TINJAUAN PUSTAKA. Gambar 2 Ilustrasi morfologi lamun yang membedakan tiap spesies. (Lanyon, 1986, diacu dalam McKenzie and Campbell, 2002)

Ukuran: px
Mulai penontonan dengan halaman:

Download "TINJAUAN PUSTAKA. Gambar 2 Ilustrasi morfologi lamun yang membedakan tiap spesies. (Lanyon, 1986, diacu dalam McKenzie and Campbell, 2002)"

Transkripsi

1 TINJAUAN PUSTAKA Lamun Bagi Ekosistem Pesisir Lamun (seagrass) merupakan tumbuhan berbunga (angiospermae) dan mempunyai akar rimpang, daun, bunga dan buah (Gambar 2). Lamun hidup di sedimen dasar laut, dengan daun yang tegak dan memanjang, akar tertanam ke dalam dasar perairan. Lamun di tropis berasosiasi dengan komunitas lain seperti mangrove dan terumbu karang (McKenzie dan Campbell, 2002). Parameter yang mempengaruhi pertumbuhan lamun antara lain adalah faktor fisiologi, yaitu : suhu, salinitas, gelombang, arus, kedalaman (berhubungan dengan penetrasi cahaya matahari), substrat dasar dan lamanya penyinaran matahari dan faktor alam yang mempengaruhi aktivitas fotosistesis yaitu: cahaya matahari, nutrien, epiphytes (tumbuhan pengganggu) dan penyebaran penyakit dan faktor lain yang disebabkan oleh manusia (anthropogenic) seperti penambangan pasir, limbah pertanian, limbah industri atau pencemaran minyak (McKenzie dan Campbell, 2002). Gambar 2 Ilustrasi morfologi lamun yang membedakan tiap spesies. (Lanyon, 1986, diacu dalam McKenzie and Campbell, 2002) 5

2 Interaksi antara lamun dan mangrove terjadi akibat adanya pergerakan sedimen yang terjadi di darat. Sedimen yang berasal dari darat terperangkap dalam ekosistem mangrove dan selanjutnya sedimen akan berkurang di daerah padang lamun kemudian sedimen akan semakin berkurang ketika mencapai ekosistem terumbu karang (McKenzie dan Campbell, 2002). Tutupan daun lamun mampu mengurangi pergerakan air dan menyokong penyimpanan partikel tersuspesi, baik yang hidup maupun yang mati, secara tidak langsung menjadi filter bagi perairan pesisir. Kapasitas partikel yang terperangkap di lamun akan meningkat dengan keberadaan organisme yang hidup di daun lamun, organisme tersebut menyaring partikel dengan memakannya dan menangkap partikel yang tersuspensi pada lendir yang berada di permukaan lamun (Terrados dan Borum, diacu dalam Borum et al. 2004). Terumbu karang merupakan pelindung pantai dari terjangan gelombang laut yang akan melewati ekosistem lamun dan mangrove. Sedimen terperangkap di padang lamun dan menyebabkan pergerakan air menjadi lebih pelan dan membuat sedimen tersuspensi di dasar perairan. Perangkap sedimen ini menguntungkan ekosistem terumbu karang karena berkurangnya sedimen di kolom air (McKenzie dan Campbell, 2002). Lamun dan yang berasosiasi dengan alga mampu mengabsorbsi nutrien inorganik, baik oleh daun maupun akarnya. Perolehan nutrien dari kolom air bersaing dengan fitoplankton sebagai nutrien inorganik yang mendukung produktivitas primer ekosistem pesisir. Kelimpahan fitoplankton yang sedikit, berarti penyinaran cahaya matahari akan tinggi, karena sel fitoplankton menyerap cahaya matahari (Terrados dan Borum, diacu dalam Borum et al. 2004). Padang lamun (seagrass meadows) di wilayah tropis hidup di perairan dangkal, dengan substrat halus di sepanjang pantai dan estuari. Spesies lamun di tropis banyak ditemukan di perairan dengan kedalaman kurang dari 10 meter. Coles et al. (1993) menyatakan bahwa komposisi spesies lamun terdapat di tiga zona yaitu: (1) zona dangkal kurang dari 6 meter, merupakan zona dengan kelimpahan tinggi; (2) zona kedalaman antara 6 sampai kedalaman 11 meter, didominasi oleh genus Halodule dan Halophila; dan (3) zona yang lebih dalam, 6

3 lebih dari 11 m, hanya dihuni oleh genus Halophila (McKenzie dan Campbell, 2002). Padang lamun merupakan habitat yang kompleks dengan kelimpahan biota yang tinggi. Lamun di daerah karang yang datar dan dekat estuari merupakan daerah masukan nutrien, sebagai buffer atau penyaring (filter) masukan nutrien dan bahan kimia ke perairan laut (McKenzie dan Campbell, 2002). Lamun menyediakan habitat bagi sekumpulan organisme yang tidak dapat hidup di dasar tanpa vegetasi. Tutupan daun dan keterkaitan akar dan lapisan dasar sebagai penstabil sedimen, dan juga sebagai tampat bersembunyi untuk menghindari pemangsa, sehingga kelimpahan dan keragaman flora dan fauna yang hidup di padang lamun lebih tinggi dibanding di daerah yang tak bervegetasi (Terrados dan Borum, diacu dalam Borum et al. 2004). Produktivitas primer padang lamun rata-rata cukup tinggi, hal ini berhubungan dengan produktivitas rata-rata yang berasosiasi dengan perikanan di sekitar padang lamun. Tumbuhan lamun mendukung rantai makanan kehidupan sejumlah herbivora dan detritifora (McKenzie dan Campbell, 2002), sehingga dapat dikatakan bahwa lamun merupakan indikator daerah pesisir dan dapat digunakan dalam pengelolaan strategis dengan tujuan untuk memelihara atau meningkatkan kualitas lingkungan pesisir (Terrados dan Borum, diacu dalam Borum et al. 2004). Dekomposisi lamun cukup lama, lamun menyimpan karbon di sedimen memakan waktu yang cukup lama. Produksi primer lamun hanya 1% dari total produksi primer di laut, tetapi lamun bentanggung jawab terhadap 12% total karbon yang ada di laut untuk disimpan dalam sedimen. Pemisahan karbon dioksida di alam dengan fotosintesis dan dikeluarkan melalui respirasi oleh lamun yang berperan dalam perputaran global karbon di udara (Terrados and Borum, diacu dalam Borum et al. 2004). Padang lamun merupakan habitat yang memegang peranan penting dalam siklus kehidupan berbagai organisme. Biota yang hidup di padang lamun seperti crustacea (seperti udang, dll) dan ikan-ikan kecil yang merupakan kumpulan dari larva dan juvenil, yang mengindikasikan bahwa padang lamun merupakan habitat untuk perkembangan larva dan juvenil. Padang lamun dapat menjadi daerah 7

4 perlindungan bagi organisme kecil dan merupakan daerah mencari makanan. Biasanya burung bermigrasi memanfaatkan padang lamun di perairan dangkal untuk beristirahat dan juga menjadikannya daerah mencari makan. Lamun merupakan elemen penting bagi perlindungan wilayah pesisir, tidak hanya karena lamun dapat melindungi dari sedimen yang mudah longsor, tetapi juga lamun mampu menghasilkan sedimen sendiri. (Terrados dan Borum, diacu dalam Borum et al. 2004). Coles et al dan Watson et al menyatakan bahwa lamun memegang peranan penting di komunitas pesisir karena merupakan pendukung bermacam-macam flora dan fauna, sehingga mempengaruhi produktivitas perikanan pesisir, serta merupakan penstabil sedimen dan mengontrol kualitas air dan kejernihan air, dengan demikian bahwa kita tidak dapat begitu saja mengabaikan keberadaan lamun mengingat fungsinya yang mampu mempengaruhi kondisi ekosistem di sekitarnya bahkan hingga kawasan pesisir pada wilayah yang lebih luas. Pemantauan Lamun Pemantauan lamun penting karena merupakan salah satu cara untuk mengontrol keberadaan lamun dan memungkinkan kita untuk mengetahui status dan kondisi lamun apakah tetap, berlebih atau berkurang. Pengamatan awal mengenai perubahan kondisi lamun membantu dalam pengelolaan wilayah pesisir karena keterkaitannya dengan kondisi ekosistem lainnya seperti mangrove dan terumbu karang, keuntungan lain yang dapat diperoleh dengan melakukan pengamatan awal adalah dapat mengetahui lebih awal gangguan lingkungan pesisir sebelum terjadi kerusakan, mampu mengembangkan teknik pengukuran yang lebih baik dan lebih efektif, dan nantinya bisa memperkenalkan, memperakarsai syarat-syarat dan perioritas pada masa yang akan datang, serta mampu menentukan manajemen praktis yang sebaiknya digunakan (McKenzie dan Campbell. 2002). Pemantauan pada dasarnya merupakan pengamatan yang dilakukan berulang-ulang, biasanya untuk mengetahui perubahan yang terjadi. Pengamatan terhadap perubahan dan akurasi setiap program tergantung dari metodologi yang 8

5 digunakan. Metodologi untuk pemantauan memiliki peran yang berbeda-beda dan memiliki kemungkinan penggunaan berbagai model (Duarte et al. diacu dalam Borum et al. 2004). Kesadaran akan pentingnya pemantauan kesehatan padang lamun telah dimulai dua dasawarsa yang lalu (Gambar 3). Perhatian yang meningkat ini berkembang seiring dengan bertambahnya pengetahuan tentang peran padang lamun di wilayah pesisir. Pembangunan yang cepat, disertai dengan berubahnya fungsi lahan, pembangunan kota, pengembangan wilayah pantai, dan kegiatan penangkapan serta pertanian yang radikal, menyebabkan perubahan masukan material dan tekanan terhadap ekosistem pesisir. Luas padang lamun diperkirakan mengalami pengurangan sekitar 2%/tahun Duarte et al. diacu dalam Borum et al. 2004). Program pemantauan lamun pertama kali dilakukan pada awal 1980-an di Australia, USA dan Perancis. Pada masa itu, 40 negara telah mengembangkan program monitoring lamun dilebih dari 2000 lokasi padang lamun di dunia (Duarte et al. diacu dalam Borum et al. 2004). Strategi dan indikator untuk masing-masing metode monitoring dipengaruhi oleh batasan wilayah studi, apakah suatu skala untuk menggambarkan wilayah lokal atau untuk skala global. Indikator dan strategi monitoring berikut direkomendasikan oleh modifikasi dari Short dan Coles, 2001, diacu dalam Borum et al (Tabel 1). Terdapat tiga indikator penyebaran lamun yang digunakan oleh Krause- Jensen et al. diacu dalam Borum et al. 2004, yaitu: keberadaan (presence/ absence) lamun, area distribusi dan batasan distribusi. Indiaktor lain yang diperhitungkan adalah kelimpahan lamun, yaitu: tutupan (cover), biomassa dan densitas (shoot density). 9

6 Gambar 3 Perkembangan program pemantauan lamun, kurang dari dua dasawarsa lalu (Duarte et al. diacu dalam Borum et al. 2004) 10

7 Table 1 Pemilihan metode untuk pemetaan tergantung luas area dan kedalaman perairan (modifikasi dari Short and Coles 2001), *video : real-time towed video camera; ** scanner : digital airborne scanner Ukuran Kedalaman Metode visual sensus Metode penginderaan jauh wilayah perairan penyel aman Grab Video Aerial photo Scanner Satelit Skala wil. Intertidal X X X kecil: <1 ha (1:100) Perairan dangkal X X X X** (<10m)* Perairan dalam X X X (>10m) Skala sedang: Intertidal X X X X 1 ha - 1 km 2 Perairan dangkal X X X X** X (1:10.000) (<10m)* Perairan dalam X X X (>10m) Skala besar: Intertidal X X X km 2 (1: ) Skala sangat luas : >100 km 2 (1: ) Perairan dangkal X X** X X (<10m)* Perairan dalam X (>10m) Intertidal X X X Perairan (<10m)* Perairan (>10m) dangkal dalam (X) X** X X (X) Akustik untuk Deteksi Padang Lamun Akustik bawah air dapat digunakan untuk pemantauan dan pemetaan dasar perairan berupa informasi substrat dasar dan vegetasi di dasar perairan berdasarkan karakteristik signal gema yang dipantulkan target. Informasi tersebut mampu diklasifikasikan dari data survei sebaik data informasi distribusi ikan dan plankton yang telah umum digunakan untuk aplikasi hydroacoustic (Burczynski et al. 2001). Menurut Valley dan Drake, 2005, sistem akustik yang terintegrasi dengan global posistioning system (GPS) serta geografis information system (GIS) merupakan alat pemantauan perubahan biovolum vegetasi air yang menjanjikan. 11

8 Beberapa aplikasi dari tipe instrumen akustik memiliki kemampuan lebar surat (beam width), frekuensi dan lebar pulsa (pulse width) optimal untuk mengumpulkan data. Pada perairan dangkal m, untuk klasifikasi dasar perairan membutuhkan frekuensi rendah, dengan sistem lebar surat (wide beam) echo sounder; untuk pemetaan vegetasi bawah air membutuhkan frekuensi tinggi dengan sistem surat sempit (narrow-beam) echo sounder (Hoffman et al. 2002). Keuntungan yang diperoleh dengan memanfaatkan sistem digital echo sounder yaitu dapat mengumpulkan data hanya dengan sekali survei (single acoustic), sehingga dapat menghemat waktu mengingat banyaknya data yang harus dikumpulkan dalam area yang luas. Menurut Sabol (1998), prinsip dasar survei batimetri dengan akustik adalah mendeteksi dan melihat perbedaan waktu gema (echo) dari orientasi vertikal pulsa. Proses deteksi pulsa sangat beragam dari masing-masing sistem, namun pada dasarnya tergantung dari intensitas minimum pembatas (threshold) dan lebar puncak (peak width). Untuk navigasi pada survei batimetri, diperoleh dari arah dan waktu pulsa gema (echo) terhadap kedalaman dasar perairan. Klasifikasi vegetasi bawah air dengan pantulan akustik tergantung dari tipe, tinggi dan densitas vegetasi tersebut untuk mengembalikan gema yang diterima dari transduser. Metode untuk pemetaan lamun menurut Komatsu et al. (2003) dapat dikategorikan menjadi dua, yaitu: berdasarkan observasi atau pengukuran langsung (visual sensus) dan metode tidak langsung melalui peralatan penginderaan jauh. Karena membutuhkan waktu dan banyak tenaga, metode ini dinilai tidak efektif. Selanjutnya, berkembang dua metode tidak langsung (indirect) berdasarkan instrumen penginderaan jauh yang digunakan, apakah berdasarkan penginderaan jauh optik (optical remote sensing) atau penginderaan jauh akustik (acoustical remote sensing). Foto udara dan citra satelit merupakan teknologi pemetaan area yang baik untuk pemetaan vegetasi (Belsher, 1989 dan Long et al. 1994, diacu dalam Komatsu et al. 2003). Tapi kelemahan dari teknologi ini dibatasi oleh kedalaman dan kecerahan perairan. Salah satu teknologi akustik yang dikembangkan untuk pemetaan vegetasi bawah air adalah menggunakan sonar surat sempit (narrow 12

9 multi-beam sonar) yang telah digunakan untuk pemetaan topografi dasar perairan laut dangkal. Metode ini mampu menampilkan gambaran secara horizontal dasar perairan sebaik menampilkan topografi vertikal sehingga mampu menentukan densitas vegetasi berdasarkan distribusi vertikal dan horizontal (Komatsu et al. 2003). Sonar multi surat (multi-beam sonar) dapat digunakan untuk membedakan dasar perairan dan vegetasi bila tutupan vegetasi lebih tinggi dibanding dasar perairannya. (Komatsu et al. 2003). Estimasi volume lamun yang diterapkan oleh Komatsu et al. (2003) adalah menggunakan beberapa tahapan, yaitu: (1) memetakan terlebih dahulu daerah yang tertutupi oleh vegetasi, (2) data distribusi kedalaman dasar perairan dimasukkan ke dalam komputer, kemudian (3) dengan memanfaatkan perangkat lunak hidrografi (hydrography software), data vegetasi dihilangkan dari data dasar perairan untuk memperoleh data dasar perairan pasir, setelah itu (4) distribusi kedalaman dari sedimen pasir ditambahkan data vegetasi untuk memperoleh volume vegetasi. Sinyal pantulan yang diperoleh dari vegetasi berasal dari daun. Telah lebih dari 50 tahun aplikasi teknik hidroakustik digunakan untuk estimasi keberadaan ikan dan plankton. Walaupun aplikasi untuk membedakan sinyal dasar perairan telah digunakan untuk memperoleh indikasi kehadiran tumbuhan (vegetasi), namun hanya pada penerapan dasar (Schneider et al. 2001). Metode baru yang dikembangkan oleh Bruce Sabol, USACE Waterways Experiment Station, Vicksburg, dengan nama SAVEWS (Submersed Aquatic Vegetation Early Warning System) dan diadopsi menggunakan Windows environment oleh BioSonics Inc., Seattle, dengan nama EcoSAV, yang dapat digunakan untuk konversi digital echosounder menjadi informasi berupa pendugaan keberadaan vegetasi air. Perangkat lunak BioSonics EcoSAV mampu menginformasikan data echosounder menjadi informasi berupa tutupan dan ketinggian vegetasi sekaligus posisi (Schneider et al. 2001). EcoSAV merupakan perangkat yang mempunyai kemampuan tinggi untuk menentukan ukuran, kelimpahan, dan distribusi ikan dan plankton. Kemampuan lain yang lebih baik adalah dalam klasifikasi dasar perairan dan deteksi vegetasi bawah air (submersed aquatic vegetation/sav) yaitu kemampuan untuk 13

10 mengumpulkan data akustik berdasarkan kedalaman, tipe substrat, tutupan dan tinggi vegetasi, dan kelimpahan serta distribusi ikan (Hoffman et al. 2002). Hasil yang diperoleh menggunakan SAV dapat membedakan dengan benar keberadaan vegetasi atau tidak, khususnya lamun yang tegak seperti Zostera marina (Gambar 4) (Schneider et al. 2001). Gambar 4 Contoh tampilan data hasil olahan EcoSAV (survei di Santoña). SAV tinggi (atas, dalam meter) dan persen tutupan (bawah), dimana dapat dikombinasikan dengan peta batimetri (Schneider et al. 2001) Beberapa teknologi perangkat lunak telah banyak digunakan untuk membantu dalam pengolahan sinyal akustik, selain EcoSAV terdapat perangkat lunak RoxAnn dan QTC View. RoxAnn digunakan untuk klasifikasi dasar perairan yang menghasilkan dua parameter E1 dan E2. E1 yang dimaksud adalah energi bagian belakang dari gema akustik yang berasal dari target/dasar, yang menggambarkan kekasaran (roughness) dari sedimen, E2 adalah energi keseluruhan gema akustik kedua yang berasal dari dasar, yang menggambarkan kekerasan (hardness) sedimen (Gambar 5) (McCauley dan Siwabessy, 2006). 14

11 Sistem QTC View menguji bentuk gema akustik pertama dari dasar, kemudian menggunakan algoritma untuk menterjemahkan bentuk echo menjadi susunan 166 variabel (McCauley dan Siwabessy, 2006). Sistem RoxAnn dan QTC View menggunakan cluster analysis untuk klasifikasi tipe dasar berdasarkan kemiripan bagian dan kemudian diverifikasi dengan ground-truthing (Gambar 6) (McCauley dan Siwabessy, 2006). (a) E1 at 200 khz (b) E2 at 200 khz Gambar 5 Hasil titik trek sonar surat tunggal (single-beam) yang membedakan dasar pasir dan lamun (McCauley dan Siwabessy, 2006) (a) (b) Gambar 6. Scatterplot E1 terhadap E2 setelah cluster analysis (a) dan klas habitat dasar sepanjang trek (b); hitam = pasir; hijau = lamun; merah = bad data. (McCauley dan Siwabessy, 2006) 15

12 Penelitian yang dilakukan Hoffman et al. di Lake Washington tahun 2001 memanfaatkan perangkat lunak EcoSAV, hasil proses algoritma menghasilkan kedalaman perairan, keberadaan vegetasi, tinggi vegetasi dan luasan tutupan vegetasi. Algoritma EcoSAV menganalisa 8-10 ping/cycle antara signal DGPS yang berurutan, menentukan kedalaman dan keberadaan vegetasi pada tiap ping berdasarkan bentuk echo envelope. Jika terdapat vegetasi, ditetapkan dengan adanya jarak antara dasar perairan ke atas tutupan vegetasi. Hasil yang diperoleh menggunakan frekuensi 420 khz mudah untuk membedakan keberadaan vegetasi, namun tidak dapat membedakan spesiesnya (Gambar 7). Bila menggunakan frekuensi 70 khz terdapat kekurangan pada perbedaan area hingga 100 m, sehingga tidak tepat digunakan untuk analisis tipe dasar. Berdasarkan model geospasial diperoleh biovolume, persen penutupan, tipe sedimen, dan betimetri. Data batimetri dan vegetasi menggunakan model minimum curvature method, dimana data sedimen menggunakan kriging model (Hoffman et al. 2002). 16

13 Gambar 7 Persentase biovolume vegetasi air di utara Lake Washington. (Hoffman et al. 2002). Teori Akustik terhadap Vegetasi Air Gelombang Akustik Akustik bawah air (underwater acoustic) pada dasarnya merupakan karakteristik suara di air. Suara yang dipancarkan di dalam air adalah gelombang akustik yang memiliki komponen dasar yaitu amplitudo, frekuensi, panjang gelombang (wavelength) dan gelombang suara terhadap waktu (phase). Ada beberapa hal yang mempengaruhi sifat dan karakteristik perambatan gelombang akustik di dalam air, diantaranya temperatur, kadar garam, tekanan dan kedalaman. Kuat sinyal akustik yang merambat melalui media air laut akan mengalami pelemahan (attenuation) yang pada prinsipnya disebabkan oleh penghamburan (spreading), dimana sumber akustik memancarkan energi ke 17

14 segala arah secara merata membentuk bola yang dimodelkan pada Gambar 8 disebut spherical spreading. Gambar 8 Sumber akustik memancarkan sinyal ke segala arah seperti digambarkan pada model spherical spreading Kuat sinyal akustik P i pada jarak r i (i=1,2), berbanding terbalik dengan kuadrat jaraknya terhadap titik pancar. Rasio pelemahan kuat sinyal (dalam db) pada jarak r 1 dan r 2 dapat dimodelkan melalui persamaan :... (1) Jika kuat sinyal pada jarak r 1 = 1 meter digunakan sebagai referensi, maka pelemahan pada jarak r 2 adalah : Pelemahan = 20logr 2 Pelemahan sinyal akustik lain disebabkan oleh penyerapan energi akustik oleh media air. Pelemahan ini biasa dinyatakan dalam desibel per meter ( db/m ). Besarnya pelemahan karena penyerapan media air sangat tergantung dari frekuensi gelombang dan tingkat salinitas media air. Gambar 9 menunjukkan hubungan pelemahan sinyal akustik terhadap frekuensi pada media air tawar dan air laut (Stewart, 2005). Garis a merupakan pelemahan pada media air tawar, sedangkan garis b merupakan pelemahan pada media air laut. 18

15 Gambar 9 Hubungan pelemahan sinyak akustik terhadap frekuensi pada media air Pada prinsipnya refleksi sinyal pada incident acoustic yang berasal dari dasar perairan berbeda berdasarkan berbagai pengaruh. Hal ini seperti yang telah diuraikan oleh Kloser et al. (2001) yang diacu dalam Siwabessy (2001), refleksi sinyal akustik dipengaruhi oleh: (1) impedansi akustik pada medium permukaan air laut maupun pada permukaan dasar perairan, (2) parameter akustik pada instrumen, (3) penetrasi sinyal akustik pada dasar perairan sebagai volume scattering dari sumber pulsa, (4) arah refleksi pada kolom air dan permukaan dasar perairan akibat kekasaran dasar perairan, (5) waktu tunda (time delay) yang kembali akibat spherical spreading terhadap perubahan kedalaman, (6) respon dari scattering yang berasal dari second acoustic bottom pada permukaan air, gelembung dalam kolom air dan kapal, (7) kedalaman perairan yang tiba-tiba cekung, (8) absorpsi akustik air laut, dan (9) gaung (noise) yang disebabkan instrumen akustik. Hambur Balik Akustik pada Vegetasi Air Algoritma yang dikembangkan untuk klasifikasi vegetasi air merupakan pengamatan dari perbedaan aras gema (echo level) dari vegetasi dan dasar perairan. (Tegowski et al. 2003). Sebagian besar gema yang berasal dari 19

16 vegetasi lebih tinggi dari aras gema yang berasal dari penghamburbalik (backscattering) dasar. Algoritma yang digunakan berdasarkan echo envelope untuk menentukan posisi dasar perairan. Keberadaan vegetasi dideteksi berdasarkan perbedaaan kemunculan dasar perairan yang datar dan sebaran vegetasi. Sinyal hambur balik yang berasal dari hamparan dasar perairan yang gundul (tanpa vegetasi) dan sinyal hamburan yang berasal dari vegetasi akan dibandingkan, seperti yang telah dihasilkan oleh Tegowski et al. (2003) (Gambar 10), yang memperlihatkan perbedaan lebar pulsa (pulse width), gema yang berasal dari area yang memiliki vegetasi memperlihatkan lebar pulsa yang lebih lebar. Terlihat pula perbedaan bentuk echo envelope, terlihat lebih halus pada echo yang berasal dari dasar perairan tanpa vegetasi. Berdasarkan pulse width dan bentuk echo envelope distribusi vegetasi dapat terlihat (Tegowski et al. 2003). Gambar 10 Normalisasi echo envelope, (a) yang berasal dari vegetasi; (b) yang berasal dari dasar 20

17 Instrumen Hidro Akustik Instrumen yang digunakan dalam penelitain ini adalah SIMRAD EY 60 yang merupakan echosounder tipe surat terbagi (split beam). Sistem surat terbagi menggunakan transduser penerima yang memiliki empat kuadran yakni fore, aft, port, dan starboard. Selama transmisi, transmitter mengirim daya akustik ke semua bagian transduser pada waktu yang bersamaan. Sinyal yang terpantul dari target diterima secara terpisah oleh masing-masing kuadran. Selama penerima berlangsung keempat bagian transduser menerima gema dan target, dimana target yang terdeteksi oleh transduser terletak pada pusat dari surat suara dan gema dari target akan dikembalikan dan diterima oleh keempat bagian pada waktu yang bersamaan. Tetapi jika target yang terdeteksi tidak terletak tepat pada sumbu pusat surat suara, maka gema yang kembali akan diterima lebih dulu oleh bagian transduser yang paling dekat dari target atau dengan mengisolasi target dengan menggunakan output dari surat penuh (full beam) (SIMRAD, 1993). Sistem surat terbagi memiliki kelebihan dan kekurangan dibandingakan dengan sistem lainnya. Kelebihan sistem surat terbagi adalah tepat waktu dalam melakukan pengukuran, lebih akurat dalam mengukur TS ikan di alam, dapat menduga densitas ikan secara langsung, posisi sudut dan kecepatannya dengan sifat data recording, sedangkan kekurangan sistem surat terbagi adalah memerlukan perangkat keras dan lunak lebih rumit dibandingkan metode dwi surat (dual beam method) dan ukuran transduser adakalanya besar sehingga sulit dioperasikan secara portable melainkan harus hull-mounted system, namun kini telah banyak tersedia tranducer yang mudah dibawa (portable) salah satunya adalah SIMRAD EY60. Pengukuran dengan posisi target dihitung dari kedua berkas terbagi dengan fase pada bidang alongship atau arah sejajar dengan kapal dan athwarship atau arah tegak lurus dengan kapal. 21

EVALUASI METODE AKUSTIK UNTUK PEMANTAUAN PADANG LAMUN SRI RATIH DESWATI

EVALUASI METODE AKUSTIK UNTUK PEMANTAUAN PADANG LAMUN SRI RATIH DESWATI EVALUASI METODE AKUSTIK UNTUK PEMANTAUAN PADANG LAMUN SRI RATIH DESWATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 i PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

2. TINJAUAN PUSTAKA. Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses

2. TINJAUAN PUSTAKA. Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses 2. TINJAUAN PUSTAKA 2.1. Sedimen Dasar Laut Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses hidrologi dari suatu tempat ke tempat yang lain, baik secara vertikal maupun secara

Lebih terperinci

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan.

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan. METODE PENELITIAN Waktu dan Lokasi Penelitian Pengambilan data lapang dilakukan pada tanggal 16-18 Mei 2008 di perairan gugusan pulau Pari, Kepulauan Seribu, Jakarta (Gambar 11). Lokasi ditentukan berdasarkan

Lebih terperinci

Sumber : Mckenzie (2009) Gambar 2. Morfologi Lamun

Sumber : Mckenzie (2009) Gambar 2. Morfologi Lamun 2. TINJAUAN PUSTAKA 2.1 Deskripsi Lamun Lamun merupakan tumbuhan laut yang hidup di perairan jernih pada kedalaman berkisar antara 2 12 m dengan sirkulasi air yang baik. Hampir semua tipe substrat dapat

Lebih terperinci

1. PENDAHULUAN 1.1 Latar Belakang

1. PENDAHULUAN 1.1 Latar Belakang 1. PENDAHULUAN 1.1 Latar Belakang Substrat dasar perairan memiliki peranan yang sangat penting yaitu sebagai habitat bagi bermacam-macam biota baik itu mikrofauna maupun makrofauna. Mikrofauna berperan

Lebih terperinci

1. PENDAHULUAN 1.1. Latar belakang

1. PENDAHULUAN 1.1. Latar belakang 1. PENDAHULUAN 1.1. Latar belakang Dasar perairan memiliki peranan yang sangat penting yaitu sebagai habitat bagi bermacam-macam makhluk hidup yang kehidupannya berasosiasi dengan lingkungan perairan.

Lebih terperinci

2. TINJAUAN PUSTAKA. hidup di pesisir, seluruh hidupnya berada dalam air dengan salinitas cukup tinggi,

2. TINJAUAN PUSTAKA. hidup di pesisir, seluruh hidupnya berada dalam air dengan salinitas cukup tinggi, 2. TINJAUAN PUSTAKA 2.1 Lamun Lamun (seagrass) adalah tumbuhan berbunga (Angiospermae) yang hidup di pesisir, seluruh hidupnya berada dalam air dengan salinitas cukup tinggi, berkembang biak secara vegetatif

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Sedimen Dasar Perairan Berdasarkan pengamatan langsung terhadap sampling sedimen dasar perairan di tiap-tiap stasiun pengamatan tipe substrat dikelompokkan menjadi 2, yaitu:

Lebih terperinci

Gambar 8. Lokasi penelitian

Gambar 8. Lokasi penelitian 3. METODOLOGI PENELITIAN 3.1 Waktu dan lokasi penelitian Penelitian ini dilaksanakan pada tanggal 30 Januari-3 Februari 2011 yang di perairan Pulau Gosong, Pulau Semak Daun dan Pulau Panggang, Kabupaten

Lebih terperinci

2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut

2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut 2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut Sedimen yang merupakan partikel lepas (unconsolidated) yang terhampar di daratan, di pesisir dan di laut itu berasal dari batuan atau material yang mengalami

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, diperoleh data yang diuraikan pada Tabel 4. Lokasi penelitian berada

Lebih terperinci

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan 4. HASIL PEMBAHASAN 4.1 Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, ditemukan 3 jenis spesies lamun yakni Enhalus acoroides, Cymodocea

Lebih terperinci

2. TINJAUAN PUSTAKA. Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji

2. TINJAUAN PUSTAKA. Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji 2. TINJAUAN PUSTAKA 2.1 Keadaan Umum Lokasi Penelitian Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji (1987), paparan Arafura (diberi nama oleh Krummel, 1897) ini terdiri dari tiga

Lebih terperinci

Scientific Echosounders

Scientific Echosounders Scientific Echosounders Namun secara secara elektronik didesain dengan amplitudo pancaran gelombang yang stabil, perhitungan waktu yang lebih akuran dan berbagai menu dan software tambahan. Contoh scientific

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 4 HASIL DAN PEMBAHASAN 4.1 Identifikasi Lifeform Karang Secara Visual Karang memiliki variasi bentuk pertumbuhan koloni yang berkaitan dengan kondisi lingkungan perairan. Berdasarkan hasil identifikasi

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Kajian dasar perairan dapat digunakan secara luas, dimana para ahli sumberdaya kelautan membutuhkannya sebagai kajian terhadap habitat bagi hewan bentik (Friedlander et

Lebih terperinci

AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH

AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH P. Ika Wahyuningrum AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH Suatu teknologi pendeteksian obyek dibawah air dengan menggunakan instrumen akustik yang memanfaatkan suara dengan gelombang tertentu Secara

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 3 METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan dari bulan Desember 2010 Juli 2011 yang meliputi tahapan persiapan, pengukuran data lapangan, pengolahan dan analisis

Lebih terperinci

Modul 1 : Ruang Lingkup dan Perkembangan Ekologi Laut Modul 2 : Lautan sebagai Habitat Organisme Laut Modul 3 : Faktor Fisika dan Kimia Lautan

Modul 1 : Ruang Lingkup dan Perkembangan Ekologi Laut Modul 2 : Lautan sebagai Habitat Organisme Laut Modul 3 : Faktor Fisika dan Kimia Lautan ix M Tinjauan Mata Kuliah ata kuliah ini merupakan cabang dari ekologi dan Anda telah mempelajarinya. Pengetahuan Anda yang mendalam tentang ekologi sangat membantu karena ekologi laut adalah perluasan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia mempunyai perairan laut yang lebih luas dibandingkan daratan, oleh karena itu Indonesia dikenal sebagai negara maritim. Perairan laut Indonesia kaya akan

Lebih terperinci

2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Bentuk Pertumbuhan Karang

2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Bentuk Pertumbuhan Karang 2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Terumbu karang merupakan satu kesatuan dari berbagai jenis karang. Terumbu karang adalah endapan-endapan masif yang penting dari kalsium karbonat yang terutama dihasilkan

Lebih terperinci

PERTEMUAN IV SURVEI HIDROGRAFI. Survei dan Pemetaan Universitas IGM Palembang

PERTEMUAN IV SURVEI HIDROGRAFI. Survei dan Pemetaan Universitas IGM Palembang PERTEMUAN IV SURVEI HIDROGRAFI Survei dan Pemetaan Universitas IGM Palembang Konfigurasi Survei Hidrografi 1. Penentuan posisi (1) dan penggunaan sistem referensi (7) 2. Pengukuran kedalaman (pemeruman)

Lebih terperinci

BAB I PENDAHULUAN. ekosistem lamun, ekosistem mangrove, serta ekosistem terumbu karang. Diantara

BAB I PENDAHULUAN. ekosistem lamun, ekosistem mangrove, serta ekosistem terumbu karang. Diantara 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Indonesia merupakan salah satu negara kepulauan yang sebagian besar wilayahnya merupakan perairan dan terletak di daerah beriklim tropis. Laut tropis memiliki

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori 4. HASIL DAN PEMBAHASAN 4.1 Profil Peta Batimetri Laut Arafura Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori perairan dangkal dimana kedalaman mencapai 100 meter. Berdasarkan data

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Kebutuhan akan data batimetri semakin meningkat seiring dengan kegunaan data tersebut untuk berbagai aplikasi, seperti perencanaan konstruksi lepas pantai, aplikasi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan ilmu pengetahuan dan teknologi yang begitu cepat dan arus informasi yang semakin transparan, serta perubahan-perubahan dinamis yang tidak dapat dielakkan

Lebih terperinci

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian 3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini merupakan bagian dari Ekspedisi Selat Makassar 2003 yang diperuntukkan bagi Program Census of Marine Life (CoML) yang dilaksanakan oleh

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Hasil Pengambilan Contoh Dasar Gambar 16 merupakan hasil dari plot bottom sampling dari beberapa titik yang dilakukan secara acak untuk mengetahui dimana posisi target yang

Lebih terperinci

Gambar 6. Peta Lokasi Penelitian

Gambar 6. Peta Lokasi Penelitian BAB III BAHAN DAN METODE 3.1 Tempat dan waktu Penelitian telah dilaksanakan pada bulan April 2013. Lokasi penelitian dilakukan di Perairan Nusa Lembongan, Kecamatan Nusa Penida, Kabupaten Klungkung, Provinsi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Pemetaan Sebaran Lamun Pemetaan sebaran lamun dihasilkan dari pengolahan data citra satelit menggunakan klasifikasi unsupervised dan klasifikasi Lyzenga. Klasifikasi tersebut

Lebih terperinci

1. PENDAHULUAN 1.1 Latar Belakang

1. PENDAHULUAN 1.1 Latar Belakang 1. PENDAHULUAN 1.1 Latar Belakang Ekosistem padang lamun (seagrass) merupakan suatu habitat yang sering dijumpai antara pantai berpasir atau daerah mangrove dan terumbu karang. Padang lamun berada di daerah

Lebih terperinci

KELOMPOK 2 JUWITA AMELIA MILYAN U. LATUE DICKY STELLA L. TOBING

KELOMPOK 2 JUWITA AMELIA MILYAN U. LATUE DICKY STELLA L. TOBING SISTEM SONAR KELOMPOK 2 JUWITA AMELIA 2012-64-0 MILYAN U. LATUE 2013-64-0 DICKY 2013-64-0 STELLA L. TOBING 2013-64-047 KARAKTERISASI PANTULAN AKUSTIK KARANG MENGGUNAKAN ECHOSOUNDER SINGLE BEAM Baigo Hamuna,

Lebih terperinci

PENDAHULUAN. terluas di dunia. Hutan mangrove umumnya terdapat di seluruh pantai Indonesia

PENDAHULUAN. terluas di dunia. Hutan mangrove umumnya terdapat di seluruh pantai Indonesia PENDAHULUAN Latar Belakang Indonesia merupakan negara kepulauan yang memiliki hutan mangrove terluas di dunia. Hutan mangrove umumnya terdapat di seluruh pantai Indonesia dan hidup serta tumbuh berkembang

Lebih terperinci

ANALISIS HAMBUR BALIK AKUSTIK UNTUK IDENTIFIKASI SPESIES LAMUN LA OLE

ANALISIS HAMBUR BALIK AKUSTIK UNTUK IDENTIFIKASI SPESIES LAMUN LA OLE ANALISIS HAMBUR BALIK AKUSTIK UNTUK IDENTIFIKASI SPESIES LAMUN LA OLE SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN 4.1 Pengaruh Gangguan Pada Audio Generator Terhadap Amplitudo Gelombang Audio Yang Dipancarkan Pengukuran amplitudo gelombang audio yang dipancarkan pada berbagai tingkat audio generator

Lebih terperinci

V ASPEK EKOLOGIS EKOSISTEM LAMUN

V ASPEK EKOLOGIS EKOSISTEM LAMUN 49 V ASPEK EKOLOGIS EKOSISTEM LAMUN 5.1 Distribusi Parameter Kualitas Perairan Karakteristik suatu perairan dan kualitasnya ditentukan oleh distribusi parameter fisik dan kimia perairan yang berlangsung

Lebih terperinci

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 121 TAHUN 2012 TENTANG REHABILITASI WILAYAH PESISIR DAN PULAU-PULAU KECIL

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 121 TAHUN 2012 TENTANG REHABILITASI WILAYAH PESISIR DAN PULAU-PULAU KECIL PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 121 TAHUN 2012 TENTANG REHABILITASI WILAYAH PESISIR DAN PULAU-PULAU KECIL DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA, Menimbang: bahwa untuk

Lebih terperinci

PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG

PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG Pendugaan Kelimpahan dan Sebaran Ikan... Metode Akustik di Perairan Belitung (Fahmi, Z.) PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG ABSTRAK Zulkarnaen

Lebih terperinci

HUBUNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERUHAN PADA PERAIRAN TELUK AMBON DALAM

HUBUNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERUHAN PADA PERAIRAN TELUK AMBON DALAM HBNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERHAN PADA PERAIRAN TELK AMBON DALAM PENDAHLAN Perkembangan pembangunan yang semakin pesat mengakibatkan kondisi Teluk Ambon, khususnya Teluk Ambon Dalam (TAD)

Lebih terperinci

HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011

HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 Jurnal Teknologi Perikanan dan Kelautan. Vol. 4. No. 1 Mei 2013: 31-39 ISSNN 2087-4871 HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 (THE RELATION

Lebih terperinci

DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA, Menimbang : bahwa untuk melaksanakan ketentuan Pasal 33 ayat (2)

DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA, Menimbang : bahwa untuk melaksanakan ketentuan Pasal 33 ayat (2) PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 121 TAHUN 2012 TENTANG REHABILITASI WILAYAH PESISIR DAN PULAU-PULAU KECIL DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA, Menimbang : bahwa untuk

Lebih terperinci

BAB I PENDAHULUAN. Salah satu hutan mangrove yang berada di perairan pesisir Jawa Barat terletak

BAB I PENDAHULUAN. Salah satu hutan mangrove yang berada di perairan pesisir Jawa Barat terletak 1 BAB I PENDAHULUAN A. Latar Belakang Salah satu hutan mangrove yang berada di perairan pesisir Jawa Barat terletak di Cagar Alam Leuweung Sancang. Cagar Alam Leuweung Sancang, menjadi satu-satunya cagar

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Pemetaan Batimetri 4.1.1. Pemilihan Model Dugaan Dengan Nilai Digital Asli Citra hasil transformasi pada Gambar 7 menunjukkan nilai reflektansi hasil transformasi ln (V-V S

Lebih terperinci

I. PENDAHULUAN pulau dengan luas laut sekitar 3,1 juta km 2. Wilayah pesisir dan. lautan Indonesia dikenal sebagai negara dengan kekayaan dan

I. PENDAHULUAN pulau dengan luas laut sekitar 3,1 juta km 2. Wilayah pesisir dan. lautan Indonesia dikenal sebagai negara dengan kekayaan dan 1 I. PENDAHULUAN A. Latar Belakang Indonesia merupakan negara kepulauan terbesar di dunia. Panjang garis pantai di Indonesia adalah lebih dari 81.000 km, serta terdapat lebih dari 17.508 pulau dengan luas

Lebih terperinci

BAB I PENDAHULUAN. Ekosistem pesisir tersebut dapat berupa ekosistem alami seperti hutan mangrove,

BAB I PENDAHULUAN. Ekosistem pesisir tersebut dapat berupa ekosistem alami seperti hutan mangrove, BAB I PENDAHULUAN A. LATAR BELAKANG Dalam suatu wilayah pesisir terdapat beragam sistem lingkungan (ekosistem). Ekosistem pesisir tersebut dapat berupa ekosistem alami seperti hutan mangrove, terumbu karang,

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Hasil Analisis Nilai Target Strength (TS) Pada Ikan Mas (Cyprinus carpio) Nilai target strength (TS) merupakan parameter utama pada aplikasi metode akustik dalam menduga kelimpahan

Lebih terperinci

BAB I PENDAHULUAN 1.1. LATAR BELAKANG

BAB I PENDAHULUAN 1.1. LATAR BELAKANG BAB I PENDAHULUAN 1.1. LATAR BELAKANG Hutan mangrove merupakan hutan yang tumbuh pada daerah yang berair payau dan dipengaruhi oleh pasang surut air laut. Hutan mangrove memiliki ekosistem khas karena

Lebih terperinci

1 PENDAHULUAN 1.1. Latar Belakang

1 PENDAHULUAN 1.1. Latar Belakang 1 1 PENDAHULUAN 1.1. Latar Belakang Ekosistem terumbu karang merupakan bagian dari ekosistem laut yang penting karena menjadi sumber kehidupan bagi beraneka ragam biota laut. Di dalam ekosistem terumbu

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang 1 I PENDAHULUAN 1.1 Latar Belakang Ekosistem mangrove merupakan ekosistem pesisir yang terdapat di sepanjang pantai tropis dan sub tropis atau muara sungai. Ekosistem ini didominasi oleh berbagai jenis

Lebih terperinci

3. METODE PENELITIAN. Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º º BT

3. METODE PENELITIAN. Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º º BT 3. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º - 138 º BT (Gambar 2), pada bulan November 2006 di Perairan Laut Arafura, dengan kedalaman

Lebih terperinci

REPORT MONITORING SEAGRASS PADA KAWASAN TAMAN NASIONAL WAKATOBI KABUPATEN WAKATOBI

REPORT MONITORING SEAGRASS PADA KAWASAN TAMAN NASIONAL WAKATOBI KABUPATEN WAKATOBI REPORT MONITORING SEAGRASS PADA KAWASAN TAMAN NASIONAL WAKATOBI KABUPATEN WAKATOBI Kerjasama TNC-WWF Wakatobi Program dengan Balai Taman Nasional Wakatobi Wakatobi, Juni 2008 1 DAFTAR ISI LATAR BELAKANG...

Lebih terperinci

BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI

BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI Lokasi pada lepas pantai yang teridentifikasi memiliki potensi kandungan minyak bumi perlu dieksplorasi lebih lanjut supaya

Lebih terperinci

1. PENDAHULUAN. Indonesia merupakan negara yang dua per tiga luasnya ditutupi oleh laut

1. PENDAHULUAN. Indonesia merupakan negara yang dua per tiga luasnya ditutupi oleh laut 1 1. PENDAHULUAN A. Latar Belakang Indonesia merupakan negara yang dua per tiga luasnya ditutupi oleh laut dan hampir sepertiga penduduknya mendiami daerah pesisir pantai yang menggantungkan hidupnya dari

Lebih terperinci

BAB IV TINJAUAN MENGENAI SENSOR LASER

BAB IV TINJAUAN MENGENAI SENSOR LASER 41 BAB IV TINJAUAN MENGENAI SENSOR LASER 4.1 Laser Laser atau sinar laser adalah singkatan dari Light Amplification by Stimulated Emission of Radiation, yang berarti suatu berkas sinar yang diperkuat dengan

Lebih terperinci

5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK

5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK 5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK Pendahuluan Sumberdaya perikanan LCS merupakan kontribusi utama yang sangat penting di tingkat lokal, regional dan internasional untuk makanan

Lebih terperinci

PENGUKURAN NILAI HAMBUR BALIK AKUSTIK Enhalus acoroides DI PULAU PARI, KEPULAUAN SERIBU, DKI JAKARTA SITI HASANAH RUSMAYANTI SKRIPSI

PENGUKURAN NILAI HAMBUR BALIK AKUSTIK Enhalus acoroides DI PULAU PARI, KEPULAUAN SERIBU, DKI JAKARTA SITI HASANAH RUSMAYANTI SKRIPSI PENGUKURAN NILAI HAMBUR BALIK AKUSTIK Enhalus acoroides DI PULAU PARI, KEPULAUAN SERIBU, DKI JAKARTA SITI HASANAH RUSMAYANTI SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

1. PENDAHULUAN 1.1. Latar Belakang

1. PENDAHULUAN 1.1. Latar Belakang 1. PENDAHULUAN 1.1. Latar Belakang Lamun (seagrass) adalah tumbuhan berbunga (Angiospermae) yang sudah sepenuhnya menyesuaikan diri hidup terbenam di dalam laut. Menurut Den Hartog (1976) in Azkab (2006)

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Batimetri Selat Sunda Peta batimetri adalah peta yang menggambarkan bentuk konfigurasi dasar laut dinyatakan dengan angka-angka suatu kedalaman dan garis-garis yang mewakili

Lebih terperinci

SOUND PROPAGATION (Perambatan Suara)

SOUND PROPAGATION (Perambatan Suara) SOUND PROPAGATION (Perambatan Suara) SOUND PROPAGATION (Perambatan Suara) Reflection and Refraction Ketika gelombang suara merambat dalam medium, terjadi sebuah pertemuan antara kedua medium dengan kepadatan

Lebih terperinci

1. PENDAHULUAN. 1.1 Latar Belakang

1. PENDAHULUAN. 1.1 Latar Belakang 1 1. PENDAHULUAN 1.1 Latar Belakang Wilayah teritorial Indonesia yang sebagian besar merupakan wilayah pesisir dan laut kaya akan sumber daya alam. Sumber daya alam ini berpotensi untuk dimanfaatkan bagi

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang dan Masalah yang dikaji (Statement of the Problem) I.1.1. Latar belakang

BAB I PENDAHULUAN. I.1. Latar Belakang dan Masalah yang dikaji (Statement of the Problem) I.1.1. Latar belakang BAB I PENDAHULUAN I.1. Latar Belakang dan Masalah yang dikaji (Statement of the Problem) I.1.1. Latar belakang Terumbu karang merupakan salah satu ekosistem terbesar kedua setelah hutan bakau dimana kesatuannya

Lebih terperinci

I. PENDAHULUAN 1.1. Latar Belakang

I. PENDAHULUAN 1.1. Latar Belakang I. PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan negara kepulauan yang mempunyai kawasan pesisir yang cukup luas, dan sebagian besar kawasan tersebut ditumbuhi mangrove yang lebarnya dari beberapa

Lebih terperinci

TEKNOLOGI AKUSTIK BAWAH AIR: SOLUSI DATA PERIKANAN LAUT INDONESIA

TEKNOLOGI AKUSTIK BAWAH AIR: SOLUSI DATA PERIKANAN LAUT INDONESIA Risalah Kebijakan Pertanian dan Lingkungan Vol. 1 No. 3, Desember 2014: 181-186 ISSN : 2355-6226 TEKNOLOGI AKUSTIK BAWAH AIR: SOLUSI DATA PERIKANAN LAUT INDONESIA Henry M. Manik Departemen Ilmu dan Teknologi

Lebih terperinci

Oleh : PAHMI PARHANI C SKRIPSI Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana pada Fakultas Perikanan dan Ilmu Kelautan

Oleh : PAHMI PARHANI C SKRIPSI Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana pada Fakultas Perikanan dan Ilmu Kelautan STUDI TENTANG ARAH DAN KECEPATAN RENANG IKAN PELAGIS DENGAN MENGGUNAKAN SISTEM AKUSTIK BIM TEmAGI (SPLIT-BEAM ACOUSTIC SYSTEM ) DI PERAIRAN TELUK TOMINI PADA BULAN JULI-AGUSTUS 2003 Oleh : PAHMI PARHANI

Lebih terperinci

memiliki kemampuan untuk berpindah tempat secara cepat (motil), sehingga pelecypoda sangat mudah untuk ditangkap (Mason, 1993).

memiliki kemampuan untuk berpindah tempat secara cepat (motil), sehingga pelecypoda sangat mudah untuk ditangkap (Mason, 1993). BAB I PENDAHULUAN 1.1. Latar Belakang Pelecypoda merupakan biota bentik yang digunakan sebagai indikator biologi perairan karena hidupnya relatif menetap (sedentery) dengan daur hidup yang relatif lama,

Lebih terperinci

BAB I PENDAHULUAN. sedangkan secara geografis Indonesia terletak di antara benua Asia dan Benua

BAB I PENDAHULUAN. sedangkan secara geografis Indonesia terletak di antara benua Asia dan Benua BAB I PENDAHULUAN A. Latar Belakang Masalah Secara geografis Indonesia membentang 6 0 LU 11 0 LS dan 95 0-141 0 BT, sedangkan secara geografis Indonesia terletak di antara benua Asia dan Benua Australia

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 39 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Profil Kecepatan Suara Profil kecepatan suara (SVP) di lokasi penelitian diukur secara detail untuk mengurangi pengaruh kesalahan terhadap data multibeam pada

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Penginderaan jauh merupakan ilmu yang semakin berkembang pada masa sekarang, cepatnya perkembangan teknologi menghasilkan berbagai macam produk penginderaan jauh yang

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Kondisi Umum Lokasi Penelitian Kepulauan Seribu merupakan gugusan pulau datar yang melintang di barat daya Laut Jawa dan memiliki ekosistem terumbu karang, mangrove dan padang

Lebih terperinci

BAB I PENDAHULUAN. keanekaragaman hayati membuat laut Indonesia dijuluki Marine Mega-

BAB I PENDAHULUAN. keanekaragaman hayati membuat laut Indonesia dijuluki Marine Mega- BAB I PENDAHULUAN A. Latar Belakang Indonesia merupakan negara yang terkenal dengan kekayaan alamnya yang melimpah. Tidak terkecuali dalam hal kelautan. Lautnya yang kaya akan keanekaragaman hayati membuat

Lebih terperinci

3. BAHAN DAN METODE. Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei

3. BAHAN DAN METODE. Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei 3. BAHAN DAN METODE 3.1. Waktu dan Tempat Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei sampai September 2010. Lokasi penelitian di sekitar Perairan Pulau Pari, Kepulauan Seribu,

Lebih terperinci

1. PENDAHULUAN Latar Belakang

1. PENDAHULUAN Latar Belakang 1 1. PENDAHULUAN 1.1. Latar Belakang Ekosistem terumbu karang adalah salah satu ekosistem yang paling kompleks dan khas di daerah tropis yang memiliki produktivitas dan keanekaragaman yang tinggi. Ekosistem

Lebih terperinci

HIDROSFER VI. Tujuan Pembelajaran

HIDROSFER VI. Tujuan Pembelajaran KTSP & K-13 Kelas X Geografi HIDROSFER VI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut. 1. Memahami kedalaman laut dan salinitas air laut. 2.

Lebih terperinci

EKOSISTEM. Yuni wibowo

EKOSISTEM. Yuni wibowo EKOSISTEM Yuni wibowo EKOSISTEM Hubungan Trofik dalam Ekosistem Hubungan trofik menentukan lintasan aliran energi dan siklus kimia suatu ekosistem Produsen primer meliputi tumbuhan, alga, dan banyak spesies

Lebih terperinci

2.2. Parameter Fisika dan Kimia Tempat Hidup Kualitas air terdiri dari keseluruhan faktor fisika, kimia, dan biologi yang mempengaruhi pemanfaatan

2.2. Parameter Fisika dan Kimia Tempat Hidup Kualitas air terdiri dari keseluruhan faktor fisika, kimia, dan biologi yang mempengaruhi pemanfaatan 4 2. TINJAUAN PUSTAKA 2.1. Chironomida Organisme akuatik yang seringkali mendominasi dan banyak ditemukan di lingkungan perairan adalah larva serangga air. Salah satu larva serangga air yang dapat ditemukan

Lebih terperinci

3. METODOLOGI. Pengambilan data dengan menggunakan side scan sonar dilakukan selama

3. METODOLOGI. Pengambilan data dengan menggunakan side scan sonar dilakukan selama 3. METODOLOGI 3.1 Waktu dan Lokasi Penelitian Pengambilan data dengan menggunakan side scan sonar dilakukan selama dua hari, yaitu pada 19-20 November 2008 di perairan Aceh, Lhokseumawe (Gambar 3). Sesuai

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Ekosistem laut merupakan suatu kumpulan integral dari berbagai komponen abiotik (fisika-kimia) dan biotik (organisme hidup) yang berkaitan satu sama lain dan saling berinteraksi

Lebih terperinci

Arqi Eka Pradana Netro Handaru Fajar Lukman Hakim Muhammad Rizki Nandika Elok Puspa

Arqi Eka Pradana Netro Handaru Fajar Lukman Hakim Muhammad Rizki Nandika Elok Puspa Arqi Eka Pradana 115080201111007 Netro Handaru 115080600111005 Fajar Lukman Hakim 115080600111023 Muhammad Rizki Nandika 115080601111018 Elok Puspa Nirmala 115080213111012 M Rifki Fajarulloh 115080201111035

Lebih terperinci

BAB I PENDAHULUAN. Holothuroidea merupakan salah satu kelompok hewan yang berduri atau

BAB I PENDAHULUAN. Holothuroidea merupakan salah satu kelompok hewan yang berduri atau 1.1 Latar Belakang BAB I PENDAHULUAN Holothuroidea merupakan salah satu kelompok hewan yang berduri atau berbintil yang termasuk dalam filum echinodermata. Holothuroidea biasa disebut timun laut (sea cucumber),

Lebih terperinci

APLIKASI PENGINDERAAN JAUH UNTUK PENGELOLAAN HUTAN MANGROVE SEBAGAI SALAH SATU SUMBERDAYA WILAYAH PESISIR (STUDI KASUS DI DELTA SUNGAI WULAN KABUPATEN DEMAK) Septiana Fathurrohmah 1, Karina Bunga Hati

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perairan Pulau Pramuka terletak di Kepulauan Seribu yang secara administratif termasuk wilayah Jakarta Utara. Di Pulau Pramuka terdapat tiga ekosistem yaitu, ekosistem

Lebih terperinci

3. METODOLOGI PENELITAN

3. METODOLOGI PENELITAN 3. METODOLOGI PENELITAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan di Pantai Sanur Desa Sanur, Kecamatan Denpasar Selatan, Kota Denpasar, Provinsi Bali (Lampiran 1). Cakupan objek penelitian

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 4 HASIL DAN PEMBAHASAN 4.1 Iluminasi cahaya Cahaya pada pengoperasian bagan berfungsi sebagai pengumpul ikan. Cahaya yang diperlukan memiliki beberapa karakteristik, yaitu iluminasi yang tinggi, arah pancaran

Lebih terperinci

BAB I PENDAHULUAN. dari buah pulau (28 pulau besar dan pulau kecil) dengan

BAB I PENDAHULUAN. dari buah pulau (28 pulau besar dan pulau kecil) dengan BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara kepulauan di daerah tropika yang terdiri dari 17.504 buah pulau (28 pulau besar dan 17.476 pulau kecil) dengan panjang garis pantai sekitar

Lebih terperinci

1. PENDAHULUAN 1.1 Latar Belakang

1. PENDAHULUAN 1.1 Latar Belakang 1. PENDAHULUAN 1.1 Latar Belakang Secara ekologis ekosistem padang lamun di perairan pesisir dapat berperan sebagai daerah perlindungan ikan-ikan ekonomis penting seperti ikan baronang dan penyu, menyediakan

Lebih terperinci

2. TINJAUAN PUSTAKA 2.1. Padang Lamun 2.2. Faktor Lingkungan

2. TINJAUAN PUSTAKA 2.1. Padang Lamun 2.2. Faktor Lingkungan 2. TINJAUAN PUSTAKA 2.1. Padang Lamun Lamun merupakan tumbuhan tingkat tinggi yang mampu hidup terbenam dalam air di lingkungan perairan dekat pantai. Secara taksonomi, lamun termasuk ke dalam kelompok

Lebih terperinci

BAB I PENDAHULUAN. Indonesia termasuk kedalam negara kepulauan yang memiliki garis

BAB I PENDAHULUAN. Indonesia termasuk kedalam negara kepulauan yang memiliki garis BAB I PENDAHULUAN A. Latar Belakang Masalah Indonesia termasuk kedalam negara kepulauan yang memiliki garis pantai terpanjang keempat di dunia setelah Amerika Serikat, Kanada dan Rusia. Panjang garis pantai

Lebih terperinci

BAB I PENDAHULUAN. tumbuhannya bertoleransi terhadap salinitas (Kusmana, 2003). Hutan mangrove

BAB I PENDAHULUAN. tumbuhannya bertoleransi terhadap salinitas (Kusmana, 2003). Hutan mangrove 1 BAB I PENDAHULUAN 1.1. Latar Belakang Hutan mangrove merupakan suatu tipe hutan yang tumbuh di daerah pasang surut, terutama di pantai berlindung, laguna, dan muara sungai yang tergenang pada saat pasang

Lebih terperinci

EKOSISTEM LAUT TROPIS (INTERAKSI ANTAR EKOSISTEM LAUT TROPIS ) ANI RAHMAWATI JURUSAN PERIKANAN FAKULTAS PERTANIAN UNTIRTA

EKOSISTEM LAUT TROPIS (INTERAKSI ANTAR EKOSISTEM LAUT TROPIS ) ANI RAHMAWATI JURUSAN PERIKANAN FAKULTAS PERTANIAN UNTIRTA EKOSISTEM LAUT TROPIS (INTERAKSI ANTAR EKOSISTEM LAUT TROPIS ) ANI RAHMAWATI JURUSAN PERIKANAN FAKULTAS PERTANIAN UNTIRTA Tipologi ekosistem laut tropis Mangrove Terumbu Lamun Pencegah erosi Area pemeliharaan

Lebih terperinci

2.2. Struktur Komunitas

2.2. Struktur Komunitas 5 2. TINJAUAN PUSTAKA 2.1. Makrozoobentos Hewan bentos dibagi dalam tiga kelompok ukuran, yaitu makrobentos (ukuran lebih dari 1,0 mm), meiobentos (ukuran antara 0,1-1 mm) dan mikrobentos (ukuran kurang

Lebih terperinci

BAB I PENDAHULUAN. antara dua samudera yaitu Samudera Hindia dan Samudera Pasifik mempunyai

BAB I PENDAHULUAN. antara dua samudera yaitu Samudera Hindia dan Samudera Pasifik mempunyai BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Indonesia merupakan negara kepulauan yang secara geografis terletak di antara dua samudera yaitu Samudera Hindia dan Samudera Pasifik mempunyai keanekaragaman

Lebih terperinci

PEMETAAN BATHYMETRIC LAUT INDONESIA

PEMETAAN BATHYMETRIC LAUT INDONESIA PEMETAAN BATHYMETRIC LAUT INDONESIA By : I PUTU PRIA DHARMA APRILIA TARMAN ZAINUDDIN ERNIS LUKMAN ARIF ROHMAN YUDITH OCTORA SARI ARIF MIRZA Content : Latar Belakang Tujuan Kondisi Geografis Indonesia Metode

Lebih terperinci

BAB I PENDAHULUAN. sebagai sumber daya alam untuk keperluan sesuai kebutuhan hidupnya. 1 Dalam suatu

BAB I PENDAHULUAN. sebagai sumber daya alam untuk keperluan sesuai kebutuhan hidupnya. 1 Dalam suatu BAB I PENDAHULUAN A. Latar Belakang Organisme atau makhluk hidup apapun dan dimanapun mereka berada tidak akan dapat hidup sendiri. Kelangsungan hidup suatu organisme akan bergantung kepada organisme lain

Lebih terperinci

5.1. Analisis mengenai Komponen-komponen Utama dalam Pembangunan Wilayah Pesisir

5.1. Analisis mengenai Komponen-komponen Utama dalam Pembangunan Wilayah Pesisir BAB V ANALISIS Bab ini berisi analisis terhadap bahasan-bahasan pada bab-bab sebelumnya, yaitu analisis mengenai komponen-komponen utama dalam pembangunan wilayah pesisir, analisis mengenai pemetaan entitas-entitas

Lebih terperinci

BAB I PENDAHULUAN. Indonesia merupakan salah satu negara kepulauan terbesar di dunia yang

BAB I PENDAHULUAN. Indonesia merupakan salah satu negara kepulauan terbesar di dunia yang BAB I PENDAHULUAN A. Latar Belakang Indonesia merupakan salah satu negara kepulauan terbesar di dunia yang memiliki jumlah pulau yang sangat banyak dan dilintasi garis khatulistiwa. Wilayah Indonesia yang

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. bahasa Gorontalo yaitu Atiolo yang diartikan dalam bahasa Indonesia yakni

BAB IV HASIL DAN PEMBAHASAN. bahasa Gorontalo yaitu Atiolo yang diartikan dalam bahasa Indonesia yakni BAB IV HASIL DAN PEMBAHASAN A. Keadaan Umum Lokasi Pengamatan Desa Otiola merupakan pemekaran dari Desa Ponelo dimana pemekaran tersebut terjadi pada Bulan Januari tahun 2010. Nama Desa Otiola diambil

Lebih terperinci

PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER. Septian Nanda dan Aprillina Idha Geomatics Engineering

PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER. Septian Nanda dan Aprillina Idha Geomatics Engineering PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER Septian Nanda - 3311401055 dan Aprillina Idha - 3311401056 Geomatics Engineering Marine Acoustic, Batam State Politechnic Email : prillyaprillina@gmail.com ABSTRAK

Lebih terperinci

BAB IV GAMBARAN WILAYAH STUDI

BAB IV GAMBARAN WILAYAH STUDI BAB IV GAMBARAN WILAYAH STUDI IV.1 Gambaran Umum Kepulauan Seribu terletak di sebelah utara Jakarta dan secara administrasi Pulau Pramuka termasuk ke dalam Kabupaten Administrasi Kepulauan Seribu, Provinsi

Lebih terperinci

BAB I PENDAHULUAN. Plankton merupakan organisme renik yang hidup melayang-layang di air dan

BAB I PENDAHULUAN. Plankton merupakan organisme renik yang hidup melayang-layang di air dan BAB I PENDAHULUAN A. Latar Belakang Plankton merupakan organisme renik yang hidup melayang-layang di air dan mempunyai kemampaun berenang yang lemah dan pergerakannya selalu dipegaruhi oleh gerakan massa

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Ekosistem Sungai Air merupakan salah satu sumber daya alam dan kebutuhan hidup yang penting dan merupakan sadar bagi kehidupan di bumi. Tanpa air, berbagai proses kehidupan

Lebih terperinci