KUNCI JAWABAN BAB 1 SISTEM BILANGAN REAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KUNCI JAWABAN BAB 1 SISTEM BILANGAN REAL"

Transkripsi

1 Kunci Jawaban Soal-soal Pilihan 49 KUNCI JAWABAN BAB SISTEM BILANGAN REAL Latihan. a. 4% ; 0 9. a a 0 c. 9 c. 6 c.,% ; e. e g. 4 g. 7. Warisan masing-masing adalah Rp ,00; 9. Rp ,00. Rp60.000,00. Rp0.000,00. Rp.66.00,00 Rp ,00; Rp ,00; dan Rp ,00. i. i. e. 0,% ; k. 4 Latihan. sak. meter. Tembaga = 60%; Timah hitam = 0% dan Timah putih = 0% km 9. a. : c. : e. : g. : i. : k. 4 :. Rp ,00., meter..000 m 7. Neni = Rp0.000,00 ; Marliana = Rp60.000,00 dan Devi = Rp80.000, pekerja. Rp0.000,00

2 0 Matematika X SMK Kelompok: Penjualan dan Akuntansi Latihan a. x = ; b = - Latihan ( ) , Latihan. a. c. e., g. -. a.,80 c. 0,76 e.,94. a. 0,79 c. 4,748 e. 0,78 g. 0, a = c. 9. a. 80, 4 e. g. 4, Uji Kemampuan E E C A 4 A D A D B 4 B D E B E 4 E 4 C 4 A 4 B 4 D 44 A B C A B 4 D 6 E 6 A 6 B 6 D 46 E 7 B 7 B 7 C 7 B 47 B 8 E 8 B 8 E 8 D 48 D 9 D 9 A 9 C 9 E 49 B 0 D 0 A 0 D 40 C 0 D

3 Kunci Jawaban Soal-soal Pilihan KUNCI JAWABAN BAB PERSAMAAN dan PERTIDAKSAMAAN Latihan. a. x = -0 k. x = 9 c. x = -7 m. x = e. x = o. x = g. x = -4 q. x = i. x = 0 s. x = a. { x x > - } k. { p p > - } c. { x x > - 0} m. { x x > 6 } e. { x x > - } o. { x x < } g. { x x > 0 } q. { x x > - 66} 6 6 i. { x x < } s. { x x > } 7. a. {(, )} g. {(, )} c. {(-, )} i. {( 7, - 4)} e. {(, - )} 7. a. Meja = $, Kursi = $, Harga meja + kursi = $0 c. Bilangan tersebut adalah 40 dan e. Banyak murid laki-laki = 7 orang dan murid perempuan = orang g. Umur anak sekarang = 0 tahun dan umur ayahnya sekarang = tahun Latihan. x = dan x = 6 7. x = - dan x =. x = - dan x = 9 9. x = dan x = -

4 Matematika X SMK Kelompok: Penjualan dan Akuntansi. x = - dan x = + 7. x = dan x = 7. x = 0 dan x = - 0. x = -4 dan x = 0, 9. x = - dan x =. x, =. x = dan x = - 7. x = 0 dan x =. x = dan x = - 9. x = - dan x =. x = 9 8 dan x = 4. x = dan x = x = - dan x = 4. x = dan x = 9. x = dan x = 4. x = dan x = 4. x = - dan x = 47. x = - dan x =. x = -6 dan x = 49. x = - dan x =. x = - + dan x = -. c =, akar lainnya 7. m = -6 dan m = 8. Persamaan kuadratnya adalah x + 7x 6 = 0 dan akar-akarnya adalah x = - dan x = 7. Persamaan kuadratnya adalah x 4x + = 0, akar-akarnya adalah x = dan x = 9. {x - < x < } 69. {x - < x < 4 } 6. {x < x < 7 } 7. {x - 4 < x < 0 } 6. {x - < x < } 7. {x x R } 6. {x x < - atau x > } 7. {x - < x < 7 } 67. {x x < atau x > } Latihan. a. D = 0, akar-akarnya sama atau kembar c. D = -, akar-akarnya tidak real atau akar-akarnya imajiner e. D = 40, akar-akarnya real dan berbeda 0 4. a. -4 b. c. 0 d. - e. f.. a. b. 0 c. d. 0 e. f. tidak terdefinisi

5 Kunci Jawaban Soal-soal Pilihan Latihan 4. a. x x 6 = 0 g. x = 0 c. x = 0 i. x 8x + 4 = 0 e. x 7x + 0 = 0. x 4x + = 0. 4x x + = 0 7. Ukuran tanah Pak Ali adalah 0 m x 40 m dan ukuran tanah Ibu Selvi adalah 0 m x 0 m Uji Kemampuan B E B C E E E C A 4 E 4 E 4 D C D C 6 C 6 B 6 C 7 B 7 E 7 C 8 B 8 B 8 B 9 E 9 C 9 B 0 D 0 A 0 A Latihan KUNCI JAWABAN BAB MATRIKS. a. 4 c., 4, -, 0 dan 0 e. -6, -, -8 dan 6 g. - i. kolom ke-. a. x b. 4 x c. 4 x d. x. a. x = dan y = -4 c. x = dan y = - e. x = dan y = - b. x = dan y = - d. x =, y = - dan z = f. x = -, y =, dan z = 7. w = -0,7 x = 0, y = -0, z = - Latihan

6 4 Matematika X SMK Kelompok: Penjualan dan Akuntansi a. c. e. g. i a. 0, c. e ,. a c. e. g. i a. c e a. a =, b = -, c = dan d = 0, b. a = -8, b = 8,, c = - dan d = 4,7. a. 7 c e Latihan. a. 8 c. -6 e. 7. a. x = 4 c. x = - f. x =. a. Minor : M = -, M = 0, M = 4 dan M = Matriks kofaktor = dan Matriks adjoin = 4 c. M inor : M = 6, M = -7, M = 4 dan M = Matriks kofaktor = dan Matriks adjoin =

7 Kunci Jawaban Soal-soal Pilihan 7. a. c. 7 4 f. 7 4 g. (P.Q) = Q. P Latihan 4. x = dan y = -. x = - dan y =. x = -4 dan y = 7. x = dan y = - 9. x =, y = - dan z =. a. c. 4 e ( ). Kualitas A harganya Rp.000,00 Kualitas B harganya Rp.000,00 Uji Kemampuan A A D E D D C E E 4 B 4 A 4 D C A B 6 C 6 C 7 B 7 D 8 E 8 C 9 A 9 E 0 B 0 A Latihan KUNCI JAWABAN BAB PROGRAM LINEAR 4. a. x < 4 y c. x + y x + y 0 x 0 y e. x + y x + y 8 x 0 ; y 0

8 6 Matematika X SMK Kelompok: Penjualan dan Akuntansi b. x + y x + y 8 x + y d. x + y 6 x 0 ; y 0 y 0 Latihan. Misalkan jumlah tana man jagung = x jumlah tan aman kedelai = y, maka: x + y 60 Fungsi kendalanya 6 x + y 40 x 0 ; y 0. Misalkan jumlah pakaian model A = x Jumlah pakaian model B = y, maka: x + y 0 Fungsi kendalanya: x + y 0 x 0 ; y 0 Fungsi sasaran: Z =.000x y. Misalkan jumlah rumah tipe = x Jumlah rumah tipe = y, maka: x + y 0 Fungsi kendalanya: x + y 0 x 0 ; y 0 Fungsi sasaran: Z = x y 7. Misalkan jumlah mobil yang parkir = x Jumlah bus yang parkir = y, maka: x + y 0 Fungsi kendalanya: x + 4y 60 x 0 ; y 0 Fungsi sasaran: Z =.000x +.000y 9. Misalkan jumlah jas yang dibuat = x Jumlah rok yang dibuat = y, maka: x + y 0 Fungsi kendalanya: x + y 0 x 0 ; y 0 Fungsi sasaran: Z = 7.000x y

9 Kunci Jawaban Soal-soal Pilihan 7 Latihan. a. Titik minimum (0, 0) dengan nilai minimum 0 Titik maksimum (, ) dengan nilai maksimum 0 b. Titik minimum (0, 0) dengan nilai minimum 0 Titik maksimum (0, 6) dengan nilai maksimum 80 c. Titik minimum (0, 0) dengan nilai minimum 0 Titik maksimum (, ) dengan nilai maksimum e. Titik minimum (0, ) dengan nilai minimum Titik maksimum (0, 0) dengan nilai maksimum 0. Untuk mendapatkan keuntungan maksimal, maka roti jenis pertama dibuat sebanyak 00 buah dan roti jenis kedua sebanyak 0 buah dengan keuntungan maksimal Rp40.000,00. Untuk mengeluarkan biaya seminimal mungkin, maka truk jenis pertama dan kedua disewa masing-masing sebanyak buah dengan biaya minimal Rp ,00 7. Untuk mendapatkan keuntungan maksimal, maka logam jenis pertama dibuat sebanyak 48 buah dan logam jenis kedua sebanyak 8 buah dengan hasil maksimal Rp ,00 9. Untuk mengeluarkan biaya seminimal mungkin, maka truk yang disewa 4 buah dan colt yang disewa buah dengan sewa minimal Rp ,00 Latihan 4. a. Titik minimum (0, 0) dengan nilai minimum 0 Titik maksimum (, 0) dengan nilai maksimum 0 c. Titik minimum (0, 0) dengan nilai minimum Titik maksimum (6, 0) atau (, ) dengan nilai maksimum 8 e. Titik minimum (, 0) dengan nilai minimum Titik dan nilai maksimum tidak ada.. Untuk mendapatkan keuntungan maksimal, maka roti jenis pertama dibuat sebanyak 0 buah dan roti jenis kedua sebanyak 0 buah dengan keuntungan maksimal Rp4.000,00. a. Rumah tipe sebanyak 00 buah dan type 6 sebanyak 00 buah b. Keuntungan maksimum Rp ,00 Uji Kemampuan

10 8 Matematika X SMK Kelompok: Penjualan dan Akuntansi B A D E A D A A B A B C 4 C 4 A 4 A 4 A C E B A 6 D 6 C 6 E 6 D 7 D 7 A 7 D 7 E 8 C 8 B 8 A 8 B 9 C 9 B 9 E 9 D 0 A 0 D 0 B 40 A

SMK N 1 Demak Jurusan Multimedia Kelas X Semester 1

SMK N 1 Demak Jurusan Multimedia Kelas X Semester 1 SOAL LATIHAN ULANGAN SEMESTER GASAL KELAS X MM BAB SISTEM BILANGAN REAL Himpunan-Himpunan Bilangan pada Sistem Bilangan Real. Bilangan-bilangan berikut adalah irasional, kecuali... 4 7. Bilangan-bilangan

Lebih terperinci

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis.

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / AKUNTANSI DAN PENJUALAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi bilangan

Lebih terperinci

KATA PENGANTAR. Penulis

KATA PENGANTAR. Penulis KATA PENGANTAR Puji syukur pada Allah SWT yang telah memberikan rahmat begitu besar pada kita semua, sehingga, buku matematika SMK untuk kelas X Kelompok Penjualan dan Akuntansi Sekolah Menengah Kejuruan

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

ULANGAN SEMESTER GENAP TAHUN PELAJARAN 2009/2010. Hari, Tanggal : Senin, 17 Mei 2010 Waktu : WIB (120 menit)

ULANGAN SEMESTER GENAP TAHUN PELAJARAN 2009/2010. Hari, Tanggal : Senin, 17 Mei 2010 Waktu : WIB (120 menit) PEMERINTAH KABUPATEN DEMAK DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA SMK NEGERI 1 DEMAK Jalan Sultan Trenggono No. 87 Telp/Fax : (0291) 685519 Demak (Email : smk1dmk@yahoo.com) ULANGAN SEMESTER GENAP TAHUN

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Silabus. Tugas individu, tugas kelompok, kuis.

Silabus. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / TEKNOLOGI, KESEHATAN, DAN PERTANIAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi

Lebih terperinci

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2 Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.

Lebih terperinci

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar! SOAL TRY OUT UN MATEMATIKA 0 PROGRAM IPS Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Ingkaran dari pernyataan Diana lulus ujian nasional dan kuliah di luar negeri

Lebih terperinci

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah.

Lebih terperinci

UN SMK PSP 2015 Matematika

UN SMK PSP 2015 Matematika UN SMK PSP 201 Matematika Soal Doc. Name: UNSMKPSP201MAT999 Doc. Version : 2016-0 halaman 1 01. Sebuah mobil menghabiskan 8 liter bensin untuk menempuh jarak 20 km, apabila mobil tersebut menghabiskan

Lebih terperinci

1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e.

1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e. 1. Bentuk sederhana dari 2 8 75 + 12 a. 3 b. 3 3 c. 3 d. 5 3 e. 15 3 2. Bentuk sederhana dari a. 2 6 b. 2 6 2 c. 2 6 d. 6 8 e. 6 8 3. Bentuk sederhana dari.... 2 a. b 8 b. c 8 c. a 16 d. b 16 e. a 10 b

Lebih terperinci

MATEMATIKA DASAR 16. Jika maka Jawab : E 17. Diketahui premis-premis sebagai berikut : 1) Jika maka 2) atau Jika adalah peubah pada himpunan bilangan real, nilai yang memenuhi agar kesimpulan dari kedua

Lebih terperinci

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0 UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3.

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3. Nama : No. Peserta :. Jika x =, y =, dan z = 0, maka nilai dari x y z =. x yz A. 6 B. 5 C. 6 D. 9 E.. Jika log A. ab+a+b a+ B. b+a+ a+ C. a+b+ a+ D. ab+a+ a+ E. ab+a+ a+ = a dan log 5 = b, maka log 60.

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2 SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()

Lebih terperinci

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu.

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu. SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : X STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan real. KODE KOMPETENSI : ALOKASI WAKTU : 57 x 45 Kompetensi

Lebih terperinci

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA

adalah. 1. Bentuk sederhana dari A. 5 B. 5 C. 25 D. 20 E Bentuk sederhana dari ToT MATEMATIKA PARIWISATA 1. Bentuk sederhana dari 10 a c b A. 0 a b 2 a b 2 c c 6 2 adalah. 20 a c b B. 10 a c b C. 2 0 0 20 a b c D. 20 10 a b c E. 0 0 2 2. Bentuk sederhana dari 6 12 2 27 7 adalah... A. 12 B. C. 2 D. 8 E.. Bentuk

Lebih terperinci

UN SMK PSP 2014 Matematika

UN SMK PSP 2014 Matematika UN SMK PSP 014 Matematika Soal Doc. Name: UNSMKPSP014MAT999 Doc. Version : 016-03 halaman 1 01. Nilai dari -50-5 5 5 (E) 50 1 3 3 6 4 15 64 81... ab c 0. Bentuk sederhana dari 3 adalah... a bc 10 a b c

Lebih terperinci

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang tanpa merubah isi konten

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang  tanpa merubah isi konten DOKUMEN NEGARA SANGAT RAHASIA Matematika SMA/MA IPS UJIAN NASIONAL TAHUN PELAJARAN 016/017 UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA Selasa, 11 April 017 (10.0-1.0) X - m + - : M4TH-LAB BALITBANG Badan

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e Page of. Negasi dari pernyataan Matematika tidak mengasyikkan atau adalah a. Matematika mengasyikkan atau Matematika mengasikkan atau tidak c. Matematika mengasikkan dan tidak Matematika tidak mengasikkan

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang tanpa merubah isi konten

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang  tanpa merubah isi konten DOKUMEN M4THLAB www.m4th-lab.net UJIAN NASIONAL TAHUN PELAJARAN 016/017 UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA Selasa, 11 April 017 (10.0-1.0) X - m + - : M4TH-LAB BALITBANG Badan Standar Nasional Pendidikan

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

SOAL ToT MATEMATIKA TEKNIK 2018

SOAL ToT MATEMATIKA TEKNIK 2018 1. Nilai dari =... A. 4 B. 6 C. 1 D. 12 E. 18 2. Bentuk sederhana dari ( ) =... A. a 5. b 8. c 4 B. a 5. b 2. c 4 C. a 6. b 8. c 4 D. a 6. b 8. c 4 E. a 6. b 2. c 4 3. Bentuk sederhana dari A. B. C. D.

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 0/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

Soal Soal Latihan UKK

Soal Soal Latihan UKK Sal Sal Latihan UKK. Jika p q 6 ; p dan q bilangan bulat, maka nilai p + q A. E.. Himpunan penyelesaian dari persamaan () A. E.. Diketahui bahwa. Maka nilai... A. E. 7 6. Diketahui bahwa dan merupakan

Lebih terperinci

2. Hasil dari =. a. 4 3 b. 2 3 c. 3 d. 3 2 e adalah. 3. Bentuk sederhana pecahan. a. 4 ( ) b. d. ( ) c.

2. Hasil dari =. a. 4 3 b. 2 3 c. 3 d. 3 2 e adalah. 3. Bentuk sederhana pecahan. a. 4 ( ) b. d. ( ) c. 1. Untuk menempuh jarak 80 km diperlukan 16 liter bensin. Jika bensin yang diperlukan 12 liter, maka jarak yang dapat ditempuh adalah. a. 171 km b. 300 km c. 360 km 00 km e. 60 km 2. Hasil dari 8 3 12

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

a. 30 orang b. 25 orang c. 15 orang d. 12 orang e. 10 orang

a. 30 orang b. 25 orang c. 15 orang d. 12 orang e. 10 orang 1. Perbandingan siswa laki-laki dan siswa perempuan pada suatu kelas adalah 3 : 5. Jika jumlah siswa kelas tersebut adalah 40 orang,maka banyak perempuan kelas tersebut a. 30 orang b. 25 orang c. 15 orang

Lebih terperinci

PAKET 05 MATEMATIKA NON TEKNIK UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015

PAKET 05 MATEMATIKA NON TEKNIK UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 01 / 015 MATEMATIKA NON TEKNIK KELOMPOKPARIWISATA, SENI DAN KERAJINAN, PEKERJAAN SOSIAL TEKNOLOGI KERUMAHTANGGAAN, DAN ADMINISTRASI PERKANTORAN (UTAMA) 1 MATA

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 01 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA)

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 01 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA) UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 04 / 0 PAKET 0 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA) A Mata Pelajaran Kelompok : MATEMATIKA : Akuntansi dan Penjualan MATA PELAJARAN

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 05 PAKET Pilihan Ganda: Pilihlah satu jawaban ang paling tepat.. Ingkaran dari pernataan Jika air sungai meluap, maka kota kebanjiran dan semua warga kota

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPS Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Diketahui:

Lebih terperinci

SISTEM BILANGAN RIIL

SISTEM BILANGAN RIIL SISTEM BILANGAN RIIL Sumber: Art & Gallery Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi sistem bilangan riil terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini,

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 1. Ingkaran pernyataan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal B. Petani panen

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

MATEMATIKA DASAR TAHUN 1981

MATEMATIKA DASAR TAHUN 1981 MATEMATIKA DASAR TAHUN 98 MD-8-0 Jika A = {bilangan asli} dan B = {bilangan prima} maka A B adalah himpunan... bilangan asli bilangan cacah bilangan bulat bilangan prima kosong MD-8-0 Pada diagram Venn

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-590 55 TR OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-59 575 TR OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran :

Lebih terperinci

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah...

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah... . Sebuah perkebunan seluas 7 Ha memperkejakan 0 orang untuk memetik buah dalam waktu 8 jam. Jika pihak perkebunan ingin mempercepat pemetikan menjadi 7 jam, maka diperlukan tambahan tenaga sebanyak....

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: KARMATWJB0UTS Version: 04-0 halaman 0. Nilai maksimum dari 0 + 8 untuk dan y yang memenuhi + y 0, + y 48, 0 0 dan 0 y 48 adalah. (A) 408 (B) 456 (C)

Lebih terperinci

MATEMATIKA. Sesi MATRIKS CONTOH SOAL A. MATRIKS SATUAN (MATRIKS IDENTITAS)

MATEMATIKA. Sesi MATRIKS CONTOH SOAL A. MATRIKS SATUAN (MATRIKS IDENTITAS) MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 10 Sesi N MATRIKS A. MATRIKS SATUAN (MATRIKS IDENTITAS) Masih ingat angka 1 kan, setiap bilangan yang dikali satu apakah berubah? Tentunya tidak. Matriks satuan

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

6. Perhatikan grafik berikut! Y x

6. Perhatikan grafik berikut! Y x 1. Jika Jarak sebenarnya antara kota Surakarta dan kota Semarang adalah 125 km, maka jarak kedua kota pada peta dengan skala 1 : 2.000.000 adalah. a. 62,5 cm b. 25 cm c. 6,25 cm d. 2,5 cm e. 0,625 cm 2.

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Industri (E3-1) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Industri (E3-1) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-04 E--P9-0-4 DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMK Matematika Teknik Industri (E-) PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

UN SMA 2013 PRE Matematika IPS

UN SMA 2013 PRE Matematika IPS UN SMA 201 PRE Matematika IPS Kode Soal Doc. Name: UNSMA2014PREMATIPS999 Doc. Version : 2014-01 halaman 1 01. (1) Jika jalan basah maka hari hujan (2) Jika hari tidak hujan maka jalan tidak basah () Jika

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 UTAMA SMA/MA PROGRAM STUDI IPA. MATEMATIKA Selasa, 5 April 2016 ( )

BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 UTAMA SMA/MA PROGRAM STUDI IPA. MATEMATIKA Selasa, 5 April 2016 ( ) BOCORAN UJIAN NASIONAL TAHUN PELAJARAN 0/06 UTAMA SMA/MA PROGRAM STUDI IPA MATEMATIKA Selasa, April 06 (07.0 09.0) BALITBANG PAK ANANG KEMENTARIAN PAK ANANG DAN KEBUDAYAAN Mata Pelajaran Jenjang Program

Lebih terperinci

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN K-1 Kelas X matematika WAJIB PERTIDAKSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan linear

Lebih terperinci

Matriks Jawab:

Matriks Jawab: Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan

Lebih terperinci

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah...

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah... SOAL ToT MATEMATIKA BISNIS-MANAJEMEN 08. Bentuk sederhana dari 0 0 3 0 3 8 0 4 0 3 5 8 adalah.... Nilai dari log 6 3 log 4 log6 log 48 adalah... 7 3 3 3. Jika diketahui log 5 = a dan log 3 = b maka nilai

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 00-00-008-0 Hak Cipta 0 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, D, atau E pada jawaban yang benar!. Diketahui premis-premis: () Jika beberapa daerah dilanda banjir, maka beberapa

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran :

Lebih terperinci

10 Soal dan Pembahasan Permasalahan Program Linear

10 Soal dan Pembahasan Permasalahan Program Linear 10 Soal dan Pembahasan Permasalahan Program Linear 1. BAYU FURNITURE memproduksi 2 jenis produk yaitu meja dan kursi yang harus diproses melalui perakitan dan finishing. Proses perakitan memiliki 60 jam

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO. 01/2

RENCANA PELAKSANAAN PEMBELAJARAN NO. 01/2 RENCANA PELAKSANAAN PEMBELAJARAN NO. 01/2 Nama Sekolah : SMK Diponegoro Lebaksiu Mata Pelajaran : Matematika Kelas / Semester : X / 2 Alokasi Waktu : 4 x 45 menit (1 x pertemuan) Standar Kompetensi Kompetensi

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

BAB 4 MATRIK ( ) ( ) ( ) ( ) ( ) ( )

BAB 4 MATRIK ( ) ( ) ( ) ( ) ( ) ( ) BAB MATRIK. Operasi Penjumlahan Pada Matriks Dan Sifat-Sifatnya Masalah. Dua orang bersaudara laki-laki dan perempuan membuka dua cabang toko kue di Padang dan di Medan. Toko kue itu menyediakan jenis

Lebih terperinci

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp. 1.000,00/jam dan mobil besar Rp.

Lebih terperinci

PAKET 3. Paket : 3. Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution

PAKET 3. Paket : 3. Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution PAKET 3 Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution No Soal Jawaban 1 Nilai maksimum f(x, y) = 2x + 3y yang memenuhi system

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Pertanian (E3-2) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Pertanian (E3-2) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-0 E--P9-0- DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMK Matematika Teknik Pertanian (E-) PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta

Lebih terperinci

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Disusun Oleh : Pak Anang (http://pak-anang.blogspot.com) Kumpulan

Lebih terperinci

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..

Lebih terperinci

Prediksi 1 UN SMA IPS Matematika

Prediksi 1 UN SMA IPS Matematika Prediksi UN SMA IPS Matematika Kode Soal Doc. Version : 0-06 halaman 0. () Jika jalan basah maka hari hujan () Jika hari tidak hujan maka jalan tidak basah () Jika jalan tidak basah maka hari tidak hujan

Lebih terperinci

Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I

Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I Kasus maksimasi Seorang pengrajin menghasilkan satu tipe meja dan satu tipe kursi. Proses yang dikerjakan hanya merakit

Lebih terperinci

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif Program Linear Program Linear B A B 2 A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Sumber: http://blontankpoer.blogsome.com Dalam dunia usaha,

Lebih terperinci

4. Bentuk sederhana dari : a b

4. Bentuk sederhana dari : a b PAKET A. Pernyataan yang setara dengan Jika cuaca buruk, maka semua penerbangan ditunda adalah. A. Jika beberapa penerbangan tidak ditunda, maka cuaca baik. B. Jika semua penerbangan ditunda, maka cuaca

Lebih terperinci

UN SMA 2014 Matematika IPS

UN SMA 2014 Matematika IPS UN SMA 04 Matematika IPS Kode Soal Doc. Name: UNSMA04MATIPS999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Semua bilangan rasional adalah bilangan real dan prima adalah... Tidak ada bilangan rasional

Lebih terperinci

PENGEMBANGAN SILABUS TAHUN PELAJARAN 2012/2013

PENGEMBANGAN SILABUS TAHUN PELAJARAN 2012/2013 PENGEMBANGAN SILABUS TAHUN PELAJARAN 01/013 NAMA SEKOLAH : SMK DIPONEGORO LEBAKSIU MATA PELAJARAN : MATEMATIKA KELAS / SEMESTER : X / 1 STANDAR KOMPETENSI : MEMECAHKAN MASALAH BERKAITAN DENGAN KONSEP OPERASI

Lebih terperinci

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D , PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA SMK NEGERI KENDAL Alamat : Jl. Boja - Limbangan KM Salamsari, Boja, Kendal Telp.(9) 88 Fax. (9) e-mail : smktelukendal@yahoo.com. Pak

Lebih terperinci

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah. . Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK Mata Pelajaran : Matematika Kelas / Program : X (Sepuluh) / Akuntansi dan Penjualan Semester : Ganjil Standar Kompetensi : 1. Memecahkan masalah

Lebih terperinci

yos3prens.wordpress.com

yos3prens.wordpress.com yosprens.wordpress.com Before anything else, preparation is the key to success. Alexander Graham Bell Mata Pelajaran Jenjang Program Studi : Matematika : SMA/MA : IPA Hari/Tanggal Jam :... :.... Isilah

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

TO MGMP MATEMATIKA BAHASA PAKET A HAL 1

TO MGMP MATEMATIKA BAHASA PAKET A HAL 1 MATEMATIKA SMA BAHASA PAKET A 1. Bentuk sederhana dari( 4x 8 y 3 16x 6 y 5) 1 =. A. ( y 2x )2 B. ( 2x y )2 C. ( x 2y )2 D. ( 1 2xy )2 E. (2xy) 2 2. Hasil dari 5 2 5+2 =. A. 4 5 + 9 B. 4 5 C. 9 4 5 D. 9

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI VI. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI VI I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 80 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

MATEMATIKA SMA IPS PAKET B. 1. Bentuk sederhana dari. 2. Bentuk sederhana dari. adalah. 3. Nilai dari log81 A. 5 2

MATEMATIKA SMA IPS PAKET B. 1. Bentuk sederhana dari. 2. Bentuk sederhana dari. adalah. 3. Nilai dari log81 A. 5 2 MATEMATIKA SMA IPS PAKET B. Bentuk sederhana dari A. x y 6 B. x 9 y 6 C. x 9 y 4 D. x 8 y 6 E. x 8 y 4. Bentuk sederhana dari A. 0 B. 0 C. 0 D. x 8 y z x y 4 z =. adalah. E.. Nilai dari log8 log log =

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

UN SMA 2017 Matematika IPS

UN SMA 2017 Matematika IPS UN SMA 017 Matematika IPS Soal UN SMA 017 - Matematika IPS Doc. Name: UNSMA017MATIPS999 Version: 017-10 Halaman 1 01. Persamaan grafik fungsi kuadrat pada gambar berikut adalah... X 8 0 4 Y (A) y = x -

Lebih terperinci