BAB I. Pendahuluan. 1. Latar Belakang Masalah

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I. Pendahuluan. 1. Latar Belakang Masalah"

Transkripsi

1 BAB I Pendahuluan 1. Latar Belakang Masalah Semakin canggihnya teknologi di bidang komputasi dan telekomunikasi pada masa kini, membuat informasi dapat dengan mudah didapatkan oleh banyak orang. Kemudahan ini menyebabkan informasi menjadi semakin banyak dan beragam. Informasi dapat berupa dokumen, berita, surat, cerita, laporan penelitian, data keuangan, dan lain-lain. Tidak dapat dipungkiri lagi informasi telah menjadi komoditi yang paling penting dalam dunia modern masa kini. Seiring dengan perkembangan informasi, banyak pihak menyadari bahwa masalah utama telah bergeser dari cara mengakses informasi menjadi memilih informasi yang berguna secara selektif. Usaha untuk memilih informasi ternyata lebih besar dari sekedar mendapatkan akses terhadap informasi. Pemilihan atau penemuan kembali informasi ini tidak mungkin dilakukan secara manual karena kumpulan informasi yang sangat besar dan terus bertambah besar.maka perlu adanya suatu proses pengolahan dokumen-dokumen yang berisi informasi.proses mencari dan mendapatkan informasi merupakan hal yang berkaitan erat dengan dunia informasi. Ketepatan hasil pencarian dan waktu pencarian menjadi beberapa faktor yang diperhatikan. Dokumen berbasis teks menjadi salah satu bentuk penyimpanan informasi. Biasanya pencarian dilakukan pada koleksi dokumen yang menjadi objek pencarian. Pencarian secara manual dapat dilakukan dengan membaca setiap dokumen pada koleksi dokumen untuk mendapatkan dokumen yang tepat dan sesuai kebutuhan. Namun dari hasil temuan kembali dokumen, pengguna tidak dapat melihat peran dari query dalam proses pencarian dokumen tersebut, urutan dokumen yang di-retrieve dinilai tidak informatif berdasarkan tingkat kesesuaiannya dengan query. Oleh karena itu dibutuhkan kategorisasi teks. Salah satu cara untuk mengatasi masalah ini adalah mengkategorisasikan teks sesuai dengan topik/kategori dokumen tersebut. Dalam kategorisasi teks, ada beberapa fase yang harus dilalui yaitu document indexing yang terdiri dari fase term selection dan term weighting, dan classifier learning. Dalam Skripsi ini yang menjadi focus dalam penelitian 1

2 adalah fase term weighting. Dalam beberapa penelitian, term weighting memiliki peranan penting dalam kesuksesan kategorisasi teks. Pernyataan tersebut dibuktikan dengan penelitian yang dilakukan Gerrard Salton dan Christopher Buckley [2] menyatakan bahwa term weighting memegang peranan penting dalam kategorisasi teks, selanjutnya penelitian yang dilakukan Christopher Buckley [3] menyatakan bahwa metode pembobotan yang lebih baik memiliki peranan lebih penting dibandingkan proses penyeleksian fitur dan akan lebih baik jika keduanya dijalankan secara hand-in-hand agar bisa lebih efektif. Salah satu metode pembobotan yang dikenal adalah TF-IDF dimana dalam metode ini setiap term/kata dalam sebuah dokumen dihitung frekuensinya dalam sebuah dokumen (term frequency) yang kemudian hasilnya dikombinasikan dengan frekuensi kemunculan term pada suatu kumpulan dokumen (inverse document frequency). Term yang sering muncul pada dokumen tapi jarang muncul pada kumpulan dokumen memberikan nilai bobot yang tinggi. TF-IDF akan meningkat dengan jumlah kemunculan term pada sebuah dokumen dan berkurang dengan jumlah term yang muncul pada kumpulan dokumen. Namun mengingat text categorization bersifat terawasi dimana menggunakan dataset yang dibagi menjadi dataset training dan dataset testing, maka diperlukan suatu metode yang memenuhi syarat diatas. Dalam konteks standar Information Retrieval, asumsi IDF cukup beralasan karena dapat menginterpretasikan term dengan baik karena term yang sering muncul dalam banyak dokumen adalah diskriminator yang tidak baik. Tapi ketika data training untuk query tersedia, cara yang lebih baik harus digunakan yang dapat membedakan term yang terdistribusi ke dalam kumpulan data training baik kategori positif maupun negative. Data training tidak tersedia dalam query di konsep standar IR, namun lebih sering tersedia untuk kategori dalam konteks TC, dimana gagasan relevansi dengan query digantikan dengan keanggotaan dalam kategori [4]. Maka dari itu digunakanlah Category-based Function yang ada pada Term Evalution Function seperti MaxStr sebagai pengganti fungsi IDF pada TF-IDF. Metode ini disebut ConfWeight Term Weighting. Penelitian dilakukan dengan menerapkan metode Supervised Term Weighting dan TF- IDF pada dataset Reuters dengan 10 kategori. Skema yang digunakan adalah TF-IDF dan ConfWeight. Setelah itu dilakukan klasifikasi dokumen dengan menggunakan metode Support Vector Machine (SVM) pada tools Weka. Analisis difokuskan pada pengaruh TF- IDF, TF-Chisquare, TF-IG, dan TF-GR terhadap performansi klasifier berdasarkan nilai precision, recall, dan f-measure. 2

3 2. Perumusan Masalah Dari latar belakang diatas maka masalah-masalah yang dihadapi, yaitu : 1. Bagaimana menerapkan term weighting dengan metode A Weighting Methods based on Confidence (ConfWeight) dalam pembobotan teks untuk mengkategorisasikan teks berdasarkan terms yang ada ke dalam sistem yang telah diintegrasikan dengan tools Weka untuk diklasifikasi. 2. Bagaimana menganalisis performansi dari penerapan term weighting dengan metode A Weighting Methods based on Confidence. Performansi diukur berdasarkan Precision, Recall, dan F-Measure, dengan data yang sudah dilakukan tahap preprocessing. Dalam menganalisis performansi akan digunakan teknik term weighting TFIDF sebagai pembanding. 3. Batasan Masalah 1. Data yang digunakan adalah dataset Reuteters dengan 10 kategori 2. Stopwords yang ada telah dihilangkan berdasarkan daftar stopwords yang terdiri dari 571 kata yang tertera pada 3. Tanda baca telah dihapus, semua huruf telah dikonversi menjadi huruf kecil, dan angka yang telah dihapus. 4. Proses stemming dilakukan menggunakan algoritma Porter Stemming [10]. 5. Metode klasifikasi yang digunakan adalah dengan menggunakan SVM yang diadopsi dari tools Weka 6. Parameter ukur yang digunakan adalah recall, precision, dan f-measure untuk menghitung performansi metode yang digunakan 4. Tujuan 1. Mengimplementasi metode ConfWeight Term Weighting dengan Term Evaluation Functions untuk mengkategorisasikan teks berdasarkan terms yang ada pada dataset kemudian diklasifikasi dengan SVM yang diadopsi dari tools Weka. 2. Menguji dan menganalisa performansi metode ConfWeight Term Weighting baik dengan local policy maupun global policy dari hasil ujicoba dengan parameter 3

4 evaluasi precision, recall, dan f-measure dengan metode pembanding TF-IDF dengan threshold local policy maupun global policy. 5. Metodologi Penyelesaian Masalah a) Studi Literatur Langkah ini bertujuan untuk memahami dasar teori mengenai indexing, Term Wieghting dan metode ConfWeight serta hal lain yang mendukung penyelesaian tugas akhir ini. Sumber dasar teori dapat berupa buku, paper, maupun halaman web. b) Pengumpulan dan Pemahaman Data Mencari dan mengumpulkan data yang berasal dari dataset reuters c) Analisis Kebutuhan dan Perancangan perangkat lunak Melakukan analisis kebutuhan perangkat lunak yang akan dibangun, agar didapatkan gambaran umum seperti apa perangkat lunak yang ingin dibangun, kemudian merancang perangkat lunak yang sesuai untuk memenuhi kebutuhan. Rancangan perangkat lunak dapat menjadi panduan saat implementasi perangkat lunak. Gambar 1.1 gambaran sistem 4

5 1. Proses input dokumen tekstual. 2. Melakukan preprocessing (tokenization, stopwords removal, stemming). 3. Proses input dataset ke dalam database. Proses tokenization. Proses tokenization merupakan proses pengubahan setiap huruf menjadi bentuk lowercase, dan penghilangan tanda baca yang terdiri dari:.,,,!, :, ;,?, &, (, ), *,,,, /. Tujuan dari proses ini adalah untuk mempermudah dalam proses indexing yang lain. Proses stopword removal. Proses stopword removal adalah proses penghilangan stopword pada dokumen. Stopword merupakan kata yang tergolong sebagai kata umum dan sering muncul. Proses stemming. Proses stemming merupakan proses pengubahan setiap kata ke dalam bentuk kata dasar. Proses stemming dilakukan menggunakan algoritma Porter. Sebagai contoh kata writing, wrote, dan writed diubah menjadi kata write. 4. Melakukan Term Weighting dengan meode ConfWeight dan TF-IDF. 5. Melakukan feature selection denagn mendapatkan nilai MaxStr dan dirangking dengan Information Gain (IG) dan threshold yang telah ditentukan 6. Klasifikasi dengan machine learning SVM, Machine learning Dengan menggunakan SVM yang diadopsi dari tools Weka 7. Proses penghitungan Precission, Recall, F-Measure. d) Implementasi Menganalisis segala kebutuhan sistem dalam proses pembuatan sistem serta melakukan implementasi sistem sesuai kebutuhan dan perancangan yang telah dilakukan. e) Pengujian dan Analisis hasil Implementasi Pengujian system berdasarkan dataset yang telah dipilih dan metode pembobotan term yang telah didefinisikan sebelumnya. 5

6 f) Pembuatan Laporan Tugas Akhir Pada tahap akhir, akan dilakukan pembuatan dokumentasi yang berupa laporan Skripsi. 6

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Semakin canggihnya teknologi di bidang komputasi dan telekomunikasi pada masa kini, membuat informasi dapat dengan mudah didapatkan oleh banyak orang. Kemudahan ini

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Text Mining Text Mining merupakan penerapan konsep dan teknik data mining untuk mencari pola dalam teks, proses penganalisaan teks guna menemukan informasi yang bermanfaat untuk

Lebih terperinci

BAB 1 PENDAHULUAN UKDW

BAB 1 PENDAHULUAN UKDW BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan ilmu pengetahuan yang pesat dewasa ini telah mendorong permintaan akan kebutuhan informasi ilmu pengetahuan itu sendiri. Cara pemenuhan kebutuhan

Lebih terperinci

BAB 1 PENDAHULUAN UKDW

BAB 1 PENDAHULUAN UKDW BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pada era ini perkembangan teknologi informasi sangat pesat. Hal ini ditandai dengan semakin populernya penggunaan internet dan perangkat lunak komputer sebagai

Lebih terperinci

BAB V EKSPERIMEN TEXT CLASSIFICATION

BAB V EKSPERIMEN TEXT CLASSIFICATION BAB V EKSPERIMEN TEXT CLASSIFICATION Pada bab ini akan dibahas eksperimen untuk membandingkan akurasi hasil text classification dengan menggunakan algoritma Naïve Bayes dan SVM dengan berbagai pendekatan

Lebih terperinci

RANCANG BANGUN SISTEM TEMU KEMBALI INFORMASI ABSTRAK TUGAS AKHIR MAHASISWA PRODI TEKNIK INFORMATIKA UNSOED Oleh : Lasmedi Afuan

RANCANG BANGUN SISTEM TEMU KEMBALI INFORMASI ABSTRAK TUGAS AKHIR MAHASISWA PRODI TEKNIK INFORMATIKA UNSOED Oleh : Lasmedi Afuan RANCANG BANGUN SISTEM TEMU KEMBALI INFORMASI ABSTRAK TUGAS AKHIR MAHASISWA PRODI TEKNIK INFORMATIKA UNSOED Oleh : Lasmedi Afuan Prodi Teknik Informatika, Fakultas Sains dan Teknik, Universitas Jenderal

Lebih terperinci

1 BAB I PENDAHULUAN. 1.1 Latar Belakang

1 BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan infrastruktur teknologi informasi dan penggunaannya berdampak luas dalam bagaimana manusia menjalani hidupnya. Salah satunya adalah dalam memperoleh

Lebih terperinci

Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction

Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction Junta Zeniarja 1, Abu Salam 2, Ardytha Luthfiarta 3, L Budi Handoko

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN Pada bab ini dijelaskan latar belakang dari penelitian klasifikasi dokumen teks. Tujuan dan ruang lingkup dari tugas akhir memberikan penjelasan mengenai hasil yang ingin diketahui dan

Lebih terperinci

1. Pendahuluan. 1.1 Latar belakang

1. Pendahuluan. 1.1 Latar belakang 1. Pendahuluan 1.1 Latar belakang Pada saat ini, kebutuhan setiap individu terhadap Internet semakin meningkat. Hal ini terlihat dari semakin banyaknya fasilitas yang ditawarkan dari dunia Internet itu

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Ketersediaan informasi yang semakin banyak menjadikan ringkasan sebagai kebutuhan yang sangat penting (Mulyana, 2010). Menurut (Hovy, 2001) Ringkasan merupakan teks

Lebih terperinci

Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF)

Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF) Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF) 1 Dhony Syafe i Harjanto, 2 Sukmawati Nur Endah, dan 2 Nurdin Bahtiar 1 Jurusan Matematika,

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar belakang

BAB 1 PENDAHULUAN 1.1. Latar belakang BAB 1 PENDAHULUAN 1.1. Latar belakang Dengan adanya perkembangan dan pertumbuhan yang secara cepat dalam hal informasi elektronik sangat diperlukan suatu proses untuk menyelesaikan suatu permasalahan itu

Lebih terperinci

Klasifikasi Teks Bahasa Indonesia Pada Corpus Tak Seimbang Menggunakan NWKNN

Klasifikasi Teks Bahasa Indonesia Pada Corpus Tak Seimbang Menggunakan NWKNN Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Klasifikasi Teks Bahasa Indonesia Pada Corpus Tak Seimbang Menggunakan NWKNN Achmad Ridok 1), Retnani Latifah 2) Filkom

Lebih terperinci

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Tinjauan atau review seseorang yang ditujukan kepada suatu objek atau produk sangat berpengaruh terhadap penilaian publik atas produk tersebut (Sahoo, 2013). Review

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI PENCARIAN INFORMASI BEASISWA DENGAN MENGGUNAKAN COSINE SIMILARITY

PERANCANGAN DAN PEMBUATAN APLIKASI PENCARIAN INFORMASI BEASISWA DENGAN MENGGUNAKAN COSINE SIMILARITY Vol. 4, No. 2 Desember 2014 ISSN 2088-2130 PERANCANGAN DAN PEMBUATAN APLIKASI PENCARIAN INFORMASI BEASISWA DENGAN MENGGUNAKAN COSINE SIMILARITY Andry Kurniawan, Firdaus Solihin, Fika Hastarita Prodi Teknik

Lebih terperinci

INTEGRASI PERINGKAS DOKUMEN OTOMATIS SEBAGAI FEATURE REDUCTION PADA CLUSTERING DOKUMEN

INTEGRASI PERINGKAS DOKUMEN OTOMATIS SEBAGAI FEATURE REDUCTION PADA CLUSTERING DOKUMEN INTEGRASI PERINGKAS DOKUMEN OTOMATIS SEBAGAI FEATURE REDUCTION PADA CLUSTERING DOKUMEN Abu Salam 1, Catur Supriyanto 2, Amiq Fahmi 3 1,2 Magister Teknik Informatika, Univ. Dian Nuswantoro Email: masaboe@yahoo.com

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN berikut. Tahapan penelitian yang dilakukan dalam penelitian adalah sebagai Indentifikasi Masalah Merumuskan Masalah Study Literatur Perancangan : 1. Flat Teks 2. Database

Lebih terperinci

BAB 3 LANDASAN TEORI

BAB 3 LANDASAN TEORI BAB 3 LANDASAN TEORI 3.1 Text Mining Text mining merupakan suatu teknologi untuk menemukan suatu pengetahuan yang berguna dalam suatu koleksi dokumen teks sehingga diperoleh tren, pola, atau kemiripan

Lebih terperinci

BAB III METODELOGI PENELITIAN

BAB III METODELOGI PENELITIAN BAB III METODELOGI PENELITIAN 3.1 Metode Penelitian Metode penelitian yang digunakan yaitu metode eksperimental dimana metode ini bekerja dengan memanipulasi dan melakukan kontrol pada objek penelitian

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Buku merupakan media informasi yang memiliki peran penting dalam perkembangan ilmu pengetahuan, karena dengan buku kita dapat memperoleh banyak informasi, pengetahuan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan sistematika tahapan yang dilaksanakan selama proses pembuatan tugas akhir. Secara garis besar metodologi penelitian tugas akhir ini dapat dilihat

Lebih terperinci

BAB I PENDAHULUAN. memberikan dampak yang luas dalam bagaimana manusia menjalani hidupnya.

BAB I PENDAHULUAN. memberikan dampak yang luas dalam bagaimana manusia menjalani hidupnya. BAB I PENDAHULUAN 1. 1.1. Latar Belakang Perkembangan infrastruktur dan penggunaan teknologi informasi memberikan dampak yang luas dalam bagaimana manusia menjalani hidupnya. Salah satunya adalah perolehan

Lebih terperinci

Stemming pada Preprocessing Twit Berbahasa Indonesia dengan Mengimplementasikan Algoritma Fonetik Soundex untuk Proses Klasifikasi

Stemming pada Preprocessing Twit Berbahasa Indonesia dengan Mengimplementasikan Algoritma Fonetik Soundex untuk Proses Klasifikasi Stemming pada Preprocessing Twit Berbahasa Indonesia dengan Mengimplementasikan Algoritma Fonetik Soundex untuk Proses Klasifikasi Stemming in Indonesian Language Twit Preprocessing Implementing Phonetic

Lebih terperinci

Implementasi Algoritma Term Frequency Inverse Document Frequency dan Vector Space Model untuk Klasifikasi Dokumen Naskah Dinas

Implementasi Algoritma Term Frequency Inverse Document Frequency dan Vector Space Model untuk Klasifikasi Dokumen Naskah Dinas Implementasi Algoritma Term Frequency Inverse Document Frequency dan Vector Space Model untuk Klasifikasi Dokumen Naskah Dinas A. Achmad 1, A. A. Ilham 2, Herman 3 1 Program Studi Teknik Elektro, Jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya perkembangan teknologi juga diikuti dengan berkembangnya penggunaan berbagai situs jejaring sosial. Salah satu jejaring sosial yang sangat marak digunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terkait 2.1.1. Implementasi Opinion Mining Pernah dilakukan penelitian tentang opinion mining membahas tentang ekstraksi data opini publik pada perguruan tinggi.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Analisis sentimen merupakan proses dalam mengolah, memahami, dan mengekstrak data dalam bentuk teks terhadap suatu topik, kejadian ataupun individu untuk mendapatkan

Lebih terperinci

PERSETUJUAI\ ARTIKEL ILMIAH. Mashar Eka Putra Dai. S1-Sistem Informasi. Teknik Informatika. Teknik. Penerapan Metode Document Frequency

PERSETUJUAI\ ARTIKEL ILMIAH. Mashar Eka Putra Dai. S1-Sistem Informasi. Teknik Informatika. Teknik. Penerapan Metode Document Frequency PERSETUJUAI\ ARTIKEL ILMIAH Artikel ilmiah hasil penelitian mahasiswa: Nama NIM Mashar Eka Putra Dai 53 1409036 Program Studi S1-Sistem Informasi Jurusan Teknik Informatika Fakultas Teknik Judul Karya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Rekomendasi Sistem rekomendasi adalah sebuah sistem yang dibangun untuk mengusulkan informasi dan menyediakan fasilitas yang diinginkan pengguna dalam membuat suatu keputusan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Seiring dengan perkembangan informasi, banyak pihak menyadari bahwa masalah utama telah bergeser dari cara mengakses atau bagaimana mencari informasi, namun

Lebih terperinci

CLUSTERING ARTIKEL BERITA BERBAHASA INDONESIA MENGGUNAKAN UNSUPERVISED FEATURE SELECTION

CLUSTERING ARTIKEL BERITA BERBAHASA INDONESIA MENGGUNAKAN UNSUPERVISED FEATURE SELECTION CLUSTERING ARTIKEL BERITA BERBAHASA INDONESIA MENGGUNAKAN UNSUPERVISED FEATURE SELECTION Diah Pudi Langgeni 1, ZK. Abdurahman Baizal 2, Yanuar Firdaus A.W. 3 Telp (022)7564108 ext 2298 Fax (022)7565934

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian yang penting (Baharudin, Lee and Khan, 2010). Beberapa peneliti telah

BAB II TINJAUAN PUSTAKA. penelitian yang penting (Baharudin, Lee and Khan, 2010). Beberapa peneliti telah BAB II TINJAUAN PUSTAKA Beberapa peneliti yang melakukan penelitian menganggap text mining menjadi sangat penting karena kemudahan untuk mendapatkan data elektronik dari berbagai macam sumber, karena itu

Lebih terperinci

UKDW 1. BAB 1 PENDAHULUAN Latar Belakang Masalah

UKDW 1. BAB 1 PENDAHULUAN Latar Belakang Masalah 1. BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Universitas yang baik dan terpercaya selalu memperhatikan perkembangan dan kondisi yang terjadi di universitas tersebut, salah satunya dengan memantau kinerja

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN berikut. Tahapan penelitian yang dilakukan dalam penelitian adalah sebagai Identifikasi Masalah Merumuskan Masalah Study Literatur Perancangan Struktur Menu Interface Analisa

Lebih terperinci

BAB I PENDAHULUAN. pendidikan, perbankan, perencanaan dan sebagainya. Dengan adanya teknologi komputer

BAB I PENDAHULUAN. pendidikan, perbankan, perencanaan dan sebagainya. Dengan adanya teknologi komputer BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Di era globalisasi seperti sekarang ini, perkembangan teknologi komputer berpengaruh besar pada tingkat kebutuhan manusia di berbagai bidang seperti bidang

Lebih terperinci

1. Pendahuluan 1.1 Latar belakang 1.2 Perumusan masalah

1. Pendahuluan 1.1 Latar belakang 1.2 Perumusan masalah 1. Pendahuluan 1.1 Latar belakang Informasi telah menjadi kebutuhan primer pada kehidupan saat ini. Informasi seakan-akan menjadi mata uang baru yang membuat akurasi menjadi sangat penting ketika mencari

Lebih terperinci

SISTEM PENCARIAN PASAL-PASAL PADA KITAB UNDANG-UNDANG HUKUM PIDANA DENGAN MENGGUNAKAN METODE TF-IDF. Abstrak

SISTEM PENCARIAN PASAL-PASAL PADA KITAB UNDANG-UNDANG HUKUM PIDANA DENGAN MENGGUNAKAN METODE TF-IDF. Abstrak SISTEM PENCARIAN PASAL-PASAL PADA KITAB UNDANG-UNDANG HUKUM PIDANA DENGAN MENGGUNAKAN METODE TF-IDF Muh. Alfarisi Ali¹, Moh. Hidayat Koniyo², Abd. Aziz Bouty³ ¹Mahasiswa Teknik Informatika Universitas

Lebih terperinci

BAB I PENDAHULUAN. Informasi telah menjadi kebutuhan primer pada kehidupan saat ini. Pesatnya

BAB I PENDAHULUAN. Informasi telah menjadi kebutuhan primer pada kehidupan saat ini. Pesatnya BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Informasi telah menjadi kebutuhan primer pada kehidupan saat ini. Pesatnya perkembangan teknologi dewasa ini telah menyebabkan aliran informasi begitu lancar

Lebih terperinci

BAB I PENDAHULUAN. Pada sekarang ini ketersediaan informasi berbentuk dokumen teks. sebagian besar sudah berbentuk elektronik (softcopy).

BAB I PENDAHULUAN. Pada sekarang ini ketersediaan informasi berbentuk dokumen teks. sebagian besar sudah berbentuk elektronik (softcopy). BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada sekarang ini ketersediaan informasi berbentuk dokumen teks sebagian besar sudah berbentuk elektronik (softcopy). Kemungkinan penyimpanan media teks ke

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Metode Pengumpulan Data Data yang digunakan pada penelitian ini merupakan data sentimen dari pengguna aplikasi android yang memberikan komentarnya pada fasilitas user review

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Media massa memiliki berbagai jenis media penyiaran seperti televisi dan radio dan media cetak seperti surat kabar, majalah dan tabloid. Namun, dengan kemajuan teknologi

Lebih terperinci

Analisis dan Pengujian Kinerja Korelasi Dokumen Pada Sistem Temu Kembali Informasi

Analisis dan Pengujian Kinerja Korelasi Dokumen Pada Sistem Temu Kembali Informasi Jurnal Integrasi, vol. 6, no. 1, 2014, 21-25 ISSN: 2085-3858 (print version) Article History Received 10 February 2014 Accepted 11 March 2014 Analisis dan Pengujian Kinerja Korelasi Dokumen Pada Sistem

Lebih terperinci

KLASIFIKASI SUPERVISED LEARNING PADA TEKS BAHASA BALI DENGAN METODE INFORMATION GAIN DAN NAIVE BAYES CLASSIFIER

KLASIFIKASI SUPERVISED LEARNING PADA TEKS BAHASA BALI DENGAN METODE INFORMATION GAIN DAN NAIVE BAYES CLASSIFIER TESIS KLASIFIKASI SUPERVISED LEARNING PADA TEKS BAHASA BALI DENGAN METODE INFORMATION GAIN DAN NAIVE BAYES CLASSIFIER IDA BAGUS GEDE WIDNYANA PUTRA NIM 1491761007 PROGRAM MAGISTER PROGRAM STUDI TEKNIK

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Weblog, atau yang sering disebut sebagai Blog, merupakan bagian tak terpisahkan dalam perkembangan dunia teknologi informasi berbasis Web. Berbagai jenis informasi

Lebih terperinci

JURNAL ITSMART Vol 4. No 2. Desember 2015 ISSN :

JURNAL ITSMART Vol 4. No 2. Desember 2015 ISSN : Analisis Perbandingan Metode Vector Space Model dan Weighted Tree Similarity dengan Cosine Similarity pada kasus Pencarian Informasi Pedoman Pengobatan Dasar di Puskesmas Viko Basmalah Wicaksono Jurusan

Lebih terperinci

BAB 3 LANDASAN TEORI

BAB 3 LANDASAN TEORI BAB 3 LANDASAN TEORI 3.1 Twitter API Application Programming Interface (API) merupakan fungsi-fungsi/perintah-perintah untuk menggantikan bahasa yang digunakan dalam system calls dengan bahasa yang lebih

Lebih terperinci

Analisis dan Pengujian Kinerja Korelasi Dokumen Pada Sistem Temu Kembali Informasi

Analisis dan Pengujian Kinerja Korelasi Dokumen Pada Sistem Temu Kembali Informasi Analisis dan Pengujian Kinerja Korelasi Dokumen Pada Sistem emu Kembali Informasi Ari Wibowo Program Studi eknik Multimedia dan Jaringan, Politeknik Negeri Batam E-mail : wibowo@polibatam.ac.id Abstrak

Lebih terperinci

BAB 3 METODE PENELITIAN. pengelolaan dokumen yang efektif agar kita dapat me-retrieve informasi yang

BAB 3 METODE PENELITIAN. pengelolaan dokumen yang efektif agar kita dapat me-retrieve informasi yang 58 BAB 3 METODE PENELITIAN 3.1 Analisis Masalah Seiring dengan perkembangan zaman, jumlah informasi yang disimpan dalam betuk digital semakin bertambah, sehingga dibutuhkan cara pengorganisasian dan pengelolaan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan rangkaian dari langkah-langkah yang diterapkan dalam penelitian, secara umum dan khusus langkah-langkah tersebut tertera pada Gambar flowchart

Lebih terperinci

Pengujian Kerelevanan Sistem Temu Kembali Informasi

Pengujian Kerelevanan Sistem Temu Kembali Informasi Pengujian Kerelevanan Sistem Temu Kembali Informasi Ari Wibowo / 23509063 Jurusan Teknik Informatika, Politeknik Negeri Batam Jl. Parkway No 1 Batam Center, Batam wibowo@polibatam.ac.id Abstrak Sistem

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sumber informasi atau referensi sudah merupakan hal yang tidak asing lagi bagi seorang peneliti, terutamanya bagi para mahasiswa yang sedang melakukan penelitian untuk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Sekarang ini, ketersediaan sumber informasi dalam bentuk dokumen teks sebagaian besar telah disajikan ke dalam bentuk elektronik. Kemungkinan penyimapan media

Lebih terperinci

KOMBINASI TEKNIK CHI SQUARE DAN SINGULAR VALUE DECOMPOSITION UNTUK REDUKSI FITUR PADA PENGELOMPOKAN DOKUMEN

KOMBINASI TEKNIK CHI SQUARE DAN SINGULAR VALUE DECOMPOSITION UNTUK REDUKSI FITUR PADA PENGELOMPOKAN DOKUMEN KOMBINASI TEKNIK CHI SQUARE DAN SINGULAR VALUE DECOMPOSITION UNTUK REDUKSI FITUR PADA PENGELOMPOKAN DOKUMEN Catur Supriyanto 1, Affandy 2 1,2 Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal

Lebih terperinci

PENGGUNAAN FITUR ABSTRAKSI DAN CATATAN PUBLIKASI PENULIS UNTUK KLASIFIKASI ARTIKEL ILMIAH DENGAN METADATA YANG TERBATAS

PENGGUNAAN FITUR ABSTRAKSI DAN CATATAN PUBLIKASI PENULIS UNTUK KLASIFIKASI ARTIKEL ILMIAH DENGAN METADATA YANG TERBATAS PENGGUNAAN FITUR ABSTRAKSI DAN CATATAN PUBLIKASI PENULIS UNTUK KLASIFIKASI ARTIKEL ILMIAH DENGAN METADATA YANG TERBATAS Halimatus Sa dyah, Nurissaidah Ulinnuha Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

IMPLEMENTASI K NEAREST NEIGHBOR (KNN) PADA KLASIFIKASI ARTIKEL WIKIPEDIA INDONESIA

IMPLEMENTASI K NEAREST NEIGHBOR (KNN) PADA KLASIFIKASI ARTIKEL WIKIPEDIA INDONESIA IMPLEMENTASI K NEAREST NEIGHBOR (KNN) PADA KLASIFIKASI ARTIKEL WIKIPEDIA INDONESIA Erik Hardiyanto 1, Faisal Rahutomo 2, Dwi Puspitasari 3 Jurusan Teknologi Informasi, Program Studi Teknik Informatika,

Lebih terperinci

Seleksi Fitur Pada Dokumen Abstrak Teks Bahasa Indonesia Menggunakan Metode Information Gain

Seleksi Fitur Pada Dokumen Abstrak Teks Bahasa Indonesia Menggunakan Metode Information Gain IJCCS, Vol.x, No.x, Julyxxxx, pp. 1~5 ISSN: 1978-1520 Seleksi Fitur Pada Dokumen Abstrak Teks Bahasa Indonesia Menggunakan Metode Information Gain Indah Maulida 1, Addy Suyatno 2, Heliza Rahmania Hatta

Lebih terperinci

IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOUR YANG BERDASARKAN ONE PASS CLUSTERING UNTUK KATEGORISASI TEKS

IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOUR YANG BERDASARKAN ONE PASS CLUSTERING UNTUK KATEGORISASI TEKS IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOUR YANG BERDASARKAN ONE PASS CLUSTERING UNTUK KATEGORISASI TEKS Andreas Daniel Arifin 1, Isye Arieshanti 2, Agus Zainal Arifin 3 1,2,3 Jurusan Teknik Informatika,

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1.2 Hipotesis

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1.2 Hipotesis BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Setiap matakuliah memiliki silabus perkuliahan yang berisi materi-materi mengenai matakuliah tersebut. Silabus disusun berdasarkan buku-buku referensi utama

Lebih terperinci

BAB II DASAR TEORI Crawler Definisi Focused Crawler dengan Algoritma Genetik [2]

BAB II DASAR TEORI Crawler Definisi Focused Crawler dengan Algoritma Genetik [2] BAB II DASAR TEORI Pada bab ini dibahas teori mengenai focused crawler dengan algoritma genetik, text mining, vector space model, dan generalized vector space model. 2.1. Focused Crawler 2.1.1. Definisi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Penelitian 4.1.1 Support Vector Machines (SVM) Setelah melalui proses training dan testing dengan metode Support Vector Machines (SVM), diperoleh hasil yang tertera

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN Bab ini berisikan tentang alasan peneliti mengambil permasalahan ini. Pada bab ini poin-poin yang akan dipaparkan antara lain Latar Belakang, Perumusan Masalah, Batasan Masalah, Tujuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terkait Penelitian terkait dengan topik analisis sentimen cukup banyak, berikut beberapa penelitian yang tekait dengan analisa sentimen yang menggunakan seleksi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Information Retrieval Perkembangan teknologi internet yang sangat pesat membuat pengguna harus dapat menyaring informasi yang dibutuhkannya. Information retrieval atau sistem

Lebih terperinci

INFORMATION RETRIEVAL SYSTEM PADA PENCARIAN FILE DOKUMEN BERBASIS TEKS DENGAN METODE VECTOR SPACE MODEL DAN ALGORITMA ECS STEMMER

INFORMATION RETRIEVAL SYSTEM PADA PENCARIAN FILE DOKUMEN BERBASIS TEKS DENGAN METODE VECTOR SPACE MODEL DAN ALGORITMA ECS STEMMER INFORMATION RETRIEVAL SSTEM PADA PENCARIAN FILE DOKUMEN BERBASIS TEKS DENGAN METODE VECTOR SPACE MODEL DAN ALGORITMA ECS STEMMER Muhammad asirzain 1), Suswati 2) 1,2 Teknik Informatika, Fakultas Teknik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA A. Tinjauan Pustaka Penelitian-penelitian yang pernah dilakukan di bidang information retrieval telah memunculkan berbagai metode pembobotan dan clustering untuk mengelompokkan

Lebih terperinci

SISTEM PENCARIAN AYAT AL-QUR AN BERDASARKAN TERJEMAHAN BAHASA INDONESIA DENGAN PEMODELAN RUANG VEKTOR TUGAS AKHIR

SISTEM PENCARIAN AYAT AL-QUR AN BERDASARKAN TERJEMAHAN BAHASA INDONESIA DENGAN PEMODELAN RUANG VEKTOR TUGAS AKHIR SISTEM PENCARIAN AYAT AL-QUR AN BERDASARKAN TERJEMAHAN BAHASA INDONESIA DENGAN PEMODELAN RUANG VEKTOR TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Pada Jurusan Teknik

Lebih terperinci

IMPLEMENTASI VECTOR SPACE MODEL DAN BEBERAPA NOTASI METODE TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) PADA SISTEM TEMU KEMBALI INFORMASI

IMPLEMENTASI VECTOR SPACE MODEL DAN BEBERAPA NOTASI METODE TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) PADA SISTEM TEMU KEMBALI INFORMASI IMPLEMENTASI VECTOR SPACE MODEL DAN BEBERAPA NOTASI METODE TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) PADA SISTEM TEMU KEMBALI INFORMASI Oka Karmayasa dan Ida Bagus Mahendra Program Studi Teknik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tes Secara harfiah kata tes berasal dari kata bahasa prancis kuno: testum yang berarti piring untuk menyisihkan logam-logam mulia, dalam bahasa Indonesia diterjemahkan dengan

Lebih terperinci

BAB I PENDAHULUAN. Dalam suatu basis data, pendekatan model data relasional masih banyak dimanfaatkan untuk penyimpanan data dan informasi terhadap

BAB I PENDAHULUAN. Dalam suatu basis data, pendekatan model data relasional masih banyak dimanfaatkan untuk penyimpanan data dan informasi terhadap BAB I PENDAHULUAN 1. 1 Latar Belakang Sistem informasi merupakan serangkaian prosedur normal dimana data dikumpulkan, diproses menjadi sebuah informasi yang valid dan kemudian didistribusikan ke para pengguna

Lebih terperinci

BAB III PERANCANGAN. Fitur. Reduksi & Pengelompokan. Gambar 3.1. Alur Pengelompokan Dokumen

BAB III PERANCANGAN. Fitur. Reduksi & Pengelompokan. Gambar 3.1. Alur Pengelompokan Dokumen BAB III PERANCANGAN Pada bab ini akan delaskan tahapan yang dilalui dalam melakukan perancangan penelitian yang akan dilakukan dalam tugas akhir ini. Tahapan tersebut meliputi perancangan implementasi

Lebih terperinci

IMPLEMENTASI ALGORITMA RANDOM FORESTS UNTUK KLASIFIKASI SPAM PADA CITRA DAN TEXT INSTAGRAM TUGAS AKHIR

IMPLEMENTASI ALGORITMA RANDOM FORESTS UNTUK KLASIFIKASI SPAM PADA CITRA DAN TEXT INSTAGRAM TUGAS AKHIR IMPLEMENTASI ALGORITMA RANDOM FORESTS UNTUK KLASIFIKASI SPAM PADA CITRA DAN TEXT INSTAGRAM TUGAS AKHIR RIZKY NOVRIYEDI PUTRA 1132001001 PROGRAM STUDI INFORMATIKA FAKULTAS TEKNIK DAN ILMU KOMPUTER UNIVERSITAS

Lebih terperinci

Contoh Perhitungan Kemiripan Cosinus pada Model Ruang Vektor

Contoh Perhitungan Kemiripan Cosinus pada Model Ruang Vektor Contoh Perhitungan Kemiripan Cosinus pada Model Ruang Vektor Persoalan 1: Ada 4 dokumen (D1 s.d D4): D1: dolar naik harga naik penghasilan turun D2: harga naik harusnya gaji juga naik D3: Premium tidak

Lebih terperinci

PEMANFAATAN ALGORITMA TF/IDF UNTUK SISTEM INFORMASI e-complaint HANDLING

PEMANFAATAN ALGORITMA TF/IDF UNTUK SISTEM INFORMASI e-complaint HANDLING PEMANFAATAN ALGORITMA TF/IDF UNTUK SISTEM INFORMASI e-complaint HANDLING Rudhi Ardi Sasmita Jurusan Sistem Informasi, Fakultas Ilmu Komputer, Universitas Narotama Surabaya rudhisasmito@gmail.com Abstrak

Lebih terperinci

BAB 1 PENDAHULUAN. seluruh dunia menjadi sebuah fenomena yang sangat mengejutkan dalam satu abad

BAB 1 PENDAHULUAN. seluruh dunia menjadi sebuah fenomena yang sangat mengejutkan dalam satu abad 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan komputer di dalam lingkungan kehidupan masyarakat di seluruh dunia menjadi sebuah fenomena yang sangat mengejutkan dalam satu abad terakhir ini. Hal

Lebih terperinci

Implementasi Vector Space Model dalam Pembangkitan Frequently Asked Questions Otomatis dan Solusi yang Relevan untuk Keluhan Pelanggan

Implementasi Vector Space Model dalam Pembangkitan Frequently Asked Questions Otomatis dan Solusi yang Relevan untuk Keluhan Pelanggan Scientific Journal of Informatics Vol. 2, No. 2, November 2015 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Implementasi Vector Space Model dalam Pembangkitan Frequently

Lebih terperinci

PENDAHULUAN. 1.1 Latar Belakang

PENDAHULUAN. 1.1 Latar Belakang DAFTAR TABEL Tabel 3-1 Dokumen Term 1... 17 Tabel 3-2 Representasi... 18 Tabel 3-3 Centroid pada pengulangan ke-0... 19 Tabel 3-4 Hasil Perhitungan Jarak... 19 Tabel 3-5 Hasil Perhitungan Jarak dan Pengelompokkan

Lebih terperinci

INVERSE CLASS FREQUENCY DAN NAÏVE BAYES PADA KLASIFIKASI DUAL STAGE PADA DOKUMEN BERBAHASA ARAB

INVERSE CLASS FREQUENCY DAN NAÏVE BAYES PADA KLASIFIKASI DUAL STAGE PADA DOKUMEN BERBAHASA ARAB INVERSE CLASS FREQUENCY DAN NAÏVE BAYES PADA KLASIFIKASI DUAL STAGE PADA DOKUMEN BERBAHASA ARAB Dika R. Yunianto dikarizky66@gmail.com Septyawan R. Wardhana rossywardhana@gmail.com Rizka W. Sholikah rizkaws@gmail.com

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Pada penelitian tugas akhir ini ada beberapa tahapan penelitian yang akan dilakukan seperti yang terlihat pada gambar 3.1: Identifikasi Masalah Rumusan Masalah Studi Pustaka

Lebih terperinci

KLASIFIKASI DATA PENGADUAN MASYARAKAT PADA LAMAN PESDUK CIMAHI MENGGUNAKAN ROCCHIO

KLASIFIKASI DATA PENGADUAN MASYARAKAT PADA LAMAN PESDUK CIMAHI MENGGUNAKAN ROCCHIO F.15 KLASIFIKASI DATA PENGADUAN MASYARAKAT PADA LAMAN PESDUK CIMAHI MENGGUNAKAN ROCCHIO Khusnul Khuluqiyah *, Tacbir Hendro Pudjiantoro, Agung Wahana Program Studi Informatika, Fakultas Matematika dan

Lebih terperinci

PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN

PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN Rendy Handoyo 1, R. Rumani M 2, Surya Michrandi Nasution 3 1,2,3 Gedung N-203, Program Studi Sistem

Lebih terperinci

KLASIFIKASI TEKS BAHASA BALI DENGAN METODE SUPERVISED LEARNING NAIVE BAYES CLASSIFIER

KLASIFIKASI TEKS BAHASA BALI DENGAN METODE SUPERVISED LEARNING NAIVE BAYES CLASSIFIER Teknologi Elektro, Vol. 15, No.2, Juli - Desemberr 2016 81 KLASIFIKASI TEKS BAHASA BALI DENGAN METODE SUPERVISED LEARNING NAIVE BAYES CLASSIFIER Ida Bagus Gede Widnyana Putra 1, Made Sudarma 2, I Nyoman

Lebih terperinci

Gambar 1.1 Proses Text Mining [7]

Gambar 1.1 Proses Text Mining [7] 1. BAB II LANDASAN TEORI 2.1 Text Mining Text mining memiliki definisi menambang data yang berupa teks dimana sumber data biasanya didapatkan dari dokumen, dan tujuannya adalah mencari kata-kata yang dapat

Lebih terperinci

TEKNIK VECTOR SPACE MODEL (VSM) DALAM PENENTUAN PENANGANAN DAMPAK GAME ONLINE PADA ANAK

TEKNIK VECTOR SPACE MODEL (VSM) DALAM PENENTUAN PENANGANAN DAMPAK GAME ONLINE PADA ANAK F.13 TEKNIK VECTOR SPACE MODEL (VSM) DALAM PENENTUAN PENANGANAN DAMPAK GAME ONLINE PADA ANAK Bania Amburika 1*,Yulison Herry Chrisnanto 1, Wisnu Uriawan 2 1 Jurusan Informatika, Fakultas MIPA, Universitas

Lebih terperinci

Term Weighting Berbasis Indeks Buku dan Kelas untuk Perangkingan Dokumen Berbahasa Arab

Term Weighting Berbasis Indeks Buku dan Kelas untuk Perangkingan Dokumen Berbahasa Arab Term Weighting Berbasis Indeks Buku dan Kelas untuk Perangkingan Dokumen Berbahasa Arab M. Ali Fauzi 1, Dr. Agus Zainal Arifin 2, S.Kom, M.Kom, Anny Yuniarti 3, S.Kom, M.Comp.Sc Institut Teknologi Sepuluh

Lebih terperinci

Pemanfaatan Metode Vector Space Model dan Metode Cosine Similarity pada Fitur Deteksi Hama dan Penyakit Tanaman Padi

Pemanfaatan Metode Vector Space Model dan Metode Cosine Similarity pada Fitur Deteksi Hama dan Penyakit Tanaman Padi Pemanfaatan Metode Vector Space Model dan Metode Cosine Similarity pada Fitur Deteksi Hama dan Penyakit Tanaman Padi Ana Triana Informatika, Fakultas MIPA, Universitas Sebelas Maret Surakarta Jl. Ir. Sutami

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang Masalah

BAB I PENDAHULUAN I.1. Latar Belakang Masalah BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dalam era teknologi seperti saat ini, informasi berupa teks sudah tidak lagi selalu tersimpan dalam media cetak seperti kertas. Orang sudah mulai cenderung

Lebih terperinci

DAFTAR ISI. SKRIPSI... ii

DAFTAR ISI. SKRIPSI... ii DAFTAR ISI SKRIPSI... i SKRIPSI... ii HALAMAN PENGESAHAN... ii PERNYATAAN... iii HALAMAN MOTO DAN PERSEMBAHAN... iv PRAKATA... v DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xiii INTISARI... xiv

Lebih terperinci

Perangkingan Dokumen Berbahasa Arab Menggunakan Latent Semantic Indexing

Perangkingan Dokumen Berbahasa Arab Menggunakan Latent Semantic Indexing Wahib, Perangkingan Dokumen Berbahasa Arab Menggunakan Latent Semantic Indexing 83 Perangkingan Dokumen Berbahasa Arab Menggunakan Latent Semantic Indexing Aminul Wahib 1, Pasnur 2, Putu Praba Santika

Lebih terperinci

Pencarian Semantik Dokumen Berita Menggunakan Essential Dimension of Latent Semantic Indexing dengan Memakai Reduksi Fitur Document Frequency

Pencarian Semantik Dokumen Berita Menggunakan Essential Dimension of Latent Semantic Indexing dengan Memakai Reduksi Fitur Document Frequency Pencarian Semantik Dokumen Berita Menggunakan Essential Dimension of Latent Semantic Indexing dengan Memakai Reduksi Fitur Document Frequency dan Information Gain Thresholding Yuita Arum Sari 1), Eva Yulia

Lebih terperinci

EKSTRAKSI FITUR SITUS BERITA ONLINE UNTUK KALEIDOSKOP BERITA TAHUNAN

EKSTRAKSI FITUR SITUS BERITA ONLINE UNTUK KALEIDOSKOP BERITA TAHUNAN EKSTRAKSI FITUR SITUS BERITA ONLINE UNTUK KALEIDOSKOP BERITA TAHUNAN Afri Yosela Putri 1, Faisal Rahutomo 2, Ridwan Rismanto 3 1, 2, 3 Jurusan Teknologi Informasi, Program Studi Teknik Informatika, Politeknik

Lebih terperinci

Klasifikafi Dokumen Temu Kembali Informasi dengan K-Nearest Neghbour. Information Retrieval Document Classified with K-Nearest Neighbor

Klasifikafi Dokumen Temu Kembali Informasi dengan K-Nearest Neghbour. Information Retrieval Document Classified with K-Nearest Neighbor Klasifikafi Dokumen Temu Kembali Informasi dengan K-Nearest Neghbour Information Retrieval Document Classified with K-Nearest Neighbor Endah Purwanti 1 Fakultas Sains dan Teknologi Universitas Airlangga

Lebih terperinci

PEMILIHAN FITUR OPTIMAL UNTUK TUGAS AKHIR MAHASISWA DENGAN METODE SUPPORT VECTOR MACHINE

PEMILIHAN FITUR OPTIMAL UNTUK TUGAS AKHIR MAHASISWA DENGAN METODE SUPPORT VECTOR MACHINE Vol 2, No 3 Juni 2012 ISSN 2088-2130 PEMILIHAN FITUR OPTIMAL UNTUK TUGAS AKHIR MAHASISWA DENGAN METODE SUPPORT VECTOR MACHINE Devie Rosa Anamisa 1), Eka Mala Sari Rochman 2) 1,2 Teknik Informatika, Fakultas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Hukum acara pidana yang tertuang dalam Kitab Undang-undang Hukum Acara Pidana (KUHAP), merupakan kumpulan aturan-aturan yang digunakan untuk melaksanakan tata

Lebih terperinci

ANALISA KOMPETENSI DOSEN DALAM PENENTUAN MATAKULIAH YANG DIAMPU MENGGUNAKAN METODE CF-IDF A B S T R A K

ANALISA KOMPETENSI DOSEN DALAM PENENTUAN MATAKULIAH YANG DIAMPU MENGGUNAKAN METODE CF-IDF A B S T R A K ANALISA KOMPETENSI DOSEN DALAM PENENTUAN MATAKULIAH YANG DIAMPU MENGGUNAKAN METODE CF-IDF Oleh : Tacbir Hendro Pudjiantoro A B S T R A K Kompetensi dosen adalah salah satu bagian yang utama dalam penunjukan

Lebih terperinci

Fatkhul Amin Dosen Fakultas Teknologi Informasi Universitas Stikubank Semarang

Fatkhul Amin Dosen Fakultas Teknologi Informasi Universitas Stikubank Semarang 45 Dinamika Teknik Januari IMPLEMENTASI SEARCH ENGINE (MESIN PENCARI) MENGGUNAKAN METODE VECTOR SPACE MODEL Dosen Fakultas Teknologi Informasi Universitas Stikubank Semarang Abstract Growth of Machine

Lebih terperinci

Tugas Makalah. Sistem Temu Kembali Informasi (STKI) TI Implementasi Metode Generalized Vector Space Model Pada Information Retrieval System

Tugas Makalah. Sistem Temu Kembali Informasi (STKI) TI Implementasi Metode Generalized Vector Space Model Pada Information Retrieval System Tugas Makalah Sistem Temu Kembali Informasi (STKI) TI029306 Implementasi Metode Generalized Vector Space Model Pada Information Retrieval System Oleh : I PUTU ANDREAS WARANU 1204505042 Dosen : I Putu Agus

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pada zaman seperti sekarang ini, jurnal atau berita elektronik merupakan suatu bentuk hasil karya dari seseorang yang sudah familiar. Di dalam karyakarya tersebut

Lebih terperinci

JULIO ADISANTOSO - ILKOM IPB 1

JULIO ADISANTOSO - ILKOM IPB 1 KOM341 Temu Kembali Informasi KULIAH #3 Inverted Index Inverted index construction Kumpulan dokumen Token Modifikasi token Tokenizer Linguistic modules perkebunan, pertanian, dan kehutanan perkebunan pertanian

Lebih terperinci

BAB 3 PERANCANGAN 3.1 GAMBARAN UMUM PROSES SEGMENTASI DOKUMEN

BAB 3 PERANCANGAN 3.1 GAMBARAN UMUM PROSES SEGMENTASI DOKUMEN 28 BAB 3 PERANCANGAN Pada bab ini akan dijelaskan mengenai rancangan percobaan pada penelitian segmentasi dokumen ini. Pembahasan akan dimulai dengan penjelasan mengenai gambaran umum proses segmentasi

Lebih terperinci