TINJAUAN PUSTAKA. terjadinya gempa tektonik merupakan akibat adanya gerakan dinamis lempenglempeng

Ukuran: px
Mulai penontonan dengan halaman:

Download "TINJAUAN PUSTAKA. terjadinya gempa tektonik merupakan akibat adanya gerakan dinamis lempenglempeng"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1. Pendahuluan Gempa bumi adalah gempa yang disebabkan oleh aktivitas tektonik. Proses terjadinya gempa tektonik merupakan akibat adanya gerakan dinamis lempenglempeng tektonik dunia yang saling berinteraksi. Untuk menyelidiki seismisitas dari aktivitas tektonik tersebut maka dibuatlah jejaring seismograf yang bersifat lokal dan global Teori Gempa Bumi Gempa bumi tidak lain merupakan manifestasi dari getaran lapisan batuan yang patah yang energinya menjalar melalui badan dan permukaan bumi berupa gelombang seismik. Energi yang dilepaskan pada saat terjadinya patahan tersebut dapat berupa energi deformasi, energi gelombang dan lain-lain. Energi deformasi ini dapat terlihat pada perubahan bentuk sesudah terjadinya patahan, misalnya pergeseran. Sedang energi gelombang menjalar melalui medium elastis yang dilewatinya dan dapat dirasakan sangat kuat di daerah terjadinya gempa bumi tersebut [10]. Teori yang menjelaskan mekanisme terjadinya gempa bumi yang dikenal sebagai Elastic Rebound Theory. Dijelaskan dalam teori ini bahwa gempa bumi

2 terjadi pada daerah deformasi dimana terdapat dua buah gaya yang bekerja dengan arah berlawanan pada batuan kulit bumi. Energi yang tersimpan selama proses deformasi berbentuk elastis strain dan akan terakumulasi sampai melampui daya dukung batas maksimum batuan, hingga akhirnya menimbulkan rekahan atau patahan. Pada saat terjadi rekahan atau patahan tersebut energi yang tersimpan tersebut sebagian besar akan dilepaskan dalam bentuk gelombang ke segala arah baik dalam bentuk gelombang transversal maupun longitudinal. Peristiwa inilah yang disebut dengan gempa bumi. Mekanisme terjadinya gempa bumi dapat dijelaskan pada Gambar 2.1. Gambar 2.1. Mekanisme terjadinya gempa bumi [11]

3 Keadaan I menunjukan suatu lapisan yang belum terjadi perubahan bentuk geologi. Karena di dalam bumi terjadi gerakan yang terus-menerus, maka akan terdapat stress yang lama kelamaan akan terakumulasi dan mampu merubah bentuk geologi dari lapisan batuan. Keadaan II menunjukan suatu lapisan batuan telah mendapat dan mengandung stress dimana telah terjadi perubahan bentuk geologi. Untuk daerah A mendapat stress ke atas, sedang daerah B mendapat stress ke bawah. Proses ini berjalan terus sampai stress yang terjadi atau dikandung di daerah ini cukup besar untuk merubahnya menjadi gesekan antara daerah A dan daerah B. Lama kelamaan karena lapisan batuan sudah tidak mampu lagi untuk menahan stress maka akan terjadi suatu pergerakan atau perpindahan yang tiba-tiba sehingga terjadilah patahan. Peristiwa pergerakan secara tiba-tiba ini disebut gempa bumi. Keadaan III menunjukan lapisan batuan yang sudah patah karena adanya pergerakan yang tiba-tiba dari batuan tersebut. Gerakan perlahan-lahan sesar ini akan berjalan terus sehingga seluruh proses diatas akan diulangi lagi dan sebuah gempa akan terjadi lagi setelah beberapa waktu lamanya demikian seterusnya [11] Parameter Gempa Bumi Dari kejadian gempa bumi dapat dihasilkan informasi seismik berupa rekaman sinyal berbentuk gelombang setelah melalui proses manual atau non manual akan menjadi data bacaan fase (phase reading data). Informasi seismik selanjutnya

4 mengalami proses pengumpulan, pengolahan dan analisis sehingga menjadi parameter gempa bumi. Parameter gempa bumi tersebut meliputi: a. Waktu kejadian gempa bumi (Origin Time) Waktu kejadian gempa bumi (Origin Time) adalah waktu terlepasnya akumulasi tegangan (stress) yang berbentuk penjalaran gelombang gempa bumi dan dinyatakan dalam hari, tanggal, bulan, tahun, jam, menit, detik. b. Epicenter Epicenter adalah titik seismik pada permukaan bumi yang ditarik tegak lurus dari titik fokus terjadinya gempa bumi (hypocenter). Lokasi episenter dibuat dalam sistem koordinat kartesian bola bumi atau sistem koordinat geografis dan dinyatakan dalam derajat lintang dan bujur. c. Kedalaman sumber gempa Kedalaman sumber gempa (depth) adalah jarak dari titik fokus gempa (hypocenter) dengan permukaan di atas fokus (epicenter). Kedalaman dinyatakan oleh besaran jarak dalam satuan kilometer. Berdasarkan kedalaman sumber gempa [26], gempa bumi dapat dikelompokan menjadi: 1. Gempa bumi dalam yaitu gempa bumi yang mempunyai kedalaman sumber gempa lebih dari 300 Km. 2. Gempa bumi menengah yaitu gempa bumi yang mempunyai kedalaman sumber gempa antara 80 Km sampai dengan 300 Km.

5 3. Gempa bumi dangkal yaitu gempa bumi yang mempunyai kedalaman sumber gempa kurang dari 80 Km. d. Kekuatan gempa bumi Kekuatan gempa bumi atau Magnitudo (Magnitude) adalah ukuran kekuatan gempa bumi, menggambarkan besarnya energi yang terlepas pada saat gempa bumi terjadi dan merupakan hasil pengamatan Seismograph. Berdasarkan kekuatan atau magnitudonya [10], gempa bumi dapat dikelompokan menjadi: 1. Gempa bumi sangat besar, dengan skala magnitude lebih besar dari Gempa bumi besar, dengan skala magnitude antara 6 sampai Gempa bumi sedang, dengan skala magnitude antara 4 sampai Gempa bumi kecil, dengan skala magnitude antara 3 sampai Gempa bumi mikro, dengan skala magnitude antara 1 sampai Gempa bumi ultra mikro, dengan skala magnitude lebih kecil dari 1. e. Intensitas gempa bumi Intensitas (Intensity) gempa bumi adalah skala kekuatan gempa bumi berdasarkan hasil pengamatan efek gempa bumi terhadap manusia, struktur bangunan, dan lingkungan pada tempat tertentu. Intensitas gempa bumi umumnya dinyatakan dengan Modified Mercalli Intensity (MMI) Teori Penjalaran Gelombang Seismik Mekanisme gempa bumi dikontrol oleh pola penjalaran gelombang seismik di dalam bumi. Pola mekanisme ini tergantung pada medium penjalaran atau keadaan

6 struktur kulit bumi serta distribusi gaya atau stress yang terjadi. Gelombang gempa bumi merupakan gelombang elastik yang terjadi karena adanya pelepasan energi dari sumber gempa yang dipancarkan ke segala arah, gelombang gempa bumi dapat diklasifikasikan menjadi dua kelompok yaitu gelombang badan (body wave) dan gelombang permukaan (surface wave). 1. Gelombang badan (body wave) adalah gelombang yang merambat melalui lapisan dalam bumi. Gelombang ini terdiri dari 2 macam gelombang yaitu: a. Gelombang longitudinal, yaitu gelombang dimana gerakan partikelnya menjalar searah dengan arah penjalaran gelombang. Gelombang Longitudinal ini dikenal dengan nama gelombang Primer (P), karena gelombang ini tiba lebih dahulu pada permukaan bumi. Besarnya kecepatan gelombang P dapat dinyatakan dalam Persamaan (2.1.):...(2.1) dimana : : kecepatan perambatan gelombang Primer (m/s) V p λ : konstanta Lameµ dan (m/s) µ : rigiditas medium (N/m 2 ) : massa jenis medium (kg/m 3 )

7 b. Gelombang transversal, yaitu gelombang dimana gerakan partikelnya menjalar dengan arah tegak lurus terhadap arah penjalaran gelombang. Gelombang transversal ini dikenal dengan nama gelombang S (Sekunder), karena gelombang ini tiba pada permukaan bumi setelah gelombang Primer. Besarnya kecepatan gelombang S dapat dinyatakan dalam Persamaan (2.2.) :...(2.2) dimana : V s : kecepatan perambatan gelombang Sekunder(m/s) µ : rigiditas medium (N/m 2 ) : massa jenis medium (kg/m 3) 2. Gelombang permukaan yaitu gelombang yang menjalar sepanjang permukaan atau pada suatu lapisan dalam bumi, gelombang ini terdiri dari: a. Gelombang love (LQ) dan gelombang rayleigh (LR) yaitu gelombang yang menjalar melalui permukaan yang bebas dari bumi. b. Gelombang stonely, seperti gelombang rayleigh (LR) tetapi menjalarnya melalui batas dua lapisan di dalam bumi. c. Gelombang channel, yang menjalar melalui lapisan yang berkecepatan rendah di dalam bumi. Data seismik secara alami merupakan sinyal non stasioner yang mempunyai bermacam frekuensi dan dalam bentuk waktu. Dekomposisi Waktu-Frekuensi (Time-Frekuency Decomposition), yang merupakan dekomposisi spektral sinyal

8 seismik untuk mengetahui karakteristik waktu terhadap frekuensi yang menunjukkan respon batuan bawah permukaan (subsurface rocks) dan reservoir [13,14,15]. Kebutuhan akan resolusi tinggi dalam analisis sinyal non stasioner telah mengakibatkan perkembangan berbagai sarana yang ampuh untuk menganilsa data sinyal non stasioner. Metode transformasi berbasis wavelet merupakan sarana yang dapat digunakan untuk menganilisis sinyal-sinyal non stasioner. Gambar 2.2 merupakan penjalaran sinyal seismik yang akan dianalisa dengan transformasi Fourier sehingga menghasilkan spektrum gelombang seismik. Dalam pengolahan data seismik, penggunaan transformasi diperlukan untuk memudahkan dalam menganalisa data pada domain lain, yaitu dari domain waktu menjadi domain frekuensi [16,17].

9 Gambar 2.2. SBGf - Sociedade Brasileira de Geofísica, 2005 [12] Pembuatan peta waktu-frekuensi bukan merupakan proses yang unik, sehingga terdapat berbagai metode untuk analisis waktu-frekuensi dari sinyal-sinyal non stasioner. Analisi sinyal tidak stasioner seperti sinyal seismik dengan perangkat lunak berbasis transformasi Fourier, seringkali tidak bisa memberikan informasi keadaaan bawah permukaan yang sesungguhnya karena pada proses transformasi Fourier tidak dapat mengamati pada waktu frekuensi tertentu [18]. Metode yang sering digunakan, Short Time Fourier Transform (STFT) menghasilkan spektrum waktu-frekuensi dengan menggunakan Transformasi Fourier pada window waktu yang dipilih [19]. Pada STFT, resolusi waktu-frekuensi disesuaikan pada seluruh ruang waktu-frekuensi dengan panjang window yang dipilih sebelumnya. Oleh karena itu resolusi pada analisis data seismik menjadi tergantung pada pengguna panjang gelombang tertentu atau bersifat subjektif [20]. Lebih dari dua dekade terakhir, transformasi wavelet diaplikasikan pada berbagai ilmu pengetahuan dan teknik. Transformasi wavelet memberikan sebuah pendekatan yang berbeda pada analisis waktu-frekuensi. Spektrum waktu-frekuensi yang dihasilkan, direpresentasikan dalam bentuk peta waktu-skala yang disebut scalogram [5]. Beberapa peneliti [6] menggunakan skala berbanding terbalik terhadap frekuensi tengah dari wavelet dan merepresentasikan scalogram sebagai peta waktu-frekuensi [5]. Kebutuhan akan resolusi tinggi dalam signal non-stasioner telah mendorong berkembangnya sarana (tools) untuk menganalisa data sinyal seismik

10 non-stasioner. Transformasi fourierfˆ(ω) signal f(t) adalah inner product signal dengan fungsi dasar e iω t dapat dituliskan dalam bentuk Persamaan (2.3). f i c x i c x ( ) = f ( t), e = f ( t) e d ω... (2.3) Sebuah sinyal seismik ketika ditransformasikan ke dalam domain frekuensi menggunakan transformasi fourier, memberikan respon informasi semua frekuensi. Analisa transformasi fourier adalah sebuah teknik dalam matematika yang menguraikan sebuah sinyal dalam bentuk sinusoidal dengan frekuensi yang berbedabeda dan merubah domain waktu menjadi domain frekuensi [20]. Kita dapat melibatkan ketergantungan waktu dengan windowing signal (seperti mengambil segment pendek sinyal) dan kemudian menampilkan fourier transform pada data yang di window untuk menentukan informasi frekuensi lokal. Seperti sebuah pendekatan analisa time-frequency yang dikenal sebagai Short-Time Fourier Transform dan peta time-frequency yang disebut spectrogram [21]). STFT merupakan hasil inner product sinyal f(t) dengan fungsi waktu geser window(t). secara matematik dapat dituliskan pada Persamaan (2.4). i c x i c ( t) φ( t τ ) e = f ( t) θ ( t ) e d S ( ω T, τ ) = F, T τ...(2.4) Dimana fungsi window φ adalah dipusatkan pada waktu t = τdan φ adalah complex conjugate dariφ.

11 Ada 2 (dua) hal pokok dari jenis transformasi fourier waktu pendek (Short Time Fourier transform=stft) dan Transformasi Wavelet: 1. Transformasi fourier pada sinyal yang terjendela (windowed) tidak dilakukan, akibatnya akan terlihat sebuah puncak amplitudo yang berkaitan dengan sinusoid. 2. Pada transformasi wavelet lebar window berubah-ubah selama melakukan perhitungan untuk masing-masing komponen spektrum dan ini merupakan ciri khas dari transformasi wavelet [24,25]. Gambar (2.3), (2.4), (2.5) dan (2.6) menunjukkan adanya perbedaan mendasar dari bentuk transformasi sinyal yang dilakukan pada transformasi fourier dan transformasi wavelet. Transformasi fourier dari sinyal sinusoidal ditransformasikan dalam bentuk sinyal sinus atau cosinus, sedangkan pada transformasi wavelet t sinyal yang ditransformasikan mengalami penskalaan, translasi dan dilatasi. Gambar 2.3. Transformasi Fourier : Tool baru untuk analisa sinyal sinusoidal [21]

12 Gambar 2.4. Transformasi wavelet kontinu: Tool baru untuk analisa sinyal skala [21] Gambar 2.5. Analisis Fourier:Tool baru untuk analisa sinyal dengan transformasi fourier [21] Gambar 2.6. Analisa Wavelet :Tool baru untuk analisa sinyal dengan transformasi wavelet [21]

13 2.5. Wavelet Wavelet adalah tubuh gelombang yang berupa fungsi matematika yang memotong data menjadi beberapa frekuensi. Transformasi wavelet melibatkan minimal 3 proses, yaitu penskalaan, dilatasi dan translasi. Bentuk persamaan umumnya dapat dilihat pada Persamaan (2.5) t τ σ ( t) = ψ 1 ψ σ τ, σ (2.5) dimana σ, τ adalah tidak sama dengan nol dan σadalah parameter dilatasi atau skala. wavelet nilai dinormalisasikan L2 - ψ. Transformasi Wavelet Kontinu didefiniskan sebagai inner product dari family waveletψ, dalam bentuk Persamaan (2.6) F W 1 t τ σ σ ( σ τ) =, f ( t),ψ ( = t f) ( t) ψ d σ τ,.....(2.6) Dimana fungsi window adalah dipusatkan pada waktu t = τdan φ adalah complex conjugate dari φ. Operator mother wavelet terdiri translasi dan dilatasi dari skala yang dirubah pada saat melakukan transformasi wavelet. Skala ini akan menentukan seberapa besar tingkat korelasi dari skala yang dipakai dan peak gelombang seismiknya. Wavelet terdilatasi maupun termampatkan berdasarkan faktor skala dengan demikian pada skala yang rendah, hasil frekuensi tinggi terlokalisasi sedangkan pada skala tinggi yang terlokalisasi adalah watak frekuensi rendah [19].

14 Parameter skala pada analisis wavelet dapat diibaratkan sebagai skala yang digunakan pada peta, skala yang besar berkaitan dengan pandangan secara global (pada sinyal) dan skala yang kecil berkaitan dengan pandangan detil (pada sinyal) atau dengan kata lain skala besar berkaitan dengan frekuensi-frekuensi rendah dan skala kecil berkaitan dengan frekuensi-frekuensi tinggi. Bentuk translasi yang dilakukan yaitu kegiatan windowing berjalan untuk mendapatkan hasil transformasi yang terbaik, sedangkan dilatasi menunjukkan bahwa sinyal transformasi tidak hanya ditransformasikan dalam bentuk sinusoidal dan cosinus, tetapi bisa melakukan perubahan bentuk sinyal seperti kerapatan periodenya. Frekuensi pusat filter (centre frequency) adalah ukuran dari frekuensi tengah antara atas dan bawah frequency cut off. Pada frekuensi cut off menunjukkan system respon frekuensi dimana energi yang mengalir melalui sistem mulai dikurangi (dilemahkan atau dipantulkan). Biasanya frekuensi cut off berlaku sebagai alat dalam suatu sistem lowpass, highpass, bandpass atau bandstop yang juga menggambarkan ciri-ciri frekuensi batas antara passband dan stopband. Dalam banyak kasus pemrosesan sinyal, kandungan frekuensi rendah adalah hal yang sangat penting karena memberikan identitas dari sinyal yang bersangkutan. Kandungan frekuensi tinggi sebagai pelengkap atau nuansa sinyal tambahan sekaligus untuk lebih menjelaskan spektrum hasil resolusi (enhancement resolution). Misalnya dalam suara manusia jika kita menghilangkan komponen frekuensi tingginya maka suara akan berubah namun kita masih mampu mengetahui apa yang diucapkan. Frekuensi rendah ini dapat juga digunakan untuk melihat perbedaan

15 ketebalan lapisan dari penggunaan frekuensi tunggalnya. Penggunaan frekuensi rendah biasanya dapat menunjukkan lapisan yang lebih tebal sedangkan pada lapisan tipis dapat ditunjukkan dengan menggunakan slice frekuensi tinggi. Penggunaan transformasi jenis lain dalam analisis berbasis wavelet sering digunakan istilah aproksimasi dan detil. Aproksimasi merupakan komponen skala tinggi, frekuensi rendah, sedangkan Detil merupakan komponen-komponen skala rendah, frekuensi tinggi. Proses tapisan (filtering) seperti pada Gambar 2.7, sinyal asli S dilewatkan pada tapis lolos rendah (lowpass) dan lolos tinggi (high pass) kemudian menghasilkan dua sinyal A (aproksimasi) dan D (detil). S= Sinyal, A= Aproksimasi, D= Detil Gambar 2.7. Proses tapisan satu-tingkat [22]

16 Jika dekomposisi sinyal diteruskan secara iteratif untuk bagian-bagian aproksimasinya sehingga suatu sinyal bisa dibagi-bagi ke dalam banyak komponenkomponen resolusi rendah maka proses ini dinamakan sebagai dekomposisi banyak tingkat atau multiple level decomposition, sebagaimana ditunjukkan pada Gambar 2.8 [22]. Dengan melihat hasil pohon dekomposisi wavelet kita akan mendapatkan informasi yang penting. Gambar 2.8. Pohon dekomposisi (setengah) berbasis tapis wavelet [22]

17 Transformasi wavelet menggunakan dua komponen penting dalam melakukan transformasi yaitu fungsi skala (scale function) dan fungsi wavelet (wavelet function). Fungsi skala (scale function) disebut juga sebagai lowpass Filter, sedangkan fungsi wavelet (wavelet function) disebut juga sebagai highpass Filter. Kedua fungsi ini digunakan pada saat transformasi wavelet dan inversi transformasi wavelet: a. Fungsi wavelet Fungsi wavelet disebut juga highpass filter yang mengambil citra sinyal dengan gradiasi intensitas yang tinggi dan perbedaan intensitas yang rendah akan dikurangi atau dibuang. b. Fungsi skala disebut juga lowpass filter yang mengambil citra sinyal dengan gradasi intensitas yang halus dan perbedaan intensitas yang tinggi akan dikurangi atau dibuang. Kedua komponen itu disebut juga sebagai mother wavelet yang harus memenuhi kondisi yang menjamin ortogonalitas vektor. Keluarga wavelet memiliki ordo dimana ordo menggambarkan jumlah koefisien filter-nya. Dalam sebuah wavelet terdapat 2 properti yang penting, diantaranya polaritas dan fase. Ada dua jenis polaritas [23]: 1. Polaritas normal (normal polarity), yaitu kenaikan impedansi akustik akan digambarkan sebagai lembah (trough) pada trace seismik. 2. Polaritas terbalik (reverse polarity), yaitu kenaikan impedansi akustik akan digambarkan sebagai puncak amplitudo (peak) pada trace seismik.

18 Pembagian fase pada wavelet: a. Fase minimum (minimum phase) b. Fase nol (zero phase) c. Fase maksimum (maximum phase) d. Fase campuran (mix phase) Terdapat 5 (lima) macam kelompok atau keluarga wavelet yang dikenal, yaitu wavelet sederhana, wavelet regular tak berhingga, wavelet orthogonal dan compactly supported, wavelet biortogonal dan compactly supported serta wavelet kompleks. 2.6 Jenis Wavelet Jenis wavelet yang digunakan dalam pengujian aplikasi interaktif ini meliputi wavelet Complex Gaussian, Mexh, Morlet, Haar Complex gaussian (non-ortogonal) Jenis wavelet ini didefinisikan sebagai turunan dari fungsi kerapatan probabilitas Gaussian. Sifat-sifatnya antara lain: a. Tidak bersifat orthogonal, biortogonal, dan tidak compactly supported b. Tidak mendukung transformasi wavelet diskrit c. Untuk transformasi wavelet kontinu d. Support width-nya tak berhingga e. Bersifat simetris Wavelet Complex Gaussian dapat digambarkan seperti pada Gambar 2.9.

19 Gambar 2.9. Fungsi skala dan fungsi wavelet Cgau4 [21] Daubechies Karakteristik umum jenis wavelet ini merupakan wavelet yang compactly supported dengan sejumlah besar vanishing moments baik untuk fungsi w(t) maupun q(t) untuk support width tertentu. Tapis penskalaan yang terkait merupakan tapis fase-minimum. Sifat-sifat daubechies antara lain: a. Bersifat orthogonal, biortogonal, dan compactly supported b. Memungkinkan transformasi wavelet diskrit dan kontinu c. Untuk Panjang tapis 2N d. Support width-nya 2N-1 e. Jauh dari sifat simetris f. Jumlah vanishing moments untuk w(t) adalah N

20 Wavelet Daubechies 3 dan 5 dapat digambarkan seperti pada Gambar Gambar Fungsi skala dan fungsi wavelet db4 [21] Morlet Sifat-sifat Morlet antara lain: a. Tidak bersifat orthogonal, biortogonal, dan tidak compactly supported b. Tidak mendukung transformasi wavelet diskrit c. Untuk transformasi wavelet kontinu d. Support width-nya tak berhingga e. Efektivitasnya dari -4 hingga 4 f. Bersifat simetris

21 Wavelet Mexican hat dapat digambarkan seperti pada Gambar Gambar Fungsi skala dan fungsi wavelet Morlet [21] Symlet Karakteristik umum jenis wavelet ini merupakan wavelet yang compactly supported dengan sejumlah besar vanishing moments baik untuk fungsi w(t) maupun q(t) untuk support width tertentu. Tapis penskalaan yang terkait merupakan tapis fase-minimum. Sifat-sifat symlet antara lain: a. Bersifat orthogonal, biortogonal, dan compactly supported b. Memungkinkan transformasi wavelet diskrit maupun kontinu. c. Panjang tapis 2N d. Support width-nya 2N-1

22 e. Jumlah vanishing moments untuk W(t) adalah N f. Mendekati sifat simetris Wavelet Symlet dapat di gambarkan pada Gambar Gambar Fungsi skala dan fungsi wavelet Symlet 4 [21]

23 Wavelet Haar (orthogonal) Jenis wavelet ini merupakan compactly supported dan wavelet yang tertua dan sederhana. Sifat-sifatnya yaitu: Bersifat orthogonal, biortogonal dan compactly supported a. Memungkinkan transformasi wavelet diskrit maupun kontinu b. Support width-nya 1 c. Panjang tapis 2 d. Bersifat simetris tetapi regulariltasnya tidak kontinu. e. Jumlah vanishing moments untuk untuk w (t) adalah 1 Wavelet Haar dapat digambarkan pada Gambar Gambar Fungsi skala dan fungsi wavelet Haar [21]

24 Coiflet Karakteristik umum jenis wavelet ini merupakan wavelet yang compactly supported dengan sejumlah besar vanishing moments baik untuk fungsi w(t) maupun q(t) untuk support width tertentu. Sifat-sifatnya antara lain: a. Bersifat orthogonal, biortogonal, dan compactly supported b. Memungkinkan transformasi wavelet diskrit maupun kontinu. c. Panjang tapis 6N d. Support width-nya 6N-1 e. Agak bersifat simetris regular Wavelet Coeflet 2 dapat digambarkan pada Gambar Gambar Fungsi skala dan fungsi wavelet Coiflet [21]

25 Sebuah wavelet biorthogonal adalah sebuah wavelet yang diasosiasikan transformasi wavelet dalam bentuk inverse, tetapi tidak perlu bentuk orthogonal. Pembuatan bentuk wavelet biorthogonal memungkinkan menggunakan derajat yang lebih bebas dari pada wavelet orthogonal. Penambahan kebebasan derajat memungkinkan untuk membangun fungsi wavelet simetris. Sebuah wavelet orthogonal adalah sebuah wavelet dimana diaososiasikan bentuk transformasi waveletnya berbentuk orthogonal, terbentuk tegak lurus. Dari semua jenis wavelet ini yang kemudian dijadikan sebagai operator uji dalam transformasi wavelet. Masing-masing jenis wavelet dengan beberapa karakter yang dimilikinya akan memberikan pola hasil yang berbeda pada saat melihat hasil transformasi, karena pada saat melakukan transformasi wavelet melibatkan nilai dari frekuensi pusat (center frequency) dari masing-masing jenis wavelet. Perbedaan tersebut bisa dilihat pada Gambar Cgau4 2. Db4 3. Morlet 4. Symlet 5. Haar 6. Coeflet Gambar Grafik nilai frekuensi pusat masing-masing jenis wavelet [21]

26 2.7. SEED Format standar untuk pertukaran data gempa bumi (Standard for the Exchange of Earthquake Data atau SEED) dikembangkan sebagai standar dalam federasi jaringan seismograph digital (Federation of Digital Seismographic Networks atau FDSN) pada tahun 1987 [26]. IRIS juga mengadopsi SEED dan menggunakannya sebagai format utama untuk himpunan-himpunan datanya. SEED menggunakan empat jenis header kendali: a. Header pengidentifikasi volume. b. Header kamus sigkatan. c. Header stasiun. d. Header rentang waktu. Masing-masing header dapat menggunakan beberapa blockettes informasi dengan porsi individu yang spesifik untuk header yang sesuai dengan cara pengaturan jenis volumenya. Beberapa blockettes bervariasi panjangnya dan dapat lebih panjang dari pada panjangnya rekaman logis. Medan data dalam header kendali diformat dalam ASCII, tetapi medan data (dalam rekaman data) utamanya diformat dalam biner. Perlu dikemukakan bahwa format-format (seperti halnya SEED) yang dirancang untuk menangani kebutuhan pertukaran data internasional, jarang sesuai dengan kebutuhan individual peneliti. Jadi ketersediaan secara meluas perangkat lunak untuk konversi antara SEED dan suatu rangkaian penuh format data adalah penting agar dapat menjadi lebih baik untuk penelitian.

UNIVERSITAS INDONESIA APLIKASI INTERAKTIF ANALISA DEKOMPOSISI SPEKTRAL BERBASIS CONTINUOUS WAVELET TRANSFORM (CWT)

UNIVERSITAS INDONESIA APLIKASI INTERAKTIF ANALISA DEKOMPOSISI SPEKTRAL BERBASIS CONTINUOUS WAVELET TRANSFORM (CWT) UNIVERSITAS INDONESIA APLIKASI INTERAKTIF ANALISA DEKOMPOSISI SPEKTRAL BERBASIS CONTINUOUS WAVELET TRANSFORM (CWT) Tesis Diajukan sebagai salah satu syarat memperoleh gelar Magister Geofisika Reservoar

Lebih terperinci

BAB 1 PENDAHULUAN. meruntuhkan bangunan-bangunan dan fasilitas umum lainnya.

BAB 1 PENDAHULUAN. meruntuhkan bangunan-bangunan dan fasilitas umum lainnya. BAB 1 PENDAHULUAN 1.1. Latar Belakang Gempa bumi merupakan fenomena alam yang sudah tidak asing lagi bagi kita semua, karena seringkali diberitakan adanya suatu wilayah dilanda gempa bumi, baik yang ringan

Lebih terperinci

BAB II PERAMBATAN GELOMBANG SEISMIK

BAB II PERAMBATAN GELOMBANG SEISMIK BAB II PERAMBATAN GELOMBANG SEISMIK.1 Teori Perambatan Gelombang Seismik Metode seismik adalah sebuah metode yang memanfaatkan perambatan gelombang elastik dengan bumi sebagai medium rambatnya. Perambatan

Lebih terperinci

matematis dari tegangan ( σ σ = F A

matematis dari tegangan ( σ σ = F A TEORI PERAMBATAN GELOMBANG SEISMIk Gelombang seismik merupakan gelombang yang merambat melalui bumi. Perambatan gelombang ini bergantung pada sifat elastisitas batuan. Gelombang seismik dapat ditimbulkan

Lebih terperinci

ANALISIS DEKOMPOSISI SPEKTRAL DATA SEISMIK DENGAN TRANFORMASI WAVELET KONTINU TESIS. Oleh MARZUKI SINAMBELA /TE

ANALISIS DEKOMPOSISI SPEKTRAL DATA SEISMIK DENGAN TRANFORMASI WAVELET KONTINU TESIS. Oleh MARZUKI SINAMBELA /TE ANALISIS DEKOMPOSISI SPEKTRAL DATA SEISMIK DENGAN TRANFORMASI WAVELET KONTINU TESIS Oleh MARZUKI SINAMBELA 087034024/TE FAKULTAS TEKNIK UNIVERISTAS SUMATERA UTARA MEDAN 2011 ANALISIS DEKOMPOSISI SPEKTRAL

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Permukaan bumi mempunyai beberapa lapisan pada bagian bawahnya, masing masing lapisan memiliki perbedaan densitas antara lapisan yang satu dengan yang lainnya, sehingga

Lebih terperinci

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga Bab Teori Gelombang Elastik Metode seismik secara refleksi didasarkan pada perambatan gelombang seismik dari sumber getar ke dalam lapisan-lapisan bumi kemudian menerima kembali pantulan atau refleksi

Lebih terperinci

GELOMBANG SEISMIK Oleh : Retno Juanita/M

GELOMBANG SEISMIK Oleh : Retno Juanita/M GELOMBANG SEISMIK Oleh : Retno Juanita/M0208050 Gelombang seismik merupakan gelombang yang merambat melalui bumi. Perambatan gelombang ini bergantung pada sifat elastisitas batuan. Gelombang seismik dapat

Lebih terperinci

III. TEORI DASAR. dan mampu dicatat oleh seismograf (Hendrajaya dan Bijaksana, 1990).

III. TEORI DASAR. dan mampu dicatat oleh seismograf (Hendrajaya dan Bijaksana, 1990). 17 III. TEORI DASAR 3.1. Gelombang Seismik Gelombang adalah perambatan suatu energi, yang mampu memindahkan partikel ke tempat lain sesuai dengan arah perambatannya (Tjia, 1993). Gerak gelombang adalah

Lebih terperinci

TRANSFORMASI WAVELET DISKRIT PADA SINTETIK PEMBANGKIT SINYAL ELEKTROKARDIOGRAM

TRANSFORMASI WAVELET DISKRIT PADA SINTETIK PEMBANGKIT SINYAL ELEKTROKARDIOGRAM Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 01 (2014), pp. 95 104. TRANSFORMASI WAVELET DISKRIT PADA SINTETIK PEMBANGKIT SINYAL ELEKTROKARDIOGRAM Yedidia Panca, Tulus, Esther Nababan Abstrak. Transformasi

Lebih terperinci

Pencocokan Citra Digital

Pencocokan Citra Digital BAB II DASAR TEORI II.1 Pencocokan Citra Digital Teknologi fotogrametri terus mengalami perkembangan dari sistem fotogrametri analog hingga sistem fotogrametri dijital yang lebih praktis, murah dan otomatis.

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Konsep transformasi wavelet awalnya dikemukakan oleh Morlet dan Arens (1982), di bidang geofisika untuk menganalisis data seismik yang tidak stasioner,

Lebih terperinci

DAFTAR ISI. Halaman LEMBAR PENGESAHAN SURAT PERNYATAAN ABSTRAK... i ABSTRACT... ii KATA PENGANTAR...iii DAFTAR ISI... v DAFTAR GAMBAR...

DAFTAR ISI. Halaman LEMBAR PENGESAHAN SURAT PERNYATAAN ABSTRAK... i ABSTRACT... ii KATA PENGANTAR...iii DAFTAR ISI... v DAFTAR GAMBAR... ABSTRAK Noise merupakan salah satu kendala yang mempengaruhi kualitas sinyal suara yang ditransmisikan. Noise tersebut dapat berasal dari peralatan komunikasi itu sendiri atau pengaruh dari sumber luar.

Lebih terperinci

III. TEORI DASAR. seismik juga disebut gelombang elastik karena osilasi partikel-partikel

III. TEORI DASAR. seismik juga disebut gelombang elastik karena osilasi partikel-partikel III. TEORI DASAR A. Konsep Dasar Seismik Gelombang seismik merupakan gelombang mekanis yang muncul akibat adanya gempa bumi. Pengertian gelombang secara umum ialah fenomena perambatan gangguan atau (usikan)

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 PENDAHULUAN Penggunaan program PLAXIS untuk simulasi Low Strain Integrity Testing pada dinding penahan tanah akan dijelaskan pada bab ini, tentunya dengan acuan tahap

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian terkait Gunung Merapi merupakan hal yang menarik untuk dilakukan. Berbagai metode digunakan untuk

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian terkait Gunung Merapi merupakan hal yang menarik untuk dilakukan. Berbagai metode digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian terkait Gunung Merapi merupakan hal yang menarik untuk dilakukan. Berbagai metode digunakan untuk mengetahui aktivitas dan karakteristik dari gunung tersebut.

Lebih terperinci

III. TEORI DASAR. melalui bagian dalam bumi dan biasa disebut free wave karena dapat menjalar

III. TEORI DASAR. melalui bagian dalam bumi dan biasa disebut free wave karena dapat menjalar III. TEORI DASAR 3.1. Jenis-jenis Gelombang Seismik 3.1.1. Gelombang Badan (Body Waves) Gelombang badan (body wave) yang merupakan gelombang yang menjalar melalui bagian dalam bumi dan biasa disebut free

Lebih terperinci

BAB II LANDASAN TEORI. terdiri dari bagian atas yang disebut serambi (atrium) dan bagian bawah yang

BAB II LANDASAN TEORI. terdiri dari bagian atas yang disebut serambi (atrium) dan bagian bawah yang BAB II LANDASAN TEORI 2.1 Sinyal Suara Jantung (PCG) Jantung adalah organ tubuh yang berfungsi untuk memompa darah dan terdiri dari bagian atas yang disebut serambi (atrium) dan bagian bawah yang disebut

Lebih terperinci

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK Sepertinya bunyi dalam padatan hanya berperan kecil dibandingkan bunyi dalam zat alir, terutama, di udara. Kesan ini mungkin timbul karena kita tidak dapat

Lebih terperinci

BAB III PROTEKSI TRANSFORMATOR DAYA MENGGUNAKAN TRANSFORMASI WAVELET. 1980, dalam bahasa Prancis ondelette, yang berarti gelombang kecil.

BAB III PROTEKSI TRANSFORMATOR DAYA MENGGUNAKAN TRANSFORMASI WAVELET. 1980, dalam bahasa Prancis ondelette, yang berarti gelombang kecil. BAB III PROTEKSI TRANSFORMATOR DAYA MENGGUNAKAN TRANSFORMASI WAVELET A. Dasar Teori Transformasi Kata dikemukakan oleh Morlet dan Grossmann pada awal tahun 1980, dalam bahasa Prancis ondelette, yang berarti

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Magnitudo Gempabumi Magnitudo gempabumi adalah skala logaritmik kekuatan gempabumi atau ledakan berdasarkan pengukuran instrumental (Bormann, 2002). Pertama kali, konsep magnitudo

Lebih terperinci

Analisis Dinamik Struktur dan Teknik Gempa

Analisis Dinamik Struktur dan Teknik Gempa Analisis Dinamik Struktur dan Teknik Gempa Pertemuan ke-2 http://civilengstudent.blogspot.co.id/2016/06/dynamic-analysis-of-building-using-ibc.html 7 lempeng/plate besar Regional Asia Regional Asia http://smartgeografi.blogspot.co.id/2015/12/tektonik-lempeng.html

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Sistematika Penulisan...

DAFTAR ISI. BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Sistematika Penulisan... DAFTAR ISI HALAMAN JUDUL... LEMBAR KEASLIAN SKRIPSI... ii LEMBAR PERSETUJUAN... iii LEMBAR PENGESAHAN... iv LEMBAR PERSEMBAHAN... v ABSTRAK... vi ABSTRACT... vii KATA PENGANTAR... viii DAFTAR ISI... x

Lebih terperinci

BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini

BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini BAB III METODE PENELITIAN 3.1 METODE SEISMIK Metode geofisika yang digunakan adalah metode seimik. Metode ini memanfaatkan perambatan gelombang yang melewati bumi. Gelombang yang dirambatkannya berasal

Lebih terperinci

Kata kunci: Fourier, Wavelet, Citra

Kata kunci: Fourier, Wavelet, Citra TRANSFORMASI FOURIER DAN TRANSFORMASI WAVELET PADA CITRA Oleh : Krisnawati Abstrak Tranformasi wavelet merupakan perbaikan dari transformasi Fourier. Transformasi Fourier hanya dapat menangkap informasi

Lebih terperinci

BAB 2 LANDASAN TEORI. variabel untuk mengestimasi nilainya di masa yang akan datang. Peramalan Merupakan

BAB 2 LANDASAN TEORI. variabel untuk mengestimasi nilainya di masa yang akan datang. Peramalan Merupakan BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan adalah penggunaan data masa lalu dari sebuah variabel atau kumpulan variabel untuk mengestimasi nilainya di masa yang akan datang. Peramalan Merupakan bagian

Lebih terperinci

III. TEORI DASAR. gelombang akustik yang dihasilkan oleh sumber gelombang (dapat berupa

III. TEORI DASAR. gelombang akustik yang dihasilkan oleh sumber gelombang (dapat berupa III. TEORI DASAR 3.1 Konsep Seismik Refleksi Seismik refleksi merupakan salah satu metode geofisika yang digunakan untuk mengetahui keadaan di bawah permukaan bumi. Metode ini menggunakan gelombang akustik

Lebih terperinci

APLIKASI DEKOMPOSISI SPEKTRAL UNTUK PENINGKATAN RESOLUSI DATA SEISMIK PADA LAPISAN TIPIS BATUBARA TESIS NOVITA FITRIAH

APLIKASI DEKOMPOSISI SPEKTRAL UNTUK PENINGKATAN RESOLUSI DATA SEISMIK PADA LAPISAN TIPIS BATUBARA TESIS NOVITA FITRIAH APLIKASI DEKOMPOSISI SPEKTRAL UNTUK PENINGKATAN RESOLUSI DATA SEISMIK PADA LAPISAN TIPIS BATUBARA TESIS NOVITA FITRIAH 0606001424 UNIVERSITAS INDONESIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM

Lebih terperinci

BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan

BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan Dalam suatu eksplorasi sumber daya alam khususnya gas alam dan minyak bumi, para eksplorasionis umumnya mencari suatu cekungan yang berisi

Lebih terperinci

III. TEORI DASAR. A. Tinjauan Teori Perambatan Gelombang Seismik. akumulasi stress (tekanan) dan pelepasan strain (regangan). Ketika gempa terjadi,

III. TEORI DASAR. A. Tinjauan Teori Perambatan Gelombang Seismik. akumulasi stress (tekanan) dan pelepasan strain (regangan). Ketika gempa terjadi, 1 III. TEORI DASAR A. Tinjauan Teori Perambatan Gelombang Seismik Gempa bumi umumnya menggambarkan proses dinamis yang melibatkan akumulasi stress (tekanan) dan pelepasan strain (regangan). Ketika gempa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra merupakan salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun sebuah citra kaya akan informasi, namun sering

Lebih terperinci

Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun

Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun 1977 2010 Fitri Puspasari 1, Wahyudi 2 1 Metrologi dan Instrumentasi Departemen Teknik Elektro dan Informatika

Lebih terperinci

PERCOBAAN MELDE TUJUAN PERCOBAAN II. LANDASAN TEORI

PERCOBAAN MELDE TUJUAN PERCOBAAN II. LANDASAN TEORI 1 PERCOBAAN MELDE I. TUJUAN PERCOBAAN a. Menunjukkan gelombang transversal stasioner pada tali. b. Menentukan cepat rambat gelombang pada tali. c. Mengetahui hubungan antara cepat rambat gelombang (v)

Lebih terperinci

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T Data dan Sinyal Data yang akan ditransmisikan kedalam media transmisi harus ditransformasikan terlebih dahulu kedalam bentuk gelombang elektromagnetik. Bit 1 dan 0 akan diwakili oleh tegangan listrik dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. terjadi karena bergetarnya suatu benda, yang menyebabkan udara di sekelilingnya

BAB II TINJAUAN PUSTAKA. terjadi karena bergetarnya suatu benda, yang menyebabkan udara di sekelilingnya BAB II TINJAUAN PUSTAKA 2. Nada dan Solmisasi 2.. Nada Apa yang dapat kita tangkap dengan pendengaran, disebut suara. Suara terjadi karena bergetarnya suatu benda, yang menyebabkan udara di sekelilingnya

Lebih terperinci

Laporan Praktikum Gelombang PERCOBAAN MELDE. Atika Syah Endarti Rofiqoh

Laporan Praktikum Gelombang PERCOBAAN MELDE. Atika Syah Endarti Rofiqoh Laporan Praktikum Gelombang PERCOBAAN MELDE Atika Syah Endarti Rofiqoh 4201408059 Anggota Kelompok : Sri Purwanti 4201408045 Zulis Elby Pradana 4201408049 Esti Maretasari 4201408057 Jurusan Fisika Fakultas

Lebih terperinci

BAB 2 LANDASAN TEORI. program pengurangan noise pada citra digital. Teori-teori ini mencakup penjelasan

BAB 2 LANDASAN TEORI. program pengurangan noise pada citra digital. Teori-teori ini mencakup penjelasan BAB 2 LANDASAN TEORI Pada bab 2 ini, akan dijelaskan berbagai teori yang mendukung perancangan program pengurangan noise pada citra digital. Teori-teori ini mencakup penjelasan mengenai pengolahan sinyal,

Lebih terperinci

BAB III TEORI DASAR. 3.1 Tinjauan Teori Perambatan Gelombang Seismik. Seismologi adalah ilmu yang mempelajari gempa bumi dan struktur dalam bumi

BAB III TEORI DASAR. 3.1 Tinjauan Teori Perambatan Gelombang Seismik. Seismologi adalah ilmu yang mempelajari gempa bumi dan struktur dalam bumi 20 BAB III TEORI DASAR 3.1 Tinjauan Teori Perambatan Gelombang Seismik Seismologi adalah ilmu yang mempelajari gempa bumi dan struktur dalam bumi dengan menggunakan gelombang seismik yang dapat ditimbulkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Gempabumi Gempabumi adalah peristiwa bergetarnya bumi akibat pelepasan energi di dalam bumi secara tiba-tiba yang ditandai dengan patahnya lapisan batuan pada kerak

Lebih terperinci

III. TEORI DASAR. Gelombang seismik merupakan gelombang yang menjalar di dalam bumi

III. TEORI DASAR. Gelombang seismik merupakan gelombang yang menjalar di dalam bumi III. TEORI DASAR 3.1. Gelombang Seismik Gelombang seismik merupakan gelombang yang menjalar di dalam bumi disebabkan adanya deformasi struktur di bawah bumi akibat adanya tekanan ataupun tarikan karena

Lebih terperinci

Fakultas Ilmu dan Teknologi Kebumian

Fakultas Ilmu dan Teknologi Kebumian Fakultas Ilmu dan Teknologi Kebumian Program Studi Meteorologi PENERBITAN ONLINE AWAL Paper ini adalah PDF yang diserahkan oleh penulis kepada Program Studi Meteologi sebagai salah satu syarat kelulusan

Lebih terperinci

Gelombang. Rudi Susanto

Gelombang. Rudi Susanto Gelombang Rudi Susanto Pengertian Gelombang Gelombang adalah suatu gejala terjadinya perambatan suatu gangguan (disturbane) melewati suatu medium dimana setelah gangguan ini lewat keadaan medium akan kembali

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.. Respon Impuls Akustik Ruangan. Respon impuls akustik suatu ruangan didefinisikan sebagai sinyal suara yang diterima oleh suatu titik (titik penerima, B) dalam ruangan akibat suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Tuning merupakan proses menentukan frekuensi standar dan

BAB II TINJAUAN PUSTAKA. Tuning merupakan proses menentukan frekuensi standar dan BAB II TINJAUAN PUSTAKA. Tuning Tuning merupakan proses menentukan frekuensi standar dan menyelaraskan frekuensi antar senar pada alat musik berdawai, ontohnya gitar. Pada proses ini dilakukan dengan mengatur

Lebih terperinci

PENDEKATAN TEORITIK. Elastisitas Medium

PENDEKATAN TEORITIK. Elastisitas Medium PENDEKATAN TEORITIK Elastisitas Medium Untuk mengetahui secara sempurna kelakuan atau sifat dari suatu medium adalah dengan mengetahui hubungan antara tegangan yang bekerja () dan regangan yang diakibatkan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi di bidang informasi spasial dan fotogrametri menuntut sumber data yang berbentuk digital, baik berformat vektor maupun raster. Hal ini dapat

Lebih terperinci

DAFTAR ISI... HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... HALAMAN PERSEMBAHAN... KATA PENGANTAR...

DAFTAR ISI... HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... HALAMAN PERSEMBAHAN... KATA PENGANTAR... DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... HALAMAN PERSEMBAHAN... KATA PENGANTAR... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN... INTISARI... ABSTRACT...

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Computer Vision Computer vision dapat diartikan sebagai suatu proses pengenalan objek-objek berdasarkan ciri khas dari sebuah gambar dan dapat juga digambarkan sebagai suatu deduksi

Lebih terperinci

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi.

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi. DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi. MACAM GELOMBANG Gelombang dibedakan menjadi : Gelombang Mekanis : Gelombang yang memerlukan

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA A ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI DELISERDANG SUMATRA UTARA Oleh Fajar Budi Utomo*, Trisnawati*, Nur Hidayati Oktavia*, Ariska Rudyanto*,

Lebih terperinci

BAB III TEORI DASAR. Prinsip dasar metodee seismik, yaitu menempatkan geophone sebagai penerima

BAB III TEORI DASAR. Prinsip dasar metodee seismik, yaitu menempatkan geophone sebagai penerima BAB III TEORI DASAR 3.1. Konsep Refleksi Gelombang Seismik Prinsip dasar metodee seismik, yaitu menempatkan geophone sebagai penerima getaran pada lokasi penelitian. Sumber getaran dapat ditimbulkan oleh

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN 52 V. HASIL DAN PEMBAHASAN 5.1. Distribusi Hiposenter Gempa dan Mekanisme Vulkanik Pada persebaran hiposenter Gunung Sinabung (gambar 31), persebaran hiposenter untuk gempa vulkanik sangat terlihat adanya

Lebih terperinci

BAB II TEORI PENUNJANG

BAB II TEORI PENUNJANG BAB II TEORI PENUNJANG Pada bab ini akan dibahas mengenai teori penunjang yang berhubungan dengan judul tugas akhir yang dikerjakan seperti suara, gelombang, sinyal, noise, Finite Impulse Response (FIR)

Lebih terperinci

BAB III METODOLOGI PENELITIAN. dari katalog gempa BMKG Bandung, tetapi dikarenakan data gempa yang

BAB III METODOLOGI PENELITIAN. dari katalog gempa BMKG Bandung, tetapi dikarenakan data gempa yang BAB III METODOLOGI PENELITIAN 3.1 Metode Penelitian Metode penelitian yang dilakukan adalah deskripsi analitik dari data gempa yang diperoleh. Pada awalnya data gempa yang akan digunakan berasal dari katalog

Lebih terperinci

BAB I PENDAHULUAN. waktu adalah suatu deret observasi yang berurut dalam waktu. Analisis data

BAB I PENDAHULUAN. waktu adalah suatu deret observasi yang berurut dalam waktu. Analisis data BAB I PENDAHULUAN 1.1. Latar Belakang Analisis time series (runtun waktu) banyak digunakan dalam berbagai bidang, misalnya ekonomi, teknik, geofisik, pertanian dan kedokteran. Runtun waktu adalah suatu

Lebih terperinci

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M0207025 Di terjemahkan dalam bahasa Indonesia dari An introduction by Heinrich Kuttruff Bagian 6.6 6.6.4 6.6 Penyerapan Bunyi Oleh

Lebih terperinci

berhubungan dengan jumlah energi total seismic yang dilepaskan sumber gempa. Magnitude ialah skala besaran gempa pada sumbernya.

berhubungan dengan jumlah energi total seismic yang dilepaskan sumber gempa. Magnitude ialah skala besaran gempa pada sumbernya. Magnitudo banyaknya energi yang dilepas pada suatu gempa yang tergambar dalam besarnya gelombang seismik di episenter. Besarnya gelombang ini tercermin dalam besarnya garis bergelombang pada seismogram.

Lebih terperinci

Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010

Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Emilia Kurniawati 1 dan Supriyanto 2,* 1 Laboratorium Geofisika Program Studi Fisika FMIPA Universitas Mulawarman 2 Program

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

udara maupun benda padat. Manusia dapat berkomunikasi dengan manusia dari gagasan yang ingin disampaikan pada pendengar.

udara maupun benda padat. Manusia dapat berkomunikasi dengan manusia dari gagasan yang ingin disampaikan pada pendengar. BAB II DASAR TEORI 2.1 Suara (Speaker) Suara adalah sinyal atau gelombang yang merambat dengan frekuensi dan amplitudo tertentu melalui media perantara yang dihantarkannya seperti media air, udara maupun

Lebih terperinci

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM 3.1 Metode Penelitian Sinyal PCG Denoising Dekomposisi Frekuensi cuplik 8Khz Frekuensi cuplik 44,1Khz Frekuensi cuplik 48Khz Coiflet Symlet Daubechies Biorthogonal

Lebih terperinci

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) LEMBARAN SOAL Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

PROPOSAL KERJA PRAKTIK PENGOLAHAN DATA SEISMIK 2D MARINE DAERAH X MENGGUNAKAN SOFTWARE PROMAX 2003

PROPOSAL KERJA PRAKTIK PENGOLAHAN DATA SEISMIK 2D MARINE DAERAH X MENGGUNAKAN SOFTWARE PROMAX 2003 PROPOSAL KERJA PRAKTIK PENGOLAHAN DATA SEISMIK 2D MARINE DAERAH X MENGGUNAKAN SOFTWARE PROMAX 2003 Oleh ALMAS GEDIANA H1E012020 KEMENTERIAN PENDIDIKAN NASIONAL UNIVERSITAS JENDERAL SOEDIRMAN FAKULTAS SAINS

Lebih terperinci

Gambar IV-1. Perbandingan Nilai Korelasi Antar Induk Wavelet Pada Daerah Homogen Untuk Level Dekomposisi Pertama

Gambar IV-1. Perbandingan Nilai Korelasi Antar Induk Wavelet Pada Daerah Homogen Untuk Level Dekomposisi Pertama BAB IV ANALISIS IV.1 Analisis Terhadap Hasil Pengolahan Data Gambar IV-1 menunjukkan peningkatan nilai korelasi dari sebelum transformasi wavelet dengan setelah transformasi wavelet pada level dekomposisi

Lebih terperinci

PENINGKATAN MUTU CITRA (IMAGE ENHANCEMENT) PADA DOMAIN FREKUENSI. by Emy 2

PENINGKATAN MUTU CITRA (IMAGE ENHANCEMENT) PADA DOMAIN FREKUENSI. by Emy 2 Copyright @2007 by Emy 1 PENINGKATAN MUTU CITRA (IMAGE ENHANCEMENT) PADA DOMAIN FREKUENSI Copyright @2007 by Emy 2 Kompetensi Mampu membedakan teknik image enhancement menggunakan domain spatial dan frekuensi

Lebih terperinci

BAB II GELOMBANG ELASTIK DAN EFEK VIBRASI

BAB II GELOMBANG ELASTIK DAN EFEK VIBRASI BAB II GELOMBANG ELASTIK DAN EFEK VIBRASI 2. 1 Gelombang Elastik Gelombang elastik adalah gelombang yang merambat pada medium elastik. Vibroseismik merupakan metoda baru dikembangkan dalam EOR maupun IOR

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Indonesia termasuk daerah yang rawan terjadi gempabumi karena berada pada pertemuan tiga lempeng, yaitu lempeng Indo-Australia, Eurasia, dan Pasifik. Aktivitas kegempaan

Lebih terperinci

V. HASIL DAN PEMBAHASAN. Cadzow filtering adalah salah satu cara untuk menghilangkan bising dan

V. HASIL DAN PEMBAHASAN. Cadzow filtering adalah salah satu cara untuk menghilangkan bising dan V. HASIL DAN PEMBAHASAN 5.1 Penerapan Cadzow Filtering Cadzow filtering adalah salah satu cara untuk menghilangkan bising dan meningkatkan strength tras seismik yang dapat dilakukan setelah koreksi NMO

Lebih terperinci

PENGAMATAN PENJALARAN GELOMBANG MEKANIK

PENGAMATAN PENJALARAN GELOMBANG MEKANIK PENGAMATAN PENJALARAN GELOMBANG MEKANIK Elinda Prima F.D 1, Muhamad Naufal A 2, dan Galih Setyawan, M.Sc 3 Prodi D3 Metrologi dan Instrumentasi, Sekolah Vokasi, Universitas Gadjah Mada, Yogyakarta, Indonesia

Lebih terperinci

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 2. Sebuah gelombang transversal frekuensinya 400 Hz. Berapa jumlah

Lebih terperinci

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan Getaran Teredam Dalam Rongga Tertutup pada Sembarang Bentuk Dari hasil beberapa uji peredaman getaran pada pipa tertutup membuktikan bahwa getaran teredam di dalam rongga tertutup dapat dianalisa tidak

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Batimetri Selat Sunda Peta batimetri adalah peta yang menggambarkan bentuk konfigurasi dasar laut dinyatakan dengan angka-angka suatu kedalaman dan garis-garis yang mewakili

Lebih terperinci

ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR

ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR Daz Edwiza Laboratorium Geofisika Jurusan Teknik Sipil Unand ABSTRAK Sehubungan semakin meningkatnya frekuensi gempa bebrapa tahun

Lebih terperinci

SATUAN ACARA PERKULIAHAN EK.353 PENGOLAHAN SINYAL DIGITAL

SATUAN ACARA PERKULIAHAN EK.353 PENGOLAHAN SINYAL DIGITAL EK.353 PENGOLAHAN SINYAL DIGITAL Dosen: Ir. Arjuni BP, MT : Sinyal dan Pemrosesan Sinyal Tujuan pembelajaran umum : Para mahasiswa mengetahui tipe-tipe sinyal, pemrosesan dan aplikasinya Jumlah pertemuan

Lebih terperinci

Melalui persamaan di atas maka akan terbentuk pola radargram yang. melukiskan garis-garis / pola pendekatan dari keadaan yang sebenarnya.

Melalui persamaan di atas maka akan terbentuk pola radargram yang. melukiskan garis-garis / pola pendekatan dari keadaan yang sebenarnya. BAB IV SIMULASI DAN ANALISIS 4.1 Pembuatan Data Sintetis Dalam karya tulis ini pembuatan data sintetis mengikuti pola persamaan (3.1) Melalui persamaan di atas maka akan terbentuk pola radargram yang melukiskan

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI BARAT LAUT KEP. SANGIHE SULAWESI UTARA Oleh Artadi Pria Sakti*, Robby Wallansha*, Ariska

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. Kondisi Geologi dan Kegempaan Indonesia Indonesia merupakan salah satu wilayah dibumi ini yang merupakan tempat bertemunya lempeng-lempeng yang ada dibumi ini. Antara lain di

Lebih terperinci

BAB III DATA DAN PENGOLAHAN DATA

BAB III DATA DAN PENGOLAHAN DATA BAB III DATA DAN PENGOLAHAN DATA 3.1 Data 3.1.1 Data Seismik Data yang dimiliki adalah data seismik hasil migrasi post stack 3-D pada skala waktu / time dari Lapangan X dengan polaritas normal, fasa nol,

Lebih terperinci

PENDIDIKAN FISIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SARJANAWIYATA TAMANSISWA YOGYAKARTA 2014

PENDIDIKAN FISIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SARJANAWIYATA TAMANSISWA YOGYAKARTA 2014 http://materi4fisika.blogspot.co.id/2015/05/laporan-praktikum-percobaanmelde.html LAPORAN PRAKTIKUM FISIKA DASAR II PERCOBAAN MELDE Dosen Pengampu : A. Latar Belakang PENDIDIKAN FISIKA FAKULTAS KEGURUAN

Lebih terperinci

Gambar 3.1 Peta lintasan akuisisi data seismik Perairan Alor

Gambar 3.1 Peta lintasan akuisisi data seismik Perairan Alor BAB III METODE PENELITIAN Pada penelitian ini dibahas mengenai proses pengolahan data seismik dengan menggunakan perangkat lunak ProMAX 2D sehingga diperoleh penampang seismik yang merepresentasikan penampang

Lebih terperinci

KONSEP DAN TERMINOLOGI ==Terminologi==

KONSEP DAN TERMINOLOGI ==Terminologi== TRANSMISI DATA KONSEP DAN TERMINOLOGI ==Terminologi== Direct link digunakan untuk menunjukkan jalur transmisi antara dua perangkat dimana sinyal dirambatkan secara langsung dari transmitter menuju receiver

Lebih terperinci

(6.38) Memasukkan ini ke persamaan (6.14) (dengan θ = 0) membawa kita ke faktor refleksi dari lapisan

(6.38) Memasukkan ini ke persamaan (6.14) (dengan θ = 0) membawa kita ke faktor refleksi dari lapisan 6.6.3 Penyerapan oleh lapisan berpori Selanjutnya kita mempertimbangkan penyerapan suara oleh lapisan tipis berpori, misalnya, dengan selembar kain seperti tirai, atau dengan pelat tipis dengan perforasi

Lebih terperinci

Pengembangan Program Analisis Seismic Hazard dengan Teorema Probabilitas Total Bab I Pendahuluan BAB I PENDAHULUAN

Pengembangan Program Analisis Seismic Hazard dengan Teorema Probabilitas Total Bab I Pendahuluan BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Umum Gempa bumi adalah peristiwa bergeraknya permukaan bumi atau permukaan tanah secara tiba-tiba yang diakibatkan oleh pergerakan dari lempenglempeng bumi. Menurut M.T. Zein gempa

Lebih terperinci

BAB I PENDAHULUAN. menggunakan rangkaian elektronika yang terdiri dari komponen-komponen seperti

BAB I PENDAHULUAN. menggunakan rangkaian elektronika yang terdiri dari komponen-komponen seperti BAB I PENDAHULUAN 1.1 Latar Belakang Filter merupakan suatu rangkaian yang berfungsi untuk melewatkan sinyal frekuensi yang diinginkan dan menahan sinyal frekuensi yang tidak dikehendaki serta untuk memperkecil

Lebih terperinci

INTERFERENSI GELOMBANG

INTERFERENSI GELOMBANG INERFERENSI GELOMBANG Gelombang merupakan perambatan dari getaran. Perambatan gelombang tidak disertai dengan perpindahan materi-materi medium perantaranya. Gelombang dalam perambatannya memindahkan energi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Gelombang Bunyi Gelombang bunyi merupakan gelombang longitudinal yang terjadi sebagai hasil dari fluktuasi tekanan karena perapatan dan perenggangan dalam media elastis. Sinyal

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA DAFTAR ISI HALAMAN JUDUL.... i HALAMAN PENGESAHAN.... ii PERNYATAAN KEASLIAN KARYA ILMIAH.... iii KATA PENGANTAR.... iv ABSTRAK.... v ABSTRACT.... vi DAFTAR ISI.... vii DAFTAR GAMBAR.... ix DAFTAR TABEL....

Lebih terperinci

BAB III LANDASAN TEORI. A. Gempa Bumi

BAB III LANDASAN TEORI. A. Gempa Bumi BAB III LANDASAN TEORI A. Gempa Bumi Gempa bumi adalah bergetarnya permukaan tanah karena pelepasan energi secara tiba-tiba akibat dari pecah/slipnya massa batuan dilapisan kerak bumi. akumulasi energi

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

GEMPABUMI AKIBAT UJICOBA NUKLIR KOREA UTARA AWAL 2016

GEMPABUMI AKIBAT UJICOBA NUKLIR KOREA UTARA AWAL 2016 GEMPABUMI AKIBAT UJICOBA NUKLIR KOREA UTARA AWAL 216 Supriyanto Rohadi, Bambang Sunardi, Pupung Susilanto, Jimmi Nugraha, Drajat Ngadmanto Pusat Penelitian dan Pengembangan BMKG s.rohadi@yahoo.com The

Lebih terperinci

BAB 2 LANDASAN TEORI. mencakup teori speaker recognition dan program Matlab. dari masalah pattern recognition, yang pada umumnya berguna untuk

BAB 2 LANDASAN TEORI. mencakup teori speaker recognition dan program Matlab. dari masalah pattern recognition, yang pada umumnya berguna untuk 6 BAB 2 LANDASAN TEORI 2.1 Teori-teori Dasar / Umum Landasan teori dasar / umum yang digunakan dalam penelitian ini mencakup teori speaker recognition dan program Matlab. 2.1.1 Speaker Recognition Pada

Lebih terperinci

BAB 5. PROPERTIS FISIK BUNYI

BAB 5. PROPERTIS FISIK BUNYI BAB 5. PROPERTIS FISIK BUNYI Definisi: Suara - gangguan yang menyebar melalui bahan elastis pada kecepatan yang merupakan karakteristik dari bahan tersebut. Suara biasanya disebabkan oleh radiasi dari

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii KATAPENGANTAR... iv ABSTRAK... v ABSTRACT... vi DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xiii DAFTAR SINGKATAN

Lebih terperinci

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa 2 Metode yang sering digunakan untuk menentukan koefisien serap bunyi pada bahan akustik adalah metode ruang gaung dan metode tabung impedansi. Metode tabung impedansi ini masih dibedakan menjadi beberapa

Lebih terperinci

Gambar 3.1 Lintasan Pengukuran

Gambar 3.1 Lintasan Pengukuran BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang digunakan pada penelitian ini adalah metode deskriptif analitik yaitu metode mengumpulkan data tanpa melakukan akuisisi data secara langsung

Lebih terperinci

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM)

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM) Disusun oleh : MIRA RESTUTI 1106306 PENDIDIKAN FISIKA (RM) PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI PADANG 2013 Kompetensi Dasar :

Lebih terperinci

FISIKA. Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN

FISIKA. Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN FISIKA KELAS XII IPA - KURIKULUM KTSP 0 Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN Gelombang adalah getaran yang merambat. Adapun gelombang berjalan merupakan suatu gelombang di mana setiap

Lebih terperinci

SINYAL. Adri Priadana ilkomadri.com

SINYAL. Adri Priadana ilkomadri.com SINYAL Adri Priadana ilkomadri.com Pengertian Sinyal Merupakan suatu perubahan amplitude dari tegangan atau arus terhadap waktu (time). Data yang dikirimkan dalam bentuk analog ataupun digital. Sinyal

Lebih terperinci