MEAN SQUARE ERROR TERKECIL DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA

Ukuran: px
Mulai penontonan dengan halaman:

Download "MEAN SQUARE ERROR TERKECIL DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA"

Transkripsi

1 MEA QUARE ERROR TERKEIL DARI KOMBIAI PEAKIR RAIO-PRODUK UTUK RATA-RATA POPULAI PADA AMPLIG AAK BERTRATA R Kurat *, gt ugarto, Ruam Efed Maasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu Pegetaua Alam Uverstas Rau Kampus Bawda Peabaru, 893, Idoesa ABTRAT Ts paper dscussed about tree te rato-product emators for mea populato te ratfed radom samplg It s combatos of rato emator ad product emator ratfed radom samplg Ts paper s a revew from te paper of Talor etal [ommucatos of te Korea tatcal ocet 8:-8] Te emators dscussed are te combato of rato-product emator, combato of rato-product emator usg coeffcet of varato ad combato of rato-product emator usg coeffcet of urtoss All of emators are bas emator Te te mea square error (ME) of eac emator s evaluated Furtermore, te ME of eac emator s compared Ts comparso sows tat te combato of rato-product emator s te mo effcet, tat s wt te smalle ME Kewords: bas, coeffcet of varato, coeffcet of urtoss, rato-product emator, ratfed radom samplg, mea square error ABTRAK Pada artel dbaas tga peasr raso-produ utu rata-rata populas pada samplg aca berrata Peasr raso-produ merupaa ombas dar peasr raso da peasr produ pada samplg aca berrata Artel merupaa aja ulag dar artel Talor etal [ommucatos of te Korea tatcal ocet 8:-8] Peasr ag dbaas adala ombas peasr raso-produ, ombas peasr raso-produ megguaa oefse varas da ombas peasr rasoprodu megguaa oefse urtoss Ketga peasr merupaa peasr bas, lalu setap peasr dcar ME elajuta, ME dar masg-masg peasr dbadga Perbadga meujua ombas peasr raso-produ ag efse adala peasr ag mempua ME terecl Kata Kuc: bas, oefse varas, oefse urtoss, peasr raso-produ, samplg aca Berrata, mea square error

2 PEDAHULUA Megata etelta peasr pada samplg aca berrata, dguaa beberapa metode dataraa metode peasr raso atau metode peasr produ Metode peasr raso-produ merupaa te utu memperraa la dar suatu parameter Dalam metode peasr raso-produ, suatu varabel peduug ag berubuga dega suatu varabel ag aa ta telt dperole utu setap ut ddalam sampel Dega megambl ubuga atara da, dmaa adala ut dar populas berarater da adala ut dar populas berarater Dalam measr rata-rata populas, suatu varabel peduug ag detau berorelas postf dega varabel ag dtelt dguaa metode peasr raso sedaga, suatu varabel peduug ag detau berorelas egatf dega varabel ag aa dtelt dguaa metode peasr produ Berdasara gagasa soda da Dwved (98) dalam memperraa rata-rata populas megguaa oefse varas ag detau dar varabel peduug pada metode peasr raso-produ da g (004) memperraa rata-rata populas megguaa oefse urtoss dar varabel peduug pada metode peasr raso-produ [3] Jes peasr raso-produ pada samplg aca berrata ag dbaas pada peelta adala ombas raso-produ utu rata-rata populas pada samplg aca bertrata, ombas peasr raso-produ ag beroefse varas utu rata-rata populas pada samplg aca berrata, da ombas peasr raso-produ ag beroefse urtoss utu rata-rata populas pada samplg aca berrata [5] AMPLIG AAK EDERHAA amplg aca sederaa adala sebua metode ag dguaa utu megambl ut sampel dar ut populas segga setap ut populas meml esempata ag sama utu dpl mejad ut sampel Dalam al pegambla sampel dlaua tapa pegembala agar arater ut-ut leb aurat [4] Probabltas terpla aggota dar ut populas sebaga ut sampel pada pegambla pertama atu, probabltas pada pegambla edua atu sampa probabltas pada pegambla e- atu Maa probabltas seluru ut-ut tertetu ag terpl dalam pegambla adala Teorema [: 9] Apabla sampel beruura dambl dar populas beruura ag berarater, dega samplg aca sederaa maa varas rata-rata sampel dotasa dega V da drumusa sebaga V f,

3 dega f da Teorema [: 9] Ja, adala sebua pasaga ag bervaras dalam ut dalam populas da, adala rata-rata dar sampel aca sederaa beruura, maa ovarasa adala ov, f 3 AMPLIG AAK BERTRATA Peara sampel aca berrata adala suatu metode peara sampel, dmaa populas beruura dratfas mejad beberapa rata, emuda sampel dambl secara radom berdasara setap rata arat-sarat ag arus dpeu utu dapat megguaa samplg aca berrata atu, arus ada rtera ag sesua ag aa dperguaa sebaga dasar utu meratfas populas e dalam ratum-ratum, ada data pedaulua dar populas megea rtera ag dguaa utu membuat ratfas, da dsesuaa dega masud da tujua dar peelta em peara sampel dalam tap-tap ratum dlaua secara samplg aca sederaa Teorema 3 [: 05] Utu peara sampel aca berrata, varas dar V dega merupaa pembag ratum e- But dar teorema dapat dlat pada [: 05], adala Teorema 0 [:9] Ja, adala sebua pasaga ag bervaras dtetapa pada ut dalam populas da, adala rata-rata dar sampel aca berrata beruura, maa ovarasa dotasa dega ov ov,, But dar teorema dapat dlat pada [: 9] E E E 3

4 4 KOMBIAI PEAKIR RAIO DA PEAKIR PRODUK PADA AMPLIG AAK BERTRATA Betu umum peasr raso samplg aca berrata utu rata-rata populas drumusa sebaga RT, dega adala rata-rata sampel, da adala rata-rata populas Betu umum peasr produ samplg aca berrata utu rata-rata populas PT drumusa sebaga PT Dalam artel dbaas tga ombas peasr raso-produ utu rata-rata populas pada samplg aca berrata dega megguaa oefse varas da oefse urtoss [5], atu ˆ α α RT b, () b, () b3, (3) dega ˆ b adala ombas peasr raso-produ, ˆ b adala ombas peasr raso-produ beroefse varas, da ˆ b 3 adala ombas peasr raso-produ beroefse urtoss Ketga ombas peasr raso-produ utu rata-rata populas pada samplg aca berrata merupaa peasr bas, emuda dtetua Mea quare Error(ME) Berdasara de dar Kadlar da g [3], peuls membadga ME dar masg-masg peasr utu memperole ombas peasr raso-produ ag efse Peasr ag meml la ME terecl merupaa peasr ag efse 4

5 5 BIA DA ME KOMBIAI PEAKIR RAIO-PRODUK UTUK RATA-RATA POPULAI PADA AMPLIG AAK BERTRATA Bas da ME ombas peasr raso-produ utu rata-rata populas pada samplg aca berrata dar masg-masg peasr sebaga berut Bas da ME dar persamaa () dperole B b R, (4) dega R, ME b R R,, (5) j j j j Bas da ME dar persamaa () dperole B b RD ME j, D b RD RD dega R D, D D Bas da ME dar persamaa (3) dperole B b RE dega ME j j da (6), (7) 3 E b3 RE RE R E, E E (8), (9) 6 KOMBIAI PEAKIR RAIO-PRODUK AG EFIIE elajuta aa dtetua ombas peasr raso-produ ag efse datara e tga peasr raso ag dajua, atu dega membadga ME dar peasr b da b 3, b Perbadga ME b dega ME b dperole ME b < ME b ja da R (0) 5

6 Perbadga ME b 3dega ME b dperole ME b 3 < ME b ja da R () 3 Perbadga ME b 3dega ME b dperole ME b 3< ME b ja R E R D da da () Berdasara perbadga dar masg-masg peasr, detau bawa peasr b 3 meml la ME ag terecl, segga peasr b 3 merupaa peasr ag palg efse dar peasr raso laa 7 OTOH ebaga coto dguaa data produs pad d Idoesa pada tau 0 [] Utu megetau rata-rata produs pad dega memafaata formas tambaa atu luasa taa ag dtaam pad d tap-tap provs Tabel Luas Pae-Produs Taama Pad pada Tau 0 eluru Idoesa o Provs Luas Pae (Ha) Produs (To) Ace 387,803,788,738 umatera Utara 765,099 3,75,54 3 umatera barat 476,4,368,390 4 Rau 44,05 5,5 5 Jamb 49,369 65,64 6 umatera elata 769,75 3,95,47 7 Begulu 44,448 58,9 8 Lampug 64,876 3,093,4 9 Baga Beltug 8,057,976 0 Kepulaua Rau 38,33 DKI Jaarta,897,044 Jawa Barat,98,799,7,86 3 Jawa Tega,773,558 0,3,934 4 DI ogaarta 5,9 946,4 5 Jawa Tmur,975,79,98,707 6 Bate 36,636,865,893 7 Kalmata Barat 47,798,300,00 8 Kalmata Tega 5, ,507 9 Bal 49, ,553 0 usa Teggara Barat 45,448,4,3 usa Teggara Tmur 00, ,566 6

7 o Provs Luas Pae (Ha) Produs (To) Kalmata elata 496,08,086, 3 Kalmata Tmur 40, ,440 4 ulawes Utara 6,93 65,06 5 ulawes Tega 9,080,04,36 6 ulawes elata 98,64 5,008,43 7 ulawes Teggara 4,5 56,9 8 Gorotalo 5,64 45,357 9 ulawes Barat 03,796 4,60 30 Maluu 0,489 84,7 3 Maluu Utara 7,794 65,686 3 Papua Barat 7,750 30,45 33 Papua 7,49 38,03 umber:wwwbpsgod Dega megguaa data pada Tabel aa dtetua ombas peasr rasoprodu ag efse utu measr rata-rata produs pad dega megguaa sarat peasr leb efse ag dperole sebeluma Hal secara umum dapat dtujua dega megtug ME dar masg-masg peasr ag dajuaebaga formas tambaa utu measr varas produs pad dguaa luas pae Utu megtug ME dar masg-masg peasr terleb daulu dtetua la ag dbutua Iformas ag dperole dar data luas pae da produs taama pad dega megguaa Mcrosoft Ecel pada Tabel Tabel la-la ag dperlua utu membadga ME , ,8 0795, , , ,50 654,8 7584,0 0, , , ,7 0,9 0,4 0,5 0,30 0,0 0,0,0039 0, ,5088 3, , ,53609 Dega mesubtusa la-la ag dperole pada Tabel e persamaa (0), (), da () maa dperole 7

8 () ME b <ME b ja > () ME b 3<ME b ja > ()ME b 3<MEb ja >0973 elajuta la ME dar masg-masg peasr dbera pada Tabel 3 berut Tabel 3 la MEutu etga peasr o Peasr ME 499,609 b b 497,608 3 b 3 496,606 Berdasara Tabel 3 dapat dlat bawa ombas peasr raso-produ b 3 meml la ME ag terecl dega sarat bawa ods leb efse dapat dpeu 8 KEIMPULA Berdasara teorema ag dguaa, ombas peasr raso-produ beroefse varas b leb efse dar ombas peasr raso-produ sederaa b Utu ombas peasr raso-produ beroefse urtoss b 3 leb efse dar ombas peasr raso-produ sederaa elajuta ombas peasr raso-produ b beroefse urtoss b 3 leb efse dar ombas peasr raso-produ beroefse varas b Dapat dsmpula bawa ombas peasr raso-produ beroefese urtoss b 3 merupaa peasr ag palg efse dar edua ombas peasr raso-produ laa ja sarat terpeu DAFTAR PUTAKA [] Bada Pusat tattabel Luas Pae, Produtvtas, Produs Taama Pad eluru Provs d Idoesa Avalable from: ttp://wwwbpsgod/tm_pg Dases pada Ju 03 [] ocra, G 99 Te Peara ampel, Eds etga Terj Dar amplg Tecques, ole Rudasa & E R Osma Peerbt Uverstas Idoesa, Jaarta [3] Kadlar, & g, H 003 Rato Emators tratfed Radom amplg, Bometrcal Joural 45:8-5 [4] uatme, P V 957amplg Teor of urves wt Applcatos Te Ida oucl of Agrcultural Researc, ew Del [5] Talor, R, arma, B & Km, JM 0 A Geeralzed Rato-cum-Product of Fte Populato Mea tratfed Radom amplg ommucatos of te Korea tatcal ocet 8:-8 8

PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA

PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA PEAKI ATAI AIO-CUM-DUAL UTUK ATA-ATA POPULAI PADA AMPLIG GADA Holla Maalu Bustam Haposa rat Mahasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas au Kampus Bawda

Lebih terperinci

PENAKSIR RASIO PROPORSI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA

PENAKSIR RASIO PROPORSI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA EAKIR RAIO ROORI AG EFIIE UTUK RATA-RATA OULAI ADA AMLIG ACAK BERTRATA Devr Maulaa *, Arsma Ada, Haosa rat Maasswa rogram Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu egetaua Alam Uveras Rau

Lebih terperinci

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PEASIR RATIO-UM-PRODUT AG EFISIE UTU RATA-RATA POPULASI PADA SAMPLIG AA SEDERHAA MEGGUAA OEFISIE VARIASI DA OEFISIE URTOSIS Lza armata *, Arsma Ada, Frdaus Mahasswa Program S Matematka Dose Jurusa Matematka

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKIR RAIO REGREI LINEAR ANG EFIIEN UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Ed Jamlu 1* Harso Haposa rat 1 Mahasswa Program tud 1 Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS

PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS PENAKIR REGREI CUM RAIO UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN KOEFIIEN KURTOI DAN KOEFIIEN KEWNE usta Wula ar *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN PENAKI AIO UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN KOEFIIEN VAIAI DAN MEDIAN sk ahmada *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

PENAKSIR RASIO REGRESI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN DUA KARAKTER TAMBAHAN

PENAKSIR RASIO REGRESI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN DUA KARAKTER TAMBAHAN PENAKIR RAIO REGREI ANG EFIIEN UNTUK RATA-RATA POPULAI PADA AMPLING AAK EDERHANA MENGGUNAKAN DUA KARAKTER TAMBAHAN R Wuladar *, Rustam Eed, Haposa rat Mahasswa Program tud Matemata Dose Jurusa Matemata

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR DUAL RATIO-CUM-PRODUCT UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA ENAKSI DUAL ATIO-UM-ODUT UNTUK ATA-ATA OULASI ADA SAMLING AAK SEDEHANA hrsta ajata, Frdaus, Haposa Srat Mahasswa rogram Stud S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu egetahua Alam Uverstas

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA ADAPTIF CLUSTER

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA ADAPTIF CLUSTER PEAKI AIO UTUK ATA-ATA POPUAI PADA AMPIG ACAK BETATA ADAPTIF CUTE Dita Ardii uam Efedi Buami Maasisa Program Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetaua Alam Uiversitas iau Kampus

Lebih terperinci

IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA

IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA IMPUTAI MEGGUAKA PEAKIR REGREI UTUK MEAKIR RATA-RATA POPUAI PADA AMPIG GADA Berad Fudka Marpaug * Rustam Efed Haposa rat Mahasswa Program tud Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN PENAKIR RAIO REGREI LINEAR EDERHANA UNTUK RATA-RATA POPULAI MENGGUNAKANKARAKTER TAMBAHAN Astar Rahmadta *, Harso, Haosa rat Mahasswa Program tud Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO UTUK VARIAI POPULAI MEGGUAKA KUARTIL DARI KARAKTER TAMBAHA PADA AMPLIG ACAK EDERHAA Ari Elvita *, Arima Ada, Hapoa irait Mahaiwa Program Matematika Doe Jurua Matematika Fakulta Matematika da

Lebih terperinci

MODIFIKASI PENAKSIR UNTUK RASIO PADA SAMPLING BERPERINGKAT. ABSTRACT 1. PENDAHULUAN

MODIFIKASI PENAKSIR UNTUK RASIO PADA SAMPLING BERPERINGKAT. ABSTRACT 1. PENDAHULUAN MODIFIKAI PAKIR UTUK RAIO PADA AMPLIG BRPRIGKAT Deva rw, Arsma Ada, Rstam fed Devaerw@ahoo.com Mahasswa Program Matematka Dose Jrsa Matematka Fakltas Matematka da Ilm Pegetaha Alam Kamps Bawda Pekabar,893,Idoesa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga saat adalah aalss terhadap data megea sebuah araterst atau atrbut da megea sebuah varabel dsrt atau otu. Tetap, sebagamaa dsadar, baya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga searag adalah aalss terhadap data megea sebuah araterst atau atrbut (ja data tu ualtatg) da megea sebuah araterst (ja data tu uattatf).

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia ABSTRACT

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia ABSTRACT PENAKI AIO DAN PENAKI EGEI YANG EFIIEN UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN DEVIAI KUATIL DAN KOEFIIEN KEWNE Lda Veroka *, gt ugarto, ustam Efed Mahasswa Program tud Matematka Dose

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam

BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam BAB II LANDASAN TEORI Pada bab II, aa djelasa tetag teor yag dpaa dalam semvarogram asotrop. Sela tu juga aa dbahas megea teor peduug dalam melaua peasra aduga cadaga baust d daerah Mempawah Kalmata, dataraya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDAAN TEORI Dalam bab aa djelasa teor-teor yag berhubuga dega peelta yag dapat djada sebaga ladasa teor atau teor peduug dalam peelta Ladasa teor aa mempermudah pembahasa hasl peelta pada bab 3 Adapu

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN MEDIAN DAN KOEFISIEN KURTOSIS

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN MEDIAN DAN KOEFISIEN KURTOSIS PENAKIR RAIO YANG EFIIEN UNTUK RATA-RATA POPULAI PADA AMPLING ACAK EDERHANA MENGGUNAKAN MEDIAN DAN KOEFIIEN KURTOI abarah * Haro H rat Mahawa Program Matematka Doe Jurua Matematka Fakulta Matematka da

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar. ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa

Lebih terperinci

PENAKSIR RASIO-PRODUK EKSPONENSIAL YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA

PENAKSIR RASIO-PRODUK EKSPONENSIAL YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA PENAIR RAIO-PRODU EPONENIAL YANG EFIIEN UNTU RATA-RATA POPULAI PADA AMPLING ACA BERTRATA Dess Nuralita 1*, Ruam Efendi, Haposan irait 1 Maasiswa Program 1 Matematia Dosen Jurusan Matematia Faultas Matematia

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Aalss Regres Perubaha la suatu varabel tda selalu terjad dega sedrya amu perubaha la varabel tu dapat pula dsebaba oleh berubahya varabel la yag berhubuga dega varabel tersebut. Utu

Lebih terperinci

Model Log Linier untuk Empat Dimensi. Log Linier Model for Four Dimentions

Model Log Linier untuk Empat Dimensi. Log Linier Model for Four Dimentions ural ESPONENSAL Volume 6, Nomor, Nopember 015 SSN 085-789 Model Log Ler utu Empat Dmes Log Ler Model for Four Dmetos M. Ars Budyoo 1, Sr ayugs, a Puramasar 3 1 Maasswa Program Stud Statsta Faultas MPA

Lebih terperinci

adalah nilai-nilai yang mungkin diambil oleh parameter jika H

adalah nilai-nilai yang mungkin diambil oleh parameter jika H Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas

Lebih terperinci

PENAKSIR YANG EFISIEN DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA. Mahasiswa Program S1 Matematika

PENAKSIR YANG EFISIEN DARI KOMBINASI PENAKSIR RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA. Mahasiswa Program S1 Matematika PEAKIR AG EFIIE DARI KOMIAI PEAKIR RAIO-PRODUK UTUK RATA-RATA POPUAI PADA AMPIG ACAK ERTRATA tevani amosir * Arisman Adnan Haposan irait Maasisa Program Matematia Dosen Jurusan Matematia Faultas Matematia

Lebih terperinci

H dinotasikan dengan B H

H dinotasikan dengan B H Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )

Lebih terperinci

II. LANDASAN TEORI. Wallpole (1995), mendefinisikan data kategori sebagai data yang diklasifikasikan

II. LANDASAN TEORI. Wallpole (1995), mendefinisikan data kategori sebagai data yang diklasifikasikan II. LANDASAN TEORI.1. Data Kategor Wallpole (1995, medefsa data ategor sebaga data yag dlasfasa meurut rtera tertetu. Data ategor dsebut uga data ometr atau data yag bua merupaa hasl peguura. Data ategor

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

titik tengah kelas ke i k = banyaknya kelas

titik tengah kelas ke i k = banyaknya kelas STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Aalss Regres Perubaha la suatu varabel tda selalu tejad dega sedrya, amu perubaha la varabel tu dapat pula dsebaba oleh berubahya varabel la yag berhubuga dega varabel tersebut. Utu

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-rho (ρ), Kendall-Tau (τ), Gamma (G), dan Somers ( d

Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-rho (ρ), Kendall-Tau (τ), Gamma (G), dan Somers ( d Jural Grade Vol4 No Jul 008 : 37-38 Kaja Hubuga Koefse Korelas Pearso (r), Spearma-rho (ρ), Kedall-Tau (τ), Gamma (G), da Somers ( d yx ) Sgt Nugroho, Syahrul Abar, da Res Vusvtasar Jurusa Matemata, Faultas

Lebih terperinci

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam

BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam BAB LANDASAN TEORI Pegerta Regres da Korelas Pegerta Regres Istlah regres dpereala oleh seorag yag erama Fracs Gulto dalam maalah erjudul regresso towerd medacraty heredtary stature Meurut hasl peelta

Lebih terperinci

8.4 GENERATING FUNCTIONS

8.4 GENERATING FUNCTIONS 8.4 GEERATIG FUCTIOS Fugs pembagt Fugs pembagt dguaa utu merepresetasa barsa secara efse dega megodea usur barsa sebaga oefse deret pagat dalam varabel. Fugs pembagt dapat dguaa utu: memecaha berbaga masalah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS uslch_us@yahoo.co ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI Utu mempermudah dalam meyeleaa pembahaa pada bab, maa aa dbera beberapa def da beberapa teor daar yag meduug... Teor Teor Peduug... Rua Gar Def. Rua Gar Ja ada d R atau 3 R, maa ebuah

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PEELITIA 4.1. Lokas da Waktu Peelta Peelta dlakuka d lokas peelura maleo d kawasa TLL Kabupate Doggala Provs ulawes Tega. Pegambla data lapaga dlaksaaka selama ± 3 bula, dar bula Aprl gga Ju

Lebih terperinci

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal Vol 5, No, 9-98, Jauar 9 But Teorema Ssa Cha dega egguaa deal asmal Abstra Sstem perogruea yag dapat dcar peyelesaaya secara teor blaga dasar teryata dapat dbuta melalu teor-teor strutur aljabar hususya

Lebih terperinci

UKURAN DASAR DATA STATISTIK

UKURAN DASAR DATA STATISTIK UKURAN DASAR DATA STATISTIK UKURAN PUSAT Apa yag dapat ta smpula secara gamblag da cepat dar data yag dsodora berut : Tabel 1 Sampel Data Karyawa peserta Jamsoste Nama Sex Status Kerja Gaj/Bl Umur NATUL

Lebih terperinci

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

JEMBATAN PADA GRAF FUZZY INTUITIONISTIC

JEMBATAN PADA GRAF FUZZY INTUITIONISTIC JEMTN PD GRF FUZZY INTUITIONISTIC St lfatur Rohmaah, au Surarso, da ambag Irawato 3 Uverstas Islam Darul Ulum Lamoga, a0304@gmalcom Uverstas Dpoegoro Semarag 3 Uverstas Dpoegoro Semarag bstract tutostc

Lebih terperinci

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT Proidig emirata05 bidag MIPA BK-PT Barat Uiverita Tajugpura Potiaak PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA EXPOETIAL RATIO AD PRODUCT ETIMATIO FOR POPULATIO

Lebih terperinci

OPTIMASI PENYUSUNAN PEGAS DENGAN METODE SISTEM PERBEDAAN BATASAN DAN ALGORITMA JALUR TERPENDEK

OPTIMASI PENYUSUNAN PEGAS DENGAN METODE SISTEM PERBEDAAN BATASAN DAN ALGORITMA JALUR TERPENDEK Jural Ilmah Mrote Vol., No. 4 OPTIMASI PENYUSUNAN PEGAS DENGAN METODE SISTEM PERBEDAAN BATASAN DAN ALGORITMA JALUR TERPENDEK Joha Vara Alfa ), Rully Soelama ), Chaste Fatchah ) ), ), ) Te Iformata, Faultas

Lebih terperinci

dan µ : rata-rata hitung populasi x : rata-rata hitung sampel

dan µ : rata-rata hitung populasi x : rata-rata hitung sampel Uura Statt. Pedahulua Uura Statt:. Uura Pemuata Bagamaa, d maa data berpuat? Rata-Rata Htug Arthmetc Mea Meda Modu Kuartl, Del, Peretl. Uura Peyebara Bagamaa peyebara data? Ragam, Vara Smpaga Bau Uura

Lebih terperinci

Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1

Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1 Itegras Metode Itegral Rema Metode Itegral Trapezoda Metode Itegral Smpso Itegras Permasalaa Itegras Pertuga tegral adala pertuga dasar yag dguaka dalam kalkulus, dalam bayak keperlua. Itegral secara det

Lebih terperinci

PERTEMUAN 14-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 14-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 4-MPC PRAKTIK Oleh: Adh Kurawa SEKOLAH TINGGI ILMU STATISTIK Double Samplg Utuk Peduga Beda, Rato, Regres Msalka, pada kods tertetu, kta g megguaka dfferece estmator, rato estmator, atau regresso

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

Rangkuman 1. Statistik menyatakan kumpulan data yang dapat berupa angka yang dinamakan data kuantitatif maupun non angka yang dinamakan data

Rangkuman 1. Statistik menyatakan kumpulan data yang dapat berupa angka yang dinamakan data kuantitatif maupun non angka yang dinamakan data Raguma. Statt meyataa umpula data yag dapat berupa aga yag damaa data uattat maupu o aga yag damaa data ualtat yag duu dalam betu tabel da atau dagram/gra, yag meggambara da mempermudah pemahama aa aga

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA MODUL Dra. Sr Pagest, S.U. PENDAHULUAN A alss regres merupaka aalss statstk yag mempelajar ubuga atara dua varabel atau leb. Dalam aalss regres lear dasumska berlakuya betuk ubuga

Lebih terperinci

BAB 2 DASAR TEORI ALIRAN DAYA. Sistem tenaga listrik (Electric Power System) terdiri dari tiga komponen

BAB 2 DASAR TEORI ALIRAN DAYA. Sistem tenaga listrik (Electric Power System) terdiri dari tiga komponen BAB DAAR TEOR ALRAN DAA. Umum,,3,4 stem teaga lstr Electrc ower stem terdr dar tga ompoe utama, atu sstem pembagta teaga lstr, sstem trasms teaga lstr, da sstem dstrbus teaga lstr. Kompoe dasar ag membetu

Lebih terperinci

ISSN: X 45 SIFAT ASIMTOTIK ESTIMATOR NADARAYA-WATSON DENGAN KERNEL ORDE TAK HINGGA. Maria Suci Apriani a, Sri Haryatmi b

ISSN: X 45 SIFAT ASIMTOTIK ESTIMATOR NADARAYA-WATSON DENGAN KERNEL ORDE TAK HINGGA. Maria Suci Apriani a, Sri Haryatmi b ISSN: 088-687X 5 SIFAT ASIMTOTIK ESTIMATOR NADARAYA-WATSON DENGAN KERNEL ORDE TAK HINGGA Mara Suc Ara a, Sr Haryatm b a rogram Stud edda Matemata FKI USD Kamus 3 aga, Yogyaarta 558, marasuc@usdacd b Jurusa

Lebih terperinci

BAB 3 Interpolasi. 1. Beda Hingga

BAB 3 Interpolasi. 1. Beda Hingga BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada

Lebih terperinci

E ax by c ae X be Y c. 6.1 Pengertian Umum

E ax by c ae X be Y c. 6.1 Pengertian Umum 6.1 Pegerta Umum Baya permasalaha yag dataya dyataa oleh lebh dar sebuah varabel. Hubuga atara dua atau lebh varabel dapat dyataa secara matemata sehgga merupaa suatu model yag dapat dguaa utu berbaga

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

Analisa Probabilistik Algoritma Routing pada Jaringan Hypercube

Analisa Probabilistik Algoritma Routing pada Jaringan Hypercube Aalsa Probablst Algortma Routg pada Jarga ypercube Zuherma Rustam Jurusa Matemata Uverstas Idoesa Depo 644. E-mal : rustam@maara.cso.u.ac.d Abstra Algortma routg pada suatu arga teroes suatu measme utu

Lebih terperinci

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,

Lebih terperinci

PENAKSIR PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA DAN SAMPLING BERPERINGKAT

PENAKSIR PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA DAN SAMPLING BERPERINGKAT PEAKSIR PRODUK AG EFISIE UUK RAA-RAA POPULASI PADA SAMPLIG ACAK SEDERHAA DA SAMPLIG BERPERIGKA Dw Andn *, Frdaus, Arsan Adnan Mahasswa Progra S Mateata Dosen Jurusan Mateata Faultas Mateata Ilu Pengetahuan

Lebih terperinci

METODE PENELITIAN. Populasi dari penelitian ini adalah seluruh peserta didik kelas VII semester genap

METODE PENELITIAN. Populasi dari penelitian ini adalah seluruh peserta didik kelas VII semester genap III. METODE PENELITIAN A. Populas da Sampel Populas dar peelta adalah seluruh peserta dd elas VII semester geap SMP Neger 3 Terbaggbesar tahu pelaara 0/0 yag terdstrbus e dalam tuuh elas, yatu elas VII

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

PENAKSIR RASIO DAN PRODUK EKSPONENSIAL YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO DAN PRODUK EKSPONENSIAL YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA Mega Elmaanti 1* Firdau Hapoan irait 1 Mahaiwa Program 1 Matematika Doen Juruan Matematika Fakulta Matematika dan Ilmu

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 30 BAB III METODE PENELITIAN A. Tujua Peelta Tujua ag g dcapa dalam peelta adalah utu megetahu apaah hasl belajar perserta dd elas IX MP Nusa Bagsa Mragge Dema pada mater poo volume bagu ruag ss legug

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN SAMPLING ACAK SEDERHANA DAN SAMPLING BERPERINGKAT. ABSTRACT 1.

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN SAMPLING ACAK SEDERHANA DAN SAMPLING BERPERINGKAT. ABSTRACT 1. PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA SAMPLIG ACAK SEDERHAA DA SAMPLIG BERPERIGKAT Ryan Aresta Ral Suroso, Arsan Adnan, Rusta Efend r_yand7045@yaoo.co Maasswa Progra S Mateatka Dosen Jurusan Mateatka

Lebih terperinci

Pelabelan Total Super Sisi Ajaib Pada Graf Caterpillar Teratur

Pelabelan Total Super Sisi Ajaib Pada Graf Caterpillar Teratur Jural Matemata Itegrat ISSN 4-4 Vol. 9 No. Otober 0 pp. -9 Pelabela Total Super Ss Ajab Pada Gra Caterpllar Teratur Trya St Rahmah Nursham Muta Nur Estr Program Stud Matemata Jurusa MIPA Faultas Sas da

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t)

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t) BAB II KONSEP DASAR Kosep dasar yag dtuls dalam bab, merupaa beberapa dasar acua yag aa dguaa utu megaalsa model rso las da meetua fugs sebara peluag bertaha dalam model rso las Datara dasar acua tersebut

Lebih terperinci

STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 150 KV MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE

STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 150 KV MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 50 K MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE Kade Ad Dw Purwaa 2205 00 038 dose pembmbg :. Ir. Syarffudd M M.Eg. 2.

Lebih terperinci

Implementasi Algoritma Particle Swarm untuk Menyelesaikan Sistem Persamaan Nonlinear

Implementasi Algoritma Particle Swarm untuk Menyelesaikan Sistem Persamaan Nonlinear JURNL TKNIK ITS Vol. Sept ISSN: -97 - Implemetas lgortma Partcle Swarm utu Meyelesaa Sstem Persamaa Nolear rdaa Rosta Yudh Purwaato da Rully Soelama Jurusa Te Iformata Faultas Teolog Iformas Isttut Teolog

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk

BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk 5 BAB II KAJIAN TEOI A. Sstem Blaga eal Sstem blaga real adalah hmpua blaga real ag dserta dega operas pejumlaha da perala sehgga memeuh asoma tertetu (Martoo, 999). Sstem blaga real dotasa dega. Utu lebh

Lebih terperinci

EVALUASI OPERASI SISTEM TENAGA LISTRIK 5OO kv JAWA BALI MENGGUNAKAN PARTICLE SWARM OPTIMIZATION

EVALUASI OPERASI SISTEM TENAGA LISTRIK 5OO kv JAWA BALI MENGGUNAKAN PARTICLE SWARM OPTIMIZATION EVALUASI OPERASI SISTEM TENAGA LISTRIK 5OO V JAWA BALI MENGGUNAKAN PARTICLE SWARM OPTIMIZATION Roy Chadrabuaa, Ad Soeprjato, Teguh Yuwoo Jurusa Te Eletro-FTI, Isttut Teolog Sepuluh Nopember Kampus ITS,

Lebih terperinci

7. PERSAMAAN DIFFERENSIAL BIASA

7. PERSAMAAN DIFFERENSIAL BIASA Bab 7. PERSAMAAN DIFFERENSIAL BIASA Dalam bdag te serg duma ersamaa suatu eomea alam ag dataa dalam ersamaa deresal basa (PDB Coto: Problem la awal: ( dega ( Y Problem la batas: g( dmaa a

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

PENDETEKSIAN OUTLIER DENGAN METODE REGRESI RIDGE

PENDETEKSIAN OUTLIER DENGAN METODE REGRESI RIDGE PENDETEKSIAN OUTLIER DENGAN METODE REGRESI RIDGE Sr Har Jurusa Matemata, Faultas Sas da Teolog Uverstas Islam Neger Maulaa Mal Ibram Malag e-mal: srar@aoo.co.d Abstra Dalam aalss regres ler bergada adaa

Lebih terperinci

Pemodelan Angka Buta Huruf di Provinsi Sumatera Barat Tahun 2014 dengan Geographically Weighted Regression

Pemodelan Angka Buta Huruf di Provinsi Sumatera Barat Tahun 2014 dengan Geographically Weighted Regression JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Prt) D-361 Pemodela Aga Buta Huruf d Provs Sumatera Barat Tahu 014 dega Geographcally Weghted Regresso Rath Mahara da Wwe Setya Wahju Jurusa

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan Waktu 4.2 Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan Waktu 4.2 Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4. Loas da Watu Peelta dlasaaa d Strawberry Café yag berloas d Jala Gadara No.75 Jaarta Selata. Loas peelta dplh da dtetua dega segaja sesua dega pertmbaga dar peelt. Alasa utama memlh

Lebih terperinci

Analisis Regresi Eksponensial Berganda (Studi Kasus: Jumlah Kelahiran Bayi di Kalimantan Timur pada Tahun 2013 dan 2014)

Analisis Regresi Eksponensial Berganda (Studi Kasus: Jumlah Kelahiran Bayi di Kalimantan Timur pada Tahun 2013 dan 2014) Jural EKSPONENSIAL Volume 6, Nomor, Nopember 5 ISSN 85-789 Aalss Regres Espoesal Bergada (Stud Kasus: Jumlah Kelahra Bay d Kalmata Tmur pada Tahu 3 da 4) Double Expoetal Regresso Aalyss (Case Study: Number

Lebih terperinci

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dan dusun Margosari, desa Pesawaran Indah

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dan dusun Margosari, desa Pesawaran Indah 3 III. METODE ENELITIAN 3.1 Watu da Tempat eelta da peracaga tugas ahr dlaua d Laboratorum Terpadu Te Eletro Uverstas Lampug da dusu Margosar, desa esawara Idah abupate esawara pada bula Agustus 1 sampa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

BAB I PENGERTIAN SAMPEL DAN SAMPLING

BAB I PENGERTIAN SAMPEL DAN SAMPLING BAB I PEGERTIA SAMPEL DA SAMPLIG A. PEGERTIA SAMPEL Ketka melakuka peelta kta serg meyebut stla populas da sample. Agar dperole pemaama yag omoge, secara rgkas kta baas tetag pegertapegerta dasar berkut:

Lebih terperinci

Teknik Mengatasi Data Hilang pada Kasus Rancangan Blok Lengkapacak

Teknik Mengatasi Data Hilang pada Kasus Rancangan Blok Lengkapacak Jural Sas Matemata da Statsta, Vol. 3, No., Jul 07 ISSN 693-390 prt/issn 407-0939 ole Te Megatas Data Hlag pada Kasus Racaga Blo Legapaca Rado Yedra, Muslm, Jurusa Matemata, Faultas Sas da Teolog, UIN

Lebih terperinci

Pemodelan Resiko Penyakit Pneumonia pada Balita di Jawa Timur Menggunakan Regresi Logistik Biner Stratifikasi

Pemodelan Resiko Penyakit Pneumonia pada Balita di Jawa Timur Menggunakan Regresi Logistik Biner Stratifikasi JURNAL SAINS DAN SENI POMITS Vol., No., (13) ISSN: 337-35 (31-98X Prt D-5 Pemodela Reso Peyat Peumoa pada Balta d Jawa Tmur Megguaa Regres Logst Ber Stratfas Ita Novaa, Sr Pgt Wuladar da Purhad Jurusa

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

Pertemuan VII IV. Titik Berat dan Momen Inersia

Pertemuan VII IV. Titik Berat dan Momen Inersia Baa jar Mekaka Baa Mulat, ST., MT Pertemua V V. Ttk Berat da Mome ersa. Ttk Berat Peampag Mome pertama suatu luasa eleme teradap suatu sumbu d dalam bdag luasa dberka dega produk luasa eleme da jarak tegak

Lebih terperinci

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial 5 BAB II LANDASAN TEORI A. Persamaa Diferesial Dari ata persamaa da diferesial, dapat diliat bawa Persamaa Diferesial beraita dega peelesaia suatu betu persamaa ag megadug diferesial. Persamaa diferesial

Lebih terperinci

π(x) 1 e JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: X D-277

π(x) 1 e JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: X D-277 JURNAL SAINS DAN SENI ITS Vol., No., (Sept. 22) ISSN: 23-928X D-277 Klasfas Pase Hasl Pap Smear Test sebaga Pedetes Awal Upaya Peagaa D pada Peyat Kaer Servs d RS. X Surabaya dega Metode Baggg Logstc Regresso

Lebih terperinci