Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan"

Transkripsi

1 SEMINAR PROPOSAL TUGAS AKHIR Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan OLEH: NAMA : MULAZIMATUS SYAFA AH NRP : DOSEN PEmbimbing: Dr. Drs Agus Suharsono, MS. 16/06/2014 1

2 Latar Belakang Putra jaya Motor Bangkalan 16/06/2014 2

3 Rumusan Masalah Bagaimana deskripsi pada data tingkat penjualan ban luar sepeda motor di Toko Putra Jaya Motor Bangkalan? Bagaimana hasil pemodelan dan peramalan (forecast) dimasa yang akan datang pada data tingkat penjualan ban luar sepeda motor di Toko Putra Jaya Motor Bangkalan? 16/06/2014 3

4 Penelitian Sebelumnya 1. Wahyu Harini ( ) Analisis Peramalan Volume Penjualan Gula di PT. Perkebunan Nusantara X (persero) dengan Metode ARIMA BOX-JENKINS 2. Vivien Medyaningsih ( ) Analisis Peramalan Penjualan Mobil Xenia Di Astra Internasional Panglima Sudirman Surabaya dengan Menggunakan Metode ARIMA 16/06/2014 4

5 Tujuan Penelitian Mengetahui gambaran hasil deskripsi penjualan ban luar sepeda motor Mengetahui hasil peramalan (forecast ) penjualan ban luar sepeda motor dimasa yang akan datang 16/06/2014 5

6 Manfaat Penelitian Bagi Pengelola Toko Bagi Peneliti dapat membantu pengelola dalam memperkirakan seberapa besar jumlah penjualan ban luar sepeda motor pada periode mendatang, sehingga pihak pengelola dapat memperkirakan jumalah ban yang harus di sediakan. dapat mengaplikasikan penyelesaian permasalahan yang ada dilingkungan sekitar dengan metode statistika yang sesuai dalam hal ini adalah analisis time series terhadap penjualan ban luar sepeda motor di Toko Putra Jaya Motor Bangkalan. 16/06/2014 6

7 Batasan Masalah data penjualan ban luar sepeda motor perminggu di Toko Putra Jaya Motor Bangkalan mulai dari Bulan Agustus 2012-Desember Jenis barang yang akan di analisis merupakan data tingkat penjualan Ban Luar Sepeda Motor Sepeda Motor 16/06/2014 7

8 STATISTIKA DESKRIPTIF Statistik deskriptif lebih berkenaan dengan pengumpulan dan peringkasan data, serta penyajian hasil peringkasan tersebut. Penyajian tabel dan grafis yang digunakan dalam statistika deskriptif dapat berupa distribusi frekuensi, presentasi grafis seperti histogram, Pie chart dan sebagainya [Riduwan, 2003] 16/06/2014 8

9 ANALYSIS TIME SERIES Analisis time series dikenal sejak tahun 1970 oleh George E. P. Box dan Gwilym M. Jenkins melalui bukunya Time Series Analysis : Forecasting and Control. Time Series adalah pengamatan sekarang (z t ) tergantung pada 1 atau beberapa pengamatan sebelumnya (z t-k ) Dalam dunia bisnis, hasil peramalan mampu memberikan gambaran tentang masa depan perusahaan yang memungkinkan manajemen membuat perencanaan, menciptakan peluang bisnis maupun mengatur pola investasi perusahaan. 16/06/2014 9

10 STASIONERITAS Suatu deret pengamatan dikatakan stasioner, apabila proses tidak berubah seiring dengan perubahan waktu. Box-Cox memberi alternatif transformasi untuk membantu menstasionerkan data dalam varians. seperti pada tabel di bawah ini Lambda ( λ) Transformasi 1 Z t 1 Z t 0.0 Ln Z t 0.5 Z t 1.0 Zt(tidak ada transformasi) 16/06/

11 AUTOKORELASI (ACF) Autokorelasi adalah korelasi yang terjadi antar observasi dalam satu variabel. Korelasi ini terjadi antar waktu atau individu. Autokorelasi sering terjadi pada sampel dengan data bersifat time series. Uji Durbin Watson adalah cara untuk mendeteksi autokorelasi, ˆ ρ k ˆ γ n k ( Z Z k t= 1 t t 1 = = n ˆ γ 0 ( Z t= t Z ) 1 ) 16/06/

12 Autokorelasi Parsial (PACF) Autokorelasi parsial adalah kestasioneran deret pengamatan suatu deret waktu. (Iriawan dan Astuti, 2006) ˆ φ k + 1, k + 1 ˆ ρ : ρautocorrelation function (ACF) φ : Autoregresife parsial (PACF) k + 1 j= 1 = k 1 j= 1 kj untuk j=1,2,,k k ˆ φ ˆ φ kj ˆ ρ ˆ ρ k + 1 j j 16/06/

13 ARIMA Autoregressive Integrated Moving Average Model ARIMA menggunakan pendekatan iteratif dalam indentifikasi terhadap suatu model yang ada. Model yang dipilih diuji lagi dengan data masa lampau untuk melihat apakah model tersebut menggambarkan keadaan data secara akurat atau tidak. Suatu model dikatakan sesuai (tepat) jika residual antara model dengan titiktitik data historis bernilai kecil, terdistribusi secara acak dan bebas satu sama lainnya. 16/06/

14 Langkah-langkah Mencari Nilai Parameter Model Dengan cara mencoba-coba (trial and error) Perbaikan secara iterative 16/06/

15 Uji Parameter Model H 0 : parameter model tidak signifikan H 1 : parameter model signifikan Thitung= φˆ p st. dev( φˆ p ) Tolak H o : jika T hitung > Z atau jika nilai P value < α α 16/06/

16 Pemeriksaan Diagnostik Model Uji Residual White Noise H o : tidak ada korelasi antar lag atau residual, bersifat W.N H 1 : ada korelasi antar lag atau residual, tidak bersifat W.N Statistik Uji : Q = n(n+2) K n ρ k = ( k) ˆ k Keterangan : n : banyaknya pengamatan yang dilakukan ˆk 2 ρ : residual pada lag ke-k Tolak H o jika > χ atau P value < Q 2 ( 1 α ); df = k p q α 16/06/

17 Uji Asumsi Residual Normal Hipotesis: H 0 : F (e) = F 0 (e), untuk semua nilai e H 1 : F (e) Statistik Uji : D = sup S (e) F 0 (e) F 0 (e), untuk sekurang-kurangnya sebuah nilai e Tolak Ho jika D hitung > D (1-,n) atau jika nilai P value < α α 16/06/

18 Pemilihan Model Terbaik IN SAMPLE OUT SAMPLE AIC (Akaike s Information Criterion) MSE SBC (Schwartz s Bayesian Criterion) MAPE 16/06/

19 Ban Luar SEPEDA Motor Ban adalah peranti yang menutupi velg suatu roda. Ban merupakan bagian penting dari kendaraan darat, yang digunakan untuk mengurangi getaran yang disebabka ketidak teraturan permukaan jalan, melindungi roda dari aus dan kerusakan. [Akukha, 2010] 16/06/

20 Putra Jaya Motor 16/06/

21 TINJAUAN PUSTAKA 16/06/

22 Sumber Data DATA SEKUNDER PENJUALAN BAN LUAR SEPEDA MOTOR PEROODE Agustus 2012-Desember /06/

23 Variabel Penelitian Variabel yang menjelaskan karakteristik barang-barang yang di jual yaitu Ban Luar Sepeda Motor. Data tersebut digunakan dengan alasan, karena memiliki jumalah penjualan paling tinggi jika dibandingkan dengan barang lainnya yang di jual di Toko Putra Jaya Motor. 16/06/

24 Langkah Penelitian IDENTIFIKASI dengan transformasi Identifikasi arima dan diagnostic model FORECASTING 16/06/

25 ANALISIS DAN PEMBAHASAN 16/06/

26 Statistika Deskriptif Merk Mean Variance Min Median Max Skewness FDR 32,15 135, ,5 61 0,04 IRC 21,66 57, ,18 16/06/

27 Analisis Time Series Pada Penjualan Ban Luar Merk FDR 16/06/

28 Identifikasi Time Series Plot of Penjualan Ban Luar FDR in sample Box-Cox Plot of Penjualan Ban Luar FDR Lower CL Upper CL Lambda (using 95.0% confidence) Index Estimate 0.58 Lower CL 0.04 Upper CL 1.20 Rounded Value 0.50 StDev Limit Lambda 16/06/

29 Autocorrelation Function for Penjualan Ban Luar Merk FDR (with 5% significance limits for the autocorrelations) Autocorrelation Partial Autocorrelation Function for Penjualan Ban Luar Merk FDR (with 5% significance limits for the partial autocorrelations) Lag Partial Autocorrelation Lag 16/06/

30 Estimasi Parameter Model Parameter Estimasi Standar Error t P value ARIMA ([4],0,2) MA1,1-0,6188 0, ,15 0,0001 MA1,2-0,4608 0, ,92 0,0002 AR1,1 0,3832 0, ,98 0,0042 signifikan ARIMA (1,0,2) MA1,1-1,0798 0,1154-9,35 0,0001 MA1,2-0,7566 0, ,6 0,0001 AR1,1-0,4498 0, ,74 0, /06/

31 Diagnostic Checking Model ARIMA ([4],0,2) ARIMA (1,0,2) Hingga Lag Chike- Square df P value 6 2,61 3 0, ,40 9 0, , , , , ,84 3 0, ,19 9 0, , , , ,5326 White noise Model Statistik (D) P value ARIMA ([4],0,2) 0, ,1500 ARIMA (1,0,2) 0, ,1500 Distribusi Normal 16/06/

32 Pemilihan Model Terbaik Model In sample Out sample AIC MSE MAPE ARIMA ([4],0,2) 469, , ,71404 ARIMA (1,0,2) 471, , , /06/

33 Pengujian Ketepatan Peramalan 60 Variable actual forecasting Data Variable actual forecasting Index Actual Forecasting Data Index /06/

34 forecasting Periode Ramalan kedepan FDR Januari minggu 1 (69) 31,6621 Januari minggu 2 (70) 35,7415 Januari minggu 3 (71) 27,8409 Januari minggu 4 (72) 30, /06/

35 Analisis Time Series Pada Penjualan Ban Luar Merk IRC 16/06/

36 Identifikasi irc Index /06/

37 15.0 Lower CL Upper CL Lambda (using 95.0% confidence) Estimate Lower CL Upper CL 0.52 Rounded Value 0.00 StDev Limit Lambda Lower CL Upper CL Lambda (using 95.0% confidence) Estimate Lower CL Upper CL 2.79 Rounded Value StDev Limit Lambda /06/

38 Autocorrelation Lag ln Index /06/

39 16/06/ Lag Autocorrelation Lag Partial Autocorrelation

40 Estimasi Parameter Model Parameter Estimasi ARIMA (1,0,0) Standar Error t Pvalue AR1, , ,26 0,0018 ARIMA ([1,17],0,0) AR1,1 0, , ,32 0,0015 AR1, , , /06/

41 Diagnostic Checking Model hingga Chisquare lag kedf P value ARIMA (1,0,0) 6 2,93 5 0, , , , , , ,1353 ARIMA ([1,17],0,0) 6 4,10 4 0, , , , , , ,3708 Model Statistik (D) P-value ARIMA (1,0,0) 0, ,1500 ARIMA ([1,17],0,0) 0, , /06/

42 Pemilihan Model Terbaik Model Insample Outsample AIC MSE MAPE ARIMA (1,0,0) -117, ,959 34,09 ARIMA ([1,17],0,0) 177,9 268,642 41,71 16/06/

43 Pengujian Ketepatan Peramalan Variable insample forecasting Data Variable actual forecasting Index actual forecasting Data Index /06/

44 forecasting Bulan Ramalan IRC Januari minggu 1 (69) 18,24845 Januari minggu 2 (70) 22,17554 Januari minggu 3 (71) Januari minggu 4 (72) 15, /06/

45 Kesimpulan Dan Saran 16/06/

46 Kesimpulan Merk Mean Variance Min Median Max Skewness FDR 32,15 135, ,5 61 0,04 IRC 21,66 57, ,18 Periode Ramalan Penjualan FDR Januari minggu 1 (69) 32 Januari minggu 2 (70) 36 Januari minggu 3 (71) 28 Januari minggu 4 (72) 31 Bulan Ramalan IRC Januari minggu 1 (69) 18 Januari minggu 2 (70) 22 Januari minggu 3 (71) 20 Januari minggu 4 (72) 16 16/06/

47 Saran Model pada analisis time series untuk data tingkat penjualan ban luar sepeda motor merk FDR dan IRC hanya digunakan untuk 4 periode mendatang Sedangkan untuk minggu-minggu berikutnya perlu dilakukan analisis time series ulang untuk mendapatkan model terbaik sehingga pengolahan yang dilakukan dapat memprediksi tingkat penjualan ban luar merk FDR dan IRC untuk mingguminggu berikutnya. 16/06/

48 16/06/

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer OLEH : DWI LISTYA NURINI 1311 105 021 DOSEN PEMBIMBING : DR. BRODJOL SUTIJO SU, M.SI Bursa saham atau Pasar

Lebih terperinci

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode ARIMA Box Jenkins Oleh : Winda Eka Febriana 1307 030 002 Pembimbing : Dra. Wiwiek Setya Winahju, MS Latar Belakang PMI Merupakan

Lebih terperinci

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS Oleh : Agustini Tripena ABSTRACT In this paper, forecasting the consumer price index data and inflation. The method

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer TUGAS AKHIR Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer Oleh : Fani Felani Farid (1306 100 047) Pembimbing : Drs. Kresnayana Yahya M.Sc Latar Belakang

Lebih terperinci

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) SIDANG TUGAS AKHIR KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) Disusun oleh : Ratna Evyka E.S.A NRP 1206.100.043 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

99.9. Percent maka H 0 diterima, berarti residual normal

99.9. Percent maka H 0 diterima, berarti residual normal Uji residual white noise 2 Lag Q P value 6 3.5 9.49 0.5330 2 6.6 8.3 0.803 8 9.8 26.30 0.9059 24 9.3 33.92 0.6374 K p q Uji residual berdistribusi normal Percent 99.9 99 95 90 80 70 60 50 40 30 20 0 5

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP.

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP. PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL Oleh: Niswatul Maghfiroh NRP. 1208100065 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA

ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA FATHIN FAHIMAH 226133 DOSEN PEMBIMBING Prof. Ir. Gamantyo Hendrantoro, M.Eng.

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL... HALAMAN PERSETUJUAN PEMBIMBING...iii HALAMAN PENGESAHAN...iv MOTTO... v HALAMAN PERSEMBAHAN... vi KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv PERNYATAAN...

Lebih terperinci

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA Gumgum Darmawan 1), Suhartono 2) 1) Staf Pengajar Jurusan Statistika FMIPA UNPAD 2) Staf Pengajar

Lebih terperinci

Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika. Baristand Industri Surabaya)

Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika. Baristand Industri Surabaya) Peramalan Permintaan Pengujian di Lab. Kimia dan Fisika (Aneke Rintiasti, Erna Hartati, Nunun Hilyatul M.) Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika Baristand Industri Surabaya

Lebih terperinci

PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA

PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA JURNAL TEKNIK POMITS Vol. 1, No. 1, (212) 1-6 1 PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA Lusi Alvina Tofani, Achmad Mauludiyanto Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember

Lebih terperinci

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH Tri Mulyaningsih ), Budi Nurani R ), Soemartini 3) ) Mahasiswa Program Magister Statistika Terapan Universitas Padjadjaran

Lebih terperinci

PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI. Oleh: IRLIZANTY YULYANTIKA RAHADI

PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI. Oleh: IRLIZANTY YULYANTIKA RAHADI PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI Oleh: IRLIZANTY YULYANTIKA RAHADI 6 4 Dosen Pembimbing : Dra. Nuri Wahyuningsih, MKes Abstrak Indeks harga saham merupakan suatu indikator yang

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER

PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER M. Insanil Kamil 0 0 0 m.insanil_kml@yahoo.com Dosen pembimbing:

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 737-745 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERAMALAN DAYA LISTRIK BERDASARKAN JUMLAH PELANGGAN PLN MENGGUNAKAN

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 2009 Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA 1 Harnum Annisa Prafitia dan 2 Irhamah

Lebih terperinci

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria)

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 131-140 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN

Lebih terperinci

Peramalan Penjualan Pipa di PT X

Peramalan Penjualan Pipa di PT X Elviani, et al. / Peramalan Penjualan Pipa di PT X / Jurnal Titra, Vol.. 2, No. 2, Juni 2014, pp. 55-60 Peramalan Penjualan Pipa di PT X Cicely Elviani 1, Siana Halim 1 Abstract: In this thesis we modeled

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA

PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA OLEH : 1. Triyono ( M0107086 ) 2. Nariswari S ( M0108022 ) 3. Ayunita C ( M0180034 ) 4. Ibnuhardi F.Ihsan ( M0108045 ) 5. Marvina P (

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

Peramalan Volume Distribusi Air di PDAM Kabupaten Bojonegoro dengan Metode ARIMA Box- Jenkins

Peramalan Volume Distribusi Air di PDAM Kabupaten Bojonegoro dengan Metode ARIMA Box- Jenkins Peramalan Volume Distribusi Air di PDAM Kabupaten Bojonegoro dengan Metode ARIMA Box- Jenkins Fastha Aulia P / 1309030018 Pembimbing: Ir.Dwiatmono Agus M.Ikomp Latar Belakang Air sebagai sumber kehidupan

Lebih terperinci

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang) SKRIPSI

Lebih terperinci

PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN

PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN TUGAS AKHIR SS 145561 PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN MOH. ZAINUR ROFIK NRP 1314 030 050 Dosen Pembimbing Dr. Wahyu Wibowo, S.Si., M.Si Iis Dewi Ratih, S.Si., M.Si

Lebih terperinci

Sedangkan model fungsi transfer bentuk kedua adalah sebagai berikut :

Sedangkan model fungsi transfer bentuk kedua adalah sebagai berikut : 1 Metode Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 255 dengan Pendekatan Fungsi Transfer Dwi Listya Nurini, Brodjol Sutijo SU Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS Jurnal EKSPONENSIAL Volume 3, Nomor, Mei 2 ISSN 8-7829 Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2 Dengan Metode ARIMA BOX-JENKINS Forecasting The Number

Lebih terperinci

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Jurnal UJMC, Volume 2, Nomor 1, Hal. 28-35 pissn : 2460-3333 eissn: 2579-907X PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Novita Eka Chandra 1 dan Sarinem 2 1 Universitas

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

Peramalan merupakan alat bantu yang penting dalam penyusunan rencana yang efektif dan efisien. Pada

Peramalan merupakan alat bantu yang penting dalam penyusunan rencana yang efektif dan efisien. Pada Estimasi Parameter Autoregressive Integrated Moving Average (ARIMA) Menggunakan Algoritma Particle Swarm Optimization (PSO) (Studi Kasus: Peramalan Curah Hujan DAS Brangkal, Mojokerto) Meytaliana Factmawati,

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q)

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) UJIAN TUGAS AKHIR KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) Disusun oleh : Novan Eko Sudarsono NRP 1206.100.052 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI

PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI TUGAS AKHIR - ST 1325 PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI I G B ADI SUDIARSANA NRP 1303100058 Dosen Pembimbing Ir. Dwiatmono Agus Widodo,

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT

ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT Mei Taripar Pardamean S.,SKom Jl. Makmur No.1 Ciracas Jakarta Timur mtp95@yahoo.com ABSTRAK Tujuan dari

Lebih terperinci

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON (MODELS OF ARIMA TO PREDICT RISING SEA AND ITS IMPACT FOR THE WIDESPREAD DISTRIBUTION OF ROB

Lebih terperinci

PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI

PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI Ibrahim Ali Marwan dan Drs. Kresnayana Yahya, M.Sc 2 Mahasiswa Jurusan Statistika, ITS, Surabaya 2 Dosen Pembimbing, Jurusan Statistika, ITS,

Lebih terperinci

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman Lampiran 1. Data Tingkat Hunian Hotel di Propinsi DIY Tahun 1991-2003 48 49 Lampiran 1 Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun 1991-2003, Tahun Bulan Wisman 1991 1 27,00 1991 2 30,60

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

Peramalan Jumlah Kunjungan Wisatawan Mancanegara (Wisman) ke Bali Tahun 2019: Metode ARIMA

Peramalan Jumlah Kunjungan Wisatawan Mancanegara (Wisman) ke Bali Tahun 2019: Metode ARIMA JEKT 8 [2] : 136-141 ISSN : 2301-8968 Peramalan Jumlah Kunjungan Wisatawan Mancanegara (Wisman) ke Bali Tahun 2019: Metode ARIMA Rukini *) Putu Simpen Arini Esthisatari Nawangsih Badan Pusat Statistik

Lebih terperinci

PERAMALAN KECEPATAN ANGIN RATA-RATA HARIAN DI SURABAYA MENGGUNAKAN METODE BAYESIAN MODEL AVERAGING DENGAN PENDEKATAN EXPECTATION MAXIMIZATION

PERAMALAN KECEPATAN ANGIN RATA-RATA HARIAN DI SURABAYA MENGGUNAKAN METODE BAYESIAN MODEL AVERAGING DENGAN PENDEKATAN EXPECTATION MAXIMIZATION PERAMALAN KECEPATAN ANGIN RATA-RATA HARIAN DI SURABAYA MENGGUNAKAN METODE BAYESIAN MODEL AVERAGING DENGAN PENDEKATAN EXPECTATION MAXIMIZATION Nama : Diah Kusumawati NRP : 137 1 49 Jurusan : Statistika

Lebih terperinci

SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti

SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti SEMINAR TUGAS AKHIR Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik Rina Wijayanti 1306100044 Pembimbing Drs. Haryono, MSIE Dedi Dwi Prastyo, S.Si., M.Si.

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 38 III. METODE PENELITIAN A. Konsep Dasar dan Batasan Operasional Konsep dasar dan definisi opresional mencakup pengertian yang dipergunakan untuk mendapatkan dan menganalisis data sesuai dengan tujuan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer 1 Faridah Yuliani dan 2 Dr. rer pol Heri Kuswanto 1,2 Jurusan Statistika

Lebih terperinci

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk.

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk. PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. Djoni Hatidja ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 955 email: dhatidja@yahoo.com ABSTRAK Penelitian ini

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian dilakukan di Pasar Bunga Rawabelong, Jakarta Barat yang merupakan Unit Pelaksana Teknis (UPT) Pusat Promosi dan Pemasaran Holtikultura

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

STUDI PERAMALAN (FORECASTING) KURVA BEBAN HARIAN LISTRIK JANGKA PENDEK MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE(ARIMA)

STUDI PERAMALAN (FORECASTING) KURVA BEBAN HARIAN LISTRIK JANGKA PENDEK MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE(ARIMA) Vol: 2 No.1 Maret 213 ISSN : 232-2949 STUDI PERAMALAN (FORECASTING) KURVA BEBAN HARIAN LISTRIK JANGKA PENDEK MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE(ARIMA) Syafii, dan Edyan Noveri

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Peramalan Indeks Harga Saham di Indonesia dan Dunia dengan Model Univariate dan Multivariate Time Series

Peramalan Indeks Harga Saham di Indonesia dan Dunia dengan Model Univariate dan Multivariate Time Series Peramalan Indeks Harga Saham di Indonesia dan Dunia dengan Model Univariate dan Multivariate Time Series Silvia Roshita Dewi, Agus Suharsono, dan Suhartono Statistika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL E-Jurnal Matematika Vol. 5 (4), November 2016, pp. 183-193 ISSN: 2303-1751 PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL Ni Putu Mirah Sri Wahyuni 1, I Wayan Sumarjaya 2, I Gusti Ayu Made

Lebih terperinci

Prediksi Wisatawan Mancanegara Ke Jawa Barat Melalui Pintu Masuk Bandara Husein Sastranegara dan Pelabuhan Muarajati Menggunakan Metode SARIMA

Prediksi Wisatawan Mancanegara Ke Jawa Barat Melalui Pintu Masuk Bandara Husein Sastranegara dan Pelabuhan Muarajati Menggunakan Metode SARIMA Politeknik Negeri Bandung July 26-27, Prediksi Wisatawan Mancanegara Ke Jawa Barat Melalui Pintu Masuk Bandara Husein Sastranegara dan Pelabuhan Muarajati Menggunakan Metode SARIMA Agus Supriatna 1, Betty

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu indikator tingkat kesejahteraan rakyat dapat dilihat dari perkembangan angka kematian balita, dikarenakan kematian balita berkaitan erat dengan keadaan ekonomi,

Lebih terperinci

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA. Nur Hukim

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA. Nur Hukim TE 091399 TUGAS AKHIR- 4 SKS PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA Oleh Nur Hukim Dosen Pembimbing Prof. Ir. Gamantyo Hendrantoro, M.Eng. Ph.D Ir. Achmad

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA (S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA Jimmy Ludin Mahasiswa Program Magister Jurusan Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

II. TINJAUAN PUSTAKA. Time series merupakan serangkaian observasi terhadap suatu variabel yang

II. TINJAUAN PUSTAKA. Time series merupakan serangkaian observasi terhadap suatu variabel yang II. TINJAUAN PUSTAKA 2.1 Analisis Deret Waktu (time series) Time series merupakan serangkaian observasi terhadap suatu variabel yang diambil secara beruntun berdasarkan interval waktu yang tetap (Wei,

Lebih terperinci

PEMODELAN TIME SERIES DENGAN PROSES ARIMA UNTUK PREDIKSI INDEKS HARGA KONSUMEN (IHK) DI PALU SULAWESI TENGAH

PEMODELAN TIME SERIES DENGAN PROSES ARIMA UNTUK PREDIKSI INDEKS HARGA KONSUMEN (IHK) DI PALU SULAWESI TENGAH JIMT Vol. 12 No. 2 Desember 2016 (Hal 149-159) ISSN : 2450 766X PEMODELAN TIME SERIES DENGAN PROSES ARIMA UNTUK PREDIKSI INDEKS HARGA KONSUMEN (IHK) DI PALU SULAWESI TENGAH 1 Y. Wigati, 2 Rais, 3 I.T.

Lebih terperinci

Pengenalan Analisis Deret Waktu (Time Series Analysis) MA 2081 Statistika Dasar 30 April 2012

Pengenalan Analisis Deret Waktu (Time Series Analysis) MA 2081 Statistika Dasar 30 April 2012 Pengenalan Analisis Deret Waktu (Time Series Analysis) ) MA 208 Statistika Dasar 0 April 202 Utriweni Mukhaiyar Ilustrasi Berikut adalah data rata-rata curah hujan bulanan yang diamati dari Stasiun Padaherang

Lebih terperinci

JSIKA Vol. 5, No. 9, Tahun 2016 ISSN X

JSIKA Vol. 5, No. 9, Tahun 2016 ISSN X Analisis Peramalan Harga Saham Perusahaan Properti Dengan Metode (Studi Kasus Ciputra Property CTRP.JK) Asdi Atmin Fildananto 1) Sulistiowati 2) Tegar Heru Susilo 3) Program Studi/Jurusan Sistem Informasi

Lebih terperinci

PERAMALAN JUMLAH TAMU HOTEL MEGA BINTANG SWEET KABUPATEN BLORA DENGAN PENDEKATAN ARIMA

PERAMALAN JUMLAH TAMU HOTEL MEGA BINTANG SWEET KABUPATEN BLORA DENGAN PENDEKATAN ARIMA THE TH URECOL PROCEEDING 8 February 7 UD, Yogyakarta PERMLN JUMLH TMU HOTEL MEG BINTNG SWEET KBUPTEN BLOR DENGN PENDEKTN RIM Irfana Maulana Ismail ), Wellie Sulistijanti 2) Statistika, kademi Statistika

Lebih terperinci

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: NURKHOIRIYAH 1205100050 Dosen Pembimbing: Dra. Nuri Wahyuningsih, M.Kes. 1 Latar

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 016 1 Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu: 1. Penentuan model tentatif (spesifikasi model)

Lebih terperinci

PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS

PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS Rais 1 1 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako, email: rais76_untad@yahoo.co.id Abstrak Metode Box-Jenkins

Lebih terperinci

PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION

PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION Oleh NYOMAN PANDU WIRADARMA (1308 100 052) Dosen Pembimbing 1

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA Saintia Matematika ISSN: 2337-9197 Vol. 2, No. 1 (2014), pp. 55 69. PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA John Putra S Tampubolon, Normalina Napitupulu, Asima Manurung Abstrak.

Lebih terperinci

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH Jurnal Matematika UNAND Vol. VI No. 1 Hal. 110 117 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: Nurkhoiriyah 1205100050 Dosen pembimbing: Dra. Nuri Wahyuningsih, M. Kes. Jurusan

Lebih terperinci

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Time Series atau runtun waktu adalah serangkaian data pengamatan yang berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara berurutan

Lebih terperinci

PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA

PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA, Universitas Negeri Malang E-mail: desyulvia@gmail.com Abstrak: Penulisan skripsi ini bertujuan untuk mempelajari Model

Lebih terperinci

PERAMALANAN PENERIMAAN JUMLAH PAJAK DAERAH SEBAGAI PENYUMBANG PENDAPATAN ASLI DAERAH DI KABUPATEN BLITAR

PERAMALANAN PENERIMAAN JUMLAH PAJAK DAERAH SEBAGAI PENYUMBANG PENDAPATAN ASLI DAERAH DI KABUPATEN BLITAR TUGAS AKHIR SS 145561 PERAMALANAN PENERIMAAN JUMLAH PAJAK DAERAH SEBAGAI PENYUMBANG PENDAPATAN ASLI DAERAH DI KABUPATEN BLITAR Intan Priandini NRP 1314 030 109 Dosen Pembimbing Dra. Destri Susilaningrum,

Lebih terperinci

BAB SIMULASI PERHITUNGAN HARGA BARANG. Bab 4 Simulasi Perhitungan Harga barang berisikan :

BAB SIMULASI PERHITUNGAN HARGA BARANG. Bab 4 Simulasi Perhitungan Harga barang berisikan : BAB SIMULASI PERHITUNGAN HARGA BARANG Bab Simulasi Perhitungan Harga barang berisikan :.. Simulasi peramalan nilai Indeks Harga Konsumen (IHK) melalui metode ARIMA.. Prediksi nilai inflasi tahun 0.3. Prediksi

Lebih terperinci

Jurnal EKSPONENSIAL Volume 4, Nomor 1, Mei 2013 ISSN

Jurnal EKSPONENSIAL Volume 4, Nomor 1, Mei 2013 ISSN Perencanaan Produksi Menggunakan Model dan Pengendalian Persediaan Menggunakan Program Dinamik untuk Meminimumkan Total Biaya (Studi Kasus: Produksi Amplang UD. Usaha Devi) Production Planning using Model

Lebih terperinci

PERBANDINGAN UJI PORTMANTEAU UNTUK KORELASI DIRI SISAAN PADA MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) KURNIA SEKAR NEGARI

PERBANDINGAN UJI PORTMANTEAU UNTUK KORELASI DIRI SISAAN PADA MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) KURNIA SEKAR NEGARI PERBANDINGAN UJI PORTMANTEAU UNTUK KORELASI DIRI SISAAN PADA MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) KURNIA SEKAR NEGARI DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR)

PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR) PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR) SKRIPSI Oleh : PRISKA RIALITA HARDANI 24010211120020 DEPARTEMEN STATISTIKA FAKULTAS

Lebih terperinci

TREND ANALYSIS INFANT MORTALITY RATE DENGAN AUTOREGRESIVE INTEGRATED MOVING AVERAGE (ARIMA)

TREND ANALYSIS INFANT MORTALITY RATE DENGAN AUTOREGRESIVE INTEGRATED MOVING AVERAGE (ARIMA) TREND ANALYSIS INFANT MORTALITY RATE DENGAN AUTOREGRESIVE INTEGRATED MOVING AVERAGE (ARIMA) Jerhi Wahyu Fernanda, Wisnaningsih S, Emilia Boavida,, Prodi Rekam Medis Informasi Kesehatan Institut Ilmu Kesehatan

Lebih terperinci

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) A-34 Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG Mey Lista Tauryawati

Lebih terperinci