BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Perpindahan Panas Perpindahan panas adalah proses perpindahan energi dari suatu tempat ke tempat yang lain karena adanya perbedaan temperatur di tempat-tempat tersebut [2]. Perpindahan panas dapat berlangsung dengan beberapa cara seperti : 1. Perpindahan Panas Konduksi Merupakan proses perpindahan panas dari daerah yang bersuhu tinggi ke daerah yang bersuhu rendah di dalam medium (padat, cair, dan gas) atau antara medium yang bersinggungan langsung [8]. Jika terdapat suatu gradien suhu, maka disimpulkan akan terjadi perpindahan panas dari bagian bersuhu tinggi ke bagian bersuhu rendah. Gambar 2.1 Perpindahan Kalor Secara Konduksi [10] Universitas Mercu Buana 6

2 Dapat dikatakan bahwa energi akan berpindah secara konduksi atau hantaran, laju perpindahan kalor dinyatakan sebagai : q = k. A. T x... [2] Dimana : q = laju perpindahan kalor (J/sec) T x = gradien suhu kearah perpindahan kalor ( o C) k = konduktivitas thermal bahan (m 2 / o C) A = luas bidang perpindahan kalor (m 2 ) 2. Perpindahan Panas Konveksi Merupakan proses perpindahan panas diikuti dengan perpindahan paritikel-partikel zat melalui media penghantar berupa fluida (cair / gas) [9]. Proses ini terjadi pada permukaan padat, cair dan gas. Aliran Arus bebas U T U q T w Dinding Gambar 2.2 Perpindahan Kalor Konveksi Dari Suatu Plat [3] Pada gambar 2.2 diatas T w adalah suhu plat dan T adalah suhu fluida. Apabila kecepatan di atas plat adalah nol, maka kalor hanya dapat perpindah dengan cara konduksi. Akan tetapi apabila fluida diatas plat bergerak dengan kecepatan tertentu, maka kalor perpindah dengan cara konveksi, yang dimana Universitas Mercu Buana 7

3 gradien suhu bergantung dari laju fluida membawa kalor. Sedangkan laju perpindahan kalor dipengaruhi oleh luas permukaan perpindahan kalor (A) dan beda suhu menyeluruh antara permukan bidang dengan fluida yang dapat dirumuskan sebagai berikut : q = h. A. (T T )... [2] Dimana h merupakan koefisian perpindahan panas konveksi. Untuk keadaan yang sederhana, koefisien perpindahan panas konveksi (h) dapat diperhitungkan secara analisis, sedangkan untuk keadan yang rumit, harus diperhitungkan dengan cara eksperimen atau percobaan. Perpindahan panas konveksi tergantung pada vikositas fluida, disamping ketergantunganya terhadap sifat sifat termal fluida, seperti: konduktivitas termal, kalor spesifik, dan densitas. Hal ini disebabkan karena viskositas mempengaruhi laju perpindahan energi di daerah dinding. Ada dua jenis perpandahan panas konveksi, yaitu : a. Perpindahan panas konveksi alami Fenomena ini tejadi karena fluida yang terjadi karena pemanasan, berubah densitasnya, sehingga fluidanya bergerak. Gambar 2.3 Perpindahan Panas Konveksi Alamiah [12] Universitas Mercu Buana 8

4 b. Perpindahan panas konveksi paksa Fenomena ini terjadi apabila sistim dimana fluida didorong oleh permukaan perpindahan kalor, atau melaluinya, fluida bergerak adanya faktor pemaksa. Sebagai gambaran adalah fenomena perpindahan panas aliran atau di dalam pipa yang dinyatakan sebagai : dq = m. C. dt dq = h. 2π. r(t T )dx... [2] q m.c p Aliran T b1 1 2 dx L Gambar 2.4 Perpindahan Kalor Menyeluruh Dinyatakan Dengan Beda Suhu Limbak [2] T b2 3. Perpindahan Panas Radiasi Merupakan proses perpindahan panas dari benda bersuhu tinggi ke benda bersuhu rendah bila benda benda itu terpisah di dalam suatu ruangan bahkan bila terdapat suatu ruang hampa diantara benda benda tersebut. Untuk radiasi diantara dua benda dapat dirumuskan : Universitas Mercu Buana 9

5 q = F. F. A. σ(t T )... [2] Dimana : F x = fungsi emisivitas F g = fungsi geometeri A = luas permukaan bidang (m 2 ) σ = konstanta Stefan Boltzman (5,669 x 10-8 W / m 2 K 4 ) 4. Perpindahan Panas Gabungan Dinding datar seperti pada gambar 2.5 dimana pada suatu sisinya terda pat luida panas A, dan pada sisi alinnya terdapat fluida B yang lebih dingin. Perpindahan kalor dinyatakan oleh : q = h. A(T T ) = k. A x(t T ) q = h. A(T T )... [2] Proses perpindahan kalor dapat di gambarkan dengan jaringan tahanan seperti pada gambar 2.5. Perpindahan kalor gabungan dihitung dengan jalan membagi beda suhu menyeluruh dengan jumlah tahanan thermal : q = [2] Universitas Mercu Buana 10

6 T A Fluida A q Fluida B T 1 h 1 T 2 h 2 Gambar 2.5 Perpindahan kalor gabungan melalui dinding datar [2] T B Nilai 1/h. A digunakan untuk menunjukan tahanan konveksi. Aliran kalor menyeluruh sebagai hasil gabungan proses konduksi dan konveksi bisa dinyatakan dengan koevisien perpindahan kalor menyeluruh U, yang dirumuskan dengan hubungan : q = U. A. T (menyeluruh)... [2] Dimana A adalah luas bidang aliran kalor, koofisien perpindahan kalor menyeluruh adalah : U =... [2] Sedangkan pada penukar kalor aliran silang, fluida yang mengalami pertukaran panas berjalan secara menyilang satu sama lain. Dalam penerapannya penukar kalor air silang, banyak dipakai untuk pemanasan dan pendinginan udara, gas atau air. Sebagai contoh adalah radiator yang Universitas Mercu Buana 11

7 konstruksinya menggunakan saluran diantara sirip sirip. Dengan luas permukaan yang sangat besar persatuan volume yang diwujudkan dalam bentuk konstruksi pipa dan sirip, maka akan memungkinkan terjadinya kontak langsung dengan udara secara lebih luas. Gambar 2.6 Contoh contoh Konvigurasi Penukar Kalor Kompak [2] Keterangan : a. Penukar kalor tabung bersirip dengan tabung tabung rata. b. Penukar kalor bersirip bundar dalam satuan konfigurasi. c dan d. Menggambarkan cara lain untuk mendapatkan luas permukaan yang sangat besar pada kedua sisi penukar kalor. 2.2 Alat Penukar Kalor Alat penukar panas atau Heat Exchanger adalah alat yang digunakan untuk memindahkan panas dari sistem ke sistem lain tanpa perpindahan massa dan bisa berfungsi sebagai pemanas maupun sebagai pendingin. Biasanya, medium pemanas dipakai adalah air yang dipanaskan sebagai Universitas Mercu Buana 12

8 fluida panas dan air biasa sebagai air pendingin (cooling water). Penukar panas dirancang sebisa mungkin agar perpindahan panas antar fluida dapat berlangsung secara efisien. Pertukaran panas terjadi karena adanya kontak, baik antara fluida terdapat dinding yang memisahkannya maupun keduanya bercampur langsung (direct contact). Salah satu contoh sederhana dari alat penukar panas adalah radiator mobil dimana cairan pendingin memindahkan panas mesin ke udara sekitar. Tipe aliran di dalam alat penukar panas ini ada 4 macam aliran, yaitu : 1. Counter current flow (aliran berlawanan arah) 2. Paralel flow/co current flow (aliran searah) 3. Cross flow (aliran silang) 4. Cross counter flow (aliran silang berlawanan) Dalam perkembangannya, heat exchanger mengalami transformasi bentuk yang bertujuan meningkatkan efisiensi sesuai dengan fungsi kerjanya. Bentuk heat exchanger yang sering digunakan adalah shell and tube. Dengan berbagai pertimbangan, bentuk ini dinilai memiliki banyak keuntungan baik dari segi pabrikasi, biaya, hingga unjuk kerja [15]. Jenis jenis penukar panas antara lain : 1. Penukar panas pipa rangkap (double pipe heat exchanger) Salah satu jenis penukar panas adalah susunan pipa ganda. Dalam jenis penukar panas dapat digunakan berlawanan arah aliran atau searah Universitas Mercu Buana 13

9 aliran, baik dengan cairan panas atau dingin cairan yang terkandung dalam ruang annular dan cairan lainnya dalam pipa. Alat penukar panas pipa rangkap terdiri dari dua pipa logam standart yang di kedua ujungnya dilas menjadi satu atau dihubungkan dengan kotak penyekat [14]. Panjang pipa lurus dibatasi dengan maksimum sekitar 20 ft [13]. Fluida yang satu mengalir di dalam pipa, sedangkan fluida kedua mengalir di dalam ruang anulus antara pipa luar dengan pipa dalam. Alat penukar panas jenis ini dapat digunakan pada laju alir fluida yang kecil dan tekanan operasi yang tinggi [14]. Gambar 2.7 Penukar Panas Pipa Rangkap [13] 2. Penukar panas cangkang dan buluh ( shell and tube heat exchanger ) Alat penukar panas cangkang dan buluh terdiri atas suatu bundel pipa yang dihubungkan secara parallel dan ditempatkan dalam sebuah pipa mantel (cangkang ). Fluida yang satu mengalir di dalam bundel pipa, sedangkan Universitas Mercu Buana 14

10 fluida yang lain mengalir di luar pipa pada arah yang sama, berlawanan, atau bersilangan. Gambar 2.8 Penukar Panas Cangkang dan Buluh [13] 3. Penukar Panas Plate and Frame ( plate and frame heat exchanger ) Alat penukar panas pelat dan bingkai terdiri dari pelat-pelat tegak lurus, bergelombang, atau profil lain. Pemisah antara pelat tegak lurus dipasang penyekat lunak (biasanya terbuat dari karet). Pelat-pelat dan sekat disatukan oleh suatu perangkat penekan yang pada setiap sudut pelat (kebanyakan segi empat) terdapat lubang pengalir fluida. Melalui dua dari lubang ini, fluida dialirkan masuk dan keluar pada sisi yang lain, sedangkan fluida yang lain mengalir melalui lubang dan ruang pada sisi sebelahnya karena ada sekat [14]. Kelebihan plate and frame heat exchanger dibandingkan shell and tube heat exchanger antara lain : Universitas Mercu Buana 15

11 1.Kompak. 2.Biaya total murah. 3.Fouling kurang. 4.Mudah dicapai. 5.Fleksibel dalam hal jumlah plat di dalam alat penukar panas. 6.Beban panas dan efektivitas tinggi. 7.Waktu tinggal fluida tinggi Kekurangan plate and frame heat exchanger yaitu keterbatasan dalam hal tekanan dan suhu operasi yang disebabkan oleh gasketnya. Penggantian gasket yang terdapat di salah satu sisi atau kedua sisi plat dengan pengelasan laser dapat meningkatkan tekanan dan suhu operasi, modifikasi ini mengijinkan plate and frame heat exchanger dapat menangani fluida korosif [13]. Gambar 2.9 Penukar Panas Pelat dan Bingkai [16] 4. Adiabatic Wheel Heat Exchanger Jenis penukar panas ini menggunakan intermediate cairan atau toko yang solid untuk menahan panas, yang kemudian pindah ke sisi lain dari penukar panas akan dirilis. Universitas Mercu Buana 16

12 Gambar 2.10 Adiabatic Wheel Heat Exchanger [17] 5. Pillow Plate Heat Exchanger Pelat bantal memungkinkan untuk pendinginan di hampir daerah seluruh permukaan tangki, tanpa sela yang akan terjadi antara pipa dilas ke bagian luar tangki. Pelat bantal dibangun menggunakan lembaran tipis dari logam-spot dilas ke permukaan selembar tebal dari logam. Pelat tipis dilas dalam pola teratur dari titik-titik atau dengan pola serpentin garis las. Setelah pengelasan ruang tertutup bertekanan dengan kekuatan yang cukup untuk menyebabkan logam tipis untuk tonjolan di sekitar lasan, menyediakan ruang untuk cairan penukar panas mengalir, dan menciptakan penampilan yang karakteristik bantal membengkak terbentuk dari logam. Gambar 2.11 Pillow Plate Heat Exchanger [17] Universitas Mercu Buana 17

13 6. Dynamic Scraped Surface Heat Exchanger Tipe lain dari penukar panas disebut "(dinamis) besot permukaan heat exchanger". Ini terutama digunakan untuk pemanasan atau pendinginan dengan tinggi viskositas produk, proses kristalisasi, penguapan tinggi dan fouling aplikasi. Gambar 2.12 Dynamic Scraped Surface Heat Exchanger [17] 7. Phase Change Heat Exchanger Selain pemanasan atau pendinginan cairan hanya dalam satu fasa, penukar panas dapat digunakan baik untuk memanaskan cairan menguap (atau mendidih) atau digunakan sebagai kondensor untuk mendinginkan uap dan mengembun ke cairan. Pada pabrik kimia dan kilang, reboilers digunakan untuk memanaskan umpan masuk untuk menara distilasi sering penukar panas. Distilasi set up biasanya menggunakan kondensor untuk mengkondensasikan uap distilasi kembali ke dalam cairan. Pembangkit tenaga listrik yang memiliki uap yang digerakkan turbin biasanya menggunakan penukar panas untuk mendidihkan air menjadi uap. Universitas Mercu Buana 18

14 Gambar 2.13 Phase Change Heat Exchanger [18] 2.3 Sistem Pendinginan Mesin Proses pembakaran yang berlangsung terus menerus dalam mesin mengakibatkan mesin dalam kondisi temperatur yang sangat tinggi. Temperatur sangat tinggi akan mengakibatkan desain mesin menjadi tidak ekonomis, sebagian besar mesin juga berada di lingkungan yang tidak terlalu jauh dengan manusia sehingga menurunkan faktor keamanan. Temperatur yang sangat rendah juga tidak terlalu menguntungkan dalam proses kerja mesin. Sistem pendinginan digunakan agar temperatur mesin terjaga pada batas temperatur kerja yang ideal. Prinsip pendinginan adalah melepaskan panas mesin ke udara, tipe langsung dilepaskan ke udara disebut pendinginan udara (air cooling), tipe menggunakan fluida sebagai perantara disebut pendinginan air. Macam- Macam Sistem Pendingin, yaitu : 1. Sistem Pendinginan Udara a. Pendinginan oleh aliran udara secara alamiah. Universitas Mercu Buana 19

15 Pada sistem ini panas yang dihasilkan oleh pembakaran gas dalam ruang bakar sebagian dirambatkan keluar dengan menggunakan siripsirip pendingin (cooling fins) yang dipasangkan di bagian luar silinder (Gambar 2). Pada tempat yang suhunya lebih tinggi yaitu pada ruang bakar diberi sirip pendingin yang lebih panjang daripada sirip pendingin yang terdapat di sekitar silinder yang suhunya lebih rendah. Gambar 2.14 Pendinginan Udara Secara Alamiah [4] b. Pendinginan oleh tekanan udara Udara yang menyerap panas dari sirip sirip pendingin harus berbentuk aliran atau udaranya harus mengalir agar suhu udara di sekitar sirip tetap rendah sehingga penyerapan panas tetap berlangsung sempurna. Hal ini dapat dicapai dengan jalan menggerakkan sirip pendingin atau udaranya. Bila sirip pendingin yang digerakkan atau mesinnya bergerak seperti pada sepeda motor. Pada mesin stasioner aliran udaranya diciptakan dengan cara menghembuskannya melalui blower yang dihubungkan langsung dengan poros engkol menunjukkan pendinginan udara menggunakan Universitas Mercu Buana 20

16 kipas atau blower yang terpasang pada roda gila (flywheel fan). Agar aliran udara pendingin lebih dapat mendinginkan sirip sirip digunakan pengarah. Gambar 2.15 Kipas Udara Pada Roda Gila [4] Gambar 2.16 Kipas Udara Pada Roda Gila Pengarah Aliran [5] 2. Sistem Pendinginan Air Pada sistem ini sebagian panas dari hasil pembakaran dalam ruang bakar diserap oleh air pendingin setelah melalui dinding silinder. Oleh karena itu di luar silinder dibuat mantel air (water jacket). Sistem pendingin yang menggunakan air ada yang hanya menggunakan air murni saja ada juga yang menggunakan cairan konsentrat (water coolant) yang merupakan campuran dari air dan bahan-bahan lain, diantaranya: Universitas Mercu Buana 21

17 a. Corrosion Resistor Fungsi corrosion resistor adalah untuk mencegah terjadinya endapan dan karat yang dapat menyebabkan saluran pada sistem pendingin tersumbat. Mekanisme kerja corrosion resistor adalah adanya isi suatu bahan kimia padat yang dapat larut dalam air. Bahan kimia tersebut akan larut setelah corrosion resistor dipasang pada sistem pendingin, kemudian bahan kimia tersebut akan terbawa oleh air melewati komponen engine block. Corrotion resistor ini juga berfungsi sebagai penyaring kotoran, karena terdapat kertas yang fungsinya untuk menangkap kotoran secara mekanis [26]. b. Supplement Coolant Additive (SCA) Bahan kimia supplement atau tambahan yang berupa cairan untuk ditambahkan langsung ke dalam air radiator. Fungsinya serupa dengan corrosion resistor, sehingga air yang ada di dalam sistem menjadi mampu mengurangi kemungkinan terjadinya masalah yang ada di dalam sistem pendinginan ini. Sebelum ditambahkan SCA, ada tambahan lain yang berfungsi untuk menurunkan titik didih, ini dikenal dengan nama glycol. Glycol dicampurkan dengan air dan SCA yang sesuai dengan jumlah yang ditentukan akan menjadi larutan pendingin yang baik untuk alat berat [26]. Universitas Mercu Buana 22

18 c. Fully Formulated Coolant Pada perkembangannya penambahan SCA dan Glycol secara manual akan menimbulkan banyak masalah. Kelebihan air akan berakibat pada banyaknya pengendapan, sementara kekurangan air akan berakibat berkurangnya perlindungan pada bagian yang dilewati pendingin tersebut. Akibat itu semua, munculah cara yang lebih praktis menggunakan cairan pendingin. Komposisi Glycol, SCA dan air yang sudah seimbang disatukan melalui proses di dalam pabrik, sehingga cairan coolant ini sangat baik dalam penggunaannya. Cara penggunaannya adalah dengan menuangkan langsung ke dalam radiator sampai semua sistem terisi cairan ini. Penggunaan air hanya diperbolehkan hingga 30% dari total kapasitas cairan yang ada dalam system [26]. Pada sistem pendinginan air ini air harus bersirkulasi. Adapun sirkulasi air dapat berupa 2 (dua) macam, yaitu: a. Sirkulasi alamiah atau Thermo siphon b. Sirkulasi dengan tekanan Pada sistem pendinginan air dengan sirkulasi alamiah, air pendingin akan mengalir dengan sendirinya yang diakibatkan oleh perbedaan massa jenis air yang telah panas dan air yang masih dingin. Agar air yang panas dapat dingin, maka sebagai pembuang panas dipasangkan radiator. Air yang berada dalam mantel air dipanaskan oleh hasil pembakaran sehingga suhunya naik, sehingga massa jenisnya akan turun dan air ini didesak ke atas oleh air Universitas Mercu Buana 23

19 yang masih dingin dari radiator. Agar pembuangan panas dari radiator terjadi sebesar mungkin maka pada sistem pendingin dilengkapi juga dengan kipas yang berfungsi untuk mengalirkan udara pada radiator agar panas pada radiator dapat dibuang atau diserap udara. Gambar 2.17 Sirkulasi Alamiah Di Mesin [6] Pada sirkulasi dengan tekanan pada prinsipnya sama dengan sirkulasi alam, tetapi untuk mempercepat terjadinya sirkulasi maka pada sistem dipasang pompa air. Gambar 2.18 Sirkulasi Dengan Tekanan [5] 2.4 Komponen Sistem Pendingin Air Pada mobil yang menggunakan bahan bakar sebagai sumber tenaga, pasti menghasilkan panas. Hal tersebut normal, yang tidak normal adalah bila panas tersebut menjadi terlalu panas sehingga dapat menggangu kinerja mesin (overheating). Ciri cirri overheating adalah knocking atau Universitas Mercu Buana 24

20 menggelitik sampai dengan mesin mobil menjadi mati. Idealnya mesin mobil bekerja pada suhu derajat celcius, dibawah itu juga tidak bagus karena mesin menjadi terlalu dingin atau overcooling dan kerja mesin menjadi tidak efisien. Dan jelas kuncinya ada di perawatan, berikut ini adalah komponen komponen yang harus diperhatikan dan dirawat pada sistem pendinginan mobil. 1. Waterpump Waterpump atau pomp air bertugas menyalurkan air dari radiator ke mesin dan dari mesin ke radiator. Biasanya terbuat dari alumunium, dan ditempatkan di bagian kepala silinder. Gambar 2.19 Waterpump 2. Radiator Radiator ini merupakan tempat dimana air didinginkan menggunakan jasa hembusan angin dari depan. Makanya letaknya biasanya didepan moncong mobil, komponen ini terbuat dari aluminium atau tembaga dengan banyak sekat dan didalamnya terdapat puluhan jalur air. Sekat fungsinya Universitas Mercu Buana 25

21 untuk menangkap angin dan jalur air yang banyak supaya air lebih terpecah dan cepat didinginkan. Pada komponen inilah air dari mesin yang panas disalurkan ke radiator dan setelah dingin kembali masuk kedalam mesin dengan bantuan pompa air. Gambar 2.20 Radiator [1] 3. Kipas Radiator Dipasang di belakang radiator pada sisi paling dekat ke mesin adalah satu atau dua kipas listrik di dalam perumahan yang dirancang untuk melindungi jari-jari dan untuk mengarahkan aliran udara. Ini fans yang ada untuk menjaga aliran udara melalui radiator saat kendaraan akan lambat atau berhenti dengan mesin menyala. Jika ini fans berhenti bekerja, setiap kali Anda berhenti, suhu mesin akan mulai naik. Pada sistem lama, kipas terhubung ke depan pompa air dan akan berputar setiap kali mesin itu berjalan karena digerakkan oleh sabuk kipas bukan sebuah motor listrik. Dalam kasus ini, jika driver akan melihat mesin mulai berjalan panas di berhenti dan pergi mengemudi, pengemudi mungkin menempatkan mobil di Universitas Mercu Buana 26

22 netral dan putaran mesin untuk menghidupkan kipas angin cepat yang membantu mendinginkan mesin. Gambar 2.21 Kipas Radiator [1] 4. Tutup Radiator Sebagai pendingin menjadi panas, mengembang. Karena sistem pendingin tertutup, ekspansi ini menyebabkan peningkatan tekanan dalam sistem pendingin, yang normal dan bagian dari desain. Ketika pendingin berada di bawah tekanan, suhu di mana cairan mulai mendidih jauh lebih tinggi. Tekanan ini, ditambah dengan titik didih lebih tinggi dari etilena glikol, memungkinkan pendingin untuk mencapai suhu aman lebih dari 250 derajat. Tutup tekanan radiator adalah perangkat sederhana yang akan mempertahankan tekanan dalam sistem pendinginan sampai titik tertentu. Jika tekanan menumpuk lebih tinggi dari titik tekanan yang ditetapkan, ada katup pegas dimuat, dikalibrasi dengan benar Pounds per inci persegi (psi), untuk melepaskan tekanan. Universitas Mercu Buana 27

23 Gambar 2.22 Tutup Radiator [7] 5. Termostat Termostat hanyalah sebuah katup yang mengukur suhu pendingin dan, jika itu cukup panas, terbuka untuk memungkinkan pendingin mengalir melalui radiator. Jika pendingin tidak cukup panas, aliran ke radiator diblokir dan cairan diarahkan ke sistem bypass yang memungkinkan pendingin untuk kembali langsung kembali ke mesin. Gambar 2.23 Katup Termostat [1] Universitas Mercu Buana 28

24 6. Sistem Bypass Ini adalah bagian yang memungkinkan pendingin untuk memotong radiator dan kembali langsung kembali ke mesin. Beberapa mesin menggunakan selang karet, atau tabung baja tetap. Di mesin lain, ada cast dalam bagian dibangun ke dalam pompa air atau depan perumahan. Dalam kasus apapun, ketika termostat tertutup, pendingin diarahkan untuk melewati ini dan disalurkan kembali ke pompa air, yang mengirimkan pendingin kembali ke mesin tanpa didinginkan oleh radiator. 7. Kepala Paking, Gasket, dan Intake Manifold Semua mesin pembakaran internal memiliki blok mesin dan satu atau dua kepala silinder. Dalam rangka untuk menutup blok ke kepala, kita menggunakan paking kepala. Gasket kepala memiliki beberapa hal yang dibutuhkan untuk menutup melawan. Hal utama adalah tekanan pembakaran pada silinder masing masing. Minyak dan pendingin harus mengalir dengan mudah antara blok dan kepala dan itu adalah tugas dari paking kepala untuk menjaga cairan dari bocor keluar atau ke dalam ruang pembakaran, atau satu sama lain dalam hal ini. Sebuah paking kepala khas biasanya terbuat dari lembaran logam yang lembut yang dicap dengan pegunungan yang mengelilingi semua titik kebocoran. Ketika kepala ditempatkan di blok, paking kepala terjepit di antara mereka. Universitas Mercu Buana 29

25 8. Heater Inti Pendingin panas juga digunakan untuk menyediakan panas untuk interior kendaraan bila diperlukan. Ini adalah sistem sederhana dan lurus ke depan yang meliputi inti pemanas, yang terlihat seperti kecil versi radiator, terhubung ke sistem pendingin dengan sepasang selang karet. Satu selang pendingin membawa panas dari pompa air ke inti pemanas dan selang lainnya pendingin kembali ke atas mesin. Biasanya ada katup kontrol pemanas di salah satu selang untuk memblokir aliran pendingin ke dalam inti pemanas ketika penyejuk udara maksimum disebut untuk. Sebuah kipas, disebut blower, menarik udara melalui inti pemanas dan mengarahkan melalui saluran pemanas untuk interior mobil. Gambar 2.24 Heater Inti 9. Selang Ada beberapa selang karet yang membentuk pipa untuk menghubungkan komponen-komponen sistem pendingin. Selang utama disebut selang radiator atas dan bawah. Kedua selang sekitar 2 inci dan diameter pendingin langsung antara mesin dan radiator. Dua selang Universitas Mercu Buana 30

26 tambahan, disebut selang pemanas, pendingin pasokan panas dari mesin ke inti pemanas. Ini selang sekitar 1 inci diameter. Salah satu selang mungkin memiliki katup kendali pemanas dipasang di garis untuk memblokir pendingin panas dari memasuki inti pemanas ketika AC diatur untuk max dingin. Sebuah selang kelima, disebut selang bypass, digunakan untuk mengedarkan pendingin melalui mesin, melewati radiator, ketika termostat ditutup. Beberapa mesin tidak menggunakan selang karet. Sebaliknya, mereka mungkin menggunakan tabung logam atau memiliki bagian built-in di perumahan depan. Gambar 2.25 Selang Radiator 2.5 Prinsip Kerja Sistem Pendinginan Air Pada sistem pendinginan air terdapat dua jenis sirkulasi yang digunakan untuk mendinginkan mesin, yaitu : sirkulasi alam dan sirkulasi tekan. Pada sirkulasi alam, prinsip kerjanya mengikuti sifat air. Sedangkan pada sirkulasi tekan, untuk mengalirkan air pendingin menggunakan bantuan pompa air (water pump). Sirkulasi tekan banyak digunakan pada mesin-mesin sekarang, karena proses sirkulasi air yang lebih cepat dan penggunaan Universitas Mercu Buana 31

27 radiator yang lebih kecil. Adapun cara kerja dari sistem pendinginan air adalah sebagai berikut : 1. Saat Mesin Hidup Saat mesin dihidupkan dan belum mencapai temperatur kerja mesin, penyerapan panas oleh air pendingin belum diperlukan. Sirkulasi air hanya disekitar kantong air karena adanya termostat yang belum membuka saat temperatur air pendingin belum mencapai suhu kerja. Air pendingin pada kantong-kantong air yang dipompa akan mengalir melalui saluran by pass, sehingga akan kembali lagi ke kantong-kantong air. Air pendingin yang berada pada sistem pendingin akan selalu cenderung panas. Saat suhu mesin melebihi suhu optimal, maka termostat akan membuka dan air yang berada pada kantong-kantong air akan mengalir menuju radiator untuk didinginkan, sedangkan air yang dingin pada radiator akan mengantikan air pada kantong air untuk mendinginkan mesin. 2. Saat Mesin Mati Saat mesin dimatikan, maka air pendingin yang berada pada kantong air akan terus menyerap panas dari mesin. Saat mesin telah dingin, temperatur dan volume cairan pendingin akan berkurang dan membentuk ruangan vakum dalam radiator. Ketika terjadi kevakuman tersebut, maka vacum valve pada tutup radiator akan membuka secara otomatis, yang kemudian akan menghisap udara segar ataupun air dalam tanki cadangan untuk mengganti kevakuman dalam radiator. Universitas Mercu Buana 32

28 2.6 Perpipaan Pengetahuan perpipaan merupakan sarana dan dasar pengetahuan di dalam perhitungan, perencanaan, dan pelaksanaan perpipaan berikutnya. Hal apa saja yang perlu diketahui pada teknik perpipaan ini akan dapat dilihat pada keterangan berikut ini: 1. Jenis Pipa Dari sekian jenis pembuatan pipa secara umum dapat dikelompokkan menjadi dua bagian yaitu: a. Jenis pipa tanpa sambungan (pembuatan pipa tanpa sambungan pengelasan [20]. b. Jenis pipa dengan sambungan (pembuatan pipa dengan pengelasan) [20]. 2. Bahan-Bahan Pipa Secara Umum Bahan-bahan pipa yang dimaksudkan di sini adalah struktur bahan baru pipa tersebut yang dapat dibagi secara umum sebagai berikut [20] : Carbon steel Carbon moly Galvanees Ferro nikel Stainless steel PVC (paralon) Chrome moly Universitas Mercu Buana 33

29 Sedang bahan-bahan pipa yang secara khusus dapat dikelompokkan sebagai berikut [20] : Vibre Glass Aluminium Wrought Iron (besi tanpa tempa) Cooper (Tembaga) Red Brass (kuningan merah) Nickel cooper = Monel ( timah tembaga) Nickel chrom iron = inconel (besi timah chrom) 3. Komponen Perpipaan Komponen perpipaan harus dibuat berdasarkan spesifikasi, standar yang terdaftar dalam simbol dan kode yang telah dibuat atau telah dipilih sebelumnya. Komponen perpipaan yang dimaksud di sini meliputi [20] : Pipes (pipa-pipa) Flanges (flens-flens) Fittings (sambungan) Valves (katup-katup) Boltings (baut-baut) Gasket Special items (bagian khusus) Universitas Mercu Buana 34

30 4. Pemilihan Bahan Pemilihan bahan perpipaan haruslah disesuaikan dengan pembuatan teknik perpipaan dan hal ini dapat dilihat pada ASTM (American Standard Testing and Material) serta ANSI (American National Standards Institute) dalam pembagian sebagai berikut [20]: Perpipaan untuk pembangkit tenaga Perpipaan untuk industri bahan gas Perpipaan untuk penyulingan minyak mentah Perpipaan untuk pengangkutan minyak Perpipaan untuk proses pendinginan Perpipaan untuk tenaga nuklir Perpipaan untuk distribusi dan transmisi gas Selain dari penggunaan instalasi atau konstruksi seperti diterangkan di atas perlu pula diketahui jenis asliran temperatur, sifat korosi, faktor gaya serta kebutuhan lainnya dari aliran serta pipanya. 5. Macam Sambungan Perpipaan Sambungan perpipaan dapat dikelompokan sebagai berikut: Sambungan dengan menggunakan pengelasan, misalnya pengelasan bahan stainless steel dengan las busur gas tungsten dan untuk pipa baja karbon dengan las logam [20]. Sambungan dengan menggunakan ulir, digunakan untuk pipa bertekanan tidak terlalu tinggi. Kebocoran dapat dicegah dengan menggunakan gasket (tape pipe) [20]. Universitas Mercu Buana 35

31 Selain sambungan seperti di atas, terdapat pula penyambungan khusus dengan menggunakan pengeleman (perekatan) serta pengkeleman (untuk pipa plastik dan pipa vibbre glass). Pada pengilangan umumnya pipa bertekanan rendah dan pipa di bawah 2 sajalah yang menggunakan sambungan ulir. 6. Tipe Sambungan Cabang Tipe sambungan cabang (brance conection) dapat dikelompokan sebagai berikut: Sambungan langsung (stub in) Gambar 2.26 Sambungan stub in [19] Sambungan dengan menggunakan fittings (alat penyambung) Gambar 2.27 Sambungan Siku (ellbow) [19] Universitas Mercu Buana 36

32 Gambar 2.28 Sambungan Te (tee) [19] Sambungan dengan menggunakan flanges (flens-flens) Gambar 2.29 Sambungan dengan pelana kuda [19] 2.7 Tembaga 1. Pengertian Tembaga Tembaga adalah logam merah-muda yang lunak, dapat ditempa, liat. Ia melebur pada 1038 [22]. Karena potensial electrode standarnya positif (+0,34 V untuk pasangan Cu/Cu 2+ ), ia tak larut dalam asam klorida dan asam Universitas Mercu Buana 37

33 sulfat encer, meskipun dengan adanya oksigen ia bisa terlarut sedikit. Dalam tabel periodik unsur unsur kimia, tembaga menempati posisi dengan nomor atom (NA)29 dan mempunyai bobot atau berat atom (BA)63,546. Tembaga sangat langka dan jarang sekali diperoleh dalam bentuk murni. Mudah didapat dari berbagai senyawa dan mineral. Penggunaan tembaga yaitu dalam bentuk logam merupakan paduan penting dalam bentuk kuningan, perunggu serta campuran emas dan perak. Banyak digunakan dalam pembuatan pelat, alat-alat listrik, pipa, kawat, pematrian, uang logam, alat-alat dapur, dan industry. Senyawa tembaga juga digunakan dalam kimia analitik dan penjernihan air, sebagai unsur dalam insektida, cat, obat-obatan dan pigmen. Kegunaan biologis untuk runutan dalam organisme hidup dan merupakan unsur penting dalam darah binatang berkulit keras. 2. Paduan Tembaga Paduan Tembaga telah berkurang penggunaannya dari pada waktu yang lampau. Harga tembaga yang meningkat dengan cepat, ditambah lagi denga kenyataan bahwa kualitas bahan murah yang lain telah meningkat akhir-akhir ini. Telah mengurangi penggunaan paduan tembaga untuk beberapa kebutuhan.selain itu teknik pembuatannya telah diperbaiki sehingga menyebabkan bahan kurang (ductile) dapat dipakai, karena itu baja ringan kualitasnya baik yang sering digunakan. Tembaga membentuk larutan padat dengan unsur logam lain dalam daerah yang luas dan dipergunakan untuk berbagi keperluan, dan macam-macam paduan pada tembaga antara lain : Universitas Mercu Buana 38

34 a) Perunggu Perunggu mempunyai kadar tembaga Cu %, timah putih Sn % dan selain itu campuran tambahan lain seperti Seng (Zn), Timbel (Pb), Aluminium (Al) dll. Perungu ialah : paduan kepal atau paduan tuang yang tahan terhadap korosi. Selain itu mempunyai daya luncur dan daya hantar yang baik untuk arus listrik [23]. b) Perunggu Bebas Seng Perunggu bebas seng yang dinamakan juga perunggu timah, yaitu perunggu tuang dari Cu ditambah 10%, 14%, atau 20% Sn tanpa campuran tambahan lain. Bahan itu digunakan untuk pentil yang harus mempunyai syarat tinggi terhadap korosi dan ketangguhan (10% Sn). Selain itu pada bantalan harus mempunyai syarat-syarat tinggi untuk sifat luncur (14% Sn) dan unutuk bantalan-bantalan tekan dengan syarat tinggi untuk kekerasan (20 % Sn ) [23]. c) Perunggu Bebas Seng Paduan Kepal Mempunyai 1,5 % sampai setinggi-tingginya 10 % timah putih dan selain itu Fosfor dalam persentase yang sangat kecil, yaitu setinggi-tingginya 0,3 % campuran ini dahulu dinamakan perunggu Fosfor. Dipakai untuk profil-profil, batang-batang, kawat, plat, dan pipa yang dicanai dan ditarik [23]. Universitas Mercu Buana 39

35 d) Perunggu dan Seng Perunggu seng ialah : perungu tembaga timah dengan tambahan seng 2 % - 7 %. Bahan itu dipakai terutama untuk bantalanbantalan ( campuran tuang ) [23]. e) Perunggu Aluminium Perunggu Alumnium ialah : campuran tuang dan campuran kepal dari tembaga dengan Aluminium dengan besi dan bahan tambahan lain (perunggu dua zat). Perunggu dua zat (Al dan Ni) tahan korosi terhadap bahan kimia tertentu karena itu dipakai untuk perlengkapan kimia. Perunggu Alumium tidak mempunyai fungsi lain dari perunggu bebas seng. Sifat-sifatnya kurang baik, jadi tidak banyak dipakai kecuali di negeri-negeri yang kurang akan timah [23]. f) Perunggu Silikon Perunggu Silikon baik sebagai paduan tuang maupun kepal mempunyai kadar (Si) 0,5 %-4,5 %. Selain itu ada bahan-bahan tambahan dari timah, nikel, mangan, besi dan seng dalam bermacam-macam persenyawaan. Sebagian dapat dijadikan misalnya, cupoder yang mempunyai tahanan tarik dan kekerasan yang baik [23]. 3. Konduktivitas Termal Konduktivitas termal (k) difefinisikan sebagai laju panas pada suatu benda dengan suatu gradien temperatur. Dengan kata lain konduktivitas termal menyatakan kemamouan bahan untuk menghantarkan kalor. Nilai Universitas Mercu Buana 40

36 konduktivitas termal penting untuk menentukan jenis dari penghantar yaitu penhantar panas yang baik (konduktor) untuk nilai koefisien konduktivitas termal yang besar dan penghantar panas yang kurang baik (isolator) untuk nila koefisien konduktivitas termal yang kecil. Setiap benda mempunyai konduktivitas termal (kemampuan mengalirkan panas) tertentu yang akan mempengaruhi panas yang dihantarkan dari sisi yang panas ke sisi yang lebih dingin. Semakin tinggi nilai konduktivitas termal suatu benda, semakin cepat ia mengalirkan panas yang diterima dari satu sisi ke sisi yang lain. Begitu juga sebaliknya semakin rendah nilai konduktivitas termal suatu benda maka akan semakin lama ia mengalirkan panas [24]. Pada tabel 2.1 di bawah ini menunjukkan nilai koefisien konduktivitas termal dari setiap logam. Tabel 2.1 Koefisien Kondoktivitas Termal [25] Bahan Logam Koefisien Kondoktivitas Termal W/m. o C Perak (murni) 410 Tembaga (murni) 385 Aluminium (murni) 202 Nikel (murni) 93 Besi (murni) 73 Baja karbon, 1%C 43 Timbal (murni) 35 Baja krom-nikel, 18%Cr-8%Ni 16,3 Universitas Mercu Buana 41

37 2.8 Metode Perhitungan NTU Dan LMTD 1. Number of Transfer Unit atau NTU Metode efektivitas mempunyai beberapa keuntungan untuk menganalisis perbendingan berbagai jenis penukar kalor dalam memilih jenis yang terbaik untuk melaksanakan pemindahan kalor tertentu. Efektifitas penukar kalor (heat exchanger effectiveness) didefinisikan sebagai berikut : ε = ( )... [2] Perpindahan kalor yang sebenarnya (actual) dapat dihitung dari energi yang dilepaskan oleh fluida panas atau energi yang diterima oleh fluida dingin untuk penukar kalor aliran lawan arah : q = m C (T T ) q = m C (T T )... [2] Dimana : q = perpindahan panas m = laju aliran massa C h = kalor spesifik fluida panas C c = Kalor spesifik fluida dingin T h1 = suhu masuk fluida panas T h2 = suhu keluar fluida panas T c1 = suhu masuk fluida dingin T c2 = suhu keluar fluida dingin Universitas Mercu Buana 42

38 Untuk menentukan perpindahan kalor maksimum bagi penukar kalor itu harus dipahami bahwa nilai maksimum akan didapat bila salah satu fluida mengalami perubahan suhu sebesar beda suhu maksimum yang terdapat dalam penukar kalor itu, yaitu selisih antara suhu masuk fluida panas dan fluida dingin. Fluida yang mungkin mengalami beda suhu maksimum ini ialah yang nilai m c nya minimum, karena neraca energi mensyaratkan bahwa energi yang diterima oleh fluida yang satu mesti sama dengan energi yang dilepas oleh fluida yang satu lagi. Jika fluida yang mempunyai nilai m c yang lebih besar yang dibuat mangalmi beda suhu maksimum, maka tentu fluida yang satu lagi akan harus mengalami suhu yang lebih besar dari maksimum, dan ini tidak dimungkinkan. Jadi perpindahan kalor maksimum yang mungkin dinyatakan sebagai : q = (m ) (T T )... [2] Jika fluida dingin adalah fluida minimum, maka : ε =...[2] 2. Log Mean Temperature difference atau LMTD Fluida dapat mengalir dalam aliran sejajar maupun aliran lawan arah, dan profil suhu. Perpindahan kalor dalam susunan pipa ganda dapat dihitung memakai rumus : q = U. A. T... [2] Dimana : U = koefisien perpindahan kalor menyeluruh A = luar permukaan perpindahan kalor yang sesuai dengan definisi U Universitas Mercu Buana 43

39 T m = beda suhu rata-rata yang tepat untuk digunakan dalam penukar kalor Jadi rumus perhitungan Log Mean Temperature difference atau LMTD, yaitu : q = U. A. LMTD... [2] Dimana nilai LMTD didapat dari rumus sebagai berikut : LMTD = T T ln ( T T ) LMTD = T = ( ) ( )...[21] ( ) ( ) Universitas Mercu Buana 44

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Perpindahan Kalor Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat tempat tersebut. Perpindahan

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan panas adalah perpindahan energi karena adanya perbedaan temperatur. Perpindahan kalor meliputu proses pelepasan maupun penyerapan kalor, untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Kalor Pengertian kalor yaitu bentuk energi yang berpindah dari benda yang suhunya lebih tinggi ke benda yang suhunya lebih rendah ketika benda bersentuhan. 1 kalori

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Perpindahan panas adalah Ilmu termodinamika yang membahas tentang transisi kuantitatif dan penyusunan ulang energi panas dalam suatu tubuh materi. perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Radiator

BAB II DASAR TEORI. 2.1 Pengertian Radiator BAB II DASAR TEORI 2.1 Pengertian Radiator Radiator adalah alat penukar panas yang digunakan untuk memindahkan energi panas dari satu medium ke medium lainnya yang tujuannya untuk mendinginkan maupun memanaskan.radiator

Lebih terperinci

MAKALAH. SMK Negeri 5 Balikpapan SISTEM PENDINGIN PADA SUATU ENGINE. Disusun Oleh : 1. ADITYA YUSTI P. 2.AGUG SETYAWAN 3.AHMAD FAKHRUDDIN N.

MAKALAH. SMK Negeri 5 Balikpapan SISTEM PENDINGIN PADA SUATU ENGINE. Disusun Oleh : 1. ADITYA YUSTI P. 2.AGUG SETYAWAN 3.AHMAD FAKHRUDDIN N. MAKALAH SISTEM PENDINGIN PADA SUATU ENGINE Disusun Oleh : 1. ADITYA YUSTI P. 2.AGUG SETYAWAN 3.AHMAD FAKHRUDDIN N. Kelas : XI. OTOMOTIF Tahun Ajaran : 2013/2014 SMK Negeri 5 Balikpapan Pendahuluan Kerja

Lebih terperinci

Pipa pada umumnya digunakan sebagai sarana untuk mengantarkan fluida baik berupa gas maupun cairan dari suatu tempat ke tempat lain. Adapun sistem pen

Pipa pada umumnya digunakan sebagai sarana untuk mengantarkan fluida baik berupa gas maupun cairan dari suatu tempat ke tempat lain. Adapun sistem pen BAB I PENDAHULUAN 1.1. Latar Belakang Unit penukar kalor adalah suatu alat untuk memindahkan panas dari suatu fluida ke fluida yang banyak di gunakan untuk operasi dan produksi dalam industri proses, seperti:

Lebih terperinci

TUGAS AKHIR PERCOBAAN KUALITAS ETHYLENE DAN AIR PADA ALAT PERPINDAHAN PANAS DENGAN SIMULASI ALIRAN FLUIDA

TUGAS AKHIR PERCOBAAN KUALITAS ETHYLENE DAN AIR PADA ALAT PERPINDAHAN PANAS DENGAN SIMULASI ALIRAN FLUIDA PERCOBAAN KUALITAS ETHYLENE DAN AIR PADA ALAT PERPINDAHAN PANAS DENGAN SIMULASI ALIRAN FLUIDA Diajukan Guna Melengkapi Sebagian Syarat Dalam Mencapai Gelar Sarjana Strata Satu (S1) Disusun Oleh : Nama

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Pendinginan Mesin Motor bakar dalam operasionalnya menghasilkan panas yang berasal dari pembakaran bahan bakar dalm silinder. Panas yang di hasilkan tidak di buang akibatnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Panas atau kalor merupakan salah satu bentuk energi. Panas dapat berpindah dari suatu zat ke zat lain. Panas dapat berpndah melalui tiga cara yaitu : 2.1.1

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

Rencana Pembelajaran Kegiatan Mingguan (RPKPM).

Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Pertemuan ke Capaian Pembelajaran Topik (pokok, subpokok bahasan, alokasi waktu) Teks Presentasi Media Ajar Gambar Audio/Video Soal-tugas Web Metode Evaluasi

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Perpindahan Kalor Perpindahan panas adalah proses berpindah nya energi dari suatu tempat ketempat yang lain dikarenakan adanya perbedaan suhu ditempat tempat tersebut. Perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Perpindahan kalor adalah ilmu yang mempelajari perpindahan energi karena perbedaan temperatur diantara benda atau material. Apabila dua benda yang berbeda

Lebih terperinci

BAGIAN-BAGIAN UTAMA MOTOR Bagian-bagian utama motor dibagi menjadi dua bagian yaitu : A. Bagian-bagian Motor Utama yang Tidak Bergerak

BAGIAN-BAGIAN UTAMA MOTOR Bagian-bagian utama motor dibagi menjadi dua bagian yaitu : A. Bagian-bagian Motor Utama yang Tidak Bergerak BAGIAN-BAGIAN UTAMA MOTOR Bagian-bagian utama motor dibagi menjadi dua bagian yaitu : A. Bagian-bagian Motor Utama yang Tidak Bergerak Tutup kepala silinder (cylinder head cup) kepala silinder (cylinder

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II PENDAHULUAN BAB II LANDASAN TEORI 2.1 Motor Bakar Bensin Motor bakar bensin adalah mesin untuk membangkitkan tenaga. Motor bakar bensin berfungsi untuk mengubah energi kimia yang diperoleh dari

Lebih terperinci

Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator

Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator Nur Robbi Program Studi Teknik Mesin Fakultas Teknik Universitas Islam Malang Jl. MT Haryono 193 Malang 65145 E-mail: nurrobbift@gmail.com

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA BAB I PENDAHULUAN I.1. Latar Belakang Alat penukar kalor (Heat Exchanger) merupakan suatu peralatan yang digunakan untuk menukarkan energi dalam bentuk panas antara fluida yang berbeda temperatur yang

Lebih terperinci

BAB III METODOLOGI PENELITIAN. pirolisator merupakan sarana pengolah limbah plastik menjadi

BAB III METODOLOGI PENELITIAN. pirolisator merupakan sarana pengolah limbah plastik menjadi BAB III METODOLOGI PENELITIAN 3.1 Perencanaan Alat Alat pirolisator merupakan sarana pengolah limbah plastik menjadi bahan bakar minyak sebagai pengganti minyak bumi. Pada dasarnya sebelum melakukan penelitian

Lebih terperinci

BAB III TEORI DASAR KONDENSOR

BAB III TEORI DASAR KONDENSOR BAB III TEORI DASAR KONDENSOR 3.1. Kondensor PT. Krakatau Daya Listrik merupakan salah satu anak perusahaan dari PT. Krakatau Steel yang berfungsi sebagai penyuplai aliran listrik bagi PT. Krakatau Steel

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori 2.1.1 Pengertian Heat Exchanger (HE) Heat Exchanger (HE) adalah alat penukar panas yang memfasilitasi pertukaran panas antara dua cairan pada temperatur yang berbeda

Lebih terperinci

PELATIHAN PENGELASAN DAN PENGOPERASIAN KOMPRESOR

PELATIHAN PENGELASAN DAN PENGOPERASIAN KOMPRESOR MAKALAH PELATIHAN PENGELASAN DAN PENGOPERASIAN KOMPRESOR PROGRAM IbPE KELOMPOK USAHA KERAJINAN ENCENG GONDOK DI SENTOLO, KABUPATEN KULONPROGO Oleh : Aan Ardian ardian@uny.ac.id FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Bahan Pirolisis Bahan yang di gunakan dalam pirolisis ini adalah kantong plastik es bening yang masuk dalam kategori LDPE (Low Density Polyethylene). Polietilena (PE)

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan teknologi yang semakin cepat mendorong manusia untuk selalu mempelajari ilmu pengetahuan dan teknologi (Daryanto, 1999 : 1). Sepeda motor, seperti juga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Perpindahan kalor atau panas (heat transfer) merupakan ilmu yang berkaitan dengan perpindahan energi karena adanya perbedaan suhu diantara benda atau material.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

MAKALAH SISTEM PENDINGIN PADA MOBIL

MAKALAH SISTEM PENDINGIN PADA MOBIL MAKALAH SISTEM PENDINGIN PADA MOBIL NAMA : REZA FIAN P. KELAS : XI MO 3 ABSEN : 15 SMKN 5 SURABAYA Dalam suatu mesin yang memakai sistem pendingin cairan, blok silinder dan kepala silinder memiliki dinding

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Air Panglima Besar Soedirman mempunyai tiga unit turbin air tipe Francis poros vertikal, yang digunakan sebagai penggerak mula dari generator

Lebih terperinci

BAB II PESAWAT PENGUBAH PANAS (HEAT EXCHANGER )

BAB II PESAWAT PENGUBAH PANAS (HEAT EXCHANGER ) BAB II PESAWAT PENGUBAH PANAS (HEAT EXCHANGER ) Pesawat pengubah panas adalah pesawat pesawat yang bekerja atas dasar perpindahan panas dan satu zatke zat yang lain. A. Dapat digolongkan menurut : 1. Pendinginan

Lebih terperinci

BAB 4 ANALISA KONDISI MESIN

BAB 4 ANALISA KONDISI MESIN BAB 4 ANALISA KONDISI MESIN 4.1. KONDENSOR Penggunaan kondensor tipe shell and coil condenser sangat efektif untuk meminimalisir kebocoran karena kondensor model ini mudah untuk dimanufaktur dan terbuat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar kalor, mekanisme perpindahan kalor pada penukar kalor, konfigurasi aliran fluida, shell and tube heat exchanger, bagian-bagian shell

Lebih terperinci

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi I. PENDAHULUAN A. Latar Belakang Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi Tulen yang berperan dalam proses pengeringan biji kopi untuk menghasilkan kopi bubuk TULEN. Biji

Lebih terperinci

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR SKRIPSI Skripsi yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

BAB III PERBAIKAN ALAT

BAB III PERBAIKAN ALAT L e = Kapasitas kalor spesifik laten[j/kg] m = Massa zat [kg] [3] 2.7.3 Kalor Sensibel Tingkat panas atau intensitas panas dapat diukur ketika panas tersebut merubah temperatur dari suatu subtansi. Perubahan

Lebih terperinci

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48 PENGARUH SIRIP CINCIN INNER TUBE TERHADAP KINERJA PERPINDAHAN PANAS PADA HEAT EXCHANGER Sujawi Sholeh Sadiawan 1), Nova Risdiyanto Ismail 2), Agus suyatno 3) ABSTRAK Bagian terpenting dari Heat excanger

Lebih terperinci

Frekuensi yang digunakan berkisar antara 10 hingga 500 khz, dan elektrode dikontakkan dengan benda kerja sehingga dihasilkan sambungan la

Frekuensi yang digunakan berkisar antara 10 hingga 500 khz, dan elektrode dikontakkan dengan benda kerja sehingga dihasilkan sambungan la Pengelasan upset, hampir sama dengan pengelasan nyala, hanya saja permukaan kontak disatukan dengan tekanan yang lebih tinggi sehingga diantara kedua permukaan kontak tersebut tidak terdapat celah. Dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan. Metode pengawetan dengan cara pengeringan merupakan metode paling tua dari semua metode pengawetan yang ada. Contoh makanan yang mengalami proses pengeringan ditemukan

Lebih terperinci

BAB XII KALOR DAN PERUBAHAN WUJUD

BAB XII KALOR DAN PERUBAHAN WUJUD BAB XII KALOR DAN PERUBAHAN WUJUD Kalor dan Perpindahannya BAB XII KALOR DAN PERUBAHAN WUJUD 1. Apa yang dimaksud dengan kalor? 2. Bagaimana pengaruh kalor pada benda? 3. Berapa jumlah kalor yang diperlukan

Lebih terperinci

MAKALAH MOTOR BAKAR DAN TENAGA PERTANIAN SISTEM PENDINGINAN

MAKALAH MOTOR BAKAR DAN TENAGA PERTANIAN SISTEM PENDINGINAN MAKALAH MOTOR BAKAR DAN TENAGA PERTANIAN SISTEM PENDINGINAN Disusun Oleh : Kelompok 4 Heri Siswanto Rizma Annisa Merlyn Karlina A. Ria Wijiati Ras Subhekti Hikmanto Catur Febrianto Dita Pujianti Atikah

Lebih terperinci

BAB IV PEMBAHASAN DAN PERAWATAN 4.1 TUJUAN PERAWATAN WATER PUMP a) Menyediakan informasi pada pembaca dan penulis untuk mengenali gejala-gejala yang terjadi pada water pump apabila akan mengalami kerusakan.

Lebih terperinci

BAB III METOLOGI PENELITIAN

BAB III METOLOGI PENELITIAN BAB III METOLOGI PENELITIAN 3.1 Waktu dan Tempat Metode yang digunakan adalah untuk mendekatkan permasalahan yang diteliti sehingga menjelaskan dan membahas permasalahan secara tepat. Skripsi ini menggunakan

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

DEPARTEMEN TEKNOLOGI INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR

DEPARTEMEN TEKNOLOGI INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR Laporan Praktikum Hari, tanggal: Senin, 16 Maret 2015 Gol : P3 Peralatan Industri Pertanian Dosen : Dr. Ir. Ade Iskandar M. Si Asisten : 1. Fadila (F34110025) 2. Nur Kholiq (F34110105) 3. Aji Wibowo (F34110111)

Lebih terperinci

PENGARUH PERBANDINGAN TANPA SIRIP DENGAN SIRIP LURUS DENGAN ALIRAN AIR BERLAWANAN TERHADAP EFISIENSI PERPINDAHAN PANAS PADA HEAT EXCHANGER ABSTRAK

PENGARUH PERBANDINGAN TANPA SIRIP DENGAN SIRIP LURUS DENGAN ALIRAN AIR BERLAWANAN TERHADAP EFISIENSI PERPINDAHAN PANAS PADA HEAT EXCHANGER ABSTRAK PENGARUH PERBANDINGAN TANPA SIRIP DENGAN SIRIP LURUS DENGAN ALIRAN AIR BERLAWANAN TERHADAP EFISIENSI PERPINDAHAN PANAS PADA HEAT EXCHANGER Bayu Anggoro 1, Nova R. Ismail 2, Agus Suyatno 3 ABSTRAK Bagian

Lebih terperinci

DOUBLE PIPE HEAT EXCHANGER. ALAT DAN BAHAN - Alat Seperangkat alat Double Pipe Heat Exchanger Heater Termometer - Bahan Air

DOUBLE PIPE HEAT EXCHANGER. ALAT DAN BAHAN - Alat Seperangkat alat Double Pipe Heat Exchanger Heater Termometer - Bahan Air DOUBLE PIPE HEAT EXCHANGER I. TUJUAN - Mengetahui unjuk kerja alat penukar kalor jenis pipa ganda (Double Pipe Heat Exchanger). - Menghitung koefisien perpindahan panas, faktor kekotoran, efektivitas dan

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

3.2 Pembuatan Pipa Pipa aliran air dan coolant dari heater menuju pipa yang sebelumnya menggunakan pipa bahan polimer akan digantikan dengan menggunak

3.2 Pembuatan Pipa Pipa aliran air dan coolant dari heater menuju pipa yang sebelumnya menggunakan pipa bahan polimer akan digantikan dengan menggunak BAB III METODE PENELITIAN 3.1 Pendekatan Penelitian Pendekatan penelitian adalah metode yang digunakan untuk mendekatkan permasalahan alahan yang diteliti, sehingga dapat menjelaskan dan membahas permasalahan

Lebih terperinci

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE Diajukan untuk Memenuhi Persyaratan Kurikulum Sarjana Strata Satu (S-1)

Lebih terperinci

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor 4 BAB II TEORI DASAR.1 Perancangan Sistem Penyediaan Air Panas.1.1 Kualitas Air Panas Air akan memiliki sifat anomali, yaitu volumenya akan mencapai minimum pada temperatur 4 C dan akan bertambah pada

Lebih terperinci

TINJAUAN FAKTOR PENGOTORAN ( FOULING ) TERHADAP PRESTASI RADIATOR PADA SISTEM PENDINGIN MOBIL

TINJAUAN FAKTOR PENGOTORAN ( FOULING ) TERHADAP PRESTASI RADIATOR PADA SISTEM PENDINGIN MOBIL HALAMAN JUDUL Teknik LAPORAN PENELITIAN DOSEN TINJAUAN FAKTOR PENGOTORAN ( FOULING ) TERHADAP PRESTASI RADIATOR PADA SISTEM PENDINGIN MOBIL Oleh : Bagiyo Condro Purnomo NIK. 087606031 Fakultas Teknik Saifudin,

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

BAB IV PEMILIHAN SISTEM PEMANASAN AIR 27 BAB IV PEMILIHAN SISTEM PEMANASAN AIR 4.1 Pemilihan Sistem Pemanasan Air Terdapat beberapa alternatif sistem pemanasan air yang dapat dilakukan, seperti yang telah dijelaskan dalam subbab 2.2.1 mengenai

Lebih terperinci

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari.

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. KALOR A. Pengertian Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama kelamaan

Lebih terperinci

PENGARUH PENGGUNAAN RADIATOR PADA SISTEM PENDINGIN MOTOR DIESEL STASIONER SATU SILINDER TERHADAP LAJU KENAIKAN SUHU AIR PENDINGIN

PENGARUH PENGGUNAAN RADIATOR PADA SISTEM PENDINGIN MOTOR DIESEL STASIONER SATU SILINDER TERHADAP LAJU KENAIKAN SUHU AIR PENDINGIN PENGARUH PENGGUNAAN RADIATOR PADA SISTEM PENDINGIN MOTOR DIESEL STASIONER SATU SILINDER TERHADAP LAJU KENAIKAN SUHU AIR PENDINGIN Eko Surjadi Sfaf Pengajar, Program Studi Teknik Mesin, Fakultas Teknik,

Lebih terperinci

BAB II DASAR TEORI Sistem Pendingin. Sistem pendingin adalah suatu rangkaian untuk mengatasi terjadinya overheating

BAB II DASAR TEORI Sistem Pendingin. Sistem pendingin adalah suatu rangkaian untuk mengatasi terjadinya overheating BAB II DASAR TEORI 2.1. Sistem Pendingin Sistem pendingin adalah suatu rangkaian untuk mengatasi terjadinya overheating pada mesin agar mesin bisa bekerja secara stabil. Pada mesin, energi yang terkandung

Lebih terperinci

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Oleh : Robbin Sanjaya 2106.030.060 Pembimbing : Ir. Denny M.E. Soedjono,M.T PENDAHULUAN 1. Latar Belakang

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian (flow chat) Mulai Pengambilan Data Thi,Tho,Tci,Tco Pengolahan data, TLMTD Analisa Grafik Kesimpulan Selesai Gambar 3.1 Diagram alir penelitian

Lebih terperinci

Bab 1. PENDAHULUAN Latar Belakang

Bab 1. PENDAHULUAN Latar Belakang 1 Bab 1. PENDAHULUAN 1.1. Latar Belakang Perkembangan Industri kimia di Indonesia sudah cukup maju seiring dengan globalisasi perdagangan dunia. Industri pembuatan Nylon yang merupakan salah satu industri

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

BAB XII KALOR DAN PERUBAHAN WUJUD

BAB XII KALOR DAN PERUBAHAN WUJUD BAB XII KALOR DAN PERUBAHAN WUJUD 1. Apa yang dimaksud dengan kalor? 2. Bagaimana pengaruh kalor pada benda? 3. Berapa jumlah kalor yang diperlukan untuk perubahan suhu benda? 4. Apa yang dimaksud dengan

Lebih terperinci

BAB II PENGELASAN SECARA UMUM. Ditinjau dari aspek metalurgi proses pengelasan dapat dikelompokkan

BAB II PENGELASAN SECARA UMUM. Ditinjau dari aspek metalurgi proses pengelasan dapat dikelompokkan II - 1 BAB II PENGELASAN SECARA UMUM 2.1 Dasar Teori 2.1.1 Pengelasan Ditinjau dari aspek metalurgi proses pengelasan dapat dikelompokkan menjadi dua, pertama las cair (fussion welding) yaitu pengelasan

Lebih terperinci

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN Disusun oleh: BENNY ADAM DEKA HERMI AGUSTINA DONSIUS GINANJAR ADY GUNAWAN I8311007 I8311009

Lebih terperinci

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar!

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar! Soal Suhu dan Kalor Jawablah pertanyaan-pertanyaan di bawah ini dengan benar! 1.1 termometer air panas Sebuah gelas yang berisi air panas kemudian dimasukkan ke dalam bejana yang berisi air dingin. Pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Tugas akhir dengan judul Analisis Sistem Pendingin ini menggunakan refrensi dari Tugas Akhir yang ditulis oleh Ade Irfan S yang berjudul

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

SIFAT FISIK DAN MINERAL BAJA

SIFAT FISIK DAN MINERAL BAJA SIFAT FISIK DAN MINERAL BAJA Oleh kelompok 7 AYU ANDRIA SOLIHAT (20130110066) SEPTIYA WIDIYASTUTY (20130110077) BELLA LUTFIANI A.Z. (20130110080) M.R.ERNADI RAMADHANI (20130110100) Pengertian Baja Baja

Lebih terperinci

Cooling Tower (Menara Pendingin)

Cooling Tower (Menara Pendingin) Cooling Tower (Menara Pendingin) A. Pengertian Menurut El. Wakil, menara pendingin didefinisikan sebagai alat penukar kalor yang fluida kerjanya adalah air dan udara yang berfungsi mendinginkan air dengan

Lebih terperinci

BAB II DASAR TEORI. mempertahankan keadaan yang dibutuhkan sewaktu proses berlangsung. Kalor

BAB II DASAR TEORI. mempertahankan keadaan yang dibutuhkan sewaktu proses berlangsung. Kalor 1 BAB II DASAR TEORI 2.1 Jenis Perpindahan Kalor Perpindahan ka1or dari suatu zat ke zat lain seringkali terjadi dalam kehidupan sehari-hari baik penyerapan atau pelepasan ka1or, untuk mencapai dan mempertahankan

Lebih terperinci

Pipa air Pengertian Pipa PVC

Pipa air Pengertian Pipa PVC Pipa air ialah pipa atau tabung, kebanyakan terbuat dari polivinil klorida (PVC), saluran besi, polietilena, atau tembaga yang membawa air bersih yang diberi tekanan udara dan dibersihkan ke bangunan-bangunan

Lebih terperinci

COOLING SYSTEM ( Sistim Pendinginan )

COOLING SYSTEM ( Sistim Pendinginan ) COOLING SYSTEM ( Sistim Pendinginan ) Adalah sistim dalam engine diesel yang berfungsi: 1. Mendinginkan engine untuk mencegah Over Heating.. 2. Memelihara suhu kerja engine. 3. Mempercepat dan meratakan

Lebih terperinci

PENERAPAN KONSEP FLUIDA PADA MESIN PERKAKAS

PENERAPAN KONSEP FLUIDA PADA MESIN PERKAKAS PENERAPAN KONSEP FLUIDA PADA MESIN PERKAKAS 1. Dongkrak Hidrolik Dongkrak hidrolik merupakan salah satu aplikasi sederhana dari Hukum Pascal. Berikut ini prinsip kerja dongkrak hidrolik. Saat pengisap

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang BAB I PENDAHULUAN 1.1. Latar Belakang Proses pemanasan atau pendinginan fluida sering digunakan dan merupakan kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang elektronika. Sifat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar panas (heat exchanger), mekanisme perpindahan panas pada heat exchanger, konfigurasi aliran fluida, shell and tube heat exchanger,

Lebih terperinci

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN 0 o, 30 o, 45 o, 60 o, 90 o I Wayan Sugita Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta e-mail : wayan_su@yahoo.com ABSTRAK Pipa kalor

Lebih terperinci

MATERIAL TEKNIK LOGAM

MATERIAL TEKNIK LOGAM MATERIAL TEKNIK LOGAM LOGAM Logam adalah Jenis material teknik yang dipakai secara luas,dan menjadi teknologi modern yaitu material logam yang dapat dipakai secara fleksibel dan mempunyai beberapa karakteristik.

Lebih terperinci

PENGUKURAN KONDUKTIVITAS TERMAL

PENGUKURAN KONDUKTIVITAS TERMAL PENGUKURAN KONDUKTIVITAS TERMAL A. TUJUAN 1. Mengukur konduktivitas termal pada isolator plastisin B. ALAT DAN BAHAN Peralatan yang digunakan dalam kegiatan pengukuran dapat diperhatikan pada gambar 1.

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Solar Menurut Syarifuddin (2012), solar sebagai bahan bakar yang berasal dari minyak bumi yang diproses di tempat pengilangan minyak dan dipisah-pisahkan hasilnya berdasarkan

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Siklus Air dan Uap Siklus air dan uap di PLTU 3 Jawa Timur Tanjung Awar Awar sebagai tinjauan pustaka awal dan pembahasan awal yang nantinya akan merujuk ke unit kondensor. Siklus

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip dan Teori Dasar Perpindahan Panas Panas adalah salah satu bentuk energi yang dapat dipindahkan dari suatu tempat ke tempat lain, tetapi tidak dapat diciptakan atau dimusnahkan

Lebih terperinci