Muhammad Nasir. Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km Lhokseumawe

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Muhammad Nasir. Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km Lhokseumawe"

Transkripsi

1 KLASIFIKASI DAN PNGNALAN SIDIK JAI TTUMPUK BBASIS MTOD LANING VCTO QUANTIZATION Muhammad Nasir Jurusan Teknik lektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km Lhokseumawe 21 mail : Abstrak Sistem biometrik adalah sistem untuk melakukan identifikasi dengan cara menggunakan ciri-ciri fisik atau anggota tubuh manusia, seperti sidik jari, wajah, iris dan retina mata, suara. Teknologi biometrik ini memiliki beberapa kelebihan seperti tidak mudah hilang, tidak dapat lupa, tidak mudah dipalsukan, dan memiliki keunikan yang berbeda antara manusia satu dengan yang lain. Salah satu cara yang digunakan dalam sistem biometrik dengan kehandalan sangat tinggi dan sangat sering digunakan dalam investigasi kriminal adalah pengenalan sidik jari. Sistem pengenalan sidik jari bertujuan untuk mengidentifikasi sidik jari seseorang. Metode yang biasanya digunakan adalah metode minutiae dan metode image-matching. Paper ini mengusulkan klasifikasi dan pengenalan sidik jari tertumpuk menggunakan metode image-matching dengan metode Learning Vector Quantization (LVQ) dengan pemrosesan awal filter, binerisasi dan thinning. Penelitian ini bertujuan untuk menemukan karakteristik dan hasil terbaik dalam melakukan klasifikasi dan pengenalan sidik jari tertumpuk menggunakan metode Learning Vector Quantization (LVQ) dengan pemrosesan awal filter, binerisasi dan thinning. Kata kunci: pengenalan, sidik jari/fingerprint, Learning Vector Quantization. 1. Pendahuluan Sistem biometrik adalah sistem untuk melakukan identifikasi dengan cara menggunakan ciri-ciri fisik atau anggota badan manusia, seperti sidik jari, wajah, iris dan retina mata, suara [1]. Teknologi biometrik ini memiliki beberapa kelebihan seperti tidak mudah hilang, tidak dapat lupa, tidak mudah dipalsukan, dan memiliki keunikan yang berbeda antara manusia satu dengan yang lain [2,, & ]. Salah satu cara yang digunakan dalam sistem biometrik dengan kehandalan sangat tinggi dan sangat sering digunakan oleh para ahli forensik di dalam investigasi kriminal adalah pengenalan sidik jari. Sistem pengenalan sidik jari bertujuan untuk mengidentifikasi sidik jari seseorang. Metode yang digunakan adalah metode minutiae dan metode image-matching []. Metode minutiae unggul dari segi kecepatan dibandingkan dengan metode image matching, namun rendah dari segi hasil keakuratan identifikasi/pengenalan. Sebaliknya, metode image matching unggul dari segi keakuratan pengenalan, namun rendah dari segi kecepatan proses [6].

2 Analisis citra bertujuan mengidentifikasi parameter-parameter yang diasosiasikan dengan ciri (feature) dari obyek di dalam citra, untuk selanjutnya parameter tersebut digunakan dalam menginterpretasi citra. Analisis citra pada dasarnya terdiri dari tiga tahapan: ekstraksi ciri (feature extraction), segmentasi, dan klasifikasi. [7] Pada penelitian sebelumnya (Nasir Muhammad, 2012) membahas mengenai pengujian kualitas citra sidik jari kotor dengan metode Learning Vector Quantization (LVQ) dengan jumlah kelas pada pengujian seluruhnya 20 kelas dengan tiap kelas terdiri dari 10 citra yang menghasilkan peningkatan kualitas citra sidik jari sebesar 87%.[8]. Pada penelitian (Supriyono, Yoyok, 2009) mengenai deteksi kerusakan citra sidik jari diantaranya sidik jari, diantaranya sidik sidik jari kotor,sidik jari berminyak, sidik jari sebagian,sidik jari rotasi.sedangkan ekstraksi ciri menggunakan pemisah luasan defect dan non defect dan deteksi menggunakan metode Learning Vector Quantization (LVQ). Hasil yang diperoleh dari penelitian tersebut citra sidik jari sebagian akurasi mencapai 100%, citra sidik jari kotor 8%, sidi jari berminyak 96,6%, sidik jari rotasi 8 % [9]. Faktor kunci dalam mengekstraksi ciri adalah kemampuan mendeteksi keberadaan tepi (edge) dari obyek di dalam citra [8]. Faktor utama yang sangat menentukan hasil pengenalan sidik jari adalah kualitas citra input yang digunakan. Saat ini jaringan syaraf tiruan berkembang dengan pesat dan telah diupayakan untuk berbagai aplikasi, salah satu aplikasinya adalah pengenalan pola sidikjari. Learning Vector Quantizations (LVQ) merupakan suatu metode klasifikasi pola yang masing-masing unit mewakili kategori atau kelas tertentu [10]. Dalam makalah ini dilakukan pengembangan Jaringan LVQ dalam mengklasifikasi sidik jari dengan pemrosesan awal filter, binerisasi dan thinning. 2. Metodelogi PPOCSSING FATU XTACTION IMAG CLASSIFICATION SGMNTATION Gambar 1. Alur Penelitian Secara Umum ksperimen ini dilakukan dengan mengambil citra sidik jari standar FVC2000 DB1_B (berukuran 00x00 piksel) sebagai data input. Jumlah citra sidik jari pada FVC2000 DB1_B ini sebanyak 80 citra, dari 10 orang dimana masing-masing orang sebanyak 8 posisi pengambilan yang berbeda. Citra sidik jari tertumpuk diperoleh dengan melakukan proses substraksi antara dua buah citra sidik jari tunggal/normal.

3 C i t r a I n p u t S i d i k J a r i P P O C S S I N G M e d i a n F ilte r B i n e r i s a s i T h i n n i n g F A T U X T A C T I O N L e a r n i n g V e c t o r Q u a n tiz a tio n K la s ifik a s i/ P e n g e n a l a n P o l a S i d i k J a r i Gambar 2. Sidik Jari menggunakan Pemrosesan Awal Filter dengan ktraksi Fitur menggunakan Wavelet Jumlah sidik jari yang diambil sebagai sampel adalah sebanyak 7, 8, 9, dan 10 kelas masing-masing 8 posisi. Masing-masing kelas dilakukan kali pengujian dengan citra posisi ke 2 sebagai bobot awal pelatihan. Data testing tidak termasuk ke dalam data training (bila data citra termasuk ke dalam data training, maka data tersebut tidak dilakukan testing, demikian pula sebaliknya) dengan jumlah data training dan data testing per kelas yang berbeda (lihat tabel hasil eksperimen). Masing-masing kelompok sampel di atas diterapkan pada pengenalan sidik jari tertumpuk dengan pemrosesan awal filter, binerisasi, dan thinning. Transformasi wavelet digunakan untuk mengekstraksi ciri dengan dekomposisi sebanyak tiga kali sehingga citra menjadi berukuran 7x7 piksel. Preprocessing dilakukan dengan menerapkan median filter sebagaimana terlihat pada Gambar 2.. Hasil ksperimen dan Pembahasan Tabel 1. Hasil ksperimen dari 80 Citra Sidik Jari dengan , 76, , 7, ata-rata 77,9 76,28 Tabel 2. Hasil ksperimen dari 72 Citra Sidik Jari dengan 9 77,78 7 7,07 77,78 77,78 70,7 ata-rata 7,92 7,1

4 Tabel. Hasil ksperimen dari 6 Citra Sidik Jari dengan ,88 70, ,7 70,8 ata-rata 72,7 7,19 Tabel. Hasil ksperimen dari 6 Citra Sidik Jari dengan 7 77,1 71, 76, , 76,19 ata-rata 7,92 7,87 Tabel. ekapitulasi ata-rata Hasil ksperimen ,9 7,92 72,7 7,92 76,28 7,1 7,19 7,87 ata-rata 7,12 7,16 Pada hasil eksperimen di atas menggambarkan bahwa dalam melakukan klasifikasi dan pengenalan sidik jari tertumpuk menggunakan metode image-matching dengan metode Learning Vector Quantization (LVQ) dengan pemrosesan awal filter, binerisasi dan thinning, karakteristik terbaik akan diperoleh apabila semakin banyak jumlah kelas dan jumlah citra yang digunakan. Hasil terbaik dalam melakukan klasifikasi dan pengenalan sidik jari tertumpuk menggunakan metode imagematching dengan metode Learning Vector Quantization (LVQ) dengan pemrosesan awal filter, binerisasi dan thinning ini adalah berada pada jumlah kelas dan jumlah citra tertinggi. ata-rata tingkat pengenalan sidik jari yang ditumpuk lebih tinggi 0,0% dibandingkan dengan sidik jari tunggal/normal. Dengan demikian ujicoba jaringan syaraf tiruan tersebut menunjukkan bahwa jaringan LVQ yang dibangun dengan ekstraksi ciri berbasis Transformasi Wavelet dengan pemrosesan awal menggunakan median filter, binerisasi dan thinning dapat berfungsi baik.

5 Gambar. Grafik Hasil ksperimen dari 80 Citra Sidik Jari dengan 10 Gambar. Grafik Hasil ksperimen dari 72 Citra Sidik Jari dengan 9 Gambar. Grafik Hasil ksperimen dari 6 Citra Sidik Jari dengan 8

6 Gambar 6. Grafik Hasil ksperimen dari 6 Citra Sidik Jari dengan 7. Kesimpulan Dari hasil eksperimen di atas, dapat disimpulkan bahwa semakin banyak jumlah kelas dan jumlah citra yang digunakan dalam jaringan LVQ yang dibangun dengan ekstraksi ciri berbasis Transformasi Wavelet dengan pemrosesan awal menggunakan median filter, binerisasi dan thinning pada citra sidik jari tertumpuk, maka semakin tinggi tingkat pengenalannya. ata-rata tingkat pengenalan sidik jari yang tertumpuk lebih tinggi 0,0% dibandingkan dengan sidik jari tunggal/normal.. eferensi [1] Gonzalez,. C. and Wintz, P, Digital Image Processing, Addison Wesley., 199 eading, MA. [2] Jain, Anil and Pankanti, Sharath, Fingerprint Classification and Matching, [] Arun oss, Anil Jain dan James esimen, A Hybrid Fingerprint Matcher, Appeared in Proc. Of International Conference on Pattern ecognition (ICP), Quebec City, 2002, [] Virginia spinosa, Minutiae Detection Algorithm for Fingerprint ecognition, ICCST, [] Karthik Nandakumar, Anil K. Jain, Local Correlation-based Fingerprint Matching, Proceedings of ICVGIP, 200, Kolkata. [6] Dunham, Margaret H., Data Mining Introductory and Advanced Topics, Pearson ducation Inc, Upper Saddle iver, New Jersey 078, 200, pp [7] Kim, James, H.H., Face Detection and Face ecognition, 200, Survey Papaer,. [8] Nasir, Muhammad, Pengujian Kualitas Citra Sidik Jari Kotor Menggunakan Learning Vector Quantization, Jurnal Litek, pp 6-69, 200. [9] Supriyono, Yoyok, Deteksi Kerusakan Citra Sidik Jari Menggunakan Learning Vector Quantization, Seminar Nasional Teknologi Informatika dan Automasi, Surabaya, pp 72-7, [10] Fauzett, Laurene, Fundamentals of Neural Networks, Arcihitectures, Algorithms, and Applications, Prentice Hall-Inc., Canada, 199.

Deteksi Citra Sidik Jari Terotasi Menggunakan Metode Phase-Only Correlation

Deteksi Citra Sidik Jari Terotasi Menggunakan Metode Phase-Only Correlation th Seminar on Intelligent Technology and Its Applications, SITIA 00 ISSN: 087-33X Deteksi Citra Sidik Jari Terotasi Menggunakan Metode Phase-Only Correlation Cahyo Darujati,3 Rahmat Syam,3 Mochamad Hariadi

Lebih terperinci

PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM)

PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM) Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT...Salahuddin, dkk PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM) Salahuddin 1, Tulus 2 dan Fahmi 3 1) Magister Teknik

Lebih terperinci

Klasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Transform) Salahuddin 1), Tulus 2), dan Fahmi 3)

Klasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Transform) Salahuddin 1), Tulus 2), dan Fahmi 3) Klasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Transform) Salahuddin 1), Tulus 2), dan Fahmi 3) Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe 1) Jl. B. Aceh-Medan

Lebih terperinci

PENGUJIAN KUALITAS CITRA SIDIK JARI KOTOR MENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ)

PENGUJIAN KUALITAS CITRA SIDIK JARI KOTOR MENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ) Penguian Kualitas Citra Sidik Jari Kotor Menggunakan...Muhammad Nasir dan Muhammad Syahroni PENGUJIAN KUALITAS CITRA SIDIK JARI KOTOR MENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ) Muhammad Nasir 1 dan

Lebih terperinci

KLASIFIKASI DAN PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM)

KLASIFIKASI DAN PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM) KLASIFIKASI DAN PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM) Salahuddin 1), Tulus 2), F. Fahmi 3) Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe 1) Jl. B. Aceh-Medan

Lebih terperinci

ENHANCEMENT CITRA SIDIK JARI KOTOR MENGGUNAKAN TEKNIK HYBRID MORPHOLOGY DAN GABOR FILTER

ENHANCEMENT CITRA SIDIK JARI KOTOR MENGGUNAKAN TEKNIK HYBRID MORPHOLOGY DAN GABOR FILTER ENHANCEMENT CITRA SIDIK JARI KOTOR MENGGUNAKAN TEKNIK HYBRID MORPHOLOGY DAN GABOR FILTER MUHAMMAD NASIR 2208 205 001 Dosen Pembimbing : Mochamad Hariadi,, S.T., M.Sc.,., Ph.D. Sidang Tesis Fakultas Teknologi

Lebih terperinci

Klasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Transform)

Klasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Transform) Klasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Transform) Salahuddin 1),Tulus 2), dan Fahmi 3) Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe 1) Jl. B. Aceh-Medan

Lebih terperinci

Analisis dan Perancangan Transformasi Wavelet. Untuk Jaringan Syaraf Tiruan pada. Pengenalan Sidik Jari

Analisis dan Perancangan Transformasi Wavelet. Untuk Jaringan Syaraf Tiruan pada. Pengenalan Sidik Jari UNIVERSITAS BINA NUSANTARA Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Genap 2005 / 2006 Analisis dan Perancangan Transformasi Wavelet Untuk Jaringan Syaraf Tiruan pada Pengenalan Sidik

Lebih terperinci

KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni *

KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni * KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni * Abstrak Penelitian ini membahas sistem klasifikasi sidikjari. Citra sidikjari diproses awal dengan transformasi wavelet sehingga

Lebih terperinci

Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur

Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur Cahya Hijriansyah 1, Achmad Solichin 2 1,2 Program Studi Teknik Informatika

Lebih terperinci

SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh. NamaMhs NIM: XX.YY.ZZZ. Kepada

SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh. NamaMhs NIM: XX.YY.ZZZ. Kepada SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh NamaMhs NIM: XX.YY.ZZZ Kepada JURUSAN TEKNIK INFORMATIKA STMIK STIKOM BALIKPAPAN LEMBAR PERSETUJUAN Proposal Skripsi

Lebih terperinci

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION Suhendry Effendy Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Bina Nusantara University

Lebih terperinci

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 1 NO. 1 MARET 2010

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 1 NO. 1 MARET 2010 IDENTIFIKASI SIDIKJARI DENGAN EKSTRAKSI CIRI BERBASIS TRANSFORMASI WAVELET HAAR Minarni 1 ABSTRACT This research investigated a possible fingerprint identification system. The fingerprint images were preprocessed

Lebih terperinci

BAB I PENDAHULUAN. ke karakteristik tertentu pada manusia yang unik dan berbeda satu sama lain.

BAB I PENDAHULUAN. ke karakteristik tertentu pada manusia yang unik dan berbeda satu sama lain. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah keamanan (security) merupakan salah satu isu yang sangat penting akhir-akhir ini. Salah satu teknik yang diunggulkan bisa diterapkan untuk permasalahan tersebut

Lebih terperinci

Oleh: Ulir Rohwana ( ) Dosen Pembimbing: Prof. Dr. H. M. Isa Irawan, M.T.

Oleh: Ulir Rohwana ( ) Dosen Pembimbing: Prof. Dr. H. M. Isa Irawan, M.T. Oleh: Ulir Rohwana (1209 100 702) Dosen Pembimbing: Prof. Dr. H. M. Isa Irawan, M.T. DAFTAR ISI I II III IV V VI PENDAHULUAN TINJAUAN PUSTAKA METODOLOGI PERANCANGAN DAN IMPLEMENTASI HASIL DAN PENGUJIAN

Lebih terperinci

PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT

PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT Mikrotiga, Vol, No. Mei 0 ISSN : 0 PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT Suci Dwijayanti *, Puspa Kurniasari Jurusan Teknik Elektro Universitas Sriwijaya,

Lebih terperinci

IDENTIFIKASI RAMBU-RAMBU LALU LINTAS MENGGUNAKAN LEARNING VECTOR QUANTIZATION

IDENTIFIKASI RAMBU-RAMBU LALU LINTAS MENGGUNAKAN LEARNING VECTOR QUANTIZATION IDENTIFIKASI RAMBU-RAMBU LALU LINTAS MENGGUNAKAN LEARNING VECTOR QUANTIZATION RULIAH Program Studi Sistem Informasi Sekolah Tinggi Manajemen Informatika dan Komputer Banjarbaru Jl. A. Yani Km. 33,3 Loktabat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Computer Vision Computer vision dapat diartikan sebagai suatu proses pengenalan objek-objek berdasarkan ciri khas dari sebuah gambar dan dapat juga digambarkan sebagai suatu deduksi

Lebih terperinci

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Program Studi Matematika FMIPA Universitas Negeri Semarang Abstrak. Saat ini, banyak sekali alternatif dalam

Lebih terperinci

HASIL DAN PEMBAHASAN. Generalisasi =

HASIL DAN PEMBAHASAN. Generalisasi = 6 Kelas Target Sidik jari individu 5 0000100000 Sidik jari individu 6 0000010000 Sidik jari individu 7 0000001000 Sidik jari individu 8 0000000100 Sidik jari individu 9 0000000010 Sidik jari individu 10

Lebih terperinci

ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS

ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS Egi Badar Sambani 1), Neneng Sri Uryani 2), Rifki Agung Kusuma Putra 3) Jurusan Teknik Informatika,

Lebih terperinci

ANALISA HASIL PERBANDINGAN IDENTIFIKASI CORE POINT PADA SIDIK JARI MENGGUNAKAN METODE DIRECTION OF CURVATURE DAN POINCARE INDEX

ANALISA HASIL PERBANDINGAN IDENTIFIKASI CORE POINT PADA SIDIK JARI MENGGUNAKAN METODE DIRECTION OF CURVATURE DAN POINCARE INDEX ANALISA HASIL PERBANDINGAN IDENTIFIKASI CORE POINT PADA SIDIK JARI MENGGUNAKAN METODE DIRECTION OF CURVATURE DAN POINCARE INDEX Mohammad imron (1), Yuliana Melita (2), Megister Teknologi Informasi Institusi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi perangkat lunak dewasa ini tidak terlepas dari berkembangnya studi mengenai kecerdasan buatan. Ada dua hal yang termasuk dari kecerdasan buatan

Lebih terperinci

1.1 Latar Belakang. Universitas Indonesia

1.1 Latar Belakang. Universitas Indonesia BAB 1 PENDAHULUAN Bab ini menjelaskan latar belakang penelitian tugas akhir, pernyataan permasalahan yang timbul dari latar belakang tersebut, tujuan penelitian, batasan masalah, manfaat penelitian, tahapan

Lebih terperinci

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION No Makalah : 299 Konferensi Nasional Sistem Informasi 2012, STMIK - STIKOM Bali 23-25 Pebruari 2012 DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION Ratri Dwi Atmaja 1,

Lebih terperinci

REVIEW ALGORITMA PENGENALAN SIDIK JARI MENGGUNAKAN PENCOCOKAN CITRA BERBASIS FASA UNTUK SIDIK JARI KUALITAS RENDAH

REVIEW ALGORITMA PENGENALAN SIDIK JARI MENGGUNAKAN PENCOCOKAN CITRA BERBASIS FASA UNTUK SIDIK JARI KUALITAS RENDAH REVIEW ALGORITMA PENGENALAN SIDIK JARI MENGGUNAKAN PENCOCOKAN CITRA BERBASIS FASA UNTUK SIDIK JARI KUALITAS RENDAH ABSTRAK Biometrika merupakan cara untuk mengidentifikasi individu menggunakan karekteristik

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Penentuan Masalah Penelitian Masalah masalah yang dihadapi oleh penggunaan identifikasi sidik jari berbasis komputer, yaitu sebagai berikut : 1. Salah satu masalah dalam

Lebih terperinci

Pengukuran Blok Window Terbaik Berdasarkan MSE...

Pengukuran Blok Window Terbaik Berdasarkan MSE... Pengukuran Blok Window Terbaik Berdasarkan MSE... (Dwiyanto dkk.) PENGUKURAN BLOK WINDOW TERBAIK BERDASARKAN MSE UNTUK SEGMENTASI CITRA SIDIK JARI BERBASIS MEAN DAN VARIANS Dwiyanto *, Agus Bejo, Risanuri

Lebih terperinci

Hardisk 80 GB Perangkat lunak Window XP Profesional MATLAB 7.0.1

Hardisk 80 GB Perangkat lunak Window XP Profesional MATLAB 7.0.1 Hardisk 8 GB Perangkat lunak Window XP Profesional MATLAB 7..1 HASIL DAN PEMBAHASAN Percobaan yang dilakukan pada penelitian ini terdiri atas dua macam, yaitu citra yang akan mengalami proses pengenalan

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : - Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54521 / Pengolahan Citra Digital 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari, manusia selalu memanfaatkan teknologi untuk melakukan kegiatannya. Ini dikarenakan teknologi membuat tugas manusia menjadi lebih ringan

Lebih terperinci

BAB I PENDAHULUAN. satu bagian sistem biometrika adalah face recognition (pengenalan wajah). Sistem

BAB I PENDAHULUAN. satu bagian sistem biometrika adalah face recognition (pengenalan wajah). Sistem 1 BAB I PENDAHULUAN 1.1. Latar Belakang Sistem biometrika merupakan teknologi pengenalan diri dengan menggunakan bagian tubuh atau perilaku manusia yang memiliki keunikan. Salah satu bagian sistem biometrika

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini teknologi sudah semakin berkembang, hal ini tentunya memberi pengaruh juga dalam berkembangnya ilmu pengetahuan. Perkembangan tersebut juga berpengaruh pada

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1 1. BAB I PENDAHULUAN Latar Belakang Iris mata merupakan salah satu organ internal yang dapat di lihat dari luar. Selaput ini berbentuk cincin yang mengelilingi pupil dan memberikan pola warna pada mata

Lebih terperinci

DETEKSI KEMIRINGAN ALUR POLA SIDIK JARI DENGAN HAMMING NET SEBAGAI DASAR KLASIFIKASI

DETEKSI KEMIRINGAN ALUR POLA SIDIK JARI DENGAN HAMMING NET SEBAGAI DASAR KLASIFIKASI DETEKSI KEMIRINGAN ALUR POLA SIDIK JARI DENGAN HAMMING NET SEBAGAI DASAR KLASIFIKASI Sri Suwarno 1, Sri Hartati 2 1 Program Studi Teknik Informatika UKDW Yogyakarta 2 Program Studi Ilmu Komputer Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang revelan dengan penelitian yang akan. antara metode Kohonen Neural Network dengan metode Learning ng Vector

BAB II TINJAUAN PUSTAKA. yang revelan dengan penelitian yang akan. antara metode Kohonen Neural Network dengan metode Learning ng Vector BAB II TINJAUAN PUSTAKA Pada Bab ini akan menjelaskan tentang teori-teori o i serta hasil penelitian yang revelan dengan penelitian yang akan an dilakukan. an. A. Tinjauan an Pustaka Prabowo, o, Sarwoko

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah BAB I Pendahuluan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pemalsuan identitas sering kali menjadi permasalahan utama dalam keamanan data, karena itulah muncul teknik-teknik pengamanan data seperti penggunaan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Klasifikasi sidik jari merupakan bagian penting dalam sistem pengidentifikasian individu. Pemanfaatan identifikasi sidik jari sudah semakin luas sebagai bagian dari

Lebih terperinci

PENGENALAN AKSARA BALI MENGGUNAKAN METODE MODIFIED DIRECTION FEATURE DAN ALGORITMA GENERALIZED LEARNING VECTOR QUANTIZATION (GLVQ)

PENGENALAN AKSARA BALI MENGGUNAKAN METODE MODIFIED DIRECTION FEATURE DAN ALGORITMA GENERALIZED LEARNING VECTOR QUANTIZATION (GLVQ) PENGENALAN AKSARA BALI MENGGUNAKAN METODE MODIFIED DIRECTION FEATURE DAN ALGORITMA GENERALIZED LEARNING VECTOR QUANTIZATION (GLVQ) KOMPETENSI KOMPUTASI SKRIPSI NI WAYAN DEVIYANTI SEPTIARI NIM. 1108605004

Lebih terperinci

BAB I PENDAHULUAN. sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun

BAB I PENDAHULUAN. sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun BAB I PENDAHULUAN 1.1 Latar Belakang Seiring berjalannya waktu ilmu pengetahuan semakin berkembang pesat sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun aplikasi baru yang lahir

Lebih terperinci

ENKRIPSI DATA HASIL ANALISIS KOMPONEN UTAMA (PCA) ATAS CITRA IRIS MATA MENGGUNAKAN ALGORITMA MD5

ENKRIPSI DATA HASIL ANALISIS KOMPONEN UTAMA (PCA) ATAS CITRA IRIS MATA MENGGUNAKAN ALGORITMA MD5 MAKALAH SEMINAR TUGAS AKHIR ENKRIPSI DATA HASIL ANALISIS KOMPONEN UTAMA (PCA) ATAS CITRA IRIS MATA MENGGUNAKAN ALGORITMA MD5 Sunaryo 1, Budi Setiyono 2, R. Rizal Isnanto 2 Abstrak - Biometrik merupakan

Lebih terperinci

IDENTIFIKASI IRIS MATA MENGGUNAKAN TAPIS GABOR WAVELET DAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION (LVQ)

IDENTIFIKASI IRIS MATA MENGGUNAKAN TAPIS GABOR WAVELET DAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION (LVQ) IDENTIFIKASI IRIS MATA MENGGUNAKAN TAPIS GABOR WAVELET DAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION (LVQ) Budi Setiyono, R. Rizal Isnanto *) Abstract Biometric represents the human identification

Lebih terperinci

KLASIFIKASI POLA UKIR KAYU JEPARA BERDASARKAN DETEKSI TEPI BERBASIS JARINGAN SYARAF TIRUAN

KLASIFIKASI POLA UKIR KAYU JEPARA BERDASARKAN DETEKSI TEPI BERBASIS JARINGAN SYARAF TIRUAN LAPORAN SKRIPSI KLASIFIKASI POLA UKIR KAYU JEPARA BERDASARKAN DETEKSI TEPI BERBASIS JARINGAN SYARAF TIRUAN VAHRUL MEILANI NIM.2012-51-115 DOSEN PEMBIMBING Endang Supriyati, M.Kom Alif Catur Murti, S.Kom,

Lebih terperinci

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi Jurusan

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDETEKSI UANG LOGAM DENGAN METODE EUCLIDEAN

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDETEKSI UANG LOGAM DENGAN METODE EUCLIDEAN Jurnal Teknik Informatika Vol. 1 September 2012 1 PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDETEKSI UANG LOGAM DENGAN METODE EUCLIDEAN Wahyu Saputra Wibawa 1, Juni Nurma Sari 2, Ananda 3 Program Studi

Lebih terperinci

Klasifikasi Identitas Wajah Untuk Otorisasi Menggunakan Deteksi Tepi dan LVQ

Klasifikasi Identitas Wajah Untuk Otorisasi Menggunakan Deteksi Tepi dan LVQ Klasifikasi Identitas Wajah Untuk Otorisasi Menggunakan Deteksi Tepi dan LVQ Gilang Ramadhan *, Esmeralda C Djamal, Tedjo Darmanto Jurusan Informatika, Fakultas MIPA Universitas Jenderal Achmad Yani Jl.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Dalam penelitian penerapan metode Jaringan Syaraf Tiruan Learning Vector

BAB III METODOLOGI PENELITIAN. Dalam penelitian penerapan metode Jaringan Syaraf Tiruan Learning Vector BAB III METODOLOGI PENELITIAN 3.1 Metode Penelitian Dalam penelitian penerapan metode Jaringan Syaraf Tiruan Learning Vector Quantization (LVQ) untuk pengenalan wajahterdiri dari empat metodologi penelitian,

Lebih terperinci

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL Andri STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 andri@mikroskil.ac.id Abstrak

Lebih terperinci

DETEKSI PLAT KENDARAAN MENGGUNAKAN HOG DAN LVQ. Muhammad Imron Rosadi 1

DETEKSI PLAT KENDARAAN MENGGUNAKAN HOG DAN LVQ. Muhammad Imron Rosadi 1 DETEKSI PLAT KENDARAAN MENGGUNAKAN HOG DAN LVQ Muhammad Imron Rosadi 1 Prodi Teknik Informatika, Universitas Yudharta Pasuruan Purwosari 67162 Pasuruan Jawa Timur 1 Email : Imron_uyp@yahoo.com ABSTRAK

Lebih terperinci

KLASIFIKASI DAN PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN DFT (DISCRETE FOURIER TRANSFORM)

KLASIFIKASI DAN PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN DFT (DISCRETE FOURIER TRANSFORM) KLASIFIKASI DAN PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN DFT (DISCRETE FOURIER TRANSFORM) Cilla Sundari 1, Muhammad Nasir 2, Hari Toha Hidayat 3 Program Studi Teknik Informatika, Jurusan Teknologi

Lebih terperinci

APLIKASI PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN ALGORITMA HAMMING DISTANCE

APLIKASI PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN ALGORITMA HAMMING DISTANCE APLIKASI PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN ALGORITMA HAMMING DISTANCE Matheus Supriyanto Rumetna 1*, Marla Pieter, Monica Manurung 1 1 Fakultas Ilmu Komputer dan Manajemen, Universitas Sains

Lebih terperinci

Pengenalan Tanda Tangan Menggunakan Algoritme VFI5 Melalui Praproses Wavelet

Pengenalan Tanda Tangan Menggunakan Algoritme VFI5 Melalui Praproses Wavelet Tersedia secara online di: http://journal.ipb.ac.id/index.php.jika Volume 1 Nomor 1 halaman 7-12 ISSN: 2089-6026 Pengenalan Tanda Tangan Menggunakan Algoritme VFI5 Melalui Praproses Wavelet Hand-Written

Lebih terperinci

Aplikasi Pengenalan Citra Chord Gitar Menggunakan Learning Vector Quantization (LVQ)

Aplikasi Pengenalan Citra Chord Gitar Menggunakan Learning Vector Quantization (LVQ) 95 Aplikasi Pengenalan Citra Chord Gitar Menggunakan Learning Vector Quantization (LVQ) Imam Suderajad *), Tamam Asrori **), Mohammad ***), Dwi Prananto ****) Teknik Elektro, Universitas Panca Marga Email:

Lebih terperinci

APLIKASI TRANSFORMASI HOUGH UNTUK EKSTRAKSI FITUR IRIS MATA MANUSIA

APLIKASI TRANSFORMASI HOUGH UNTUK EKSTRAKSI FITUR IRIS MATA MANUSIA Seminar Nasional Teknologi Informasi 2007 1 APLIKASI TRANSFORMASI HOUGH UNTUK EKSTRAKSI FITUR IRIS MATA MANUSIA Murinto 1) Rusydi Umar 2) Burhanuddin 3) 1,2,3) Teknik Informatika Universitas Ahmad Dahlan

Lebih terperinci

LAPORAN SKRIPSI DETEKSI KANKER OTAK PADA DATA MRI MELALUI JARINGAN SYARAF TIRUAN DENGAN EKSTRAKSI FITUR DISCRETE WAVELET TRANSFORM

LAPORAN SKRIPSI DETEKSI KANKER OTAK PADA DATA MRI MELALUI JARINGAN SYARAF TIRUAN DENGAN EKSTRAKSI FITUR DISCRETE WAVELET TRANSFORM LAPORAN SKRIPSI DETEKSI KANKER OTAK PADA DATA MRI MELALUI JARINGAN SYARAF TIRUAN DENGAN EKSTRAKSI FITUR DISCRETE WAVELET TRANSFORM Oleh : Saeful Anwar 2009-51-030 SKRIPSI DIAJUKAN SEBAGAI SALAH SATU SYARAT

Lebih terperinci

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION Nama Mahasiswa : Gigih Prasetyo Cahyono NRP : 1206 100 067 Jurusan : Matematika FMIPA-ITS Dosen Pembimbing : Prof.

Lebih terperinci

BAB 1 PENDAHULUAN 1-1

BAB 1 PENDAHULUAN 1-1 BAB 1 PENDAHULUAN Bab ini menjelaskan mengenai Latar Belakang, Identifikasi Masalah, Tujuan Tugas Akhir, Lingkup Tugas Akhir, Metodologi Tugas Akhir dan Sistematika Penulisan Tugas Akhir. 1.1 Latar Belakang

Lebih terperinci

SISTEM PENGENALAN TULISAN TANGAN REAL TIME MENGGUNAKAN METODE DOMINANT POINT DAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION

SISTEM PENGENALAN TULISAN TANGAN REAL TIME MENGGUNAKAN METODE DOMINANT POINT DAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION SISTEM PENGENALAN TULISAN TANGAN REAL TIME MENGGUNAKAN METODE DOMINANT POINT DAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION Oleh: Bakhtiar Arifin (1206 100 722) Dosen Pembimbing: Prof. DR. M.

Lebih terperinci

Arga Wahyumianto Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT

Arga Wahyumianto Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT IDENTIFIKASI DAUN BERDASARKAN FITUR TULANG DAUN MENGGUNAKAN ALGORITMA EKSTRAKSI MINUTIAE Arga Wahyumianto 2209 105 047 Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT LATAR

Lebih terperinci

BAB 6 SIMPULAN DAN SARAN

BAB 6 SIMPULAN DAN SARAN 39 BAB 6 SIMPULAN DAN SARAN 6.1 Simpulan Dari penelitian yang telah dilakukan hingga mendapatkan hasil yang cukup memuaskan, maka ada beberapa kesimpulan yang dapat peneliti berikan, 1. Teknik ekstraksi

Lebih terperinci

Perancangan Perangkat Lunak untuk Ekstraksi Ciri dan Klasifikasi Pola Batik

Perancangan Perangkat Lunak untuk Ekstraksi Ciri dan Klasifikasi Pola Batik JURNAL ILMIAH SEMESTA TEKNIKA Vol. 17, No. 2, 157-165, Nov 2014 157 Perancangan Perangkat Lunak untuk Ekstraksi Ciri dan Klasifikasi Pola Batik (Software Design for Feature Extraction and Classification

Lebih terperinci

Pengantar Mata Kuliah Pengolahan Citra

Pengantar Mata Kuliah Pengolahan Citra Achmad Basuki Nana R Fadilah Fahrul Politeknik Elektronika Negeri Surabaya Pengantar Mata Kuliah Pengolahan Citra Content: 1. Tujuan mata kuliah Pengolahan Citra 2. Apa saja yang bisa dikerjakan dengan

Lebih terperinci

1. Pendahuluan Perumusan Masalah Dari latar belakang yang dipaparkan di atas, masalah yang dapat dirumuskan adalah:

1. Pendahuluan Perumusan Masalah Dari latar belakang yang dipaparkan di atas, masalah yang dapat dirumuskan adalah: 1. Pendahuluan 1.1. Latar Belakang Wajah manusia dapat menunjukkan dimorfisme seksual yang cukup jelas [1][2][3][4][5]. Wajah pria dan wanita memiliki bentuk dan tekstur yang berbeda, dan petunjuk yang

Lebih terperinci

PENGENALAN SESEORANG MENGGUNAKAN CITRA GARIS TANGAN

PENGENALAN SESEORANG MENGGUNAKAN CITRA GARIS TANGAN PENGENALAN SESEORANG MENGGUNAKAN CITRA GARIS TANGAN Bagus Fadzerie Robby 1), Resty Wulanningrum 2) 1), 2) Universitas Nusantara PGRI Kediri 1), 2) Jl. KH. Achmad Dahlan 76, Kediri, Jawa Timur 64112 Email

Lebih terperinci

Oleh: Angger Gusti Zamzany( ) Dosen Pembimbing: Dr. Dwi Ratna Sulistyaningrum, S.Si, M.T.

Oleh: Angger Gusti Zamzany( ) Dosen Pembimbing: Dr. Dwi Ratna Sulistyaningrum, S.Si, M.T. Oleh: Angger Gusti Zamzany(1210100 073) Dosen Pembimbing: Dr. Dwi Ratna Sulistyaningrum, S.Si, M.T. DAFTAR ISI I II III IV V VI PENDAHULUAN TINJAUAN PUSTAKA METODOLOGI PERANCANGAN DAN IMPLEMENTASI PENGUJIAN

Lebih terperinci

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF)

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF) Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Yogyakarta, 14 Mei 2011 PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF

Lebih terperinci

IJNS Indonesian Journal on Networking and Security - Volume 5 No ijns.org

IJNS Indonesian Journal on Networking and Security - Volume 5 No ijns.org Identifikasi Ikan Mentah Ber Menggunakan Nilai HSV Dan Jaringan Syaraf Tiruan Learning Vector Quantization (LVQ) Dari Citra Ikan Mentah Achmad Lukman 1), Asih Winantu 2) 1 Teknik Komputer, STMIK EL RAHMA,

Lebih terperinci

Teknik Ekstraksi Minutiae Untuk Sistem Verifikasi Keaslian Sidik Jari

Teknik Ekstraksi Minutiae Untuk Sistem Verifikasi Keaslian Sidik Jari Teknik Ekstraksi Minutiae Untuk Sistem Verifikasi Keaslian Sidik Jari Okta Hadi Saputra, Irawan Jurusan Teknik Elektro FTI - ITS Abstrak Teknik kriptografi sudah banyak digunakan untuk menjamin kerahasiaan

Lebih terperinci

PENGENALAN WAJAH MANUSIA MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS DAN JARINGAN SYARAF TIRUAN ADAPTIVE RESONANCE THEORY TWO (ART-2)

PENGENALAN WAJAH MANUSIA MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS DAN JARINGAN SYARAF TIRUAN ADAPTIVE RESONANCE THEORY TWO (ART-2) PENGENALAN WAJAH MANUSIA MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS DAN JARINGAN SYARAF TIRUAN ADAPTIVE RESONANCE THEORY TWO (ART-2) SKRIPSI Disusun Sebagai Salah Satu Syarat Menyelesaikan Program Studi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Biometrik adalah salah satu teknologi cangih yang banyak dipakai untuk menjadi bagian dari system keamanan di berbagai bidang. Biometrik ini bahkan sudah digunakan

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54521 / Pengolahan Citra Digital Revisi - Satuan Kredit Semester : 3 SKS Tgl revisi : - Jml Jam kuliah dalam seminggu

Lebih terperinci

PENGARUH POSISI DAN PENCAHAYAAN DALAM IDENTIFIKASI WAJAH

PENGARUH POSISI DAN PENCAHAYAAN DALAM IDENTIFIKASI WAJAH Seminar Nasional Teknologi Informasi & Komunikasi Terapan 11 (Semantik 11) ISBN --- PENGARUH POSISI DAN PENCAHAYAAN DALAM IDENTIFIKASI WAJAH Ricardus Anggi Pramunendar FTMK, Univesity Teknikal Malaysia

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN Tahap 1 : Identifikasi Permasalahan Mencari literatur-literatur yang berhubungan dengan bahan penelitian. Tahap 2 : Pengambilan Data Training : Testing 5 : 1 150 : 30 Dari 10 responden

Lebih terperinci

PERBAIKAN CITRA UNTUK PENGENALAN WAJAH PADA CITRA WAJAH DENGAN PENCAHAYAAN TIDAK MERATA

PERBAIKAN CITRA UNTUK PENGENALAN WAJAH PADA CITRA WAJAH DENGAN PENCAHAYAAN TIDAK MERATA PERBAIKAN CITRA UNTUK PENGENALAN WAJAH PADA CITRA WAJAH DENGAN PENCAHAYAAN TIDAK MERATA Naser Jawas STMIK STIKOM Bali Jl Raya Puputan no.86, Renon, Denpasar 80226 Email : naser.jawas@stikom-bali.ac.id1)

Lebih terperinci

PENGENALAN SUARA MANUSIA DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN MODEL PROPAGASI BALIK

PENGENALAN SUARA MANUSIA DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN MODEL PROPAGASI BALIK ABSTRAK PENGENALAN SUARA MANUSIA DENGAN MENGGUNAKAN Dosen Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar Pada penelitian ini dibuat sebuah sistem pengenalan suara manusia dengan

Lebih terperinci

SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION )

SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION ) SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION ) Fachrul Kurniawan, Hani Nurhayati Jurusan Teknik Informatika, Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik

Lebih terperinci

KLASIFIKASI CITRA ADENIUM MENGGUNAKAN LEARNING VECTOR QUANTIZATION

KLASIFIKASI CITRA ADENIUM MENGGUNAKAN LEARNING VECTOR QUANTIZATION KLASIFIKASI CITRA ADENIUM MENGGUNAKAN LEARNING VECTOR QUANTIZATION Resty Wulanningrum 1), Bagus Fadzerie Robby 2) 1), 2) Teknik Informatika, Fakultas Teknik Universitas Nusantara PGRI Kediri Kampus 2 Universitas

Lebih terperinci

IDENTIFIKASI SIDIK JARI DENGAN MENGGUNAKAN STRUKTUR MINUTIA

IDENTIFIKASI SIDIK JARI DENGAN MENGGUNAKAN STRUKTUR MINUTIA IDENTIFIKASI SIDIK JARI DENGAN MENGGUNAKAN STRUKTUR MINUTIA Anggya N.D. Soetarmono, S.Kom. ABSTRAK Penelitian ini membahas tentang sistem identifikasi personal dengan menggunakan kesesuaian biometrik pada

Lebih terperinci

1. Pendahuluan. 1.1 Latar belakang

1. Pendahuluan. 1.1 Latar belakang 1. Pendahuluan 1.1 Latar belakang Keamanan data pribadi merupakan salah satu hal terpenting bagi setiap orang yang hidup di era dimana Teknologi Informasi (TI) berkembang dengan sangat pesat. Setiap orang

Lebih terperinci

APLIKASI WAVELET COIFLET MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK UNTUK PENGENALAN SIDIK JARI

APLIKASI WAVELET COIFLET MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK UNTUK PENGENALAN SIDIK JARI APLIKASI WAVELET COIFLET MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK UNTUK PENGENALAN SIDIK JARI Arie Firmansyah Permana ), Achmad Hidayatno ), R. Rizal Isnanto ) Jurusan Teknik Elektro, Fakultas

Lebih terperinci

1 BAB I PENDAHULUAN. Pengajaran yang diperoleh dari sekolah adalah pengenalan dan pemahaman akan

1 BAB I PENDAHULUAN. Pengajaran yang diperoleh dari sekolah adalah pengenalan dan pemahaman akan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sejak lahir, balita masih belum mengenal apapun yang dilihatnya. Dalam pertumbuhannya, balita mulai dapat mengenali sesuatu. Proses pengenalan pada balita dengan

Lebih terperinci

BAB I PENDAHULUAN. identitas individu baik secara fisiologis, sehingga dapat dijadikan alat atau

BAB I PENDAHULUAN. identitas individu baik secara fisiologis, sehingga dapat dijadikan alat atau BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi biometrik merupakan teknologi yang memanfaatkan identitas individu baik secara fisiologis, sehingga dapat dijadikan alat atau kunci dalam kontrol akses ke

Lebih terperinci

SISTEM DETEKSI PRA PANEN PADI BERDASARKAN WARNA DAUN DENGAN MENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ)

SISTEM DETEKSI PRA PANEN PADI BERDASARKAN WARNA DAUN DENGAN MENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ) SISTEM DETEKSI PRA PANEN PADI BERDASARKAN WARNA DAUN DENGAN MENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ) Pradityo Utomo 1) dan Setiyo Daru Cahyono 2) 1) Program Studi Magister Ilmu Komputer, Universitas

Lebih terperinci

Pembentukan Vektor Ciri Dengan Menggunakan Metode Average Absolute Deviation (AAD)

Pembentukan Vektor Ciri Dengan Menggunakan Metode Average Absolute Deviation (AAD) Berkala Fisika ISSN : 1410-9662 Vol. 6, No. 1, Januari 2003, hal 5-10 Pembentukan Vektor Ciri Dengan Menggunakan Metode Average Absolute Deviation (AAD) Kusworo Adi Laboratorium Instrumentasi dan Elektronika

Lebih terperinci

ANALISIS DAN PEMBUATAN SISTEM PENGENALAN SIDIK JARI BERBASIS KOMPUTER DI POLDA METRO JAYA

ANALISIS DAN PEMBUATAN SISTEM PENGENALAN SIDIK JARI BERBASIS KOMPUTER DI POLDA METRO JAYA ANALISIS DAN PEMBUATAN SISTEM PENGENALAN SIDIK JARI BERBASIS KOMPUTER DI POLDA METRO JAYA Wikaria Gazali; Alexander Agung Santoso Gunawan Mathematics & Statistics Department, School of Computer Science,

Lebih terperinci

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi Jurusan

Lebih terperinci

BAB 1 PENDAHULUAN. Manusia memiliki insting untuk berinteraksi satu sama lain demi mencapai

BAB 1 PENDAHULUAN. Manusia memiliki insting untuk berinteraksi satu sama lain demi mencapai BAB 1 PENDAHULUAN 1.1 Latar Belakang Manusia memiliki insting untuk berinteraksi satu sama lain demi mencapai suatu tujuan, dan dalam interaksi itu, mengintepretasi kondisi emosional menjadi penting dalam

Lebih terperinci

SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA

SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA Nana Ramadijanti, Achmad Basuki Politeknik Eletronika Negeri Surabaa, Institut Teknologi Sepuluh Nopember Surabaa Kampus PENS-ITS, Keputih, Sukolilo, Surabaa

Lebih terperinci

BAB 1 PENDAHULUAN. sistem analog menjadi sistem komputerisasi. Salah satunya adalah sistem

BAB 1 PENDAHULUAN. sistem analog menjadi sistem komputerisasi. Salah satunya adalah sistem BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Perkembangan teknologi digital pada era ini berkembang sangat pesat. Hampir setiap tahun telah ditemukan ataupun dikembangkan sebuah inovasi teknologi baru.

Lebih terperinci

IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B

IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B Heri Setiawan, Iwan Setyawan, Saptadi Nugroho IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN

Lebih terperinci

EVALUASI PENGARUH FUNGSI AKTIFASI DAN PARAMETER KEMIRINGANNYA TERHADAP UNJUKKERJA PENGENALAN JARINGAN SYARAF TIRUAN

EVALUASI PENGARUH FUNGSI AKTIFASI DAN PARAMETER KEMIRINGANNYA TERHADAP UNJUKKERJA PENGENALAN JARINGAN SYARAF TIRUAN EVALUASI PENGARUH FUNGSI AKTIFASI DAN PARAMETER KEMIRINGANNYA TERHADAP UNJUKKERJA PENGENALAN JARINGAN SYARAF TIRUAN (Studi Kasus pada Pengenalan Karakter Angka Tulisan Tangan) Iwan Suhardi Jurusan Teknik

Lebih terperinci

BIOMETRIK SUARA DENGAN TRANSFORMASI WAVELET BERBASIS ORTHOGONAL DAUBENCHIES

BIOMETRIK SUARA DENGAN TRANSFORMASI WAVELET BERBASIS ORTHOGONAL DAUBENCHIES Agustini, Biometrik Suara Dengan Transformasi Wavelet 49 BIOMETRIK SUARA DENGAN TRANSFORMASI WAVELET BERBASIS ORTHOGONAL DAUBENCHIES Ketut Agustini (1) Abstract: Biometric as one of identification or recognition

Lebih terperinci

Unnes Physics Journal

Unnes Physics Journal UPJ 4 (1) (2015) Unnes Physics Journal http://journal.unnes.ac.id/sju/index.php/upj IDENTIFIKASI POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN PROPAGASI BALIK Ahmad Juheri, Sunarno

Lebih terperinci

SISTEM IDENTIFIKASI BERDASARKAN POLA SIDIK JARI TANGAN MENGGUNAKAN MINUTIAE-BASED MATCHING

SISTEM IDENTIFIKASI BERDASARKAN POLA SIDIK JARI TANGAN MENGGUNAKAN MINUTIAE-BASED MATCHING SISTEM IDENTIFIKASI BERDASARKAN POLA SIDIK JARI TANGAN MENGGUNAKAN MINUTIAE-BASED MATCHING Disusun Oleh : Dimastya Yonathan Pratama (1022061) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. drg. Suria

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN Pada bab ini akan dibahas tentang latar belakang, perumusan masalah, tujuan penelitian, manfaat penelitian, dan kontribusi penelitian. Masalah-masalah yang dihadapi berkaitan dengan melakukan

Lebih terperinci

PERANCANGAN OTENTIKASI SIDIK JARI PADA BIOMETRIC PAYMENT DESIGN OF AUTHENTICATION FINGERPRINT FOR BIOMETRIC PAYMENT ABSTRAK

PERANCANGAN OTENTIKASI SIDIK JARI PADA BIOMETRIC PAYMENT DESIGN OF AUTHENTICATION FINGERPRINT FOR BIOMETRIC PAYMENT ABSTRAK PERANCANGAN OTENTIKASI SIDIK JARI PADA BIOMETRIC PAYMENT DESIGN OF AUTHENTICATION FINGERPRINT FOR BIOMETRIC PAYMENT Andi Apriadi 1, Surya Michrandi ST., MT. 2, Fairuz Azmi ST.,MT. 3 1,2,3 Fakultas Elektro

Lebih terperinci

PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION 1 Andrian Rakhmatsyah 2 Sayful Hakam 3 Adiwijaya 12 Departemen Teknik Informatika Sekolah Tinggi Teknologi

Lebih terperinci

ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT

ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT Kristian Adi Nugraha 1), Albertus Joko Santoso 2), Thomas Suselo 3) 1,2,3) Program Studi Magister Teknik Informatika,

Lebih terperinci

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL Muhammad Affandes* 1, Afdi Ramadani 2 1,2 Teknik Informatika UIN Sultan Syarif Kasim Riau Kontak Person : Muhammad

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari- hari seringkali ditemukan uang palsu pada berbagai transaksi ekonomi. Tingginya tingkat uang kertas palsu yang beredar di kalangan masyarakat

Lebih terperinci