BAB II TEORI DASAR. seorang perencana / desainer harus mempunyai pengetahuan yang baik tentang :

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TEORI DASAR. seorang perencana / desainer harus mempunyai pengetahuan yang baik tentang :"

Transkripsi

1 BAB II TEORI DASAR II.1. Pengenalan Desain Struktur Baja A. Desain Konstruksi Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik / keindahan) dan ilmu pengetahuan (science) untuk menghasilkan suatu struktur yang aman dan ekonomis serta memenuhi fungsi tertentu dan persyaratan estetika. Untuk mencapai tujuan ini, seorang perencana / desainer harus mempunyai pengetahuan yang baik tentang : 1. Sifat sifat fisis material. 2. Sifat sifat mekanis material. 3. Analisa Struktur. 4. Hubungan antara fungsi rancangan dan fungsi struktur. B. Prosedur Desain Prosedur perencanaan / desain terdiri dari 6 langkah utama, yaitu : 1. Pemilihan tipe dan rancangan struktur. 2. Penentuan besarnya beban beban yang bekerja pada struktur. 3. Menentukan gaya gaya dalam dan momen yang terjadi pada struktur. 4. Pemilihan komponen komponen struktur beserta sambungannya yang memenuhi kriteria kekuatan, kekakuan dan ekonomis. 5. Pemeriksaan ketahanan struktur akibat beban kerja. 6. Perbaikan akhir.

2 C. Keunggulan Baja Sebagai Material Konstruksi C.1. Kekuatan Tinggi ( High Strength ) Baja struktural umumnya mempunyai daya tarikan (tensile strength) antara 400 s/d 900 Mpa. Hal ini sangat berguna untuk dipakai pada struktur struktur yang memiliki bentang panjang dan struktur pada tanah lunak. C.2 Keseragaman ( Uniformity ) Sifat sifat baja tidak berubah karena waktu. Hampir seluruh bagian baja memiliki sifat sifat yang sama sehingga menjamin kekuatannya. C.3 Elastisitas ( Elasticity ) Baja mendekati perilaku seperti asumsi yang direncanakan oleh perencana, karena mengikuti hukum Hooke, walaupun telah mencapai tegangan yang cukup tinggi. Modulus elastisitasnya sama untuk tarik dan tekan. C.4 Daktalitas ( Ductility ) Daktalitas adalah kemampuan struktur atau komponennya untuk melakukan deformasi inelastik bolak balik berulang diluar batas titik leleh pertama, sambil mempertahankan sejumlah besar kemampuan daya dukung bebannya. Manfaat daktalitas ini bagi kinerja struktural adalah pada saat baja mengalami pembebanan yang melebihi kekuatannya, baja tidak langsung hancur tetapi akan meregang sampai batas daktalitas. Demikian juga pada beban siklik, daktalitas yang tinggi menyebabkan baja dapat menyerap energi yang besar. C.5 Kuat Patah / Rekah ( Fracture Toughness ) Baja dalah material yang sangat ulet sehingga dapat memikul beban yang berulang ulang. Komponen struktur baja yang dibebani sampai mengalami deformasi besar, masih mampu menahan gaya gaya yang cukup besar tanpa mengalami fraktur. Keuletan ini dibutuhkan jika terjadi konsentrasi tegangan walaupun tegangan yang masih dibawah batas yang diizinkan. Pada bahan yang tidak memiliki keuletan yang tinggi, keruntuhan dapat terjadi pada tegangan yang rendah dan akan bersifat getas ( keruntuhan secara langsung ).

3 D. Kelemahan Baja Sebagai Material Konstruksi D.1 Biaya Perawatan ( Maintenance Cost ) Baja bisa berkarat karena berhubungan dengan air dan udara. Oleh sebab itu, baja harus dicat secara berkala. D.2 Biaya Penahan Api ( Fire Proofing Cost ) Kekuatan baja dapat berkurang drastis pada temperatur tinggi. D.3 Kelelahan ( Fatigue ) Kelelahan pada baja tidak selalu dimulai dengan yielding ( leleh ) atau deformasi yang sangat besar, tetapi dapat juga disebabkan beban siklik ataupun pembebanan berulang ulang dalam jangka waktu yang lama. Kejadian ini sering terjadi dengan adanya konsentrasi tegangan karena adanya lubang. D.4 Rekah Kerapuhan Struktur baja ada kalanya tiba tiba runtuh tanpa menunjukkan tanda tanda deformasi yang membesar. Kegagalan ini sangat berbahaya dan harus dihindari. Berbeda dengan kelelahan, rekah kerapuhan disebabkan oleh beban statik. E. Sifat Sifat Mekanis Baja Struktural Menurut SNI , sifat mekanis baja struktural yang digunakan dalam perencanaan suatu struktur bangunan harus memenuhi persyaratan minimum yang diberikan pada tabel 1.1. Tabel 1.1 Sifat Mekanis Baja Struktural Jenis Tegangan Putus Tegangan Leleh Peregangan Baja Minimum, Fu (Mpa) Minimum, Fy (Mpa) Minimum (%) BJ BJ

4 BJ BJ BJ E.1 Tegangan Putus ( Ultimate Stress ) Tegangan Putus untuk perencanaan (Fu) tidak boleh diambil melebihi nilai yang ditetapkan oleh tabel 1.1 E.2 Tegangan Leleh ( Yielding Stress ) Tegangan Leleh untuk perencanaan (Fy) tidak boleh diambil melebihi nilai yang ditetapkan oleh tabel 1.1 E.3 Sifat Sifat Mekanis Lainnya Sifat sifat mekanis lain baja struktural untuk maksud perencanaan ditetapkan sebagai berikut : Modulus Elastisitas : E = Mpa Modulus Geser : G = Mpa Poisson Ratio : µ = 0.3 Koefisien Pemuaian : α = 12 x 10 ^ -6 / ºC F. Jenis Jenis Baja Struktural yang Umum Digunakan Fungsi struktur merupakan faktor utama dalam menentukan konfigurasi struktur. Berdasarkan konfigurasi struktur dan beban rencana, setiap elemen atau komponen dipilih untuk menyanggah dan menyalurkan beban pada keseluruhan struktur dengan baik. Adapun jenis jenis baja struktural yang umum digunakan adalah profil baja giling ( rolled steel shape ) dan profil baja yang dibentuk dalam keadaan dingin ( cold formed steel shapes ).

5 G. Hubungan Antara Tegangan dan Regangan pada Konstruksi Baja Dalam peraturan AISC 2005, perhitungan rumus kekuatan nominal (Rn) menggunakan tegangan leleh (Fy) maupun tegangan ultimate (Fu), pemilihan tegangan baik itu Fy maupun Fu didasarkan atas kemampuan struktur mempertahankan stabilitasnya setelah beban maksimum diberikan. Gambar II.1.1 Grafik hubungan tegangan regangan. [Salmon, Charles G, STEEL STRUCTURE] Grafik diatas menunjukkan hasil pengukuran hubungan tegangan - regangan dalam percobaan tarik baja. Tipikal grafik tersebut hanya dapat diperoleh pada percobaan tarik baja lunak (mild). Benda uji baja diberikan beban tarik sehingga tegangan baja meningkat dari titik O sampai ke titik A. Ordinat titik A disebut tegangan proporsional (Fp). Hubungan tegangan regangan dari titik awal sampai titik A masih linear. Daerah antara titik O dengan titik A disebut juga daerah elastis yang artinya jika suatu bahan baja mengalami tegangan tidak

6 melewati titik A dan apabila dilepaskan, maka baja masih dapat kembali ke bentuk atau panjang semula. Ketika beban diperbesar sehingga tegangan baja sampai ke titik B, maka hubungan tegangan regangan tidak linear lagi. Titik B merupakan titik leleh (Fy) dari baja yang ditandai dengan tegangan yang relatif tidak naik dan regangan yang meningkat. Daerah antara titik A dan titik C merupakan daerah plastis, dimana jika suatu batang baja mengalami tegangan sampai melewati titik A ( masuk kedalam daerah A s/d C ) dan beban dilepaskan, maka baja tidak akan kembali ke panjang semula. Dengan demikian terdapat regangan residu yang disebabkan karena inelastis dari bahan tersebut. Apabila beban diperbesar lagi, maka yang terjadi adalah regangan akan terus meningkat tanpa disertai tegangan. Titik C disebut dengan pengerasan regangan, pada titik C terdapat kenaikan tegangan yang disebabkan karena regangan bahan sudah hampir mencapai maksimum. Bahan masih mampu menahan tegangan tambahan sampai pada titik D, yang disebut dengan tegangan ultimate (Fu). Daerah anatara titik C dan titik D merupakan daerah strain hardening yang ditandai dengan peningkatan tegangan dan regangan setelah melewati batas plastis. Jika beban ditambah samapi melewati batas tegangan ultimate, maka baja akan mengalami kegagalan struktural yang ditandai dengan penurunan tegangan dan regangan yang terus bertambah sampai benda uji putus. II.2. Struktur Statis Tertentu dan Statis Tak-tentu Dalam analisa struktur kita mengenal tiga jenis permodelan struktur yaitu balok (beams), portal (rigid frames), atau rangka batang (trusses). Balok adalah jenis struktur yang ditujukan hanya untuk memikul beban transversal. Penyelesaian analisa terhadap suatu balok berupa diagram lintang dan diagram momen.

7 Portal adalah jenis struktur yang tersusun dari elemen-elemen yang terhubung oleh penghubung kaku (misalnya: hubungan las). Penyelesaian analisa terhadap suatu portal berupa variasi gaya aksial, gaya lintang dan momen pada sepanjang elemen-elemennya. Sedangkan rangka batang adalah jenis struktur dimana semua anggota/elemennya dianggap terhubung pada perletakan sendi; dalam hal ini momen dan gaya geser pada setiap elemen diabaikan. Penyelesaian analisa terhadap rangka /batang berupa gaya aksial pada setiap anggota/elemennya. Diagram lintang dan momen balok dapat digambar apabila semua reaksi luarnya telah diperoleh. Dalam telaah tentang keseimbangan sistem gaya-gaya sejajar yang sebidang, telah dibuktikan bahwa jumlah gaya yang tak diketahui pada sembarang benda bebas (free body) yang dapat dihitung dengan prinsip statika tidak bisa lebih dari dua buah. Dalam kasus-kasus balok sederhana, overhang, atau kantilever seperti pada Gambar II.2.1a hingga c, kedua gaya yang tidak diketahui tersebut adalah reaksi R 1 dan R 2. Pada balok yang bersendi-dalam dua seperti pada Gambar II.2.1d, ada tiga bagian balok yang disatukan pada kedua sendi-dalamnya. Keempat reaksi luar yang tak diketahui dan kedua gaya interaktif pada sendidalamnya dapat diperoleh dari keenam buah persamaan statika, setiap bagian balok memiliki dua persamaan. Alhasil, balok sederhana, overhang dan kantilever serta balok dengan jumlah sendidalamnya sama dengan jumlah reaksi kelebihannya (jumlah reaksi total dikurangi dua) merupakan struktur statis tertentu.

8 Gambar II.2.1 Balok statis tertentu.

9 Gambar II.2.2 Balok statis tak-tentu. Namun, jika suatu balok tanpa sendi-dalam, seperti kasus pada umumnya, terletak diatas lebih dari dua tumpuan atau jika ada tambahan jepitan pada satu atau kedua ujungnya, maka akan terdapat lebih dari dua reaksi luar yang harus ditentukan. Persamaan statika hanya memberikan dua jenis kondisi keseimbangan untuk sistem gaya sejajar yang sebidang. Dengan demikian hanya dua reaksi yang dapat diperoleh: semua reaksi lainnya merupakan reaksi kelebihan (redundant reaction). Balok dengan reaksi kelebihan semacam itu disebut balok statis tak-tentu. Derajat ke-taktentu-an ditentukan oleh jumlah reaksi kelebihannya tersebut. Balok pada Gambar II.2.2a bersifat statis tak-tentu berderajat dua karena jumlah

10 reaksi yang tak diketahui ada empat dan statika hanya bisa memenuhi dua kondisi atau dua persamaan keseimbangan; balok pada Gambar II.2.2b bersifat statis tak-tentu berderajat empat; balok pada Gambar II.2.2c bersifat statis tak-tentu berderajat satu karena balok memiliki lima reaksi dan dua sendi-dalam. Pada kenyataannya, jarang sekali suatu balok dibangun dengan sendi-dalam. Namun, keadaan semacam itu dapat terjadi pada perilaku balok dengan beban yang melebihi daya pikulnya. Gambar II.2.3 Kerangka kaku statis tertentu. Suatu kerangka kaku/portal bertingkat satu akan bersifat statis tertentu jika reaksi luarnya hanya tiga, karena persamaan statika hanya menyediakan tiga kondisi keseimbangan untuk sistem gaya sebidang umumnya. Jadi, kedua kerangka kaku pada Gambar II.2.3 bersifat statis tertentu. Akan tetapi jika suatu portal bertingkat satu memiliki lebih dari tiga reaksi luar, portal akan bersifat statis tak-tentu, dan derajat ke-taktentu-annya sama dengan jumlah reaksi kelebihannya. Portal bertingkat satu pada Gambar II.2.4a bersifat statis tak-tentu berderajat satu; pada Gambar II.2.4b adalah berderajat tiga. Sebagian besar portal kaku umumnya bersifat statis tak-tentu, sesuai dengan tuntutan efisiensi dan kekokohannya. Semakin banyak tingkat kerangka kaku, semakin bertambah derajat ke-taktentu-annya.

11 Gambar II.2.4 Kerangka kaku statis tak-tentu. Syarat agar suatu rangka batang bersifat statis tertentu adalah bahwa jumlah gaya yang tidak diketahui sekurang-kurangnya tiga dan jumlah batang di dalam rangka batang tersebut adalah 2j r, dimana j sama dengan jumlah titik hubungnya (joints) dan r sama dengan jumlah reaksinya. Jika m adalah jumlah batangnya, kondisi perlu untuk keadaan statis tertentu dapat dituliskan: m = 2j r (II.2.1) (Sumber : Buku Intermediate Structural Analysis hal.5) Keabsahan persamaan diatas dapat diamati dengan mengubah persamaan tersebut menjadi m + r = 2j, dimana m + r adalah jumlah gaya yang tidak diketahui dan 2j adalah jumlah persamaan yang bisa diperoleh dengan prinsip statika apabila setiap titik hubungnya kita pandang sebagai suatu benda bebas (free body).

12 Gambar II.2.5 Rangka batang yang memenuhi kondisi perlu untuk bangunan statis tertentu. Selama titik hubung suatu rangka batang berada dalam keadaan seimbang, peninjauan sekumpulan titik hubung (yang manapun) atau seluruh rangka batang sebagai suatu benda bebas tidak akan menghasilkan lagi persamaan keseimbangan bebas lainnya. Namun demikian, agar suatu rangka batang bersifat statis tertentu dan stabil. m buah anggota yang dimaksudkan di dalam persamaan m = 2j r haruslah diatur secara bijaksana, artinya semua reaksi dan gaya aksial di dalam setiap batang harus dapat ditentukan. Maka pada Gambar II.2.5a dan b bersifat statis tertentu dan stabil, sedangkan pada Gambar II.2.5c rangka batang meskipun memenuhi persamaan, tetapi bersifat statis tak stabil.

13 Apabila suatu rangka batang memiliki sekurang-kurangnya tiga reaksi yang tak diketahui dan jumlah batangnya, m dan lebih besar dari 2j r maka rangka batang bersifat statis tak tentu dan derajat ke-taktentu-annya, yakni i, menjadi i = m (2j r) (II.2.2) Jadi, rangka batang pada Gambar II.2.6a merupakan rangka batang statis tak-tentu berderajat dua, pada Gambar II.2.6b dan c merupakan rangka batang statis tak-tentu berderajat tiga. II.3. Kinematisme struktur Selain pengklasifikasian struktur statis tertentu atau statis tak-tentu, kita juga dapat mengklasifikasikan permodelan struktur berdasarkan kinematismenya. Gambar II.3.1 Portal kaku kinematis tak-tentu berderajat 4.

14 Kinematisme adalah pergerakan atau perubahan yang mungkin terjadi akibat pembebanan statis ataupun dinamis. Beberapa jenis kinematisme yang kita kenal dalam analisa struktur yaitu perpindahan vertikal, horisontal dan angular. Jenis-jenis kinematisme ini bekerja hanya pada titik diskrit. Sebagai contoh, permodelan struktur portal sederhana bertingkat satu seperti pada Gambar II.3.1 termasuk ke dalam struktur kinematis tak-tentu berderajat empat. Derajat ke-taktentu-an kinematis ini ditentukan berdasarkan jumlah perpindahan yang mungkin terjadi akibat pembebanan statis. Pada titik B, akibat gaya W 1 akan menyebabkan titik B berpindah sebesar u 1 dan akibat W 2 dan W 3 akan mengakibatkan putaran sudut pada titik B sebesar θ 1. Demikian juga pada titik C, terjadi dua jenis perpindahan yaitu u 2 dan θ 2. Dengan demikian, jumlah perpindahan yang mungkin terjadi adalah empat sehingga permodelan struktur ini memiliki 4 derajat ke-taktentu-an secara kinematis. Derajat ke-taktentu-an kinematis sering juga disebut juga sebagai Degree Of Freedom (DOF). 2 DOF 0 DOF 3 DOF Gambar II.3.2 Beberapa jenis permodelan struktur dengan kinematisme yang berbedabeda.

15 Pada Gambar II.3.2 di atas, ditunjukkan beberapa permodelan struktur dengan DOF yang berbeda-beda. Pada Gambar tersebut terdapat permodelan struktur yang tidak memiliki DOF. Permodelan struktur seperti ini disebut juga sebagai struktur kinematis tertentu. II.4. Metode Perencanaan Konstruksi Baja A. Metode ASD ( Allowable Stress Design ) Metode ASD (Allowable Stress Design) merupakan metode yang paling konvensional dalam perencanaan konstruksi. Metode ini menggunakan beban servis sebagai beban yang harus dapat ditahan oleh material konstruksi. Agar konstruksi aman maka harus direncanakan bentuk dan kekuatan bahan yang mampu menahan beban tersebut. Tegangan maksimum yang diizinkan terjadi pada suatu konstruksi saat beban servis bekerja harus lebih kecil atau sama dengan tegangan leleh (σy). Untuk memastikan bahwa tegangan yang terjadi tidak melebihi tegangan leleh (σy) maka diberikan faktor keamanan terhadap tegangan izin yang boleh terjadi. Besaran faktor keamanan yang diberikan lebih kurang sama dengan 1,5 ; sehingga boleh dipastikan bahwa tegangan maksimum yang diizinkan terjadi adalah 2/3 Fy yang berarti juga akan terletak pada daerah elastis. Perencanaan memakai ASD akan memberikan penampang yang lebih konvensional.

16 B. Metode LRFD ( Load Resistance Factor Design ) Metode LRFD ( Load Resistance Factor Design ) lebih mementingkan perilaku bahan atau penampang pada saat terjadinya keruntuhan. Seperti kita ketahui bahwa suatu bahan (khususnya baja) tidak akan segera runtuh ketika tegangan yang terjadi melebihi tegangan leleh (Fy), namun akan terjadi regangan plastis pada bahan tersebut. Apabila tegangan yang tejadi sudah sangat besar maka akan terjadi strain hardening yang mengakibatkan terjadinya peningkatan tegangan sampai ke tegangan runtuh / tegangan ultimate (FU). Pada saat tegangan ultimate dilampaui maka akan terjadi keruntuhan bahan. Metode LRFD umumnya menggunakan perhitungan dengan menggunakan tegangan ultimate (FU) menjadi tegangan izin, namun tidak semua perhitungan metode LRFD menggunakan tegangan ultimate (FU) ada juga perhitungan yang menggunakan tegangan leleh (Fy), terutama pada saat menghitung deformasi struktur yang mengakibatkan ketidakstabilan struktur tersebut. Metode LRFD menggunakan beban terfaktor sebagai beban maksimum pada saat terjadi keruntuhan. Beban servis akan dikalikan dengan faktor amplikasi yang tentunya lebih besar dari 1 dan selanjutnya akan menjadi beban terfaktor. Selain itu kekuatan nominal (kekuatan yang dapat ditahan bahan) akan diberikan faktor resistansi juga sebagai faktor reduksi akibat dari ketidak sempurnanya pelaksanaan dilapangan maupun di pabrik. Besaran faktor resistansi berbeda beda untuk setiap perhitungan kekuatan yang ditinjau, misalnya : untuk kekuatan tarik digunakan faktor reduksi 0,9 dan untuk kekuatan tekan digunakan faktor reduksi 0,75. Dapat dilihat bahwa untuk penampang yang sama hasil kekuatan nominal yang akan didapat dari metode LRFD akan lebih tinggi dari metode ASD.

17 II.5. Aplikasi Portal Baja dengan Menggunakan Tappered Beam dan Honey-Comb Beam A. Tappered Beam Desain Portal Tappered Beam yang umum digunakan bergantung pada jarak dan tinggi bentang portal struktur tersebut. Diantaranya adalah sebagai berikut : TAPERED BEAM FRAME (TB) Desain ini membuat ruang yang luas untuk dimanfaatkan dan ideal untuk pertokoan, retail dan gudang. Desain ini mempunyai lebar umum sebesar 6 s/d 18 meter dan tinggi sekitar 3 s/d 7,5 meter. LEAN-TO FRAME (LT)

18 Desain ini berupa desain struktur untuk penambahan bangunan, jadi bukan sebuah portal single beam, namun suatu struktur tambahan yang menempel pada sebuah struktur utama. RIGID LOW PROFILE (RF) Desain ini menghasilkan sebuah ruangan interior yang sangat luas, dikarenakan bentang yang diaplikasikan sangat besar. Namun, tidak mengorbankan kekuatan dari struktur. Dengan kata lain walaupun desain ini memiliki bentang yang besar, kekuatan struktur ini tetaplah aman. Desain ini memiliki bentang umum sepanjang 12 s/d 45 meter dan tinggi bentang sebesar 3 s/d 7,5 meter. Oleh karena keunggulannya tersebut, desain portal ini sering digunakan untuk struktur yang memerlukan bentang yang besar seperti hangar pesawat. RIGID HIGH PROFILE (RF)

19 Dilihat dari bentuknya tentunya desain struktur ini memiliki tinggi dan bentang yang besar. Desain ini juga sangat mudah untuk dikembangkan, contohnya untuk penambahan bangunan ataupun menambah pipa pembuangan asap pada pabrik. Oleh karenanya struktur ini digunakan untuk pembangunan pabrik maupun gudang. Desain ini memiliki bentang umum sepanjang 12 s/d 36 meter dan tinggi bentang sebesar 3 s/d 7,5 meter. MULTISPAN (MS) Desain ini diperuntukkan khusus untuk pabrik pabrik yang besar ataupun gudang - gudang yang besar, hal tersebut dikarenakan bentang yang dapat digunakan dengan struktur ini dapat mencapai 96 meter. B. Honeycomb Beam Desain Portal Honeycomb mempunyai kelemahan pada tekuk. Oleh karena itu desain ini tidak dapat diaplikasikan untuk kolom kolom portal. Secara keseluruhan desain honeycomb beam dapat mencapai bentang portal hingga 45 meter untuk single profile, sedangkan dengan menggunkan double profile bentang portal yang dapat didesain tentunya akan semakin besar. Penyatuan balok balok honeycomb dengan menggunakan las dan bisa juga diperkuat dengan memakai pelat disepanjang bentang tentunya dapat memperumit pekerjaan konstruksi,

20 namun hal ini sebanding dengan keekonimisan yang dihasilkan oleh balok balok honeycomb. Secara teori, tinggi profil honeycomb yang dihasilkan menjadi hingga dua kali lipat dari profil aslinya, dengan demikian tentunya inersia yang dihasilkan juga akan semakin besar. Para desainer/perancang melihat desain ini sangat rentan terhadap tekuk, dikarenakan penggabungan satu profil yang dipotong ditengah tengahnya dan menggabungkannya kembali. Oleh karena hal tersebut, para desainer/perancang lebih banyak menggunakan desain honeycomb dengan menggunakan dua profil ( double profile ) karena dianggap lebih aman terhadap tekuk pada badan.

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

BAB II TEORI DASAR. Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik /

BAB II TEORI DASAR. Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik / BAB II TEORI DASAR II.1. Pengenalan Desain Struktur Baja II.1.1. Desain Konstruksi Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik / keindahan) dan ilmu pengetahuan (science)

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985).

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985). BAB II TINJAUAN PUSTAKA 2.1 Baja Bahan konstruksi yang mulai diminati pada masa ini adalah baja. Baja merupakan salah satu bahan konstruksi yang sangat baik. Baja memiliki sifat keliatan dan kekuatan yang

Lebih terperinci

Bab II STUDI PUSTAKA

Bab II STUDI PUSTAKA Bab II STUDI PUSTAKA 2.1 Pengertian Sambungan, dan Momen 1. Sambungan adalah lokasi dimana ujung-ujung batang bertemu. Umumnya sambungan dapat menyalurkan ketiga jenis gaya dalam. Beberapa jenis sambungan

Lebih terperinci

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK... DAFTAR ISI HALAMAN LEMBAR JUDUL... i KATA PENGANTAR...... ii UCAPAN TERIMA KASIH......... iii DAFTAR ISI...... iv DAFTAR TABEL...... v DAFTAR GAMBAR...... vi ABSTRAK...... vii BAB 1PENDAHULUAN... 9 1.1.Umum...

Lebih terperinci

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax:

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax: Kuliah ke-6 Bar (Batang) digunakan pada struktur rangka atap, struktur jembatan rangka, struktur jembatan gantung, pengikat gording dn pengantung balkon. Pemanfaatan batang juga dikembangkan untuk sistem

Lebih terperinci

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan BAB I PENDAHULUAN 1.6 Latar Belakang Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan kolom, baik yang terbuat dari baja, beton atau kayu. Pada tempat-tempat tertentu elemen-elemen

Lebih terperinci

BAB II TINJAUAN KEPUSTAKAAN PENGENALAN DESAIN STRUKTUR BAJA

BAB II TINJAUAN KEPUSTAKAAN PENGENALAN DESAIN STRUKTUR BAJA BAB II TINJAUAN KEPUSTAKAAN II. 1 PENGENALAN DESAIN STRUKTUR BAJA II. 1. 1 Desain Konstruksi Desain konstruksi dapat didefenisikan sebagai kombinasi antara seni (artistik/keindahan) dan ilmu pengetahuan

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini BAB I PENDAHULUAN I.1 Latar Belakang Pada saat ini kolom bangunan tinggi banyak menggunakan material beton bertulang. Seiring dengan berkembangnya teknologi bahan konstruksi di beberapa negara, kini sudah

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR Diajukan sebagai salah satu persyaratan menyelesaikan Tahap Sarjana pada

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah Kode SKS : Perancangan Struktur Baja : TSP 306 : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 Sub Pokok Bahasan : Perilaku Mekanis Baja Pengantar LRFD Untuk

Lebih terperinci

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BAL KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI Jusak Jan Sampakang R. E. Pandaleke, J. D. Pangouw, L. K. Khosama Fakultas Teknik, Jurusan

Lebih terperinci

BAB I PENDAHULUAN. Suatu konstruksi tersusun atas bagian-bagian tunggal yang digabung membentuk

BAB I PENDAHULUAN. Suatu konstruksi tersusun atas bagian-bagian tunggal yang digabung membentuk BAB I PENDAHULUAN 1.1 Latar Belakang Suatu konstruksi tersusun atas bagian-bagian tunggal yang digabung membentuk satu kesatuan dengan menggunakan berbagai macam teknik penyambungan. Sambungan pada suatu

Lebih terperinci

TINJAUAN KEPUSTAKAAN

TINJAUAN KEPUSTAKAAN BAB II TINJAUAN KEPUSTAKAAN II.1. Pengenalan Desain Struktur Baja A. Desain Konstruksi Desain Konstruksi dapat didefenisikan sebagai perpaduan antara seni (artistik / keindahan) dan ilmu pengetahuan (science)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang sangat besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan

Lebih terperinci

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON BAB IV BALOK BETON 4.1. TEORI DASAR Balok beton adalah bagian dari struktur rumah yang berfungsi untuk menompang lantai diatasnya balok juga berfungsi sebagai penyalur momen menuju kolom-kolom. Balok dikenal

Lebih terperinci

BAB I PENDAHULUAN. berkembang dan telah mempermudah manusia untuk melakukan pekerjaan

BAB I PENDAHULUAN. berkembang dan telah mempermudah manusia untuk melakukan pekerjaan BAB I PENDAHULUAN 1.1.Umum dan Latar Belakang Perkembangan teknologi perancangan konstruksi gedung sudah semakin berkembang dan telah mempermudah manusia untuk melakukan pekerjaan analisis struktural yang

Lebih terperinci

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA Roland Martin S 1*)., Lilya Susanti 2), Erlangga Adang Perkasa 3) 1,2) Dosen,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan BAB II TINJAUAN PUSTAKA 2.1 Profil C Baja adalah salah satu alternatif bahan dalam dunia konstruksi. Baja digunakan sebagai bahan konstruksi karena memiliki kekuatan dan keliatan yang tinggi. Keliatan

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM Pada Studi Pustaka ini akan membahas mengenai dasar-dasar dalam merencanakan struktur untuk bangunan bertingkat. Dasar-dasar perencanaan tersebut berdasarkan referensi-referensi

Lebih terperinci

BAB I PENDAHULUAN. lainnya. Material baja pada struktur baja juga tersedia dalam berbagai jenis ukuran

BAB I PENDAHULUAN. lainnya. Material baja pada struktur baja juga tersedia dalam berbagai jenis ukuran BAB I PENDAHULUAN I.1. Latar Belakang Struktur baja telah banyak digunakan di seluruh pelosok dunia untuk perencanan suatu bangunan. Struktur baja menjadi salah satu pilihan terbaik dalam sudut pandang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka Setiap struktur baja merupakan gabungan dari batang-batang yang dihubungkan dengan sambungan. Penyambungan struktur baja dapat dilakukan dengan alat penyambung,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari BAB 2 TINJAUAN PUSTAKA II.1. Material baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Perencanaan Umum 3.1.1 Komposisi Bangunan Pada skripsi kali ini perencanaan struktur bangunan ditujukan untuk menggunakan analisa statik ekuivalen, untuk itu komposisi bangunan

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 7.1 Umum Salah satu tahapan yang penting dalam perencanaan suatu struktur adalah pemilihan jenis material yang akan digunakan. Jenis-jenis material yang selama ini digunakan adalah

Lebih terperinci

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul Sistem Struktur 2ton y Sambungan batang 5ton 5ton 5ton x Contoh Detail Sambungan Batang Pelat Buhul a Baut Penyambung Profil L.70.70.7 a Potongan a-a DESAIN BATANG TARIK Dari hasil analisis struktur, elemen-elemen

Lebih terperinci

5- STRUKTUR LENTUR (BALOK)

5- STRUKTUR LENTUR (BALOK) Pengertian Balok 5- STRUKTUR LENTUR (BALOK) Balok adalah bagian dari struktur bangunan yang menerima beban tegak lurus ( ) sumbu memanjang batang (beban lateral beban lentur) Beberapa jenis balok pada

Lebih terperinci

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB III PEMODELAN DAN ANALISIS STRUKTUR BAB III PEMODELAN DAN ANALISIS STRUKTUR 3.1. Pemodelan Struktur Pada tugas akhir ini, struktur dimodelkan tiga dimensi sebagai portal terbuka dengan penahan gaya lateral (gempa) menggunakan 2 tipe sistem

Lebih terperinci

BAB I PENDAHULUAN. analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur

BAB I PENDAHULUAN. analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur BAB I PENDAHUUAN 1.1. atar Belakang Masalah Dalam perencanaan struktur dapat dilakukan dengan dua cara yaitu analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur dibebani

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu I.1 Golongan Struktur Sebagian besar struktur dapat dimasukkan ke dalam salah satu dari tiga golongan berikut: balok, kerangka kaku,

Lebih terperinci

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 Perencanaan Material Baja Perlu ditetapkan kriteria untuk menilai tercapai atau tidaknya penyelesaian optimum Biaya minimum Berat minimum Bahan minimum Waktu konstruksi

Lebih terperinci

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi BAB I PENDAHULUAN I.1. Umum Struktur suatu portal baja dengan bentang yang besar sangatlah tidak ekonomis bila menggunakan profil baja standard. Untuk itu diperlukannya suatu modifikasi pada profil baja

Lebih terperinci

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD MODUL 4 BATANG TEKAN METODE ASD 4.1 MATERI KULIAH Panjang tekuk batang tekan Angka kelangsingan batang tekan Faktor Tekuk dan Tegangan tekuk batang tekan Desain luas penampang batang tekan Syarat kekakuan

Lebih terperinci

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik

Lebih terperinci

harus memberikan keamanan dan menyediakan cadangan kekuatan yang kemampuan terhadap kemungkinan kelebihan beban (overload) atau kekurangan

harus memberikan keamanan dan menyediakan cadangan kekuatan yang kemampuan terhadap kemungkinan kelebihan beban (overload) atau kekurangan BAB I PENDAHULUAN I. 1 LATAR BELAKANG Batang-batang struktur baik kolom maupun balok harus memiliki kekuatan, kekakuan dan ketahanan yang cukup sehingga dapat berfungsi selama umur layanan struktur tersebut.

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Beton Beton didefinisikan sebagai campuran antara sement portland atau semen hidraulik yang lain, agregat halus, agregat kasar dan air, dengan atau tanpa bahan tambahan yang

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi BAB I PENDAHUUAN I. 1 Umum Baja adalah salah satu bahan kontruksi yang paling penting, sifat-sifatnya yang terutama dalam penggunaan konstruksi adalah kekuatannya yang tinggi dan sifat yang keliatannya.

Lebih terperinci

Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss

Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss Golongan struktur 1. Balok (beam) adalah suatu batang struktur yang hanya menerima beban tegak saja, dapat dianalisa secara lengkap apabila diagram gaya geser dan diagram momennya telah diperoleh. 2. Kerangka

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

BAB 2 STUDI PUSTAKA. 2.1 Jenis-Jenis Material Baja Yang Ada di Pasaran. Jenis material baja yang ada di pasaran saat ini terdiri dari Hot Rolled Steel

BAB 2 STUDI PUSTAKA. 2.1 Jenis-Jenis Material Baja Yang Ada di Pasaran. Jenis material baja yang ada di pasaran saat ini terdiri dari Hot Rolled Steel BAB 2 STUDI PUSTAKA 2.1 Jenis-Jenis Material Baja Yang Ada di Pasaran Jenis material baja yang ada di pasaran saat ini terdiri dari Hot Rolled Steel dan Cold Formed Steel/ Baja Ringan. 1. Hot Rolled Steel/

Lebih terperinci

ANALISIS PENGARUH DIMENSI DAN JARAK PELAT KOPEL PADA KOLOM DENGAN PROFIL BAJA TERSUSUN

ANALISIS PENGARUH DIMENSI DAN JARAK PELAT KOPEL PADA KOLOM DENGAN PROFIL BAJA TERSUSUN Jurnal Sipil Statik Vol.4 No.8 Agustus 216 (59-516) ISSN: 2337-6732 ANALISIS PENGARUH DIMENSI DAN JARAK PELAT KOPEL PADA KOLOM DENGAN PROFIL BAJA TERSUSUN Jiliwosy Salainti Ronny Pandaleke, J. D. Pangouw

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gempa di Indonesia Tahun 2004, tercatat tiga gempa besar di Indonesia yaitu di kepulauan Alor (11 Nov. skala 7.5), gempa Papua (26 Nov., skala 7.1) dan gempa Aceh (26 Des.,skala

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang 1.1.1 Konsep Desain Desain struktur harus memenuhi beberapa kriteria, diantaranya Kekuatan (strength), kemampuan layan (serviceability), ekonomis (economy) dan Kemudahan

Lebih terperinci

PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI ) MENGGUNAKAN MATLAB

PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI ) MENGGUNAKAN MATLAB PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03-1729-2002) MENGGUNAKAN MATLAB R. Dhinny Nuraeni NRP : 0321072 Pembimbing : Ir. Ginardy

Lebih terperinci

ANALISIS SAMBUNGAN ANTARA RIGID CONNECTION DAN SEMI-RIGID CONNECTION PADA SAMBUNGAN BALOK DAN KOLOM PORTAL BAJA

ANALISIS SAMBUNGAN ANTARA RIGID CONNECTION DAN SEMI-RIGID CONNECTION PADA SAMBUNGAN BALOK DAN KOLOM PORTAL BAJA ANALISIS SAMBUNGAN ANTARA RIGID CONNECTION DAN SEMI-RIGID CONNECTION PADA SAMBUNGAN BALOK DAN KOLOM PORTAL BAJA TUGAS AKHIR Diajukan Untuk Melengkapi Syarat Penyelesaian Pendidikan Sarjana Teknik Sipil

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

Pertemuan I,II,III I. Tegangan dan Regangan

Pertemuan I,II,III I. Tegangan dan Regangan Pertemuan I,II,III I. Tegangan dan Regangan I.1 Tegangan dan Regangan Normal 1. Tegangan Normal Konsep paling dasar dalam mekanika bahan adalah tegangan dan regangan. Konsep ini dapat diilustrasikan dalam

Lebih terperinci

ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD

ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk

Lebih terperinci

MODUL PERKULIAHAN. Struktur Baja 1. Batang Tarik #1

MODUL PERKULIAHAN. Struktur Baja 1. Batang Tarik #1 MODUL PERKULIAHAN Struktur Baja 1 Batang Tarik #1 Fakultas Teknik Perencanaan dan Desain Program Studi Teknik Sipil Tatap Kode MK Disusun Oleh Muka 03 MK11052 Abstract Modul ini bertujuan untuk memberikan

Lebih terperinci

BAB I PENDAHULUAN. bersifat monolit (menyatu secara kaku). Lain halnya dengan konstruksi yang

BAB I PENDAHULUAN. bersifat monolit (menyatu secara kaku). Lain halnya dengan konstruksi yang BAB I PENDAHULUAN A. Latar belakang Pada suatu konstruksi bangunan, tidak terlepas dari elemen-elemen seperti balok, kolom pelat maupun kolom balok, baik itu yang terbuat dari baja, kayu, maupun beton,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. juga memiliki iki sifat elastis dan daktilitas yang cukup tinggi gi sehingga dapat

BAB II TINJAUAN PUSTAKA. juga memiliki iki sifat elastis dan daktilitas yang cukup tinggi gi sehingga dapat BAB II TINJAUAN PUSTAKA 2.1 Baja Baja merupakan elemen penting di dalam a dunia konstruksi saat ini. Baja memiliki kekuatan yang tinggi sehingga dapat megurangi ukuran struktur. Baja juga memiliki iki

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA Alderman Tambos Budiarto Simanjuntak NRP : 0221016 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS KRISTEN

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Gempa merupakan fenomena alam yang harus diterima sebagai fact of life.

BAB I PENDAHULUAN. 1.1 Latar Belakang. Gempa merupakan fenomena alam yang harus diterima sebagai fact of life. BAB I PENDAHULUAN 1.1 Latar Belakang Gempa merupakan fenomena alam yang harus diterima sebagai fact of life. Karena itu gempa bumi tidak mungkin untuk dicegah ataupun diprediksi dengan tepat kapan akan

Lebih terperinci

BAB I PENDAHULUAN. Pada suatu konstruksi bangunan, tidak terlepas dari elemen-elemen seperti

BAB I PENDAHULUAN. Pada suatu konstruksi bangunan, tidak terlepas dari elemen-elemen seperti BAB I PENDAHULUAN I. Umum Pada suatu konstruksi bangunan, tidak terlepas dari elemen-elemen seperti balok, kolom pelat maupun kolom balok, baik itu yang terbuat dari baja, kayu maupun beton, pada tempat-tempat

Lebih terperinci

T I N J A U A N P U S T A K A

T I N J A U A N P U S T A K A B A B II T I N J A U A N P U S T A K A 2.1. Pembebanan Struktur Besarnya beban rencana struktur mengikuti ketentuan mengenai perencanaan dalam tata cara yang didasarkan pada asumsi bahwa struktur direncanakan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Bidang konstruksi memiliki peran yang sangat penting dalam pembangunan prasarana yang diperlukan dalam mempertahankan dan mengembangkan peradaban manusia. Di era globalisasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom

BAB II TINJAUAN PUSTAKA. dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom BAB II TINJAUAN PUSTAKA II.1. Steel Plate Shear Walls Steel Plate Shear Walls adalah sistem penahan beban lateral yang terdiri dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom

Lebih terperinci

BAB III LANDASAN TEORI (3.1)

BAB III LANDASAN TEORI (3.1) BAB III LANDASAN TEORI 3.1 Kelangsingan Kelangsingan suatu kolom dapat dinyatakan dalam suatu rasio yang disebut rasio kelangsingan. Rasio kelangsingan dapat ditulis sebagai berikut: (3.1) Keterangan:

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Bagan Alir Perencanaan Ulang Bagan alir (flow chart) adalah urutan proses penyelesaian masalah. MULAI Data struktur atas perencanaan awal, As Plan Drawing Penentuan beban

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolom Kolom beton murni dapat mendukung beban sangat kecil, tetapi kapasitas daya dukung bebannya akan meningkat cukup besar jika ditambahkan tulangan longitudinal. Peningkatan

Lebih terperinci

kekuatan dan sifatnya cocok untuk memikul beban. Baja struktur banyak dipakai

kekuatan dan sifatnya cocok untuk memikul beban. Baja struktur banyak dipakai BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Baja struktur merupakan jenis baja yang berdasarkan pertimbangan ekonomi, kekuatan dan sifatnya cocok untuk memikul beban. Baja struktur banyak dipakai untuk kolom

Lebih terperinci

PENGARUH BRACING PADA PORTAL STRUKTUR BAJA

PENGARUH BRACING PADA PORTAL STRUKTUR BAJA PENGARUH BRACING PADA PORTAL STRUKTUR BAJA (Studi Literatur) TUGAS AKHIR Diajukan Untuk Melengkapi Tugas - Tugas dan Memenuhi Syarat Dalam Menempuh Ujian Sarjana Teknik Sipil Disusun Oleh : ADVENT HUTAGALUNG

Lebih terperinci

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya BABH TINJAUAN PUSTAKA Pada balok ternyata hanya serat tepi atas dan bawah saja yang mengalami atau dibebani tegangan-tegangan yang besar, sedangkan serat di bagian dalam tegangannya semakin kecil. Agarmenjadi

Lebih terperinci

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA II MODUL 6 S e s i 5 Struktur Jembatan Komposit Dosen Pengasuh : Materi Pembelajaran : 10. Penghubung Geser (Shear Connector). Contoh Soal. Tujuan Pembelajaran : Mahasiswa mengetahui, memahami

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Langkah Kerja Dalam tugas akhir tentang perencanaan gedung beton bertulang berlantai banyak dengan menngunakan sistem perkakuan menggunakan shearwall silinder berongga

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450 PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI 03-1726-2002 DAN FEMA 450 Calvein Haryanto NRP : 0621054 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

KONSEP TEGANGAN DAN REGANGAN NORMAL

KONSEP TEGANGAN DAN REGANGAN NORMAL KONSEP TEGANGAN DAN REGANGAN NORMAL MATERI KULIAH KALKULUS TEP FTP UB RYN - 2012 Is This Stress? 1 Bukan, Ini adalah stress Beberapa hal yang menyebabkan stress Gaya luar Gravitasi Gaya sentrifugal Pemanasan

Lebih terperinci

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan.

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. II. KONSEP DESAIN A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. Beban yang bekerja pada struktur bangunan dapat bersifat permanen (tetap)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja adalah salah satu bahan konstruksi yang paling banyak digunakan. Sifat-sifatnya yang penting dalam penggunaan konstruksi adalah kekuatannya yang tinggi dibandingkan

Lebih terperinci

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural BAB III LANDASAN TEORI 3.1 Kolom Pendek Menurut McComac dan Nelson dalam bukunya yang berjudul Structural Steel Design LRFD Method yang berdasarkan dari AISC Manual, persamaan kekuatan kolom pendek didasarkan

Lebih terperinci

BAB II LANDASAN TEORI. kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya,

BAB II LANDASAN TEORI. kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya, BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka. Dalam merancang suatu struktur bangunan harus diperhatikan kekakuan, kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya, serta bagaimana

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

STUDI PERILAKU ELEMEN STRUKTUR DENGAN SAMBUNGAN KAKU PADA BALOK DAN KOLOM BANGUNAN BAJA TAHAN GEMPA

STUDI PERILAKU ELEMEN STRUKTUR DENGAN SAMBUNGAN KAKU PADA BALOK DAN KOLOM BANGUNAN BAJA TAHAN GEMPA STUDI PERILAKU ELEMEN STRUKTUR DENGAN SAMBUNGAN KAKU PADA BALOK DAN KOLOM BANGUNAN BAJA TAHAN GEMPA Oleh : Fandi 3106 100 702 DOSEN PEMBIMBING : BUDI SUSWANTO ST, MT,Ph.D Ir.R.SOEWARDOJO, MSc 1 BAB I PENDAHULUAN

Lebih terperinci

MODUL 4 STRUKTUR BAJA 1. S e s i 1 Batang Tekan (Compression Member) Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 4 STRUKTUR BAJA 1. S e s i 1 Batang Tekan (Compression Member) Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA 1 MODUL 4 S e s i 1 Batang Tekan (Compression Member) Dosen Pengasuh : Materi Pembelajaran : 1. Elemen Batang Tekan... Tekuk Elastis EULER. 3. Panjang Tekuk. 4. Batas Kelangsingan Batang

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

A. Struktur Balok. a. Tunjangan lateral dari balok

A. Struktur Balok. a. Tunjangan lateral dari balok A. Struktur Balok 1. Balok Konstruksi Baja Batang lentur didefinisikan sebagai batang struktur yang menahan baban transversal atau beban yang tegak lurus sumbu batang. Batang lentur pada struktur yang

Lebih terperinci

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau 17 BAB I PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi di Indonesia semakin berkembang dengan pesat. Seiring dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau bahan yang dapat

Lebih terperinci

BAB II DASAR TEORI. baja yang dipakai adalah Baja Karbon (Carbon Steel) dengan sebutan Baja ASTM

BAB II DASAR TEORI. baja yang dipakai adalah Baja Karbon (Carbon Steel) dengan sebutan Baja ASTM BAB II DASAR TEORI 2.1 Sifat Baja Struktural Pengenalan baja struktural sebagai bahan bangunan utama pada tahun 1960, baja yang dipakai adalah Baja Karbon (Carbon Steel) dengan sebutan Baja ASTM (American

Lebih terperinci

BAB II TINJAUAN KEPUSTAKAAN. menara air rangka baja. Struktur baja bisa dibagi atas tiga kategori umum :

BAB II TINJAUAN KEPUSTAKAAN. menara air rangka baja. Struktur baja bisa dibagi atas tiga kategori umum : BAB II TINJAUAN KEPUSTAKAAN A. Umum Baja merupakan sauatu bahan konstruksi yang lazim digunakan dalam struktur bangunan sipil. Karena kekuatan yang tinggi dan ketahanan terhadap gaya luar yang besar maka

Lebih terperinci

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi.

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi. BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perancangan struktur suatu bangunan gedung didasarkan pada besarnya kemampuan gedung menahan beban-beban yang bekerja padanya. Disamping itu juga harus memenuhi

Lebih terperinci

Struktur Baja 2. Kolom

Struktur Baja 2. Kolom Struktur Baja 2 Kolom Perencanaan Berdasarkan LRFD (Load and Resistance Factor Design) fr n Q i i R n = Kekuatan nominal Q = Beban nominal f = Faktor reduksi kekuatan = Faktor beban Kombinasi pembebanan

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Desain struktur merupakan faktor yang sangat menentukan untuk menjamin

BAB I PENDAHULUAN. A. Latar Belakang. Desain struktur merupakan faktor yang sangat menentukan untuk menjamin BAB I PENDAHULUAN A. Latar Belakang Desain struktur merupakan faktor yang sangat menentukan untuk menjamin kekuatan dan keamanan suatu bangunan, karena inti dari suatu bangunan terletak pada kekuatan bangunan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Sambungan Sambungan-sambungan pada konstruksi baja hampir tidak mungkin dihindari akibat terbatasnya panjang dan bentuk dari propil propil baja yang diproduksi. Sambungan bisa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Dalam perencanaan bangunan tinggi, struktur gedung harus direncanakan agar kuat menahan semua beban yang bekerja padanya. Berdasarkan Arah kerja

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi berdasarkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 28 BAB II TINJAUAN PUSTAKA II.1 Material Beton II.1.1 Definisi Material Beton Beton adalah suatu campuran antara semen, air, agregat halus seperti pasir dan agregat kasar seperti batu pecah dan kerikil.

Lebih terperinci