1. Pendahuluan. 2. Generator Sinkron Tiga Fasa ANALISA PERBANDINGAN METODE IMPEDANSI SINKRON, AMPER LILIT DAN SEGITIGA POTIER DALAM MENENTUKAN REGULASI TEGANGAN GENERATOR SINKRON DENGAN PEMBEBANAN RESISTIF, INDUKTIF DAN KAPASITIF Hanri Adi Martua Hasibuan,

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya 4 BAB II TINJAUAN PUSTAKA 2.1. Umum Generator sinkron adalah mesin pembangkit listrik yang mengubah energi mekanik sebagai input menjadi energi listrik sebagai output. Tegangan output dari generator sinkron

Lebih terperinci

PRINSIP KERJA GENERATOR SINKRON. Abstrak :

PRINSIP KERJA GENERATOR SINKRON. Abstrak : PRINSIP KERJA GENERATOR SINKRON * Wahyu Sunarlik Abstrak : Generator adalah suatu alat yang dapat mengubah tenaga mekanik menjadi energi listrik. Tenaga mekanik bisa berasal dari panas, air, uap, dll.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator adalah mesin yang mengelola energi mekanik menjadi energi listrik. Prinsip kerja generator adalah rotor generator yang digerakan oleh turbin sehingga menimbulkan

Lebih terperinci

BAB II DASAR TEORI. Generator arus bolak-balik (AC) atau disebut dengan alternator adalah

BAB II DASAR TEORI. Generator arus bolak-balik (AC) atau disebut dengan alternator adalah BAB II DAAR TEORI 2.1. Generator inkron Generator arus bolak-balik (AC) atau disebut dengan alternator adalah suatu peralatan yang berfungsi untuk mengkonversi energi mekanik (gerak) menjadi energi listrik

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Generator Sinkron Sebagian besar energi listrik yang dipergunakan oleh konsumen untuk kebutuhan sehari-hari dihasilkan oleh generator sinkron 3 fasa yang ada di pusatpusat tenaga

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1. Umum Motor arus searah (motor DC) adalah mesin yang merubah enargi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

SYNCHRONOUS GENERATOR. Teknik Elektro Universitas Indonesia Depok 2010

SYNCHRONOUS GENERATOR. Teknik Elektro Universitas Indonesia Depok 2010 SYNCHRONOUS GENERATOR Teknik Elektro Universitas Indonesia Depok 2010 1 Kelompok 7: Ainur Rofiq (0706199022) Rudy Triandi (0706199874) Reza Perkasa Alamsyah (0806366296) Riza Tamridho (0806366320) 2 TUJUAN

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Umum Seperti telah di ketahui bahwa mesin arus searah terdiri dari dua bagian, yaitu : Generator arus searah Motor arus searah Ditinjau dari konstruksinya, kedua mesin ini adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan M O T O R D C Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut Ac Shunt Motor. Motor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

Mesin AC. Dian Retno Sawitri

Mesin AC. Dian Retno Sawitri Mesin AC Dian Retno Sawitri Pendahuluan Mesin AC terdiri dari Motor AC dan Generator AC Ada 2 tipe mesin AC yaitu Mesin Sinkron arus medan magnet disuplai oleh sumber daya DC yang terpisah Mesin Induksi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah BAB II DASAR TEORI 2.1 Umum Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah tenaga listrik arus searah ( listrik DC ) menjadi tenaga gerak atau tenaga mekanik, dimana tenaga gerak

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU PHASA II1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator. BAB II MESIN INDUKSI TIGA FASA II.1. Umum Mesin Induksi 3 fasa atau mesin tak serempak dibagi atas dua jenis yaitu : 1. Motor Induksi 3 fasa 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

Lebih terperinci

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi BAB II DASAR TEORI 2.1 Umum (1,2,4) Secara sederhana motor arus searah dapat didefenisikan sebagai suatu mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi gerak atau energi

Lebih terperinci

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja BAB II DASAR TEORI 2.1 Mesin arus searah 2.1.1. Prinsip kerja Motor listrik arus searah merupakan suatu alat yang berfungsi mengubah daya listrik arus searah menjadi daya mekanik. Motor listrik arus searah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Generator sinkron (alternator) adalah mesin listrik yang digunakan untuk mengubah energi mekanik menjadi energi listrik dengan perantara induksi medan magnet. Dikatakan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya BAB MOTOR KAPASTOR START DAN MOTOR KAPASTOR RUN 2.1. UMUM Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1 TOPIK 12 MESIN ARUS SEARAH Suatu mesin listrik (generator atau motor) akan berfungsi bila memiliki: (1) kumparan medan, untuk menghasilkan medan magnet; (2) kumparan jangkar, untuk mengimbaskan ggl pada

Lebih terperinci

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder TRANSFORMATOR PENGERTIAN TRANSFORMATOR : Suatu alat untuk memindahkan daya listrik arus bolak-balik dari suatu rangkaian ke rangkaian lainnya secara induksi elektromagnetik (lewat mutual induktansi) Bagian-bagian

Lebih terperinci

I. Maksud dan tujuan praktikum pengereman motor induksi

I. Maksud dan tujuan praktikum pengereman motor induksi I. Maksud dan tujuan praktikum pengereman motor induksi Mengetahui macam-macam pengereman pada motor induksi. Menetahui karakteristik pengereman pada motor induksi. II. Alat dan bahan yang digunakan Autotrafo

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 DOSEN PEMBIMBING : Bp. DJODI ANTONO, B.Tech. Oleh: Hanif Khorul Fahmy LT-2D 3.39.13.3.09 PROGRAM STUDI

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

BAB III SISTEM EKSITASI TANPA SIKAT DAN AVR GENERATOR

BAB III SISTEM EKSITASI TANPA SIKAT DAN AVR GENERATOR 28 BAB III SISTEM EKSITASI TANPA SIKAT DAN AVR GENERATOR 3.1 Karakteristik Generator Sinkron Terdapat dua metode untuk dapat mengetahui karakteristik generator sinkron, yaitu Analisis grafis dan pengukuran

Lebih terperinci

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis

Lebih terperinci

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung BAB II DASAR TEORI 2.1 Energi Listrik Energi adalah kemampuan untuk melakukan kerja. Salah satu bentuk energi adalah energi listrik. Energi listrik adalah energi yang berkaitan dengan akumulasi arus elektron,

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Bagian 9: Motor Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Outline Pendahuluan Konstruksi Kondisi Starting Rangkaian Ekivalen dan Diagram Fasor Rangkaian

Lebih terperinci

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah sangat

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator sinkron (alternator) adalah mesin listrik yang digunakan untuk mengubah energi mekanik menjadi energi listrik dengan perantara induksi medan magnet. Dikatakan

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

KONSTRUKSI GENERATOR DC

KONSTRUKSI GENERATOR DC KONSTRUKSI GENERATOR DC Disusun oleh : HENDRIL SATRIYAN PURNAMA 1300022054 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS AHMAD DAHLAN YOGYAKARTA 2015 I. DEFINISI GENERATOR DC Generator

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Mesin sinkron merupakan mesin listrik yang kecepatan putar rotornya (N R ) sama (sinkron) dengan kecepatan medan putar stator (N S ), dimana: (2.1) Dimana: N S = Kecepatan

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

Mesin Arus Bolak Balik

Mesin Arus Bolak Balik Teknik Elektro-ITS Surabaya share.its.ac.id 1 Mesin Arus Bolak balik TE091403 Institut Teknologi Sepuluh Nopember August, 2012 Teknik Elektro-ITS Surabaya share.its.ac.id ACARA PERKULIAHAN DAN KOMPETENSI

Lebih terperinci

TUGAS AKHIR STUDI SISTEM EKSITASI DENGAN MENGGUNAKAN PERMANENT MAGNET GENERATOR (APLIKASI PADA GENERATOR SINKRON DI PLTD PT. MANUNGGAL WIRATAMA)

TUGAS AKHIR STUDI SISTEM EKSITASI DENGAN MENGGUNAKAN PERMANENT MAGNET GENERATOR (APLIKASI PADA GENERATOR SINKRON DI PLTD PT. MANUNGGAL WIRATAMA) TUGAS AKHIR STUDI SISTEM EKSITASI DENGAN MENGGUNAKAN PERMANENT MAGNET GENERATOR (APLIKASI PADA GENERATOR SINKRON DI PLTD PT. MANUNGGAL WIRATAMA) Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB II GENERATOR ARUS SEARAH. arus searah. Energi mekanik di pergunakan untuk memutar kumparan kawat

BAB II GENERATOR ARUS SEARAH. arus searah. Energi mekanik di pergunakan untuk memutar kumparan kawat BB II GENERTOR RUS SERH II.1. Umum Generator arus searah mempunyai komponen dasar yang umumnya hampir sama dengan komponen mesin mesin listrik lainnya. Secara garis besar generator arus searah adalah alat

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating BAB II TINJAUAN PUSTAKA 2.1 Umum Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya berasal

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan 1

Modul Kuliah Dasar-Dasar Kelistrikan 1 TOPIK 14 MESIN SINKRON PRINSIP KERJA MESIN SINKRON MESIN sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor. Kumparan jangkarnya berbentuk sarna dengan mesin induksi. sedangkan

Lebih terperinci

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi TEKNO, Vol : 19 Maret 2013, ISSN : 1693-8739 MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz M. Rodhi Faiz, Hafit Afandi Abstrak : Metode yang digunakan dalam

Lebih terperinci

BAB I PENDAHULUAN Manfaat Penulisan Tugas Akhir

BAB I PENDAHULUAN Manfaat Penulisan Tugas Akhir BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Motor induksi merupakan motor arus bolak-balik yang paling luas diaplikasikan dalam dunia industri dan juga dalam rumah tangga. Motor ini mempunyai banyak

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah (motor DC) adalah mesin yang merubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis.

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis. MESIN LISTRIK 1. PENDAHULUAN Motor listrik merupakan sebuah mesin yang berfungsi untuk merubah energi listrik menjadi energi mekanik atau tenaga gerak, di mana tenaga gerak itu berupa putaran dari pada

Lebih terperinci

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives Oleh PUSPITA AYU ARMI 1304432 PENDIDIKAN TEKNOLOGI DAN KEJURUAN PASCASARJANA FAKULTAS TEKNIK UNIVERSITAS NEGERI PADANG 2013 SYNCHRONOUS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum MOTOR ARUS SEARAH Motor arus searah (DC) adalah mesin listrik yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Konstruksi motor arus

Lebih terperinci

MOTOR LISTRIK 1 & 3 FASA

MOTOR LISTRIK 1 & 3 FASA MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.

Lebih terperinci

TUGAS PERTANYAAN SOAL

TUGAS PERTANYAAN SOAL Nama: Soni Kurniawan Kelas : LT-2B No : 19 TUGAS PERTANYAAN SOAL 1. Jangkar sebuah motor DC tegangan 230 volt dengan tahanan 0.312 ohm dan mengambil arus 48 A ketika dioperasikan pada beban normal. a.

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1 Data Hasil Pengukuran Setelah melakukan pengujian di PT. Emblem Asia dengan menggunakan peralatan penguji seperti dijelaskan pada bab 3 didapatkan sekumpulan data berupa

Lebih terperinci

BAB II MOTOR ARUS SEARAH. putaran dari motor. Pada prinsip pengoperasiannya, motor arus searah sangat

BAB II MOTOR ARUS SEARAH. putaran dari motor. Pada prinsip pengoperasiannya, motor arus searah sangat BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah (motor dc) adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi mekanik tersebut berupa putaran dari motor.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Bagian sistem ini biasanya terdiri dari dua bagian yaitu saluran distribusi primer

BAB II TINJAUAN PUSTAKA. Bagian sistem ini biasanya terdiri dari dua bagian yaitu saluran distribusi primer BAB II TINJAUAN PUSTAKA 2.1. Sistem Distribusi Tenaga Listrik Sistem distribusi tenaga listrik merupakan sistem dimana listrik yang sudah dibangkitkan oleh pembangkit listrik akan disalurkan ke konsumen

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip.

BAB II MOTOR INDUKSI TIGA FASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip. BAB II MOTOR INDUKSI TIGA FASA 2.1. Umum Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Pada motor

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB MOTOR NDUKS SATU PHASA.1. Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran medan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Motor arus searah (motor DC) telah ada selama lebih dari seabad. Keberadaan motor DC telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip.

BAB II MOTOR INDUKSI TIGA PHASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip. BAB II MOTOR INDUKSI TIGA PHASA 2.1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan putar pada stator, dengan kata lain putaran rotor

Lebih terperinci