Gambar 2.1 Aliran Vorteks

Ukuran: px
Mulai penontonan dengan halaman:

Download "Gambar 2.1 Aliran Vorteks"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Vorteks Dalam Dinamika Fluida, Vorteks adalah sebuah daerah di dalam fluida dimana aliran sebagian besar bergerak memutar pada terhadap sumbu yang imajiner. Pola gerakan disebut Aliran Vorteks. Vorteks terbentuk oleh fluida termasuk cairan, gas, dan plasma. Beberapa contoh umum adalah lingkaran asap, pusaran air yang sering timbul pada gerakan perahu, angin pada badai dan tornado, atau sayap pesawat terbang. Vorteks adalah sebuah komponen utama dalam aliran Turbulen. 8 Dengan tidak adanya gaya luar, gesekan viskos dalam cairan cenderung membuat aliran menjadi kumpulan yang disebut vortisitas irrotasional. Dalam pusaran tersebut, kecepatan fluida yang terbesar berada di samping sumbu imajiner, dan penurunan kecepatan berbanding terbalik terhadap jarak dari sumbu imajner. Pusaran sangat tinggi di wilayah inti sekitar sumbu, dan hampir nol di ujung pusaran; sementara tekanan turun tajam saat mendekati wilayah itu. Setelah terbentuk, vorteks dapat berpindah, meregang, berputar, dan berinteraksi secara kompleks. Sebuah Vorteks bergerak membawa serta momentum sudut dan linier, energi, dan massa di dalamnya. Dalam pusaran stasioner, maka streamlines dan pathlines tertutup. Dalam pusaran bergerak atau berkembang, streamline dan pathlines biasanya bergerak spiral. Gambar 2.1 Aliran Vorteks 23

2 2.2 Klasifikasi Vorteks Gbr 2.2 Klasifikasi Vorteks berdasarkan kekuatannya sumber : Prof. B. S. Thandaveswara, Indian Institue of Technology Madras Secara umum, fenomena vorteks terbagi atas dua bahagian yaitu : 1. Vorteks Paksa / Vorteks Berotasi Adalah vorteks yang terbentuk karena adanya gaya luar yang berpengaruh pada fluida. 2. Vorteks Bebas / Vorteks Tak Berotasi Adalah vorteks yang terbentuk karena fenomena natural, tidak terpengaruh oleh gaya dari luar sistem fluida, pada aliran inkompresibel, umumnya terjadi karena adanya lubang keluar. Berikut penjelasannya Vorteks Paksa / Vorteks Berotasi Vorteks Paksa dikenal juga sebagai vorteks flywheel 2. Jika fluida berputar seperti benda kaku - yaitu, jika naik secara proporsional terhadap r - bola kecil yang dibawa oleh arus juga akan berputar pada pusatnya seolah-olah itu adalah bagian dari benda kaku. Dalam hal ini, vektor omega adalah sama di mana-mana. Arahnya sejajar dengan sumbu putar, dan besarnya adalah dua kali kecepatan sudut untuk seluruh fluida. 24

3 Gambar 2.3 Teh Cangkir yang di aduk adalah sebuah Aplikasi Vorteks paksa. Sumber : Khurmi, R.S., 1987 Gambar 2.4 Rotational (rigid-body) vorteks Sumber : M. Bruce, 2006; Wikipedia.org Rumus kecepatan tangential pada vorteks berotasi : (2.1) Dimana: Ut = Kecepatan Tangensial aliran vortex, biasa disebut juga dengan Kecepatan pusar (Swirl Velocity) ω = Kecepatan sudut aliran vortex paksa, pada vortex paksa kondisinya konstan dimanapun sepanjang aliran. r = Jari-jari vortex, diukur dari titik pusat vortex. 25

4 2.2.2 Vorteks Bebas / Vorteks Tak Berotasi Ketika massa fluida bergerak secara alami (karena pengaruh gaya-gaya internal) dalam sebuah kurva aliran, gerakan vorteks bebas akan muncul, dalam kasus ini tidak ada torsi ataupun gaya eksternal yang mempengaruhi fluida. Vorteks bebas dikenal juga sebagai potential vorteks. Jika kecepatan tangensial partikel Ut berbanding terbalik dengan jarak r, maka percobaan bola khayalan tidak akan berputar terhadap dirinya sendiri; ini akan mempertahankan arah yang sama sambil bergerak dalam lingkaran di sekitar garis vorteks dan aliran dikatakan tak berotasi. Contoh dari gerakan vorteks bebas adalah aliran air yang keluar dari lubang yang berada di dasar tangki, aliran di pipa yang melengkung, aliran di pinggiran rumah keong pompa, tepat setelah keluar dari impeller pompa sentrifugal, dan aliran angin siklon.2 Gambar 2.5 Vortex bebas Sumber : M. Bruce, 2006; Wikipedia.org Dalam analisa aliran vorteks pada bak vorteks ini, digunakan pendekatan analisa melalui pemodelan vorteks bebas ini, dengan asumsi aliran steady dan disederhanakan. Untuk jenis ini, kita dapat menggunakan metode potential vortex. 8 Karena tidak adanya torsi eksternal yang terjadi pada sistem, maka:..(2.2) (Sumber: Gupta, S.C. 2006) 26

5 Yang mana jika diintegralkan; Dimana m = Constant. Maka: (sifat dan syarat aliran vorteks bebas)...(2.3) (Sumber: Gupta, S.C. 2006) Dimana C selanjutnya disebut sebagai konstanta, faktor penunjuk kekuatan Aliran vorteks yang terbentuk sepanjang radius r, maka kecepatan tangensial pada aliran ini bervariasi secara invers terhadap fungsi r. Persamaan Gaya-gaya dalam arah radial Maka, (Sumber: Gupta, S.C. 2006)...(2.4) 27

6 Karena asumsi tidak ada gerakan dalam arah vertikal, maka variasi tekanan akan dianggap tekanan hidrostatik, maka: (2.5) (Sumber: Gupta, S.C. 2006) Lalu distribusi tekanan pada sebuah aliran vorteks diberikan:...(2.6) (Sumber: Gupta, S.C. 2006) Jika kita substitusikan nilai persamaan (2.4) dan (2.5) ke dalam persamaan (2.6), maka Jika persamaan (2.7) diintegralkan; (2.7) Dibagi dengan (ρg) pada setiap sisi, maka didapat: 28

7 Setelah disusun kembali menjadi:...(2.8) (Sumber: Gupta, S.C. 2006) Yang merupakan persamaan bernoulli, yang berlaku dimanapun di dalam aliran tak berotasi. Bunyi hukum Bernoulli: Teorema Bernoulli menetapkan jumlah keseluruhan dari energy potensial (energy datum), energy tekanan dan energy kinetic dari sebuah aliran ideal fluida inkompresibel adalah tetap pada setiap titik dalam kondisi aliran tunak dan tak berotasi. Batasan hukum Bernoulli: 1. Fluida kerja adalah fluida ideal dan fluida nonviskos 2. Fluida kerja adalah fluida inkompresibel atau fluida tak mampu mampat 3. Aliran fluida dalam kondisi steady atau tak berubah terhadap waktu 4. Aliran fluida adalah aliran tak berotasi. Dimana; (Sumber : M. Bruce, 2006) P = Tekanan fluida alir Z = Elevasi (datum), atau ketinggian air tertentu pada aliran. U = Kecepatan aliran fluida kerja H = Zmax = Ketinggian aliran air maksimum (Head) g = Percepatan gravitasi w = Berat jenis air (ρxg) Dalam kasus aliran vorteks bebas, garis-garis arus aliran terpusat dan kecepatan bervariasi berdasarkan radius dan sesuai dengan persamaan yang menunjukkan energi total per satuan berat dari setiap fluida adalah tetap dari masing2 garis arusnya, atau dengan kata lain nilai Head energy fluida, (dh/dr)=0 29

8 a. Sirkulasi Untuk dapat menghitung distribusi dari komponen tangensial dari suatu fungsi atau aliran berkecepatan yang dibatasi oleh sebuah alur atau fungsi kurva tertutup yang kita misalkan dengan S dalam sebuah medan aliran, dalam sebuah analisa dua dimensi, medan aliran dapat direpresentasikan sebagai garis arus. Gambar 2.6 Notasi untuk menentukan sirkulasi pada kurva tertutup S (Sumber : M. Bruce, 2006) Jadi, sirkulasi dapat didefinisikan sebagai: (Sumber : M. Bruce, 2006) Jika kita mengambil asumsi, kurva S pembatas berbentuk lingkaran, dan garis arus juga berbentuk lingkaran, maka kita dapat mensubstitusikan fungsi sirkulasi sebatas keliling lingkaran, dengan batasan 2π s/d 0, dan ds = rdθ, gerakan aliran membentuk pusaran, dan aliran bergerak dari satu medan aliran ke medan aliran lainnya, yaitu: (Sumber : M. Bruce, 2006) Untuk aliran vorteks bebas,, maka, jika nilai U t disubstitusikan, maka: Kemudian diintegralkan; 30

9 Dan kesimpulannya : (Sumber : Gupta, S.C.,2006) Dimana: Γ = Sirkulasi sepeanjang aliran C = Konstanta aliran vortex bebas, yang menyatakan kekuatan vortex. Untuk aliran tak berotasi, nilai sirkulasi pada setiap garis arus adalah sama, maka untuk vorteks bebas: Diintegralkan: Maka: (Sumber : Gupta, S.C.,2006) b. Menghitung Sirkulasi Sirkulasi dihitung untuk dapat menghitung kekuatan aliran pada suatu aliran vortex. Sirkulasi = Jika kita susbstitusikan nilai Konstanta C dengan U t yaitu sifat vorteks bebas maka, Dimana nilainya tetap pada seluruh garis arus pada aliran vorteks bebas. Karena kondisi steady, maka berlaku hukum Bernoulli: Jika kita misalkan, aliran pada permukaan yang bersentuhan dengan udara, p 1 =p 2 =p atm =0(pressure gauge), Maka, 31

10 Jika pada kondisi Z 1 adalah titik tertinggi permukaan air (nilai Head) dan Z 2 berada pada titik terendah permukaan air (segaris dengan garis dasar bak, nilai Z 2 =0) maka dapat disimpulkan Z 1 - Z 2 = Head Karena faktor gesekan, maka kecepatan tepat pada tepi bak dapat dianggap = 0, maka persamaan di atas dapat disederhanakan menjadi: Karena nilai sirkulasi di setiap garis arus di seluas daerah aliran adalah sama, maka kita dapat mencari nilai sirkulasi dari substitusi hasil perbandingan persamaan di atas, dengan mensubstitusikan U t dengan U t2 (Sumber : M. Bruce, 2006) Dimana: Γ = Sirkulasi sepeanjang aliran r = Radius kecepatan pada suatu titik diukur dari titik pusat vortex H = Head vortex, ketinggian maksimum vortex di dalam bak g = Percepatan gravitasi c. Menghitung Kekuatan Vortex Setelah mendapatkan nilai sirkulasi, maka kita dapat menghitung nilai dari Konstanta C atau yang disebut juga dengan kekuatan aliran vorteksnya. (Sumber : M. Bruce, 2006) Dimana: Γ = Sirkulasi sepeanjang aliran C = Konstanta aliran vortex bebas, yang menyatakan kekuatan vortex. Konstanta kekuatan vortex ini dihitung, agar kita dapat mengetahui kecepatan pada permukaan bebas serta distribusinya. 32

11 d. Menghitung Distribusi Kecepatan Setelah mendapatkan nilai konstanta kekuatan vortex, maka dapat dikembalikan ke persamaan awal sifat vortex bebas, yaitu: (Sumber : M. Bruce, 2006) Dengan memasukkan interval nilai radius dari mulai tepi lubang buang sampai tepi dinding bak vortex. e. Menghitung Tekanan dan Distribusi Tekanan pada Kondisi Tertentu Setelah mendapatkan nilai konstanta C dan distribusi kecepatan, kita juga dapat menghitung tekanan (gauge) dan distribusi tekanan sepanjang r pada Δz=0, dengan meninjau kembali persamaan energi Bernoulli: (Sumber : Gupta, S.C., 2006) ket: P = Tekanan fluida alir pada sembarang titik (pressure gauge) Z = Elevasi, atau ketinggian air tertentu pada aliran vorteks U t = Kecepatan tangensial, kecepatan pusar, kecepatan swirl vorteks H = Zmax = Ketinggian aliran air maksimum pada bak vorteks Dimana pada titik sembarang sulit mengetahui kecepatan tangensial langsung secara teoritistanpa menghitung tekanan terlebih dahulu, maka nilai U t dapat disubstitusikan dengan nilai C, sehingga menjadi : (Sumber : Gupta, S.C., 2006) Sehingga dapat ditentukan tekanan pada sembarang titik pada aliran tertentu dengan basis perhitungan konstanta C, karena nilai C adalah konstan seluas bidang alir. (Sumber : Gupta, S.C., 2006) 33

12 ket: P = Tekanan fluida alir pada sembarang titik (pressure gauge) Z = Elevasi, atau ketinggian air tertentu pada aliran vorteks C = Konstanta kekuatan vortex H = Zmax = Ketinggian aliran air maksimum pada bak vorteks Setelah mendapat tekanan pada koordinat (r,z) tertentu, maka dapat juga dicari kecepatan pada titik tersebut dengan persamaan: (Sumber : Gupta, S.C., 2006) f. Memprediksi ketinggian (Z) permukaan bebas (p=patm) Setelah menghitung kecepatan tangensial fluida sepanjang vortex bebas, maka ketinggian permukaan bebas tersebut juga dapat dihitung dengan modifikasi ketetapan bernoullli menjadi: (Sumber : Gupta, S.C., 2006) ket: Z = Ketinggian permukaan bebas pada r tertentu r = jari-jari vortex tertentu C = Konstanta kekuatan vortex H = Total head vortex 2.3 Turbin Air Turbin air dikembangkan pada abad 19 dan digunakan secara luas untuk industry pembangkit listrik. Sekarang lebih umum dipakai untuk generator listrik. Turbin kini dimanfaatkan secara luas dan merupakan sumber energi yang dapat diperbaharukan. Kincir air sudah sejak lama digunakan untuk industri tenaga listrik. Pada mulanya yang dipertimbangkan adalah ukuran kincirnya, yang membatasi debit dan head yang dapat dimanfaatkan. Perkembangan kincir air 34

13 menjadi turbin modern membutuhkan jangka waktu yang cukup lama. Perkembangan yang dilakukan dalam waktu revolusi industry menggunakan metode dan prinsip ilmiah. Mereka juga mengembangkan teknologi material dan metode produksi baru pada saat itu. Kata "turbine" ditemukan oleh seorang insinyur Perancis yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa Latin dari kata "whirling"(pusaran) atau "vorteks" (pusaran air). Perbedaan dasar antara turbin air awal dengan kincir air adalah komponen putaran air yang memberikan energi pada poros yang berputar. Komponen tambahan ini memungkinkan turbin dapat memberikan daya yang lebih besar dengan komponen yang lebih kecil. Turbin dapat memanfaatkan air dengan putaran lebih cepat dan dapat memanfaatkan head yang lebih tinggi. (Untuk selanjutnya dikembangkan turbin impulse yang tidak membutuhkan putaran air). Turbin turbin hidrolik berfungsi mengubah energi air menjadi energi kinetik, kemudian energi kinetik akan diubah menjadi energi listrik oleh generator. Hal ini menyebabkan setiap pembahasan tentang turbin hidrolik akan mengikutsertakan generator sebagai pembangkit listrik. Air mengalir melalui turbin akan memberikan tenaga pada penggerak (runner) turbin dan membuat runner itu berputar. Poros dari penggerak turbin berhubungan dengan poros generator sehingga energi kinetik turbin menjadi input bagi generator dan diubah menjadi energi listrik. Jadi turbin turbin hidrolik menempati kunci dalam bidang teknik hidrolik dan memberikan kontribusi yang besar dari seluruh biaya proyek, terutama untuk PLTA skalabesar Klasifikasi Turbin Air Turbin hidrolik adalah suatu alat yang dapat menghasilkan torsi sebagai akibat gaya dinamik dan gaya tekan air, turbin hidrolik ini dapat dikelompokkan menjadi dua tipe, yaitu : 35

14 1. Turbin Reaksi (reaction turbine) adalah turbin yang mengkombinasikan energypotensial tekan dan energi kinetik untuk menghasilkan energi gerak. 2. Turbin Impuls (impuls turbine) adalah turbin yang memanfaatkan energikinetik dari pancaran air yang berkecepatan tinggi untuk diubah menjadienergi gerak. Diagram klasifikasi turbin air dapat dilihat pada gambar dibawah ini. Turbin vortex Gambar 2.7 Klasifikasi Turbin air Sumber : Turbin Reaksi (Reaction Turbine) Sudu pada turbin reaksi mempunyai profil khusus yang menyebabkan terjadinya penurunan tekanan air selama melalui sudu. Perbedaan tekanan ini memberikan gaya pada sudu sehingga runner (bagian turbin yang berputar) dapat berputar. Turbin yang bekerja berdasarkan prinsip ini dikelompokkan sebagai turbin reaksi. Proses ekspansi fluida kerja pada turbin reaksi terjadi pada sudu tetap dan sudu geraknya. Air mengalir memasuki roda turbin melalui sudu sudu pengarah dengan tekanan yang tinggi. Pada saat air yang bertekanan tersebut mengalir kesekeliling sudu - sudu, runner turbin akan berputar penuh. Energi yang ada pada air akan berkurang ketika meninggalkan sudu. Energi yang hilang 36

15 tersebut telah diubah menjadi energi mekanis oleh roda turbin. Dilihat dari konstruksinya, turbin reaksi ada dua jenis: 1) Turbin Francis. Turbin francis merupakan salah satu turbin reaksi. Turbin dipasang diantara sumber air tekanan tinggi di bagian masuk dan air bertekanan rendah di bagian keluar. Turbin Francis menggunakan sudu pengarah. Sudu pengarah mengarahkan air masuk secara tangensial. Sudu pengarah pada turbin francis dapat merupakan suatu sudu pengarah yang tetap ataupun sudu pengarah yang dapat diatur sudutnya. Untuk penggunaan pada berbagai kondisi aliran air penggunaan sudu pengarah yang dapat diatur merupakan pilihan yang tepat. Gambar 2.8 Turbin Francis Sumber : Rajput Rames, ) Turbin Kaplan. Tidak berbeda dengan turbin francis, turbin kaplan cara kerjanya menggunakan prinsip reaksi. Turbin ini mempunyai roda jalan yang mirip dengan baling-baling pesawat terbang. Bila baling-baling pesawat terbang berfungsi untuk menghasilkan gaya dorong, roda jalan pada kaplan berfungsi untuk mendapatkan gaya F yaitu gaya putar yang dapat menghasilkan torsi pada poros turbin. Berbeda dengan roda jalan pada francis, sudu-sudu pada roda jalan kaplan dapat diputar posisinya untuk menyesuaikan kondisi beban turbin. Turbin kaplan banyak dipakai pada instalasi pembangkit listrk tenaga air sungai, karena turbin 37

16 ini mempunyai kelebihan dapat menyesuaikan head yang berubah-ubah sepanjang tahun. Turbin Kaplan dapat beroperasi pada kecepatan tinggi sehingga ukuran roda turbin lebih kecil dan dapat dikopel langsung dengan generator. Pada kondisi pada beban tidak penuh turbin kaplan mempunyai efisiensi paling tinggi, hal inidikarenakan sudu-sudu turbin kaplan dapat diatur menyesuaikan dengan beban yang ada. Gambar 2.9 Turbin Kaplan Sumber : Rajput Rames, Turbin Impuls (Impulse Turbine) Energi potensial air diubah menjadi energi kinetik pada nozzle atau sistem serupa nozzle. Air keluar nozle yang mempunyai kecepatan tinggi membentur sudu turbin. Setelah membentur sudu arah kecepatan aliran berubah sehingga terjadi perubahan momentum (impulse). Akibatnya roda turbin akan berputar. Turbin impuls adalah turbin tekanan sama karena aliran air yang keluar dari nosel tekanannya adalah sama dengan tekanan atmosfir sekitarnya. Semua energi tinggi tempat dan tekanan ketika masuk ke sudu jalan turbin dirubah menjadi energi kecepatan.adapun jenis jenis turbin impuls adalah sebagai berikut : 38

17 1) Turbin Pelton. Turbin pelton merupakan turbin impuls. Turbin Pelton terdiri dari satu set sudu jalan yang diputar oleh pancaran air yang disemprotkan dari satu atau lebih alat yang disebut nosel. Turbin Pelton adalah salah satu dari jenis turbin air yang paling efisien. Turbin Pelton adalah turbin yang cocok digunakan untuk head tinggi. Gambar 2.10 Turbin Pelton Sumber : Rajput Rames, 2000 Bentuk sudu turbin terdiri dari dua bagian yang simetris. Sudu dibentuk sedemikian sehingga pancaran air akan mengenai tengah-tengah sudu dan pancaran air tersebut akan berbelok ke kedua arah sehinga bisa membalikkan pancaran air dengan baik dan membebaskan sudu dari gaya-gaya samping. Untuk turbin dengan daya yang besar, sistem penyemprotan airnya dibagi lewat beberapa nosel. Dengan demikian diameter pancaran air bisa diperkecil dan ember sudu lebih kecil. Turbin Pelton untuk pembangkit skala besar membutuhkan head lebih kurang 150 meter tetapi untuk skala mikro head 20 meter sudah mencukupi. 2) Turbin Turgo. Turbin Turgo dapat beroperasi pada head 30 s/d 300 m. Seperti turbin pelton turbin turgo merupakan turbin impulse, tetapi sudunya berbeda. Pancaran air dari nozle membentur sudu pada sudut 20o. Kecepatan putar turbin turgo lebih besar dari turbin Pelton. Akibatnya dimungkinkan transmisi langsung dari turbin 39

18 ke generator sehingga menaikkan efisiensi total sekaligus menurunkan biaya perawatan. Gambar 2.11 Turbin Turgo Sumber : Rajput Rames, ) Turbin Ossberger Atau Turbin Crossflow (Turbin Michell-Banki). Pada turbin impuls pelton beroperasi pada head relatif tinggi, sehingga pada head yang rendah operasinya kurang efektif atau efisiensinya rendah. Karena alasan tersebut, turbin pelton jarang dipakai secara luas untuk pembangkit listrik skala kecil. Sebagai alternatif turbin jenis impuls yang dapat beroperasi pada head rendah adalah turbin crossflow atau turbin impuls aliran ossberger.turbin crossflow dapat dioperasikan pada debit 20 litres/sec hingga 10 m3/sec dan head antara 1 s/d 200 m. Aliran air dilewatkan melalui sudu sudu jalan yang berbentuk silinder, kemudian aliran air dari dalam silinder ke luar melalui sudu-sudu. Jadi perubahan energi aliran air menjadi energi mekanik putar terjadi dua kali yaitu pada waktu air masuk silinder dan air keluar silinder. Energi yang diperoleh dari tahap kedua adalah 20%nya dari tahap pertama. Gambar 2.12 Turbin Cross Flow atau Banki Sumber : Rajput Rames,

19 4) Turbin Vorteks Turbin ini dinamakan sebagai Gravitation Water Vorteks Power Plant (GWVPP) oleh penemunya Frans Zotleterer berkebangsaan Austria, tetapi nama turbin ini dikenal juga sebagai turbin Vorteks atau turbin pusaran air. Sesuai dengan namanya pusaran air, air ini memanfaatkan pusaran air buatan untuk memutar sudu turbin dan kemudian energi pusaran air diubah menjadi energi putaran pada poros. Prosesnya air dari sungai dialirkan melalui saluran masuk ke tanki turbin yang berbentuk lingkaran dan di bagian tengah dasar tanki terdapat saluran buang berupa lingkaran kecil. Akibat saluran buang ini maka air mengalir akan membentuk aliran pusaran air. Ketinggian air (head) yang diperlukan untuk turbin ini 0,7 2 m dan debit berkisar 1000 liter per detik. Turbin ini sederhana, mudah dalam perawatannya, kecil, kuat, dan bertahan hingga tahun. Gambat 2.13 Tubin Vorteks Sumber : Rajput Rames, Turbin Vorteks Aliran sungai dengan head yang kecil belum termanfaatkan dengan optimal. Hal ini menjadi referensi untuk memanfaatkan aliran sungai dengan mengubahnya menjadi aliran vorteks.seorang Peneliti dari Jerman Viktor Schauberger mengembangkan teknologi aliran vorteks (pusaran) untuk diterapkan pada pemodelan turbin air dengan memanfaatkan aliran irigasi yang kemudian diubah menjadi aliran vorteks (pusaran), yang kemudian dimanfaatkan 41

20 untuk menggerakkan sudu turbin. Aliran vorteks yang juga dikenal sebagai aliran pulsating atau pusaran dapat terjadi pada suatu fluida yang mengalir dalam suatu saluran yang mengalami perubahan mendadak. Fenomena aliran vorteks sering kali dijumpai pada pemodelan sayap pesawat, aliran vorteks cenderung dianggap sebagai suatu kerugian dalam suatu aliran fluida. Kemudian teknologi ini dikembangkan oleh Franz Zotloeterer berkebangsaan Austria.Ia memulai penelitian ini pada tahun 2004 dan memulai pemasangan turbin pertamanya di Obergrafendorf, Austria pada tahun 2005, kemudian sampai dengan tahun 2013 turbin ini sudah dibangun di beberapa negara seperti Jerman, Republik Ceko, Hungaria, Cili, Thailand, Irlandia, Indonesia, Jepang, Francis, Italy, dan Swiss Perhitungan Perancangan Teoritis Turbin Vorteks Ada beberapa perhitungan yang penting dalam perancangan turbin vortex, yaitu: 1. Perhitungan Daya Maksimum Teoritis Turbin Vortex Diambil dari potensial energi air per satuan waktu, dimana: (Sumber : M. Bruce, 2006) Ket: P = Daya maksimum teoritis fluida kerja ρ = Massa jenis air g = Percepatan gravitasi Q = Debit fluida mengalir Hv = Ketinggian aliran vortex maksimum di bak/basin. 2. Perhitungan Daya Poros Teoritis Turbin Vortex Diambil dari Energi Kinetik aliran vortex per satuan waktu, yaitu: (Sumber : M. Bruce, 2006) Ket: P = Daya maksimum teoritis fluida kerja 42

21 = Laju aliran massa fluida kerja U =Kecepatan aliran fluida kerja, dalam hal ini adalah kecepatan tangensial fluida memasuki runner 3. Tinjauan Momentum Sudut Diambil untuk menghitung torsi dan daya efektif yang tersalur ke poros turbin melalui analisa segitiga kecepatan. T shaft = (Sumber : M. Bruce, 2006) = (Sumber : M. Bruce, 2006) Ket: Tshaft = Momen torsi yang bekerja pada poros Wshaft/time = kerja yang terjadi pada poros per satuan waktu= daya teoritis poros = laju aliran massa fluida kerja r = jari-jari runner (luar dan dalam) V = Kecepatan fluida kerja masuk sudu (kec. tangensial masuk sudu) U = Kecepatan Sudu/impeler (dapat direncanakan) 1&2 = keterangan kondisi masuk dan keluar kondisi batas Prinsip Kerja Turbin Vorteks Sistem PLTA pusaran air adalah sebuah teknologi baru yang memanfaatkan energi yang terkandung dalam pusaran air yang besar yang dibuat dengan menciptakan melalui perbedaan head rendah di sungai. Cara kerjanya: 1. Air Sungai dari tepi sungai disalurkan dan diarahkan ke tangki sirkulasi. Tangki sirkulasi ini memiliki suatu lubang lingkaran pada dasarnya. 2. Tekanan rendah pada lubang dasar tangki dan kecepatan air pada titik masuk tangki sirkulasi mempengaruhi kekuatan aliran vorteks. 3. Energi potensial seluruhnya diubah menjadi energy kinetic rotasi di inti vortex yang selanjutnya diekstraksi melalui turbin sumbu vertikal. 43

22 4. Air kemudian kembali kesungai melalui saluran keluar. 44

23 Berikut adalah penemuan fundamental dari penilitian dari Institute of Technology, Sligo in Civil Engineering: 1. Bentuk permukan Pusaran Air dapat digambar secara matematik dan diprediksi secara akurat. Gambar Efisiensi daya Pusaran air yang maksimal dapat terjadi dalam jangkauan rasio antara diamater lubang dan diameter tanki adalah sekitar 14% - 18% masing-masing untuk tempat head rendah dan tinggi. 3. Tinggi pusaran bervariasi secara linier sesuai dengan debit. 4. Energi keluar maksimum secera teoritis idealnya = ρgqhv ( H v = Height of Vorteks) 5. Efesiensi Hidrolik maksimum meningkat saat kecepatan impeler setengah dari kecepatan fluida. (lihat Grafik 2.18) r 2.14 Bentuk permukaan Pusaran Air secara matematik Gamba 1

24 Grafik 2.15 Efesiensi Hidrolik Turbin vorteks Aplikasi Turbin Vorteks Teknologi Turbin vorteks ini sudah dikembangkan oleh Franz Zotloeterer berkebangsaan Austriasejak tahun 2004 dan memulai pemasangan turbin pertamanya di Obergrafendorf, Austria pada tahun 2005, kemudian sampai dengan tahun 2013 turbin ini sudah dibangun di beberapa negara seperti Jerman, Republik Ceko, Hungaria, Cili, Thailand,Irlandia, Indonesia, Jepang, Francis, Italy, dan Swiss. 1.Tahun 2005 Pemasangan pertama di dunia Gravitation Water Vorteks Power Plant di Obergrafendorf diaustria. Tinggi head : 1,5m Debit : 0,9m³/s Energi Listrik : 6,1kW (max. 7,5kW) Kapasitas kerja pertahunnya : kWh 2. Tahun 2011 pemasangan Gravitation Water 2

25 Vorteks Power Plant di Kärnten, Austria. Tinggi head: 0,9m Debit : 2x 0,7m³/s Turbin Energi Listrik : 2x 3,5kW Kapasitas kerja pertahunnya: kWh 3. Pada Pebruari 2012 pemasangan Double- Gravitation Water Vorteks Power Plant di Winterberg, Jerman. Tinggi head: 2x 1,4m Debit : 0,5m³/s Energi Listrik : 2x 4,0kW Kapasitas kerja pertahunnya : kWh 4. Pada Agustus 2012 pemasangan Gravitation Water Vorteks Power Plant di Nantes, Prancis. Tinggi head : 1m Debit : 0,3m³/s Energi Listrik : 1,7kW Kapasitas kerja pertahunnya : 8.500kWh 5. Tahun 2013 pemasangan Gravitation Water Vorteks Power Plant di Kotting/Obergrafendorf, Tinggi head: 1,3m Debit : 2x 2,2m³/s Energi Listrik : 2x 17kW Kapasitas kerja pertahunnya : kWh 3

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi II. TINJAUAN PUSTAKA A. Energi Secara global telah diketahui bersama bahwa sumber energi tak terbaharui semakin berkurang keberadaannya maka sudah selayaknya untuk dicari dan digalakan penemuan-penemuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat listrik tenaga air.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA SESSION 8 HYDRO POWER PLANT 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA 6. Kelebihan dan Kekurangan PLTA 1. POTENSI PLTA Teoritis Jumlah potensi tenaga air di permukaan

Lebih terperinci

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air BAB II 2 LANDASAN TEORI 2.1 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Potensi Tenaga Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air

Lebih terperinci

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH JUMLAH SUDU DAN LAJU ALIRAN TERHADAP PERFORMA TURBIN KAPLAN Ari Rachmad Afandi 421204156

Lebih terperinci

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi II. TINJAUAN PUSTAKA.1. Potensi Pemanfaatan Mikrohidro Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi kebutuhan yang mendasar saat ini, namun penyebarannya tidak merata terutama

Lebih terperinci

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR Mafrudin 1), Dwi Irawan 2). 1, 2) Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara

Lebih terperinci

ANALISA TEORITIS TURBIN VORTEKS DENGAN RUMAH TURBIN BERBENTUK LINGKARAN DENGAN VARIASI DIAMETER SALURAN BUANG, KETINGGIAN AIR DAN DIAMETER RUNNER

ANALISA TEORITIS TURBIN VORTEKS DENGAN RUMAH TURBIN BERBENTUK LINGKARAN DENGAN VARIASI DIAMETER SALURAN BUANG, KETINGGIAN AIR DAN DIAMETER RUNNER ANALISA TEORITIS TURBIN VORTEKS DENGAN RUMAH TURBIN BERBENTUK LINGKARAN DENGAN VARIASI DIAMETER SALURAN BUANG, KETINGGIAN AIR DAN DIAMETER RUNNER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Tenaga Uap Pada mesin uap dan turbin uap, air sebagai benda kerja mengalami deretan peubahan keadaan. Untuk merubah air menjadi uap digunakan suatu alat dinamakan boiler

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

BAB I PENDAHULUAN. yang inovatif dan tepat guna. Salah satu contoh dalam bidang

BAB I PENDAHULUAN. yang inovatif dan tepat guna. Salah satu contoh dalam bidang BAB I PENDAHULUAN 1.1 LATAR BELAKANG Dalam kemajuan teknologi sekarang ini banyak dibuat peralatanperalatan yang inovatif dan tepat guna. Salah satu contoh dalam bidang teknik mesin terutama dalam bidang

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal II. TINJAUAN PUSTAKA A. Pengertian Mikrohidro Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal sejak lama, mulai dengan teknologi sederhana seperti kincir air ( water wheel),

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Vortex Dalam dinamika fluida, vortex adalah sebuah daerah di dalam fluida dimana sebagian besar aliran bergerak memutar pada terhadap sumbu yang imajiner. Pola gerakan disebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Potensi Energi Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 69-74 KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO Mulyono, Suwarti Program Studi Teknik Konversi Energi,

Lebih terperinci

Turbin Reaksi Aliran Ke Luar

Turbin Reaksi Aliran Ke Luar Turbin Reaksi Aliran Ke Luar Turbin reaksi aliran keluar adalah turbin reaksi dimana air masuk di tengah roda dan kemudian mengalir ke arah luar melalui sudu (gambar 8). Gambar 8. Turbin reaksi aliran

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

II. TINJAUAN PUSTAKA. mekanis maupun energi listrik. Besarnya tenaga air yang tersedia dari suatu

II. TINJAUAN PUSTAKA. mekanis maupun energi listrik. Besarnya tenaga air yang tersedia dari suatu 5 II. TINJAUAN PUSTAKA A. Hydropower Tenaga air (Hydropower) adalah energi yang diperoleh dari air yang mengalir. Energi yang dimiliki air dapat dimanfaatkan dan digunakan dalam wujud energi mekanis maupun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat pembangkit listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Potensi Energi Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik

Lebih terperinci

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar.

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Turbin Air 117 Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Contoh soal Sebuah turbin reaksi aliran keluar mempunyai diameter dalam dan diameter luar berturut-turut 1 meter dan 2 meter.

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Penelitian ini di peruntukan untuk tugas akhir dengan judul Studi Analisis Pengaruh Sudu Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro.Penelitian ini mengacu

Lebih terperinci

pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi

pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi BAB II TINJAUAN PUSTAKA II.1. Pengertian Turbin Turbin adalah salah satu mesin pengerak dimana mesin tersebut merupakan pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi kinetis

Lebih terperinci

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik INDRA

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

Potensi Tenaga Air di Indonesia Selama ini telah beberapa kali dilakukan studi potensi tenaga air di negara kita. Pada tahun 1968 Lembaga Masalah Ketenagaan- PLN (LMK) mencatat potensi tenaga air sebesar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH SUDUT SUDU DAN DEBIT ALIRAN TERHDAP PERFORMA TURBIN KAPLAN Frisca Anugra Putra 421204243

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Turbin Air Turbin air termasuk dalam kelompok mesin fluida yaitu, mesin yang berfungsi untuk mengubah energi fluida (energi potensial dan energi kinetis air) menjadi energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian.

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian. MESIN-MESIN FLUIDA TURBIN AIR TURBIN AIR Turbin air mengubah energi kinetik dan potensial dari air menjadi tenaga mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah.

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Nama :... Kelas :... FLUIDA Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Kompetensi dasar : 8.. Menganalisis

Lebih terperinci

Bab III Aliran Putar

Bab III Aliran Putar Bab III Aliran Putar Ada banyak jenis aliran fluida dalam dunia teknik, dimana komponen rotasi dari nilai rata-rata deformasi memberikan kontribusi lebih besar terhadap pola aliran yang terjadi. Memperhatikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka (Chen, J., et al., 2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan Power Generation untuk aliran air dalam

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA AIR (PLTA)

PEMBANGKIT LISTRIK TENAGA AIR (PLTA) PEMBANGKIT LISTRIK TENAGA AIR (PLTA) Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit listrik yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik. Energi listrik

Lebih terperinci

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO Oleh Bambang hermani bang2hermani@gmail.com. TM-Untag-Crb ABSTRAK Pengkajian rancang bangun simulator turbin air skala mikro dimaksudkan untuk penanding

Lebih terperinci

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK Perangkat elektro mekanik merupakan salah satu komponen utama yang diperlukan oleh suatu PLTMH untuk menghasilkan energi listrik Proses

Lebih terperinci

Stabilitas Konstruksi Bendungan

Stabilitas Konstruksi Bendungan Stabilitas Konstruksi Bendungan Merupakan perhitungan konstruksi untuk menentukan ukuran (dimensi) bendungan, agar mampu menahan muatan-muatan dan gaya-gaya yang bekerja dalam keadaan apapun, (angin, gempa,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu 23 BAB II TINJAUAN PUSTAKA Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bona Halasan Nababan 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Asroful Anam Jurusan Teknik Mesin S-1 FTI ITN Malang, Jl. Raya Karanglo KM 02 Malang E-mail:

Lebih terperinci

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan energi yang mempunyai peranan penting bagi masyarakat. Salah satu manfaatnya adalah untuk penerangan. Keadaan kelistrikan di Indonesia sekarang

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut:

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut: BAB IV TURBIN UAP Turbin uap adalah penggerak mula dimana gerak putar diperoleh dengan perubahan gradual dari momentum uap. Pada turbin uap, gaya dibangkitkan pada sudu (blade) karena kecepatan uap. Ini

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 RANCANGAN NOSEL DENGAN KATUP PENGATURAN DEBIT AIR PENGGERAK TURBIN OSSBEGER DAYA TURBIN = 2,6 KW HEAD = 12 METER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana H E R D Y

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bernardus Lumban Gaol 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s².

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s². Hukum newton hanya memberikan perumusan tentang bagaimana gaya mempengaruhi keadaan gerak suatu benda, yaitu melalui perubahan momentumnya. Sedangkan bagaimana perumusan gaya dinyatakan dalam variabelvariabel

Lebih terperinci

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Eksergi Jurnal Teknik Energi Vol 8 No. 1 Januari 2012; 14-19 KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri Semarang

Lebih terperinci

ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER

ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER Arief Muliawan 1, Ahmad Yani 2 1) Teknik Elektro, Sekolah Tinggi Teknologi Bontang Jalan Ir. H. Juanda No. 73 RT.36 Bontang

Lebih terperinci

FIsika FLUIDA DINAMIK

FIsika FLUIDA DINAMIK KTSP & K-3 FIsika K e l a s XI FLUIDA DINAMIK Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi fluida dinamik.. Memahami sifat-sifat fluida

Lebih terperinci

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2014

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2014 PRESTASI RANCANG BANGUN TURBIN VORTEX DENGAN CASING BERPENAMPANG LINGKARAN PADA SUDU BERDIAMETER 32 CM UNTUK 3 VARIASI JARAK SUDU DENGAN SALURAN KELUAR SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah suatu peralatan mekanik yang digerakkan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat lain, dimana

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN Rancang Bangun Turbin Vortex Dengan Casing Berpenampang Lingkaran Yang Menggunakan Sudu Diameter 46cm Pada 3 Variasi Jarak Antara Sudu Dan Saluran Keluar SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar:

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar: LAMPIRAN Panduan Manual Alat Peraga PLTMH Dengan Turbin Pelton 1. Bagian Bagian Alat Gambar 1.1 Bagian Alat Keterangan gambar: 1. Turbin Pelton 2. Rumah Turbin 3. Bagian Display 4. Pompa Air 5. Sensor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls 1. TURBIN AIR Dalam suatu sistim PLTA, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi puntir ini kemudian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka Energi listrik yang disediakan oleh perusahaan listrik Negara (PLN), masih belum dirasakan secara menyeluruh oleh masyarakat terutama masyarakat pedesaan yang

Lebih terperinci

PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR

PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR Adi Ramadhani Muhammad Arief, G. D. Soplanit, I Nyoman Gede Fakultas Teknik, Jurusan Teknik Mesin, Universitas Sam Ratulangi Manado

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI digilib.uns.ac.id BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Eksplorasi intensif dari berbagai alternatif dan sumber daya energi terbarukan saat ini sedang dilakukan di seluruh dunia. Listrik pico hydro

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

Pembangkit Listrik Tenaga Air. BY : Sulistiyono Pembangkit Listrik Tenaga Air BY : Sulistiyono Pembangkit listrik tenaga air Tenaga air bahasa Inggris: 'hydropower' adalah energi yang diperoleh dari air yang mengalir. Air merupakan sumber energi yang

Lebih terperinci

Oleh: STAVINI BELIA

Oleh: STAVINI BELIA FLUIDA DINAMIS Oleh: STAVINI BELIA 14175034 TUJUAN PEMBELAJARAN 1. Siswa dapat menjelaskan prinsip kontinuitas dan prinsip bernaulli pada fluida dinamik dalam kehidupan seharihari. 2. Siswa dapat menganalisis

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 Armansyah Munthe *), Rahmawaty, ST, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail : arman.munthe@yahoo.com

Lebih terperinci

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI Skripsi Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU Bono 1) dan Indarto ) 1) Mahsiswa Program Pascasarjana Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Jalan Grafika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 Muhammad tohari *), Ir. Husin Ibrahim Lubis, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail :hari_boy03@yahoo.co.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci