Kontrol Optimum. Prinsip Maksimum Pontryagin. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kontrol Optimum. Prinsip Maksimum Pontryagin. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014"

Transkripsi

1 Kontrol Optimum Prinsip Maksimum Pontryagin Toni Bakhtiar Departemen Matematika IPB Februari 214 (IPB) MAT332 Kontrol Optimum Februari / 25

2 Outline Masalah kontrol optimum Prinsip maksimum Pontryagin 1 Teorema 2 Bukti Fungsi adjoin tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

3 Masalah Kontrol Optimum Masalah kontrol optimum adalah masalah menentukan peubah kontrol yang dapat mengendalikan suatu proses sedemikian sehingga memenuhi beberapa kendala fisik dan dalam waktu yang sama mengoptimumkan kriteria tertentu. Masalah kontrol optimum dapat diselesaikan melalui dua pendekatan: 1 program dinamik (Bellman, 1957) 2 prinsip maksimum (Pontryagin, 1962) Dalam kuliah ini akan dibahas penyelesaian masalah kontrol optimum melalui pendekatan prinsip maksimum. Pendekatan prinsip maksimum banyak menggunakan teknik dalam kalkulus variasi. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

4 MKV vs MKO Perbedaan MKV dan MKO: Masalah Kalkulus Variasi: opt J(x(t)) = Masalah Kontrol Optimum: opt J(x(t)) = T T f (x(t), ẋ(t), t) dt. f (x(t), u(t), t) dt ẋ(t) = g(x(t), u(t)), baik dengan kendala ataukah tanpa kendala. Dengan kata lain, MKV merupakan bentuk khusus dari MKO, yaitu ketika g(x, u) = u. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

5 Masalah Pemasaran melalui Iklan Sumber: Sethi & Thompson (26) Fungsional objektif: max c (π(g ) c(t))e rt dt. Fungsi kendala: Ġ (t) = c(t) δg (t), G () = G, dengan π tingkat penerimaan (revenue) yang merupakan fungsi dari citra perusahaan (goodwill) G, c biaya produksi (iklan), dan δ laju depresiasi. Masalah: menentukan besarnya biaya u(t) := c(t) yang dikeluarkan untuk iklan sedemikian sehingga memaksimumkan tingkat keuntungan. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

6 Masalah Pemeliharaan dan Pemanenan Ikan Sumber: Sydsæter et al. (28) Fungsional objektif: max u Fungsi kendala: ( T ) x(t )P(T, x(t ))e rt cx(t)u(t)e rt dt. ẋ(t) = x(t)g(t, u(t)), x() = x, dengan x(t) berat ikan pada saat t, P(t, x) harga ikan dengan berat x pada saat t, u(t) banyaknya pakan ikan yang digunakan, dan c > biaya pakan ikan. Masalah: menentukan banyaknya pakan ikan yang digunakan u(t) sedemikian sehingga memaksimumkan keuntungan. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

7 Example Tinjau sebuah masalah makroekonomi di mana sebuah indikator ekonomi y(t) ingin dikendalikan dengan kendali u(t) = ẏ(t) sehingga mencapai level yang diinginkan ŷ dalam periode [, T ]. Pengendalian memerlukan biaya sehingga ingin diminimumkan fungsional J(y) = T Definisikan x := y ŷ sehingga Masalah kalkulus variasi: ẋ = ẏ = u, [ (y ŷ) 2 + cu 2] dt. x(t ) = y(t ) ŷ = ŷ ŷ =. min J(x) = T (x 2 + cẋ 2 ) dt, x() = x, x(t ) =. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

8 Solution Persamaan Euler memberikan: 2x 2cẍ = ẍ 1 c x = Syarat batas menghasilkan: sehingga x (t) = x(t) = Ae rt + Be rt, r = 1 c. x [ e rt e rt e r (T t) e r (T t)], y (t) = x (t) + ŷ, u (t) = ẋ (t). tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

9 Masalah Kontrol Optimum Masalah kontrol optimum adalah masalah menentukan admissible control u (t) yang dapat mengendalikan sistem dinamik ẋ(t) = g(x(t), u(t), t), sedemikian sehingga mampu mengikuti admissible trajectory x (t) dalam interval waktu [, T ] dan mengoptimumkan fungsional objektif J = S(x(T ), T ) + T f (x(t), u(t), t) dt. Fungsi u (t) disebut kontrol optimum dan x (t) trajektori optimum. Problem MKO: opt J = S(x(T ), T ) + T f (x(t), u(t), t) dt s.t. ẋ(t) = g(x(t), u(t), t) tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

10 Prinsip Maksimum Pontryagin Masalah kontrol optimum merupakan perluasan masalah kalkulus variasi. Masalah kalkulus variasi muncul sejak zaman Euler dengan Persamaan Euler sebagai syarat perlu optimalitas (1744). Teori kontrol optimum berkembang di tahun enampuluhan ketika sekelompok matematikawan Rusia, yaitu Pontryagin, Boltyanskii, Gamkrelidze, Mischenko (1962), merumuskan syarat perlu optimalitas bagi masalah kontrol optimum. (IPB) MAT332 Kontrol Optimum Februari / 25

11 Prinsip Maksimum Pontryagin (IPB) MAT332 Kontrol Optimum Februari / 25

12 Prinsip Maksimum Pontryagin Theorem (Prinsip Maksimum Pontryagin) Perhatikan masalah kontrol optimum berikut: opt J = S(x(T ), T ) + T f (x(t), u(t), t) dt s.t. ẋ(t) = g(x(t), u(t), t) x() = x, Definisikan fungsi hamilton (hamiltonian): T dan x(t ) belum ditentukan. H(x, u, p, t) := f (x, u, t) + pg(x, u, t), dengan p merupakan "pengali lagrange" atau costate variable. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

13 Theorem (Prinsip Maksimum Pontryagin) Syarat perlu optimalitas diberikan oleh: 1 u(t) memaksimumkan H, yaitu H u = H u =. 2 x(t) dan p(t) memenuhi sistem persamaan diferensial berikut: 3 Syarat batas terpenuhi. ẋ = H p ẋ = g(x, u, t), ṗ = H x ṗ = H x. 4 Syarat transversalitas berikut terpenuhi: (S x p)δx T + (H + S t )δt T =. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

14 Bukti (Prinsip Maksimum Pontryagin) Berdasarkan Teorema Dasar Kalkulus dapat ditulis: sehingga S(x(T ), T ) = S(x, ) + T J = S(x, ) + T = S(x, ) + T d S(x(t), t) dt, dt [ ] ds(x, t) f (x, u, t) + dt dt [ f + S x ẋ + S ] dt. t Karena S(x, ) konstan maka suku tersebut dapat diabaikan dalam proses pengoptimuman, sehingga J = [ T f + S x ẋ + S ] dt. t tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

15 Bukti (Prinsip Maksimum Pontryagin) Definisikan fungsional objektif imbuhan (augmented): dengan J a = T F (x, ẋ, p, u, t) dt, F = [ f + S x ẋ + S ] + p(g ẋ) t = f + pg + S x ẋ + S t pẋ = H + S x ẋ + S t pẋ. Ingat kembali syarat perlu masalah Kalkulus variasi dengan T dan x(t ) tidak ditentukan: δj = T (f x d dt f ẋ )h dt + (fẋ δx + (f ẋfẋ )δt T =. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

16 Bukti (Prinsip Maksimum Pontryagin) Terapkan pada δj a : δj a = T [ (Fx d dt F ẋ )δx + F u δu + F p δp ] dt + (Fẋ δx + (F ẋfẋ )δt T =. Dengan demikian syarat perlu optimalitas diberikan oleh: 1 F x d dt F ẋ = (persamaan Euler) 2 F u = 3 F p = 4 (Fẋ δx + (F ẋfẋ )δt T = (syarat transversalitas) Perhatikan bahwa: F x d dt F ẋ = [ H x + ] x (S x ẋ + S t ) d dt (S x p) = (H x + S xx ẋ + S tx ) (S xt + S xx ẋ ṗ) = H x + ṗ. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

17 Bukti (Prinsip Maksimum Pontryagin) Dengan demikian 1 F x d dt F ẋ = H x + ṗ = ṗ = H x. 2 F u = H u =. 3 F p = H p ẋ = ẋ = g(x, u, t) 4 Karena Fẋ = S x p F ẋfẋ = (H + S x ẋ + S t pẋ) ẋ (S x p) = H + S t, maka syarat transversalitas (Fẋ δx + (F ẋfẋ )δt T = menjadi (S x p)δx T + (H + S t )δt T =. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

18 Prinsip Maksimum Pontryagin Kondisi H(x, u, p, t) H(x, u, p, t) disebut "Prinsip Maksimum Pontryagin" dan dipenuhi oleh: H u =, H uu <. Dalam masalah maksimisasi dengan kontrol berbatas u min u u max, jika H = H(u) fungsi naik maka u = u max dan jika H = H(u) fungsi turun maka u = u min. H H u min u max u u min u max u tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

19 Prinsip Maksimum Pontryagin Fungsi p disebut sebagai fungsi adjoin (mirip pengali lagrange) dan merupakan shadow price atau nilai marjinal dari J jika terjadi perubahan pada x. dh dt = H t. Bukti: H = f (x, u, t) + pg(x, u, t) dh dt = f x ẋ + f u u + f t + p(g x ẋ + g u u + g t ) + ṗg = (f x + pg x )ẋ + (f u + pg u ) u + (f t + pg t ) + ṗg = H x ẋ + H u u + H t H x ẋ = H t. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

20 Prinsip Maksimum Pontryagin Jika S = maka syarat transversalitas (S x p)δx T + (H + S t )δt T = berubah menjadi p(t )δx(t ) + H(T )δt =. Jika t dan x(t ) juga tidak ditentukan maka syarat transversalitas harus juga dievaluasi di t = t, yaitu (S x p)δx t,t + (H + S t )δt t,t =. Beberapa kasus khusus syarat transversalitas akan dibahas kemudian. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

21 Prinsip Maksimum Pontryagin Example Selesaikan MKO berikut: min J = 1 (x + u2 ) dt s.t. ẋ = u x() = x(1) bebas. Solution MKO di atas dapat diubah menjadi MKV berikut: min J = 1 (x + ẋ 2 ) dt x() = x(1) bebas. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

22 Prinsip Maksimum Pontryagin Solution (Pendekatan KV) Persamaan Euler f x d dt f ẋ = memberikan 1 2ẍ = x(t) = 1 4 t2 + At + B. Dari syarat batas x() = diperoleh B = sehingga x(t) = 1 4 t2 + At. Syarat batas alamiah fẋ t=1 = memberikan ẋ t=1 = ( 1 2 t + A t=1 = A = 1 2, sehingga x (t) = 1 4 t2 1 2 t u (t) = ẋ = 1 2 t tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

23 Prinsip Maksimum Pontryagin Solution (Pendekatan KO) Fungsi hamilton MKO di atas ialah H = (x + u 2 ) + p( u) = x + u 2 pu. Syarat perlu optimalitas H u = memberikan 2u p = u(t) = 1 2 p(t). Syarat perlu optimalitas ṗ = H x = 1 memberikan p(t) = t + A. Syarat transversalitas p(t )δx(t ) + H(T )δt = memberikan p(1) = A = 1 p (t) = t + 1. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

24 Prinsip Maksimum Pontryagin Diperoleh u (t) = 1 2 t + 1 2, x (t) = ( 1 2 t )dt = 1 4 t2 1 2 t + B. Dengan memasukkan syarat batas x() = diperoleh B = sehingga x (t) = 1 4 t2 1 2 t. tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

25 Fungsi Adjoin Jika suatu MKO memiliki solusi optimal (x, u ) yang berpadanan dengan fungsi adjoin p maka nilai fungsional objektif optimal J bergantung pada t, x, T, x T dan dinotasikan sebagai J (t, x, T, x T ) = T t f (x, u, t) dt. (Jika x(t ) bebas maka J tidak bergantung pada x T ). Jika x berubah maka pada umumnya x dan u juga berubah sepanjang interval [t, T ]. Jika J terturunkan, maka berlaku J (t, x, T, x T ) x = p(t ). Dari contoh sebelumnya dengan x() = x diperoleh J = 1 (x + u 2 ) dt = 1 ( 1 4 t2 1 2 t + x + ( 1 2 t )2 ) dt = x sehingga J x = 1 = p(). tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari / 25

Kontrol Optimum. MKO dengan Mixed Constraints dan Pure State Constraints. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014

Kontrol Optimum. MKO dengan Mixed Constraints dan Pure State Constraints. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014 Kontrol Optimum MKO dengan Mixed Constraints dan Pure State Constraints Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2014 1 / 38 Outline

Lebih terperinci

Kontrol Optimum. Syarat Transversalitas, Current-valued Hamiltonian. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014

Kontrol Optimum. Syarat Transversalitas, Current-valued Hamiltonian. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014 Kontrol Optimum Syarat Transversalitas, Current-valued Hamiltonian Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2014 1 / 37 Outline Syarat

Lebih terperinci

Kalkulus Variasi. Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas. Toni Bakhtiar. Departemen Matematika IPB

Kalkulus Variasi. Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas. Toni Bakhtiar. Departemen Matematika IPB Kalkulus Variasi Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum

Lebih terperinci

Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas

Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas Slide II Toni Bakhtiar Departemen Matematika IPB February 2012 TBK (IPB) Kalkulus Variasi February 2012 1 / 37 Masalah Brachystochrone

Lebih terperinci

Kalkulus Variasi. Pendahuluan, Model Matematika, Keterkontrolan. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014

Kalkulus Variasi. Pendahuluan, Model Matematika, Keterkontrolan. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014 Kalkulus Variasi Pendahuluan, Model Matematika, Keterkontrolan Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2014 1 / 42 Outline Beberapa

Lebih terperinci

Kalkulus Variasi. Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas. Toni Bakhtiar. Departemen Matematika IPB.

Kalkulus Variasi. Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas. Toni Bakhtiar. Departemen Matematika IPB. Kalkulus Variasi Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas Toni Bakhtiar Departemen Matematika IPB Februari 214 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 214 1

Lebih terperinci

Kontrol Optimum. MKO dengan Horizon Takhingga, Syarat Cukup. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014

Kontrol Optimum. MKO dengan Horizon Takhingga, Syarat Cukup. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014 Kontrol Optimum MKO dengan Horizon Takhingga, Syarat Cukup Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2014 1 / 23 Outline MKO dengan

Lebih terperinci

Kontrol Optimum. MKO dengan Kendala pada Peubah Kontrol. Toni Bakhtiar. Departemen Matematika IPB. Februari 2017

Kontrol Optimum. MKO dengan Kendala pada Peubah Kontrol. Toni Bakhtiar. Departemen Matematika IPB. Februari 2017 Kontrol Optimum MKO dengan Kendala pada Peubah Kontrol Toni Bakhtiar Departemen Matematika IPB Februari 2017 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2017 1 / 53 Outline MKO berkendala

Lebih terperinci

Kalkulus Variasi. Syarat Cukup, Masalah Kalkulus Variasi dengan Horizon Takhingga. Toni Bakhtiar. Departemen Matematika IPB.

Kalkulus Variasi. Syarat Cukup, Masalah Kalkulus Variasi dengan Horizon Takhingga. Toni Bakhtiar. Departemen Matematika IPB. Kalkulus Variasi Syarat Cukup, Masalah Kalkulus Variasi dengan Horizon Takhingga Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2014 1 /

Lebih terperinci

Kuliah Pengantar Kontrol Optimum dan Metode Numeriknya dalam Scilab

Kuliah Pengantar Kontrol Optimum dan Metode Numeriknya dalam Scilab Kuliah Pengantar Kontrol Optimum dan Metode Numeriknya dalam Scilab Effendi Syahril Agah D. Garnadi Kuliah Pengantar Kontrol Optimum dan Metode Numeriknya dalam Scilab Effendi Syahril Agah D. Garnadi e-version

Lebih terperinci

II LANDASAN TEORI. ii. Constant returns to scale, yaitu situasi di mana output meningkat sama banyaknya dengan porsi peningkatan input

II LANDASAN TEORI. ii. Constant returns to scale, yaitu situasi di mana output meningkat sama banyaknya dengan porsi peningkatan input 2 II LANDASAN EORI Pada bab ini akan diuraikan beberapa definisi dan teori penunjang yang akan digunakan dalam karya ilmiah ini. 2.1 Istilah Ekonomi Definisi 1 (Pertumbuhan Ekonomi) Pertumbuhan ekonomi

Lebih terperinci

Selanjutnya didefinisikan fungsional objektif yang diperbesar (augmented) J ( u ) sebagai:

Selanjutnya didefinisikan fungsional objektif yang diperbesar (augmented) J ( u ) sebagai: LAMPIRAN Lampiran 1. Bukti Teorema 4 Diketahui masalah memaksimumkan: T J ( x) = S( x( T), T) + f ( x( t), u( t), t) dt (1) dengan kendala : x() t = f( x(), t u(),) t t dt () Misalkan x() = x, t =, sedangkan

Lebih terperinci

MAT332 Kontrol Optimum

MAT332 Kontrol Optimum MAT332 Kontrol Optimum Kontrak Belajar dan Rencana Perkuliahan Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2014 1 / 12 Identitas 1 Nama

Lebih terperinci

PENERAPAN PRINSIP MAKSIMUM PONTRYAGIN PADA SISTEM INVENTORI-PRODUKSI. Nurus Sa adah, Toni Bakhtiar, Farida Hanum

PENERAPAN PRINSIP MAKSIMUM PONTRYAGIN PADA SISTEM INVENTORI-PRODUKSI. Nurus Sa adah, Toni Bakhtiar, Farida Hanum PENERAPAN PRINSIP MAKSIMUM PONTRYAGIN PADA SISTEM INVENTORI-PRODUKSI Nurus Sa adah, Toni Bakhtiar, Farida Hanum Departemen Matematika FMIPA, Institut Pertanian Bogor Jl. Meranti, Kampus IPB Darmaga, Bogor

Lebih terperinci

KENDALI OPTIMAL PADA MODEL PERIKLANAN NERLOVE-ARROW DENGAN MENGGUNAKAN PRINSIP MAKSIMUM

KENDALI OPTIMAL PADA MODEL PERIKLANAN NERLOVE-ARROW DENGAN MENGGUNAKAN PRINSIP MAKSIMUM KENDALI OPTIMAL PADA MODEL PERIKLANAN NERLOVE-ARROW DENGAN MENGGUNAKAN PRINSIP MAKSIMUM Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh: Dewita

Lebih terperinci

PENERAPAN TEORI KENDALI PADA MASALAH PROGRAM DINAMIK

PENERAPAN TEORI KENDALI PADA MASALAH PROGRAM DINAMIK PENERAPAN TEORI KENDALI PADA MASALAH PROGRAM DINAMIK Pardi Affandi, Dewi A, Nur Salam Program Studi Matematika Universitas Lambung Mangkurat Jl Jend A Yani km 35, 8 Banjarbaru Email: pardi_affandi@yahoocom

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada

Lebih terperinci

PENGENDALIAN OPTIMAL DISTRIBUSI VAKSIN PADA MODEL EPIDEMIK RABIES DENGAN MASA KELAHIRAN PERIODIK

PENGENDALIAN OPTIMAL DISTRIBUSI VAKSIN PADA MODEL EPIDEMIK RABIES DENGAN MASA KELAHIRAN PERIODIK PENDAHULUAN PENGENDALIAN OPTIMAL DISTRIBUSI VAKSIN PADA MODEL EPIDEMIK RABIES DENGAN MASA KELAHIRAN PERIODIK Oleh : Qurrotu Ainy Jufri (1210100072) Dosen Pembimbing : Drs. Kamiran, M.Si. Jurusan Matematika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

Outline. Bagian 0: Motivasi. Bagian 1: Optimasi Taklinier Dasar dasar Teorema Karush Kuhn Tucker. Bagian 2: Sequential Quadratic Programming

Outline. Bagian 0: Motivasi. Bagian 1: Optimasi Taklinier Dasar dasar Teorema Karush Kuhn Tucker. Bagian 2: Sequential Quadratic Programming Outline Bagian 0: Motivasi Bagian 1: Optimasi Taklinier Dasar dasar Teorema Karush Kuhn Tucker Bagian 2: Sequential Quadratic Programming Bagian 3: Masalah Kendali Optimal dengan Persamaan Di erensial

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN 7 III HASIL DAN PEMBAHASAN 3.1 Perumusan Model Pada bagian ini akan dirumuskan model pertumbuhan ekonomi yang mengoptimalkan utilitas dari konsumen dengan asumsi: 1. Terdapat tiga sektor dalam perekonomian:

Lebih terperinci

PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON

PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON Jrnal Matematika UNAND Vol. 2 No. 3 Hal. 157 161 ISSN : 233 291 c Jrsan Matematika FMIPA UNAND PENYELESAIAN MASALAH KONTROL OPTIMAL KONTINU YANG MEMUAT FAKTOR DISKON DALIANI Program Stdi Matematika, Fakltas

Lebih terperinci

KONTROL OPTIMAL PADA PENGADAAN BAHAN MENTAH DENGAN KEBIJAKAN PENGADAAN TEPAT WAKTU, PERGUDANGAN, DAN PENUNDAAN

KONTROL OPTIMAL PADA PENGADAAN BAHAN MENTAH DENGAN KEBIJAKAN PENGADAAN TEPAT WAKTU, PERGUDANGAN, DAN PENUNDAAN LAPORAN TUGAS AKHIR 01 WINTER Template KONTROL OPTIMAL PADA PENGADAAN BAHAN MENTAH DENGAN KEBIJAKAN PENGADAAN TEPAT WAKTU, PERGUDANGAN, DAN PENUNDAAN Oleh: Darsih Idayani 1206 100 040 Pembimbing: Subchan,

Lebih terperinci

MODEL PERTUMBUHAN EKONOMI DENGAN INPUT SUMBER DAYA ALAM TERBARUKAN NUR NA IMAH

MODEL PERTUMBUHAN EKONOMI DENGAN INPUT SUMBER DAYA ALAM TERBARUKAN NUR NA IMAH MODEL PERTUMBUHAN EKONOMI DENGAN INPUT SUMBER DAYA ALAM TERBARUKAN NUR NA IMAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012 ABSTRAK NUR NA IMAH.

Lebih terperinci

Waktu Optimal Dalam Diversifikasi Produksi Sumber Energi Terbarukan dan Tidak Terbarukan dengan Menggunakan Prinsip Minimum Pontryagin

Waktu Optimal Dalam Diversifikasi Produksi Sumber Energi Terbarukan dan Tidak Terbarukan dengan Menggunakan Prinsip Minimum Pontryagin JURNAL SAINS DAN SENI POMITS Vol., No., (03) 337-350 (30-98X Print) Waktu Optimal Dalam Diversifikasi Produksi Sumber Energi Terbarukan dan Tidak Terbarukan dengan Menggunakan Prinsip Minimum Pontryagin

Lebih terperinci

Bentuk Standar. max. min

Bentuk Standar. max. min Teori Dualitas 2 Konsep Dualitas Setiap permasalahan LP mempunyai hubungan dengan permasalahan LP lain Masalah dual adalah sebuah masalah LP yang diturunkan secara matematis dari satu model LP primal 3

Lebih terperinci

Bab 2 Berbagai Teknik Optimasi dan Peralatan Manajemen Baru

Bab 2 Berbagai Teknik Optimasi dan Peralatan Manajemen Baru Bab 2 Berbagai Teknik Optimasi dan Peralatan Manajemen Baru Sumber: http://ideolicious.blogspot.co.id/2014/09/ma teri-perkuliahan-ekonomi-manajerial.html Pendahuluan Ekonomi Manajerial sebagai penerapan

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

Kontrol Optimal Waktu Diskrit

Kontrol Optimal Waktu Diskrit Kontrol Optimal Waktu Diskrit April 2012 () Kontrol Optimal (3 SKS) April 2012 1 / 18 Ekstrim Suatu Fungsional untuk Fungsi Skalar Dalam bagian ini, kita akan menentukan syarat perlu untuk optimisasi fungsional

Lebih terperinci

Waktu Optimal dalam Diversifikasi Produksi Sumber Energi Terbarukan dan Tidak Terbarukan Dengan Menggunakan Prinsip Minimum Pontryagin

Waktu Optimal dalam Diversifikasi Produksi Sumber Energi Terbarukan dan Tidak Terbarukan Dengan Menggunakan Prinsip Minimum Pontryagin Waktu Optimal dalam Diversifikasi Produksi Sumber Energi Terbarukan dan Tidak Terbarukan Dengan Menggunakan Prinsip Minimum Pontryagin Oleh: Misbahur Khoir 1210 100 041 Dosen Pembimbing: Subchan, Ph.D

Lebih terperinci

III PEMBAHASAN. untuk setiap di dan untuk setiap, dengan. (Peressini et al. 1988)

III PEMBAHASAN. untuk setiap di dan untuk setiap, dengan. (Peressini et al. 1988) 4 untuk setiap di dan untuk setiap (Peressini et al 1988) Definisi 22 Teorema Deret Taylor Nilai hampiran f di x untuk fungsi di a (atau sekitar a atau berpusat di a) didefinisikan (Stewart 1999) 24 Kontrol

Lebih terperinci

Aplikasi Prinsip Maksimum Pontryagin Pada Model Bioekonomi Mangsa-Pemangsa Dengan Waktu Tunda

Aplikasi Prinsip Maksimum Pontryagin Pada Model Bioekonomi Mangsa-Pemangsa Dengan Waktu Tunda Aplikasi Prinsip Maksimum Pontryagin Pada Model Bioekonomi Mangsa-Pemangsa Dengan Waktu Tunda Lusiana Prastiwi 1, Subiono 2 1 Mahasiswa Magister Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

KONTROL OPTIMUM VIRUS HIV MELALUI PENGGUNAAN DUA JENIS OBAT FAJAR SATRIATAMA

KONTROL OPTIMUM VIRUS HIV MELALUI PENGGUNAAN DUA JENIS OBAT FAJAR SATRIATAMA KONTROL OPTIMUM VIRUS HIV MELALUI PENGGUNAAN DUA JENIS OBAT FAJAR SATRIATAMA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI

Lebih terperinci

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79 Matematika I : Limit Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 79 Outline 1 limit Introduction to Limit Rigorous Study of Limits Limit Theorem Limit Involving Trigonometric

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Proses Alokasi Andaikan terdapat sejumlah sumber daya modal tertentu, yaitu dapat berupa uang untuk investasi, mesin cetak, bahan bakar untuk kendaraan dan lain sebagainya. Suatu

Lebih terperinci

MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI. SRI SULASMIYATI, S.Sos, M.AP. Ari Darmawan, Dr., S.AB, M.AB

MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI. SRI SULASMIYATI, S.Sos, M.AP. Ari Darmawan, Dr., S.AB, M.AB MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI SRI SULASMIYATI, S.Sos, M.AP Ari Darmawan, Dr., S.AB, M.AB aridarmawan_fia@ub.ac.id Pendahuluan Adanya kebutuhan manusia yang tidak terbatas dan terbatasnya

Lebih terperinci

Teori Dualitas dan Penerapannya (Duality Theory and Its Application)

Teori Dualitas dan Penerapannya (Duality Theory and Its Application) Teori Dualitas dan Penerapannya (Duality Theory and Its Application) Kuliah 6 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Teori dualitas 2 Metode simpleks dual TI2231 Penelitian Operasional I 2

Lebih terperinci

II. TINJAUAN PUSTAKA I. PENDAHULUAN

II. TINJAUAN PUSTAKA I. PENDAHULUAN Kendali Optimal pada Sistem Prey Predator dengan Pemberian Makanan Alternatif pada Predator Fitroh Resmi dan Subchan Jurusan Matematika, Fakultas MIPA, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, optimasi selalu dilakukan untuk memenuhi kebutuhan. Tetapi optimasi yang dilakukan masyarakat awam lebih banyak

Lebih terperinci

III RELAKSASI LAGRANGE

III RELAKSASI LAGRANGE III RELAKSASI LAGRANGE Relaksasi Lagrange merupakan salah satu metode yang terus dikembangkan dalam aplikasi pemrograman matematik. Sebagian besar konsep teoretis dari banyak aplikasi menggunakan metode

Lebih terperinci

Teori kendali. Oleh: Ari suparwanto

Teori kendali. Oleh: Ari suparwanto Teori kendali Oleh: Ari suparwanto Minggu Ke-1 Permasalahan oleh : Ari Suparwanto Permasalahan Diberikan sistem dan sinyal referensi. Masalah kendali adalah menentukan sinyal kendali sehingga output sistem

Lebih terperinci

MASALAH KONTROL OPTIMUM HAMA SECARA HAYATI CHASTRO SEPTIADI SIMANGUNSONG

MASALAH KONTROL OPTIMUM HAMA SECARA HAYATI CHASTRO SEPTIADI SIMANGUNSONG MASALAH KONTROL OPTIMUM HAMA SECARA HAYATI CHASTRO SEPTIADI SIMANGUNSONG DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 213 ABSTRAK CHASTRO SEPTIADI

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

MASALAH KONTROL OPTIMUM INFEKSI WORM KOMPUTER SEVIRA ROSANA

MASALAH KONTROL OPTIMUM INFEKSI WORM KOMPUTER SEVIRA ROSANA MASALAH KONTROL OPTIMUM INFEKSI WORM KOMPUTER SEVIRA ROSANA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER

Lebih terperinci

PEMANENAN OPTIMAL PADA MODEL REAKSI DINAMIK SISTEM MANGSA-PEMANGSA DENGAN TAHAPAN STRUKTUR. Yuliani, Marwan Sam

PEMANENAN OPTIMAL PADA MODEL REAKSI DINAMIK SISTEM MANGSA-PEMANGSA DENGAN TAHAPAN STRUKTUR. Yuliani, Marwan Sam Jurnal Dinamika, September 2015, halaman 25-38 ISSN 2087-7889 Vol. 06. No. 2 PEMANENAN OPTIMAL PADA MODEL REAKSI DINAMIK SISTEM MANGSA-PEMANGSA DENGAN TAHAPAN STRUKTUR Yuliani, Marwan Sam Program StudiMatematika,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

KONTROL OPTIMUM PADA MASALAH PERIKLANAN UTAMI PRIHARTINI

KONTROL OPTIMUM PADA MASALAH PERIKLANAN UTAMI PRIHARTINI KONROL OPIMUM PADA MASALAH PERIKLANAN UAMI PRIHARINI DEPAREMEN MAEMAIKA FAKULAS MAEMAIKA DAN ILMU PENGEAHUAN ALAM INSIU PERANIAN BOGOR BOGOR ABSRAK UAMI PRIHARINI. Kontrol Optimum pada Masalah Periklanan.

Lebih terperinci

Jurnal MIPA 38 (1) (2015): Jurnal MIPA.

Jurnal MIPA 38 (1) (2015): Jurnal MIPA. Jurnal MIPA 38 (1) (2015): 79-88 Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm KENDALI OPTIMAL DARI SISTEM INVENTORI DENGAN PENINGKATAN DAN PENURUNAN BARANG P Affandi Faisal, Y Yulida Prodi Matematika,

Lebih terperinci

PENDEKATAN KALKULUS VARIASIONAL PADA SISTEM KONTROL DAYA DORONG ROKET. Niken Madu Meta Jurusan Matematika, FMIPA UNS

PENDEKATAN KALKULUS VARIASIONAL PADA SISTEM KONTROL DAYA DORONG ROKET. Niken Madu Meta Jurusan Matematika, FMIPA UNS 1 PENDEKATAN KALKULUS VARIASIONAL PADA SISTEM KONTROL DAYA DORONG ROKET Niken Madu Meta Jurusan Matematika, FMIPA UNS Abstrak. Kalkulus variasional adalah cabang dari kalkulus diferensial yang digunakan

Lebih terperinci

PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.

PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78. PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.CO MAT 4 materi78.co.nr Penerapan Turunan A. PENDAHULUAN

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu fungsi manajerial yang sangat penting dalam operasional suatu perusahaan adalah pengendalian persediaan (inventory control), karena kebijakan persediaan

Lebih terperinci

D. OPTIMISASI EKONOMI DENGAN KENDALA - Optimisasi dengan metode substitusi - Optimisasi dengan metode pengali lagrange

D. OPTIMISASI EKONOMI DENGAN KENDALA - Optimisasi dengan metode substitusi - Optimisasi dengan metode pengali lagrange OPTIMISASI EKONOMI Ari Darmawan, Dr. S.AB, M.AB Email: aridarmawan_fia@ub.ac.id A. PENDAHULUAN B. TEKNIK OPTIMISASI EKONOMI C. OPTIMISASI EKONOMI TANPA KENDALA - Hubungan Antara Nilai Total, Rata-rata

Lebih terperinci

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN 10.1 PENDAHULUAN Sebelum mambahas it fungsi di suatu titik terlebih dahulu kita akan mengamati perilaku suatu fungsi bila peubahnya mendekati suatu bilangan ril c tertentu. Misal

Lebih terperinci

PENGENALAN KONSEP DERIVATIF, DAN PENERAPANNYA DALAM PENYELESAIAN PROBLEMATIKA FISIKA. Ashari 1 & Budiyono 2. Abstrak

PENGENALAN KONSEP DERIVATIF, DAN PENERAPANNYA DALAM PENYELESAIAN PROBLEMATIKA FISIKA. Ashari 1 & Budiyono 2. Abstrak PENGENALAN KONSEP DERIVATIF, DAN PENERAPANNYA DALAM PENYELESAIAN PROBLEMATIKA FISIKA Ashari 1 & Budiyono 2 1) Jurusan Pendidikan Fisika 2) Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

KONTROL OPTIMUM SISTEM INVENTORI-PRODUKSI DENGAN LAJU KERUSAKAN BARANG MENYEBAR WEIBULL NURUS SA ADAH

KONTROL OPTIMUM SISTEM INVENTORI-PRODUKSI DENGAN LAJU KERUSAKAN BARANG MENYEBAR WEIBULL NURUS SA ADAH KONTROL OPTIMUM SISTEM INVENTORI-PRODUKSI DENGAN LAJU KERUSAKAN BARANG MENYEBAR WEIBULL NURUS SA ADAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

Hendra Gunawan. 2 Oktober 2013

Hendra Gunawan. 2 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan

Lebih terperinci

BAB 1 PENDAHULUAN. Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia.

BAB 1 PENDAHULUAN. Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia. BAB 1 PENDAHULUAN 1.1 Latar Belakang Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia. Disiplin ilmu Matematika ini secara umum berasal dari penyelidikan oleh Isaac Newton (1642-1727)

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua

Lebih terperinci

Analisis dan Kontrol Optimal Sistem Gerak Satelit Menggunakan Prinsip Minimum Pontryagin

Analisis dan Kontrol Optimal Sistem Gerak Satelit Menggunakan Prinsip Minimum Pontryagin JURNAL SAINS DAN SENI POMITS Vol. 6, No.2, (2017) 2337-3520 (2301-928X Print) A 45 Analisis dan Kontrol Optimal Sistem Gerak Satelit Menggunakan Prinsip Minimum Pontryagin Putri Saraswati, Mardlijah, Kamiran

Lebih terperinci

DERIVATIVE (continued)

DERIVATIVE (continued) DERIVATIVE (continued) (TURUNAN) Kus Prihantoso December 14 th, 2011 Yogyakarta Maximum-minimum Misalkan S adalah suatu interval yang merupakan domain dari fungsi f dan S memuat c. Nilai f (c) disebut

Lebih terperinci

OPTIMASI ENERGI LOKAL PADA KENDALI KERETA API DENGAN LINTASAN MENANJAK

OPTIMASI ENERGI LOKAL PADA KENDALI KERETA API DENGAN LINTASAN MENANJAK TUGAS AKHIR OPTIMASI ENERGI LOKAL PADA KENDALI KERETA API DENGAN LINTASAN MENANJAK Oleh PUTRI PRADIKA WANTI NRP. 1207 100 037 Dosen Pembimbing Subchan, Ph.D ABSTRAK Kereta api merupakan alat transportasi

Lebih terperinci

KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR. Oleh : M.LUTHFI RUSYDI

KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR. Oleh : M.LUTHFI RUSYDI KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

Kuliah 3: TURUNAN. Indah Yanti

Kuliah 3: TURUNAN. Indah Yanti Kuliah 3: TURUNAN Indah Yanti Turunan Parsial DEFINISI Misalkan fungsi f: A R, dengan A R n adalah himpunan buka. Untuk setiap x = (x 1,..., x n ) A dan setiap j = 1,..., n limit f x j x 1,, x n f x 1,,

Lebih terperinci

PENGARUH SURPLUS PRIMER, TINGKAT PAJAK, DAN INVESTASI PUBLIK TERHADAP MODAL DAN UTANG PUBLIK DALAM MODEL PERTUMBUHAN EKONOMI DANTY KARTIKA SARI

PENGARUH SURPLUS PRIMER, TINGKAT PAJAK, DAN INVESTASI PUBLIK TERHADAP MODAL DAN UTANG PUBLIK DALAM MODEL PERTUMBUHAN EKONOMI DANTY KARTIKA SARI PENGARUH SURPLUS PRIMER, TINGAT PAJA, DAN INVESTASI PUBLI TERHADAP MODAL DAN UTANG PUBLI DALAM MODEL PERTUMBUHAN EONOMI DANTY ARTIA SARI DEPARTEMEN MATEMATIA FAULTAS MATEMATIA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika BAB 2 PROGRAM LINIER DAN TAK LINIER 2.1 Program Linier Program linier (Linear programming) adalah suatu masalah matematika yang mempunyai fungsi objektif dan kendala berbentuk linier untuk meminimalkan

Lebih terperinci

BAB I PENDAHULUAN. keadaan dari suatu sistem. Dalam aplikasinya, suatu sistem kontrol memiliki tujuan

BAB I PENDAHULUAN. keadaan dari suatu sistem. Dalam aplikasinya, suatu sistem kontrol memiliki tujuan BAB I PENDAHULUAN 11 Latar Belakang Masalah Sistem kontrol merupakan suatu alat untuk mengendalikan dan mengatur keadaan dari suatu sistem Dalam aplikasinya, suatu sistem kontrol memiliki tujuan atau sasaran

Lebih terperinci

MATEMATIKA EKONOMI 2 IT

MATEMATIKA EKONOMI 2 IT MATEMATIKA EKONOMI 2 IT - 021335 UMMU KALSUM UNIVERSITAS GUNADARMA 2016 Penerapan Diferensial Ref: Legowo 1. Elastisitas Permintaan ϵ Konsep ini berhubungan erat dengan konsep derivatif Elastisitas permintaan

Lebih terperinci

Hendra Gunawan. 4 Oktober 2013

Hendra Gunawan. 4 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 Oktober 2013 Latihan (Kuliah yg Lalu) 1. Tentukan pada selang mana grafik fungsi f(x) = x 3 2x 2 + x + 1 naik atau turun. Tentukan pula pada

Lebih terperinci

PENYELESAIAN MASALAH KONTROL KUADRATIK LINIER YANG MEMUAT FAKTOR DISKON

PENYELESAIAN MASALAH KONTROL KUADRATIK LINIER YANG MEMUAT FAKTOR DISKON Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 65 71 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND PENYELESAIAN MASALAH KONTROL KUADRATIK LINIER YANG MEMUAT FAKTOR DISKON MEZI FAUZIATUL HUSNA Program Studi

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5.3 Kalkulus Turunan Pada bagian ini kita akan membahas sejumlah aturan untuk diferensial dan aturan untuk turunan, yg mempunyai kemiripan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa pengertian dari optimasi bersyarat dengan kendala persamaan menggunakan multiplier lagrange serta penerapannya yang akan digunakan sebagai landasan

Lebih terperinci

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

Bab III Respon Sinusoidal

Bab III Respon Sinusoidal Bab III Respon Sinusoidal Sinyal sinusiodal digunakan sebagai input ui terhadap kinera sistem, misal untuk mengetahui respon frekuensi, distorsi harmonik dan distorsi intermodulasi... Bentuk Amplituda-fasa

Lebih terperinci

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut:

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: BAB 2 KAJIAN PUSTAKA 2.1 Masalah Optimisasi dan Program Non Linier Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: 1. Masalah optimisasi tanpa kendala.

Lebih terperinci

CATATAN TENTANG PERSAMAAN LYAPUNOV DAN PERSAMAAN ALJABAR RICCATI

CATATAN TENTANG PERSAMAAN LYAPUNOV DAN PERSAMAAN ALJABAR RICCATI J. Math. and Its Appl. ISSN: 1829-605X Vol. 4, No. 2, November 2007, 21 32 CATATAN TENTANG PERSAMAAN LYAPUNOV DAN PERSAMAAN ALJABAR RICCATI Subiono Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember

Lebih terperinci

Matematika Ekonomi /Bisnis Differensial / turunan. Dosen : D. Rizal Riyadi SE,.ME

Matematika Ekonomi /Bisnis Differensial / turunan. Dosen : D. Rizal Riyadi SE,.ME Matematika Ekonomi /Bisnis Differensial / turunan Dosen : D. Rizal Riyadi SE,.ME ILUSTRASI Y = a + b X Y2 Y1 Y = 3 + 1,5 X X1 = 1 -> Y1 = 4,5 X2 = 3 -> Y2 = 7,5 X3 = 1,5 -> Y3 = 5,25 a X1 X2 Y2 - Y1 3

Lebih terperinci

Tugas Tersturtur Mata Kuliah Ekonomi Manajerial. Resume Bab Optimasi Ekonomi. Kelompok 2

Tugas Tersturtur Mata Kuliah Ekonomi Manajerial. Resume Bab Optimasi Ekonomi. Kelompok 2 Tugas Tersturtur Mata Kuliah Ekonomi Manajerial Resume Bab Optimasi Ekonomi Kelompok 2 1. Pupun Sofiyati 115030201111037 2. Isty Puji H 115030205111004 3. Della Herlita 115030207111046 Fakultas Ilmu Administrasi

Lebih terperinci

PENENTUAN TRAJEKTORI KERETA DUBIN MELALUI KONTROL OPTIMUM

PENENTUAN TRAJEKTORI KERETA DUBIN MELALUI KONTROL OPTIMUM PENENTUAN TRAJEKTORI KERETA DUBIN MELALUI KONTROL OPTIMUM R. Heru Tjahjana Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang heru_tjahjana@undip.ac.id Abstract. This paper

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAA 21 Pertumbuhan Ekonomi Pertumbuhan ekonomi adalah proses kenaikan kapasitas produksi suatu perekonomian yang diwujudkan dalam bentuk kenaikan pendapatan nasional Pendapatan nasional

Lebih terperinci

PENERAPAN PRINSIP MAKSIMUM PONTRYAGIN PADA MASALAH PERIKLANAN OCTAVINA TRISTIANI

PENERAPAN PRINSIP MAKSIMUM PONTRYAGIN PADA MASALAH PERIKLANAN OCTAVINA TRISTIANI PENERAPAN PRINSIP MAKSIMUM PONRYAIN PADA MASALAH PERIKLANAN OCAVINA RISIANI DEPAREMEN MAEMAIKA FAKULAS MAEMAIKA DAN ILMU PENEAHUAN ALAM INSIU PERANIAN BOOR BOOR 9 ABSRAC OCAVINA RISIANI. Application of

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Optimasi (Optimization) adalah aktivitas untuk mendapatkan hasil terbaik di dalam suatu keadaan yang diberikan. Tujuan akhir dari semua aktivitas tersebut adalah meminimumkan

Lebih terperinci

Open Source. Not For Commercial Use

Open Source. Not For Commercial Use Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati

Lebih terperinci

TINJAUAN PUSTAKA ( ) ( ) ( )

TINJAUAN PUSTAKA ( ) ( ) ( ) TINJAUAN PUSTAKA Penarikan Contoh Acak Berlapis Penarikan contoh acak berlapis adalah suatu rancangan penarikan contoh acak yang membagi N unit dari populasi ke dalam L strata yang tidak saling tumpang

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS

Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS ABSTRAK Penyakit Tuberkulosis (TB) merupakan salah satu penyakit menular tertua yang menyerang manusia. Badan kesehatan dunia (WHO) menyatakan bahwa sepertiga

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/2 Alokasi Waktu: 8 jam Pelajaran (4 Pertemuan) A. Standar Kompetensi Menggunakan aturan sukubanyak dalam penyelesaian

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a LEMBAR AKTIVITAS SISWA DIFFERENSIAL (TURUNAN) Nama Siswa : y f(a h) f(a) x (a h) a Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.21 Memahami konsep turunan dengan menggunakan konteks matematik atau konteks

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci