A. Dasar Pengendalian Posisi Blok diagram kendali posisi kita adalah sebagai berikut

Ukuran: px
Mulai penontonan dengan halaman:

Download "A. Dasar Pengendalian Posisi Blok diagram kendali posisi kita adalah sebagai berikut"

Transkripsi

1 ANALOG SERVO MOTOR DC A. Tujuan praktikum: 1. Memahami prinsip dasar pengendalian posisi dan kecepatan pada motor DC 2. Memahami unjuk kerja pada saat transient dan steady state pada pengendalian kecepatan / posisi motor DC. B. Dasar teori Istilah servomechanism seringkali dipergunakan dalam kaitan segala sesuatu yang berhubungan dengan sistem kendali gerakan. Servo berasal dari kata yunani servus yang artinya budak/pelayan, sedangkan mechanism dapat diartikan sebagai susunan atau aksi yang mana akan suatu hasil didapatkan, aksi ini secara khusus dilakukan secara mekanis. Servomechanism kemudian dapat diartikan sebuah sistem yang dengan mengikuti perintah dan menghasilkan suatu hasil akhir dengan menggunakan suatu mekanisme. Blok diagram panel percobaan kita adalah sebagai berikut: A. Dasar Pengendalian Posisi Blok diagram kendali posisi kita adalah sebagai berikut INPUT POSITION VOLTAGE RELATED TO INPUT POSITION OUTPUT POSITION INPUT POTENSIOMETER + - CONTROLLER POWER AMP, MOTOR, GEARBOX ACTUATING VOLTAGE FEEDBACK POTENSIOMETER VOLTAGE RELATED TO OUTPUT POSITION Laboratorium IK TE UGM 1

2 Input posisi adalah posisi fisik yang diberikan oleh dial input yang kemudian di konversi ke tegangan dengan menggunakan potensiometer. Prinsip dasar pengendalian posisi adalah sebagai berikut: Ketika input dan output mempunyai tegangan yang sama, maka akan menghasilkan actuating voltage sama dengan nol. Sebaliknya, ketika tegangan input tidak sama dengan tegangan output maka, actuating voltage akan terjadi, actuating signal ini akan dikalikan dengan proportional gain controller dan kemudian akan masuk ke pre-amplifier. Motor kemudian akan merespon actuating signal ini dengan memutar output disk motor (output potensiometer) mendekati posisi input disk motor (input potensiometer). Ketika output disk bergerak mendekati set point input disk, tegangan actuating signal akan berkurang sampai akhirnya menjadi nol ketika posisi output disk sama dengan input disk. Motor kemudian berhenti pada posisi error sama dengan nol. B. Dasar Pengendalian Kecepatan Blok diagram kendali kecepatan kita adalah sebagai berikut INPUT VELOCITY VOLTAGE RELATED TO INPUT VELOCITY OUTPUT VELOCITY INPUT POTENSIOMETER + - CONTROLLER POWER AMP, MOTOR, GEARBOX ACTUATING VOLTAGE TACHOGENERATOR VOLTAGE RELATED TO OUTPUT VELOCITY Prinsip pengendalian sama dengan kendali posisi, tetapi sekarang kita menggunakan tachogenerator sebagai velocity feedback. Tachogenerator adalah tranduser yang mengubah besaran kecepatan menjadi tegangan. Actuating signal sebanding dengan error yang dihasilkan antara tegangan potensiometer input dengan tegangan yang dihasilkan oleh tachonerator. Laboratorium IK TE UGM 2

3 C. Percobaan A. KENDALI KECEPATAN Percobaan 1. Steady state open loop performance Prosedur: Hubungkan Pre-amplifier ke servo amplifier (dengan menghubungkan soket S ke Z, dan soket Q ke W). Set compensation switch ke out dan saklar manual step pada posisi off. Jika motor berputar, atur pre-amplifier set zero, sehingga motor berhenti berputar. Rangkai panel percobaan mengikuti gambar berikut Putar P2 penuh searah jarum jam (P2=100). Putar amplifier feedback berlawanan arah jam penuh. Untuk sementara lepaskan hubungan antara B dengan E, jika motor terlihat berputar, maka atur error amplifier set zero sehingga motor berhenti berputar. Hubungkan kembali B dengan E, putar potensiometer sebesar 140 o pada arah searah jarum jam. Gunakan Voltmeter untuk mengukur tegangan tachogenerator dengan mengukur tegangan antara soket O dengan ground. Hitung kecepatan motor dengan menggunakan cara: Hitung waktu yang digunakan oleh Output Potensiometer untuk berputar selama 10 kali. Hitung kecepatan putar output shaft (Output potensiometer) serta kecepatan motor dengan menggunakan rumusan: Laboratorium IK TE UGM 3

4 Output shaft speed = 600 t rotation/min, dengan t = waktu yang dibutuhkan oleh output shaft/potensio untuk berputar 10 kali. Kecepatan motor = 30 x Output shaft speed. Untuk bermacam bagai posisi brake magnetis (suatu magnet dibelakang piringan motor yang berputar), lengkapi isi tabel 1 pada lembar pengamatan. Percobaan 2: Open Loop Transient Response Prosedur: Masih menggunakan susunan seperti panel percobaan sebelumnya, sekarang gunakan osiloskop untuk melihat melihat tachogenerator. Bebaskan motor dari brake magnetis. Cabut kabel yang menghubungkan B ke E, dan set Manual Step Input, dan switch saklarnya ke posisi paling atas. Jika motor berputar, ubah error amplifier agar motor berhentti berputar. Putar posisi manual step kearah searah jarum jam maksimal. Set manual step switch ke posisi off. Set osiloskop setting dengan menggunakan TIME/DIV: 50ms/div, dan VOLTS/DIV : 0.5V/div, tempatkan posisi trace osiloskop pada bagian bawah layar osiloskop. Ubah saklar switch keatas untuk memberikan input step pada motor, amati diosiloskop gambar transient yang dihasilkan. Gambar transient response ini pada lembar pengamatan Percobaan 2: Steady State Closed Loop Response Cabut semua koneksi kecuali yang menghubungkan antara pre-amplifier dengan servo amplifier. Check apakah compensation switch adalah out dan tidak ada tahanan brake pada disk. Jika motor berputar, atur pre-amplifier agar motor berhenti berputar. Hubungkan P ke U, dan K ke L. Laboratorium IK TE UGM 4

5 Pastikan Manual Step Switch off, dan putar P2 searah jarum jam maksimal, dan check amplifier feedback selector berada pada posisi berlawanan arah jarum jam maksimal. Jika motor terlihat berputar, maka atur error amplifier agar motor berhenti berputar. Hubungkan A ke G, B ke E, C ke H dan D ke N. Set P1 = 30. Sistem ini akan terlihat seperti gambar, yang merupakan system closed loop dengan tegangan tachogenerator sebagai feedbacknya dari kecepatan motor. Jika P2 pada posisi 10 maka gainnya maksimum. Putar input potensio sebesar 140 o. Set P2 = 30, kemudian ukur tegangan tachogenerator dan kecepatan motor untuk berbagai posisi brake (Isi tabel 2). Bila sudah melengkapi table 2, maka putar P1 maksimal kearah jarum jam. Dan isi tabel 3. Pertanyaan: 1. Gambar grafik yang menggambarkan kecepatan motor (sumbu Y), dan posisi brake (sumbu X) dari ketiga tabel diatas dalam satu grafik. Dari gambar grafik tersebut apakah kesimpulan yang dapat disimpulkan. Percobaan 4: Closed Loop Transient Performance Prosedur: Masih menggunakan panel percobaan yang sebelumnya, cabut koneksi kabel antara B dan E. Siapakan osiloskop dengan setting timebase 50 ms/div, tempatkan trace osiloskop pada posisi dibawah. Putar manual step maksimum searah jarum jam Set P2=30, dan P1= 30 kemudian naikkkan keatas switch manual step (memberikan masukan step pada servo DC) dan amati kurva transient yang terjadi pada osiloskop. (gambar hasilnya, beri pengamatan lebih pada overshootnya dan rise timenya) Laboratorium IK TE UGM 5

6 Ubah nilai P1 menjadi 100 (maksimum gain), dan beri masukan step lagi dengan menaikkan keatas switch manual step, kemudian amati lagi kurva transient yang terjadi. (gambar hasilnya, gambar hasilnya, beri pengamatan lebih pada overshootnya dan rise timenya) Pertanyaan: 1. Dari pengamatan kedua kurva diatas, apa yang dapat anda simpulkan dari pengamatan terhadap tanggapan kurva transient diatas. B. Kendali Posisi Percobaan 5: Dasar pengendalian posisi Prosedur: Set compensation switch menjadi in. Posisi manual step switch off. Hubungkan pre-amplifier ke servo amplifier, pastikan motor tidak berputar (jika berputar ubah set zero pre-amplifier agar motor berhenti). Pastikan motor tidak berada dalam keadaan bebas (brake magnetis diangkat). Set P1=100 Putar amplifier feedback selector kearah berlawanan arah jarum jam maksimal. Hubungkan K ke N, dan N ke T. Motor kemungkinan akan berputar, jika motor atur error amplifier set zero sehingga motor berhenti berputar. Set P1=0. Tempatkan input potensio pada posisi 0o, kemudian hubungkan B ke E, dan M ke R. Setting panel percobaan sudah selesai. Amati keluaran sistem (M) dengan menggunakan osiloskop, dengan menghubungkan probe osiloskop ke M, set Osiloskop 1 V/Div. dan 0.2 ms/div. Set P1=5, ubah-ubah dial input potensio, jangan melebihi 140 o, amati bentuk transient sistem yang terjadi (overshoot, rise time, dsb, dan gambarkan pada laporan sementara anda). Laboratorium IK TE UGM 6

7 Set P1=50, ubah-ubah dial input potensio, jangan melebihi 140 o, amati bentuk transient sistem yang terjadi (overshoot, rise time, dsb dan gambarkan pada laporan sementara anda). Set P1=100, ubah-ubah dial input potensio, jangan melebihi 140 o, amati bentuk transient sistem yang terjadi (overshoot, rise time, dsb, dan gambarkan pada laporan sementara anda). Pertanyaan: 1. Apa fungsi dari P1, dan jelaskan mengapa untuk nilai P1 akan memberikan dampak transient performance yang berbeda pula. 2. Apakah ada trade off (tukar menukar) keuntungan dan kerugian antara nilai P1 yang berbeda, dengan transient performance sistem. Percobaan 6: Kendali posisi dengan tambahan umpan balik kecepatan. Prosedur: Lepas semua koneksi yang ada. Set compensation switch menjadi in. Hubungkan pre-amplier dengan servo motor, atur set zero pre-amplifier agar motor berhenti berputar. Putar amplifier feedback kearah berlawanan jarum jam maksimal. Hubungkan K dengan L, serta P dengan U, set P2=100. Jika motor berputar, atur set zero error amplifier agar motor berhenti berputar. Kemudian Set P2=50. Hubungkan D dengan N, H dengan C, serta R dengan M. Kendali posisi + velocity feedback sudah anda selesai lakukan. Amati dengan osliloskop bentuk gelompang keluaran dengan menghubungkan probe osiloskop ke R. Set P1=5, ubah-ubah dial input potensio, jangan melebihi 140 o, amati bentuk transient sistem yang terjadi (overshoot, rise time, dsb, dan gambarkan pada laporan sementara anda). Set P1=50, ubah-ubah dial input potensio, jangan melebihi 140 o, amati bentuk transient sistem yang terjadi (overshoot, rise time, dsb dan gambarkan pada laporan sementara anda). Laboratorium IK TE UGM 7

8 Set P1=100, ubah-ubah dial input potensio, jangan melebihi 140 o, amati bentuk transient sistem yang terjadi (overshoot, rise time, dsb, dan gambarkan pada laporan sementara anda). Pertanyaan: 1. Jelaskan mengapa velocity feedback dapat mempengaruhi kinerja transient performance kendali posisi. Laboratorium IK TE UGM 8

9 LEMBAR PENGAMATAN Tabel 1. Steady State Open loop Performance (Velocity Control). Posisi Brake Tegangan Tachogenerator (V) Kecepatan motor (r/min) Gambar Transient Open Loop Performance (Velocity Control) Laboratorium IK TE UGM 9

10 Tabel 2. Steady State Closed loop Performance Low gain (Kendali Kecepatan). Posisi Brake Tegangan Tachogenerator (V) Kecepatan motor (r/min) Tabel 4. Steady State Closed loop Performance High Gain (Kendali Kecepatan). Posisi Brake Tegangan Tachogenerator (V) Kecepatan motor (r/min) Laboratorium IK TE UGM 10

11 Gambar Transient Closed Loop Performance (Kendali Posisi) P1 = 5 P1= 50 P1=100 Laboratorium IK TE UGM 11

12 Gambar Transient Closed Loop Performance (Kendali Posisi ditambah dengan Velocity Feedback) P1 = 5 P1= 50 P1=100 Laboratorium IK TE UGM 12

MODUL 2 SISTEM KENDALI KECEPATAN

MODUL 2 SISTEM KENDALI KECEPATAN MODUL 2 SISTEM KENDALI KECEPATAN Muhammad Aldo Aditiya Nugroho (13213108) Asisten: Jedidiah Wahana(13212141) Tanggal Percobaan: 12/03/16 EL3215 Praktikum Sistem Kendali Laboratorium Sistem Kendali dan

Lebih terperinci

4. BAB IV PENGUJIAN DAN ANALISIS. pengujian simulasi open loop juga digunakan untuk mengamati respon motor DC

4. BAB IV PENGUJIAN DAN ANALISIS. pengujian simulasi open loop juga digunakan untuk mengamati respon motor DC 4. BAB IV PENGUJIAN DAN ANALISIS 4.1 Pengujian Open Loop Motor DC Pengujian simulasi open loop berfungsi untuk mengamati model motor DC apakah memiliki dinamik sama dengan motor DC yang sesungguhnya. Selain

Lebih terperinci

Module : Sistem Pengaturan Kecepatan Motor DC

Module : Sistem Pengaturan Kecepatan Motor DC Module : Sistem Pengaturan Kecepatan Motor DC PERCOBAAN 2 SISTEM PENGATURAN KECEPATAN MOTOR DC 2.1. PRASYARAT Memahami komponen yang digunakan dalam praktikum sistem pengaturan kecepatan motor dc Memahami

Lebih terperinci

BAB 2 LANDASAN TEORI. robotika. Salah satu alasannya adalah arah putaran motor DC, baik searah jarum jam

BAB 2 LANDASAN TEORI. robotika. Salah satu alasannya adalah arah putaran motor DC, baik searah jarum jam BAB 2 LANDASAN TEORI 2.1 Jenis Jenis Motor DC Motor DC merupakan jenis motor yang paling sering digunakan di dalam dunia robotika. Salah satu alasannya adalah arah putaran motor DC, baik searah jarum jam

Lebih terperinci

Bab IV Pengujian dan Analisis

Bab IV Pengujian dan Analisis Bab IV Pengujian dan Analisis Setelah proses perancangan, dilakukan pengujian dan analisis untuk mengukur tingkat keberhasilan perancangan yang telah dilakukan. Pengujian dilakukan permodul, setelah modul-modul

Lebih terperinci

1.1. Definisi dan Pengertian

1.1. Definisi dan Pengertian BAB I PENDAHULUAN Sistem kendali telah memegang peranan yang sangat penting dalam perkembangan ilmu dan teknologi. Peranan sistem kendali meliputi semua bidang kehidupan. Dalam peralatan, misalnya proses

Lebih terperinci

1. Mahasiswa dapat mengetahui blok diagram sistem. 2. Mahasiswa dapat memodelkan sistem kendali analog

1. Mahasiswa dapat mengetahui blok diagram sistem. 2. Mahasiswa dapat memodelkan sistem kendali analog Percobaan 2 Judul Percobaan : Kendali Analog Tujuan Percobaan 1. Mahasiswa dapat mengetahui blok diagram sistem 2. Mahasiswa dapat memodelkan sistem kendali analog Teori Dasar Sistem adalah kombinasi atas

Lebih terperinci

Kendali PID Training Kit ELABO TS 3400 Menggunakan Sensor Posisi

Kendali PID Training Kit ELABO TS 3400 Menggunakan Sensor Posisi Kendali PID Training Kit ELABO TS 3400 Menggunakan Sensor Posisi Ana Ningsih 1, Catherina Puspita 2 Program Studi Teknik Mekatronika, Politeknik ATMI Surakarta 1 ana_n@atmi.ac.id, 2 apriliacatarina@yahoo.com

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan mengenai perancangan dan realisasi dari perangkat keras, serta perangkat lunak dari trainer kendali kecepatan motor DC menggunakan kendali PID dan

Lebih terperinci

KONTROL PROPORSIONAL INTEGRAL DERIVATIF (PID) UNTUK MOTOR DC MENGGUNAKAN PERSONAL COMPUTER

KONTROL PROPORSIONAL INTEGRAL DERIVATIF (PID) UNTUK MOTOR DC MENGGUNAKAN PERSONAL COMPUTER KONTROL PROPORSIONAL INTEGRAL DERIVATIF (PID) UNTUK MOTOR DC MENGGUNAKAN PERSONAL COMPUTER Erwin Susanto Departemen Teknik Elektro, Institut Teknologi Telkom Bandung Email: ews@ittelkom.ac.id ABSTRACT

Lebih terperinci

BAB 4 PENGUJIAN DAN ANALISA. 4.1 Pengujian Fungsi Alih Tegangan (Duty Cycle) terhadap Motor

BAB 4 PENGUJIAN DAN ANALISA. 4.1 Pengujian Fungsi Alih Tegangan (Duty Cycle) terhadap Motor BAB 4 PENGUJIAN DAN ANALISA Ada beberapa percobaan yang dilakukan. 4.1 Pengujian Fungsi Alih Tegangan (Duty Cycle) terhadap Motor Pengujian ini dilakukan dengan memberikan input PWM pada motor kemudian

Lebih terperinci

SISTEM KENDALI SUHU DENGAN MENGGUNAKAN. A. Sistem Kendali dengan NI MyRio untuk Mengatur Suhu Ruangan

SISTEM KENDALI SUHU DENGAN MENGGUNAKAN. A. Sistem Kendali dengan NI MyRio untuk Mengatur Suhu Ruangan SISTEM KENDALI SUHU DENGAN MENGGUNAKAN NI MyRIO A. Sistem Kendali dengan NI MyRio untuk Mengatur Suhu Ruangan Tujuan : Menggunakan NI myrio untuk mengendalikan modul Temperature Controlled System Leybold

Lebih terperinci

REZAN NURFADLI EDMUND NIM.

REZAN NURFADLI EDMUND NIM. MEKATRONIKA Disusun oleh : REZAN NURFADLI EDMUND NIM. 125060200111075 KEMENTERIAN PENDIDIKAN NASIONAL UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2014 BAB I PENDAHULUAN A. Latar Belakang Respon berasal

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN SISTEM

BAB IV ANALISA DAN PENGUJIAN SISTEM BAB IV ANALISA DAN PENGUJIAN SISTEM 4.1 Pengujian Perangkat Keras (Hardware) Pengujian perangkat keras sangat penting dilakukan karena melalui pengujian ini rangkaian-rangkaian elektronika dapat diuji

Lebih terperinci

PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP

PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP 9.1 Tujuan : 1) Mendemonstrasikan prinsip kerja dari rangkaian comparator inverting dan non inverting dengan menggunakan op-amp 741. 2) Rangkaian comparator menentukan

Lebih terperinci

BAB III 1 METODE PENELITIAN

BAB III 1 METODE PENELITIAN 54 BAB III 1 METODE PENELITIAN 3.1 Prosedur Penelitian Prosedur yang dilakukan dalam penelitian ini terdiri dari beberapa langkah. Langkah pertama, yaitu melakukan studi literatur dari berbagi sumber terkait.

Lebih terperinci

SISTEM KENDALI DIGITAL

SISTEM KENDALI DIGITAL SISTEM KENDALI DIGITAL Sistem kendali dapat dikatakan sebagai hubungan antara komponen yang membentuk sebuah konfigurasi sistem, yang akan menghasilkan tanggapan sistem yang diharapkan. Jadi harus ada

Lebih terperinci

RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC

RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC Dwiana Hendrawati Prodi Teknik Konversi Energi Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto, SH.,

Lebih terperinci

BAB II TEORI. Proses pengaturan atau pengendalian suatu atau beberapa besaran

BAB II TEORI. Proses pengaturan atau pengendalian suatu atau beberapa besaran BAB II TEORI II.. Sistem Kontrol Proses pengaturan atau pengendalian suatu atau beberapa besaran (Variabel,Parameter) agar berada pada suatu harga tertentu disebut dengan sistem control. Pengontrolan ini

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Mikrokontroller AVR Mikrokontroller adalah suatu alat elektronika digital yang mempunyai masukan serta keluaran serta dapat di read dan write dengan cara khusus. Mikrokontroller

Lebih terperinci

Osiloskop (Gambar 1) merupakan alat ukur dimana bentuk gelombang sinyal listrik yang diukur akan tergambar pada layer tabung sinar katoda.

Osiloskop (Gambar 1) merupakan alat ukur dimana bentuk gelombang sinyal listrik yang diukur akan tergambar pada layer tabung sinar katoda. OSILOSKOP Osiloskop (Gambar 1) merupakan alat ukur dimana bentuk gelombang sinyal listrik yang diukur akan tergambar pada layer tabung sinar katoda. Gambar 1. Osiloskop Tujuan : untuk mempelajari cara

Lebih terperinci

Kendali Perancangan Kontroler PID dengan Metode Root Locus Mencari PD Kontroler Mencari PI dan PID kontroler...

Kendali Perancangan Kontroler PID dengan Metode Root Locus Mencari PD Kontroler Mencari PI dan PID kontroler... DAFTAR ISI LEMBAR PENGESAHAN DOSEN PEMBIMBING... i LEMBAR PENGESAHAN DOSEN PENGUJI... ii HALAMAN PERSEMBAHAN... iii HALAMAN MOTTO... iv KATA PENGANTAR... v ABSTRAK... vii DAFTAR ISI... ix DAFTAR TABEL...

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka 59 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1. Flow Chart Perancangan dan Pembuatan Alat Mulai Tinjauan pustaka Simulasi dan perancangan alat untuk pengendali kecepatan motor DC dengan kontroler PID analog

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. selanjutnya perancangan tersebut diimplementasikan ke dalam bentuk yang nyata

BAB 4 IMPLEMENTASI DAN EVALUASI. selanjutnya perancangan tersebut diimplementasikan ke dalam bentuk yang nyata BAB 4 IMPLEMENTASI DAN EVALUASI Pelaksanaan dari perancangan yang sudah dibuat dan dijelaskan pada Bab 3 selanjutnya perancangan tersebut diimplementasikan ke dalam bentuk yang nyata (secara hardware).

Lebih terperinci

REALISASI MODUL KENDALI POSISI DENGAN PID UNTUK MENDUKUNG PRAKTIKUM DASAR SISTEM KONTROL

REALISASI MODUL KENDALI POSISI DENGAN PID UNTUK MENDUKUNG PRAKTIKUM DASAR SISTEM KONTROL REALISASI MODUL KENDALI POSISI DENGAN PID UNTUK MENDUKUNG PRAKTIKUM DASAR SISTEM KONTROL REALIZATION OF POSITION CONTROL MODULES WITH PID TO SUPPORT BASIC CONTROL SYSTEM PRACTICUM Harry Wijaya Fauzi, Dr.

Lebih terperinci

Implementasi Fuzzy Logic Pada Microcontroller Untuk Kendali Putaran Motor DC

Implementasi Fuzzy Logic Pada Microcontroller Untuk Kendali Putaran Motor DC Implementasi Fuzzy Logic Pada Microcontroller Untuk Kendali Putaran Motor DC Resmana, Hany Ferdinando, Thiang, Agus Suryo Widagdo Jurusan Teknik Elektro Universitas Kristen Petra, Surabaya Jl. Siwalankerto

Lebih terperinci

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER Nursalim Jurusan Teknik Elektro, Fakultas Sains dan Teknik, Universitas Nusa Cendana Jl. Adisucipto-Penfui Kupang,

Lebih terperinci

PERCOBAAN 3 RANGKAIAN OP AMP

PERCOBAAN 3 RANGKAIAN OP AMP PERCOBAAN 3 RANGKAIAN OP AMP TUJUAN Mempelajari penggunaan operational amplifier Mempelajari rangkaian rangkaian standar operational amplifier PERSIAPAN Pelajari keseluruhan petunjuk praktikum untuk modul

Lebih terperinci

Pengukuran dengan Osiloskop dan Generator Sapu

Pengukuran dengan Osiloskop dan Generator Sapu Pengukuran dengan Osiloskop dan Generator Sapu 1. Osiloskop Osiloskop dapat digunakan untuk mengamati tingkah tegangan bolak balik. Dengan cara-cara sederhana piranti itu akan dapat cepat mengukur empat

Lebih terperinci

5/12/2014. Plant PLANT

5/12/2014. Plant PLANT Matakuliah : Teknik Kendali Tahun : 2014 Versi : Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : menjelaskan gambaran umum dan aplikasi sistem pengaturan di industri menunjukkan kegunaan dasar-dasar

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS 2.1. Pengertian Sistem Kontrol Sistem kontrol adalah proses pengaturan atau pengendalian terhadap satu atau beberapa besaran (variable, parameter) sehingga berada pada suatu harga

Lebih terperinci

BAB 5. Pengujian Sistem Kontrol dan Analisis

BAB 5. Pengujian Sistem Kontrol dan Analisis BAB 5 Pengujian Sistem Kontrol dan Analisis 5.1. Aplikasi Display Controller Pengujian sistem kontrol dilakukan dengan menggunakan aplikasi program Visual C# untuk menampilkan grafik, dan mengambil data

Lebih terperinci

DAFTAR ISI DAFTAR ISI... 1 PENDAHULUAN... 3 PEDOMAN UMUM... 3 PERCOBAAN Teori Dasar Prosedur Percobaan Ringkasan...

DAFTAR ISI DAFTAR ISI... 1 PENDAHULUAN... 3 PEDOMAN UMUM... 3 PERCOBAAN Teori Dasar Prosedur Percobaan Ringkasan... DAFTAR ISI DAFTAR ISI... 1 PENDAHULUAN... 3 PEDOMAN UMUM... 3 PERCOBAAN 1... 5 1. Teori Dasar... 5 2. Prosedur Percobaan... 6 3. Ringkasan... 7 PERCOBAAN 2... 8 1. Teori Dasar... 8 2. Prosedur Percobaan...

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Perangkat Keras ( Hardware) Dalam pembuatan tugas akhir ini diperlukan penguasaan materi yang digunakan untuk merancang kendali peralatan listrik rumah. Materi tersebut merupakan

Lebih terperinci

BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK

BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK Pada bab ini dibahas tentang perangkat mekanik simulator mesin pembengkok, konstruksi motor DC servo, konstruksi motor stepper,

Lebih terperinci

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID Endra 1 ; Nazar Nazwan 2 ; Dwi Baskoro 3 ; Filian Demi Kusumah 4 1 Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universitas

Lebih terperinci

2. Pengendalian otomat dengan tenaga hydroulic

2. Pengendalian otomat dengan tenaga hydroulic 2. Pengendalian otomat dengan tenaga hydroulic Keuntungan : Pengontrolan mudah dan responnya cukup cepat Menghasilkan tenaga yang besar Dapat langsung menghasilkan gerakan rotasi dan translasi 1 P a g

Lebih terperinci

PERCOBAAN 6 RANGKAIAN PENGUAT KLAS B PUSH-PULL

PERCOBAAN 6 RANGKAIAN PENGUAT KLAS B PUSH-PULL PERCOBAAN 6 RANGKAIAN PENGUAT KLAS B PUSH-PULL 6.1 Tujuan dan Latar Belakang Tujuan dari percobaan ini adalah untuk mendemonstrasikan operasi dan desain dari suatu power amplifier emitter-follower kelas

Lebih terperinci

KENDALI POSISI MENGGUNAKAN FUZZY LOGIC BERBASIS PROGRAMMABLE LOGIC CONTROLLER

KENDALI POSISI MENGGUNAKAN FUZZY LOGIC BERBASIS PROGRAMMABLE LOGIC CONTROLLER KENDALI POSISI MENGGUNAKAN FUZZY LOGIC BERBASIS PROGRAMMABLE LOGIC CONTROLLER Hany Ferdinando 1) Handy Wicaksono 1) Ricky Mintaraga 2) 1) Jurusan Teknik Elektro, Universitas Kristen Petra Surabaya, email:

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan

Lebih terperinci

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1]

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1] 1 feedback, terutama dalam kecepatan tanggapan menuju keadaan stabilnya. Hal ini disebabkan pengendalian dengan feedforward membutuhkan beban komputasi yang relatif lebih kecil dibanding pengendalian dengan

Lebih terperinci

TUGAS AKHIR RESUME PID. Oleh: Nanda Perdana Putra MN / 2010 Teknik Elektro Industri Teknik Elektro. Fakultas Teknik. Universitas Negeri Padang

TUGAS AKHIR RESUME PID. Oleh: Nanda Perdana Putra MN / 2010 Teknik Elektro Industri Teknik Elektro. Fakultas Teknik. Universitas Negeri Padang TUGAS AKHIR RESUME PID Oleh: Nanda Perdana Putra MN 55538 / 2010 Teknik Elektro Industri Teknik Elektro Fakultas Teknik Universitas Negeri Padang PROPORSIONAL INTEGRAL DIFERENSIAL (PID) Pendahuluan Sistem

Lebih terperinci

PETUNJUK PELAKSANAAN PRAKTIKUM PRAKTIKUM TEKNIK TELEKOMUNIKASI 2 ET 2200

PETUNJUK PELAKSANAAN PRAKTIKUM PRAKTIKUM TEKNIK TELEKOMUNIKASI 2 ET 2200 PETUNJUK PELAKSANAAN PRAKTIKUM PRAKTIKUM TEKNIK TELEKOMUNIKASI 2 ET 2200 PROGRAM STUDI TEKNIK TELEKOMUNIKASI SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG 2016 DAFTAR ISI HALAMAN JUDUL...

Lebih terperinci

DAFTAR ISI ABSTRAK... DAFTAR ISI...

DAFTAR ISI ABSTRAK... DAFTAR ISI... DAFTAR ISI Halaman KATA PENGANTAR... ABSTRAK... DAFTAR ISI... i iii iv BAB I PENDAHULUAN 1.1. Latar belakang masalah... 1 1.2. Permasalahan... 1 1.3. Batasan masalah... 2 1.4. Tujuan dan manfaat penelitian...

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN Pada bab ini dilakukan proses akhir dari pembuatan alat Tugas Akhir, yaitu pengujian alat yang telah selesai dirancang. Tujuan dari proses ini yaitu agar

Lebih terperinci

Bab III. Operational Amplifier

Bab III. Operational Amplifier Bab III Operational Amplifier 30 3.1. Masalah Interfacing Interfacing sebagai cara untuk menggabungkan antara setiap komponen sensor dengan pengontrol. Dalam diagram blok terlihat hanya berupa garis saja

Lebih terperinci

JOBSHEET 6 PENGUAT INSTRUMENTASI

JOBSHEET 6 PENGUAT INSTRUMENTASI JOBSHEET 6 PENGUAT INSTUMENTASI A. TUJUAN Tujuan dari pembuatan modul Penguat Instrumentasi ini adalah :. Mahasiswa mengetahui karakteristik rangkaian penguat instrumentasi sebagai aplikasi dari rangkaian

Lebih terperinci

Oleh : Dia Putranto Harmay Dosen Pembimbing : Ir. Witantyo, M.Eng. Sc

Oleh : Dia Putranto Harmay Dosen Pembimbing : Ir. Witantyo, M.Eng. Sc Oleh : Dia Putranto Harmay 2105.100.145 Dosen Pembimbing : Ir. Witantyo, M.Eng. Sc Latar Belakang Usman Awan dkk, 2001 Merancang dan membuat dynamometer jenis prony brake dengan menggunakan strain gauge

Lebih terperinci

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560 1 SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560 Adityan Ilmawan Putra, Pembimbing 1: Purwanto, Pembimbing 2: Bambang Siswojo.

Lebih terperinci

MODUL 6 OSILOSKOP DAN FUNGSI GELOMBANG LISTRIK. frekuensi, amplitudo, dan beda fasa dari sinyal tegangan.

MODUL 6 OSILOSKOP DAN FUNGSI GELOMBANG LISTRIK. frekuensi, amplitudo, dan beda fasa dari sinyal tegangan. MODUL 6 OSILOSKOP DAN FUNGSI GELOMBANG LISTRIK I. TUJUAN PERCOB.AAN 1. Mampu menggunakan osiloskop unruk mengukur bentuk fungsi, frekuensi, amplitudo, dan beda fasa dari sinyal tegangan. 2. Mampu melakukan

Lebih terperinci

BAB III DINAMIKA PROSES

BAB III DINAMIKA PROSES BAB III DINAMIKA PROSES Tujuan Pembelajaran Umum: Setelah membaca bab ini diharapkan mahasiswa dapat memahami Dinamika Proses dalam Sistem Kendali. Tujuan Pembelajaran Khusus: Setelah mengikuti kuiah ini

Lebih terperinci

PERCOBAAN I TRANSDUSER TAHANAN UNTUK APLIKASI POSISI LINIER ATAU ANGULAR

PERCOBAAN I TRANSDUSER TAHANAN UNTUK APLIKASI POSISI LINIER ATAU ANGULAR PERON I TRNSDUSER THNN UNTUK PLIKSI POSISI LINIER TU NGULR. TUJUN PERON Setelah melaksanakan praktek, mahasiswa diharapkan dapat : 1. Mengetahui konstruksi dasar tahanan variabel jenis putar dan geser.

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Computer. Parallel Port ICSP. Microcontroller. Motor Driver Encoder. DC Motor. Gambar 3.1: Blok Diagram Perangkat Keras

BAB 3 PERANCANGAN SISTEM. Computer. Parallel Port ICSP. Microcontroller. Motor Driver Encoder. DC Motor. Gambar 3.1: Blok Diagram Perangkat Keras BAB 3 PERANCANGAN SISTEM 3.1 Blok Diagram Perangkat Keras Sistem perangkat keras yang digunakan dalam penelitian ini ditunjukkan oleh blok diagram berikut: Computer Parallel Port Serial Port ICSP Level

Lebih terperinci

Simulasi Control System Design dengan Scilab dan Scicos

Simulasi Control System Design dengan Scilab dan Scicos Simulasi Control System Design dengan Scilab dan Scicos 1. TUJUAN PERCOBAAN Praktikan dapat menguasai pemodelan sistem, analisa sistem dan desain kontrol sistem dengan software simulasi Scilab dan Scicos.

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI

BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI Pada bab ini akan dijelaskan hasil analisa perancangan kontrol level deaerator yang telah dimodelkan dalam LabVIEW sebagaimana telah dibahas pada bab III. Dengan

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET INSTRUMENTASI

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET INSTRUMENTASI Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 6 1. Kompetensi Mengoperasikan Osciloskop sebagai instrumen Pengukuran. 2. Sub Kompetensi a. Memahami fungsi tombol pada osciloskop b. Mengukur amplitudo suatu

Lebih terperinci

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin 1 BAB I PENDAHULUAN 1.1. Latar Belakang Motor DC atau motor arus searah yaitu motor yang sering digunakan di dunia industri, biasanya motor DC ini digunakan sebagai penggerak seperti untuk menggerakan

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN SISTEM

BAB III PERANCANGAN DAN PEMBUATAN SISTEM BAB III PERANCANGAN DAN PEMBUATAN SISTEM Pada bab ini menjelaskan tentang perancangan dan pembuatan sistem kontrol, baik secara software maupun hardware yang digunakan untuk mendukung keseluruhan sistem

Lebih terperinci

PEMBUATAN SISTEM PENGATURAN PUTARAN MOTOR DC MENGGUNAKAN KONTROL PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) DENGAN MEMANFAATKAN SENSOR KMZ51

PEMBUATAN SISTEM PENGATURAN PUTARAN MOTOR DC MENGGUNAKAN KONTROL PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) DENGAN MEMANFAATKAN SENSOR KMZ51 Jurnal MIPA 35 (2): 130-139 (2012) Jurnal MIPA http://journal.unnes.ac.id/sju/index.php/jm PEMBUATAN SISTEM PENGATURAN PUTARAN MOTOR DC MENGGUNAKAN KONTROL PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) DENGAN

Lebih terperinci

Pengukuran Besaran Listrik. Kuliah-2 Sistem Pengukuran

Pengukuran Besaran Listrik. Kuliah-2 Sistem Pengukuran Pengukuran Besaran Listrik Kuliah-2 Sistem Pengukuran Quiz-1 (Pre-test) 1. Buat rangkaian Sistem Instrumentasi elektronik! 2. Jelaskan fungsi dari: Controller Data Processor Recorder Signal Conditioner

Lebih terperinci

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah BAB II LANDASAN TEORI 2.1 Umum Didalam dunia industri, dituntut suatu proses kerja yang aman dan berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah banyak serta dengan waktu

Lebih terperinci

Seminar Nasional IENACO 2016 ISSN: RANCANG BANGUN PENGATURAN MOTOR PENGGERAK PINTU AIR OTOMATIS DENGAN MENGGUNAKAN LEVEL CONTROL

Seminar Nasional IENACO 2016 ISSN: RANCANG BANGUN PENGATURAN MOTOR PENGGERAK PINTU AIR OTOMATIS DENGAN MENGGUNAKAN LEVEL CONTROL RANCANG BANGUN PENGATURAN MOTOR PENGGERAK PINTU AIR OTOMATIS DENGAN MENGGUNAKAN LEVEL CONTROL Anderianes Wira 1*, Djoko Setyanto 2, Isdaryanto Iskandar 3 Universitas Katolik Indonesia Atma Jaya, FakultasTeknik,

Lebih terperinci

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID Syahrir Abdussamad, Simulasi Kendalian Control Unit G.U.N.T Tipe dengan Pengendali PID MEDIA ELEKTRIK, Volume 4 Nomor, Juni 9 SIMULASI KENDALIAN FLOW CONTROL UNIT G.U.N.T TIPE DENGAN PENGENDALI PID Syahrir

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI. III, aspek keseluruhan dimulai dari Bab I hingga Bab III, maka dapat ditarik

BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI. III, aspek keseluruhan dimulai dari Bab I hingga Bab III, maka dapat ditarik BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI Pada bab ini akan dibahs mengenai pengujian control reheat desuperheater yang telah dimodelkan pada matlab sebagaimana yang telah dibahas pada bab III, aspek

Lebih terperinci

Kesalahan Tunak (Steady state error) Dasar Sistem Kontrol, Kuliah 6

Kesalahan Tunak (Steady state error) Dasar Sistem Kontrol, Kuliah 6 Kesalahan Tunak (Steady state error) Review Perancangan dan analisis sistem kontrol 1. Respons transien : orde 1 : konstanta waktu, rise time, setting time etc; orde 2: peak time, % overshoot etc 2. Stabilitas

Lebih terperinci

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam I. Tujuan 1. Mampu melakukan analisis kinerja sistem pengaturan posisi motor arus searah.. Mampu menerangkan pengaruh kecepatan

Lebih terperinci

III. METODELOGI PENELITIAN. Tempat dan waktu penelitian yang telah dilakukan pada penelitian ini adalah

III. METODELOGI PENELITIAN. Tempat dan waktu penelitian yang telah dilakukan pada penelitian ini adalah III. METODELOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian Tempat dan waktu penelitian yang telah dilakukan pada penelitian ini adalah sebagai berikut: 3.1.1 Tempat penelitian Penelitian dan pengambilan

Lebih terperinci

Modul Laboratorium Sistem Kendali. Penyusun: Isdawimah,ST.,MT dan Ismujianto,ST.,MT

Modul Laboratorium Sistem Kendali. Penyusun: Isdawimah,ST.,MT dan Ismujianto,ST.,MT Modul Laboratorium Sistem Kendali Penyusun: Isdawimah,ST.,MT dan Ismujianto,ST.,MT Prodi D-IV Teknik Otomasi Listrik Industri Jurusan Teknik Elektro Politeknik Negeri Jakarta-Tahun 2013 DAFTAR ISI Modul

Lebih terperinci

BAB 1 PENDAHULUAN. pengujian nya, sebagai pengatur kecepatan menghasilkan steady state error yang

BAB 1 PENDAHULUAN. pengujian nya, sebagai pengatur kecepatan menghasilkan steady state error yang BAB 1 PENDAHULUAN 1.1 Latar Belakang Mesin CNC (computer numerical controlled) adalah sebuah mesin yang diperintah oleh manusia untuk mengerjakan sesuatu yang telah di desain oleh computer. Mesin ini memiliki

Lebih terperinci

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI Jumiyatun Jurusan Teknik Elektro Fakultas Teknik Universitas Tadolako E-mail: jum@untad.ac.id ABSTRACT Digital control system

Lebih terperinci

LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER)

LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER) LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER) A. TUJUAN 1. Mahasiswa dapat mengetahui prinsip kerja dan karakteristik rangkaian ADC 8 Bit. 2. Mahasiswa dapat merancang rangkaian ADC

Lebih terperinci

UNIVERSITAS BINA NUSANTARA KONTROL POSISI PADA MOTOR DC DENGAN FPGA

UNIVERSITAS BINA NUSANTARA KONTROL POSISI PADA MOTOR DC DENGAN FPGA UNIVERSITAS BINA NUSANTARA Jurusan Sistem Komputer Skripsi Sarjana computer Semester Genap tahun 2005/2006 KONTROL POSISI PADA MOTOR DC DENGAN FPGA Harry 0500589552 Bunny Diredja 0500593392 Wadi 0500582294

Lebih terperinci

Modeling. A. Dasar Teori

Modeling. A. Dasar Teori A. Dasar Teori Modeling 1. Bump Test Bump Test merupakan pengujian yang umum digunakan dalam sistem stabil. Sebuah step input diberukan ke sistem dan responnya dicatat. Sebagai contoh, sistem dengan transfer

Lebih terperinci

Bab IV PENGOLAHAN DATA DAN ANALISA

Bab IV PENGOLAHAN DATA DAN ANALISA 51 Bab IV PENGOLAHAN DATA DAN ANALISA Dalam perancangan perangkat keras dan perangkat lunak suatu sistem yang telah dibuat ini dimungkinkan terjadi kesalahan karena faktor-faktor seperti human error, proses

Lebih terperinci

BAB 3 PERANCANGAN KENDALI MOTOR DC. Perancangan kendali motor DC dalam skripsi ini meliputi perancangan motor

BAB 3 PERANCANGAN KENDALI MOTOR DC. Perancangan kendali motor DC dalam skripsi ini meliputi perancangan motor BAB 3 PERANCANGAN KENDALI MOTOR DC Perancangan kendali motor DC dalam skripsi ini meliputi perancangan motor DC, perancangan blok kendali, perancangan kendali PID, perancangan perangkat lunak, dan perancangan

Lebih terperinci

PERCOBAAN 2 MULTIFREQUENCY RECEIVER UNIT. Tabel 2.1. Kombinasi 2 Frekuensi pada Metode DTMF

PERCOBAAN 2 MULTIFREQUENCY RECEIVER UNIT. Tabel 2.1. Kombinasi 2 Frekuensi pada Metode DTMF PERCOBAAN 2 MULTIFREQUENCY RECEIVER UNIT 2.1. TUJUAN Memahami struktur kode multifrequency dan rangkaian kejadian pada pe-registrasi-an serta peng-konversi-an informasi dial. 2.2. TEORI Selain metode pushbutton

Lebih terperinci

Perancangan Sistim Elektronika Analog

Perancangan Sistim Elektronika Analog Petunjuk Praktikum Perancangan Sistim Elektronika Analog Lab. Elektronika Industri Jurusan Teknik Elektro Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Lab 1. Amplifier Penguat Dengan

Lebih terperinci

PERANCANGAN TRAINER PID ANALOG UNTUK MENGATUR KECEPATAN PUTARAN MOTOR DC

PERANCANGAN TRAINER PID ANALOG UNTUK MENGATUR KECEPATAN PUTARAN MOTOR DC Perancangan Trainer PID Analog untuk Mengatur Kecepatan (Subchan Mauludin dan Andi Kurniawan) PERANCANGAN TRAINER PID ANALOG UNTUK MENGATUR KECEPATAN PUTARAN MOTOR DC M. Subchan Mauludin 1*, Andi Kurniawan

Lebih terperinci

PENERAPAN ALGORITMA KENDALI PROPORTIONAL INTEGRAL DERIVATIVE PADA SISTEM REAL TIME UNTUK MEMPELAJARI TANGGAPAN TRANSIEN

PENERAPAN ALGORITMA KENDALI PROPORTIONAL INTEGRAL DERIVATIVE PADA SISTEM REAL TIME UNTUK MEMPELAJARI TANGGAPAN TRANSIEN PENERAPAN ALGORITMA KENDALI PROPORTIONAL INTEGRAL DERIVATIVE PADA SISTEM REAL TIME UNTUK MEMPELAJARI TANGGAPAN TRANSIEN Isnan Nur Rifai 1, Panji Saka Gilab Asa 2 Diploma Elektronika Dan Instrumentasi Sekolah

Lebih terperinci

AN-0012 Jenis-jenis Motor

AN-0012 Jenis-jenis Motor AN-0012 Jenis-jenis Motor Motor adalah merupakan bagian utama dari sebuah robot. Hampir semua jenis robot kecuali yang menggunakan muscle wire (kawat otot) selalu menggunakan motor. Jenis turtle, vehicle

Lebih terperinci

PERANCANGAN KONTROLER PENGGANTI ELECTRONIC CONTROL UNIT UNTUK MENGATUR POSISI SUDUT FLAP PADA MODEL MINIATUR PESAWAT N-219

PERANCANGAN KONTROLER PENGGANTI ELECTRONIC CONTROL UNIT UNTUK MENGATUR POSISI SUDUT FLAP PADA MODEL MINIATUR PESAWAT N-219 1 PERANCANGAN KONTROLER PENGGANTI ELECTRONIC CONTROL UNIT UNTUK MENGATUR POSISI SUDUT FLAP PADA MODEL MINIATUR PESAWAT N-219 Hakiki Bagus Putro W., Pembimbing 1: Ir. Purwanto.MT, Pembimbing 2: Ir. Bambang

Lebih terperinci

Kegiatan 2 : STARTING MOTOR ARUS SEARAH DENGAN MENGGUNAKAN TAHANAN

Kegiatan 2 : STARTING MOTOR ARUS SEARAH DENGAN MENGGUNAKAN TAHANAN Kegiatan 2 : STARTING MOTOR ARUS SEARAH DENGAN MENGGUNAKAN TAHANAN 2.1. Latar Belakang Mahasiswa perlu mengetahui aspek starting motor arus searah (Direct Current = DC) karena starting motor DC merupakan

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk mengontrol dan bisa diprogram sesuai dengan kebutuhan, yang

BAB I PENDAHULUAN. digunakan untuk mengontrol dan bisa diprogram sesuai dengan kebutuhan, yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah PLC (Programmable Logic Control) merupakan suatu peralatan yang digunakan untuk mengontrol dan bisa diprogram sesuai dengan kebutuhan, yang biasanya digunakan

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808) I. TUJUAN 1. Mahasiswa dapat memahami karakteristik pengkondisi sinyal DAC 0808 2. Mahasiswa dapat merancang rangkaian pengkondisi sinyal DAC 0808

Lebih terperinci

ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT

ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT Oleh : Agung Prasetya Adhayatmaka NRP 2108100521 Dosen Pembimbing

Lebih terperinci

LAPORAN PRAKTIKUM SISTEM KENDALI. Kontrol Putaran Motor DC. Dosen Pembimbing Ahmad Fahmi

LAPORAN PRAKTIKUM SISTEM KENDALI. Kontrol Putaran Motor DC. Dosen Pembimbing Ahmad Fahmi LAPORAN PRAKTIKUM SISTEM KENDALI Kontrol Putaran Motor DC Dosen Pembimbing Ahmad Fahmi Oleh: Andrik Kurniawan 130534608425 PRODI S1 PENDIDIKAN TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

TKC306 - Robotika. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro

TKC306 - Robotika. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro TKC306 - ika Eko Didik Sistem Komputer - Universitas Diponegoro Review Kuliah Prinsip dasar dan mekanisme kontrol robot Implementasi kendali ke dalam rangkaian berbasis mikroprosesor Low-level dan High-level

Lebih terperinci

PERCOBAAN 3 MULTIPLEXER/DEMULTIPLEXER UNIT 3.3. PENJELASAN SINGKAT TENTANG MODUL

PERCOBAAN 3 MULTIPLEXER/DEMULTIPLEXER UNIT 3.3. PENJELASAN SINGKAT TENTANG MODUL PERCOBAAN 3 MULTIPLEXER/DEMULTIPLEXER UNIT 3.1. TUJUAN Memahami proses digitalisasi beberapa kanal suara menjadi bentuk sinyal multiplex pada teknologi sentral digital. Memahami pembagian sinyal multiplex

Lebih terperinci

PERTEMUAN 14 ALAT UKUR OSILOSKOP (LANJUTAN)

PERTEMUAN 14 ALAT UKUR OSILOSKOP (LANJUTAN) PERTEMUAN 14 ALAT UKUR OSILOSKOP (LANJUTAN) FUNGSI PANEL OSILOSKOP PANEL KENDALI Bagian ini dibagi atas 3 bagian lagi yang diberi nama Vertical, Horizontal, and Trigger. FUNGSI PANEL OSILOSKOP (2) PENGATUR

Lebih terperinci

ANALISIS PENERAPAN PID CONTROLLER PADA AVR (AUTOMATIC VOLTAGE REGULATOR)

ANALISIS PENERAPAN PID CONTROLLER PADA AVR (AUTOMATIC VOLTAGE REGULATOR) ANALISIS PENERAPAN PID CONTROLLER PADA AVR (AUTOMATIC VOLTAGE REGULATOR) Indar Chaerah Gunadin Dosen Jurusan Teknik Elektro Universitas Hasanuddin Abstrak Perubahan daya reaktif yang disuplai ke beban

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN BAB IV PENGUJIAN DAN ANALISA RANGKAIAN Dalam bab ini penulis akan mengungkapkan dan menguraikan mengenai persiapan komponen dan peralatan yang dipergunakan serta langkah langkah praktek, kemudian menyiapkan

Lebih terperinci

Modul 04: Op-Amp. Penguat Inverting, Non-Inverting, dan Comparator dengan Histeresis. 1 Alat dan Komponen. 2 Teori Singkat

Modul 04: Op-Amp. Penguat Inverting, Non-Inverting, dan Comparator dengan Histeresis. 1 Alat dan Komponen. 2 Teori Singkat Modul 04: Op-Amp Penguat Inverting, Non-Inverting, dan Comparator dengan Histeresis Reza Rendian Septiawan March 3, 2015 Op-amp merupakan suatu komponen elektronika aktif yang dapat menguatkan sinyal dengan

Lebih terperinci

Bab 2. Landasan Teori

Bab 2. Landasan Teori 6 Bab 2 Landasan Teori 2.1 Sistem Kontrol Kata kontrol atau pengendalian mempunyai arti mengatur, mengarahkan dan memerintah. Dengan kata lain bahwa sistem pengendalian adalah susunan komponen - komponen

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. Pengujian sistem elektronik terdiri dari dua bagian yaitu: - Pengujian tegangan catu daya - Pengujian kartu AVR USB8535

BAB IV ANALISA DAN PEMBAHASAN. Pengujian sistem elektronik terdiri dari dua bagian yaitu: - Pengujian tegangan catu daya - Pengujian kartu AVR USB8535 BAB IV ANALISA DAN PEMBAHASAN 4.1. Pengujian Alat Adapun urutan pengujian alat meliputi : - Pengujian sistem elektronik - Pengujian program dan mekanik 4.1.1 Pengujian Sistem Elektronik Pengujian sistem

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) I. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA Pengujian dan analisa sistem merupakan tahap akhir dari realisasi pengendali PID pada pendulum terbalik menggunakan mikrokontroller ATmega8 agar dapat dilinearkan disekitar

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS 3.1. Spesifikasi Perancangan Perangkat Keras Secara sederhana, perangkat keras pada tugas akhir ini berhubungan dengan rancang bangun robot tangan. Sumbu

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN BAB IV PENGUJIAN DAN ANALISA RANGKAIAN 4.1 Hasil Pengujian Perangkat Keras Pengujian pada prototype elevator atau lift ini dilakukan melalui beberapa tahap pengujian, yaitu pengujian terhadap perangkat-perangkat

Lebih terperinci

MENGAKSES MOTOR SERVO

MENGAKSES MOTOR SERVO MENGAKSES MOTOR SERVO Dipasaran terdapat 2 tipe motor servo yaitu servo standard dan servo rotation (continuous). Dimana biasanya untuk tipe standar hanya dapat melakukan pergerakan sebesar 180 sedangkan

Lebih terperinci