BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Teknologi Penginderaan Jauh Penginderaan jauh adalah ilmu dan seni untuk memperoleh informasi tentang suatu objek, daerah, atau fenomena melalui analisis data yang diperoleh dengan suatu alat tanpa kontak langsung dengan objek, daerah, atau fenomena yang dikaji (Lillesand & Kiefer 1979). Fussel et al. (1986) mendefinisikan penginderaan jauh sebagai pengumpulan dan pencatatan informasi tanpa kontak langsung pada julat elektromagnetik ultraviolet, tampak, inframerah, dan mikro dengan menggunakan peralatan seperti penyiam (scanner) dan kamera yang ditempatkan pada wahana bergerak seperti, pesawat udara atau pesawat angkasa, dan menganalisis informasi yang diterima dengan teknik interpretasi foto, citra dan pengolahan citra. Teknik penginderaan jauh berkembang sangat pesat sejak diluncurkannya satelit penginderaan jauh ERTS (Earth Resources Technology Satellite) pada Hal itu memungkinkan pengumpulan data permukaan bumi dalam jumlah besar. Perkembangan sistem penginderaan jauh khususnya dalam penggunaan sensor dan cara perekaman data penginderaan, telah diikuti dengan pengembangan dalam cara pengolahan dan analisis data penginderaan jauh. Pengembangan penginderaan jauh yang terjadi tahun 1960-an terbatas pada penelitian serta analisis foto udara multispectral scanner (Perangkat pengindera yang terdiri atas kurang dari sepuluh spectrum elektromagnetik yang berbeda) dan dijitalisasi dari foto udara yang diambil dengan sensor kamera. Semenjak ERTS-1 atau Landsat-1 (Land Satellite) diluncurkan tahun 1972, data citra dijital rekaman satelit menjadi semakin penting, khususnya untuk penggunaan analisis permukaan bumi (Purwadhi 2001).

2 4 Samsuri (2004) menyatakan bahwa dalam penginderaan jauh terdapat beberapa proses melibatkan interaksi antara radiasi dan target yang dituju mencakup tujuh elemen penting yakni: 1. Sumber Energi atau Illumination, merupakan elemen pertama dalam menyediakan energi elektromagnetik ke target interes 2. Radiasi dan Atmosfer, adalah perjalanan energi dari sumber ke targetnya dan sebaliknya. Energi akan mengalami kontak dengan target dan berinteraksi dengan atmosfer yang dilewatinya. 3. Interaksi dengan Target. 4. Perekaman Energi oleh Sensor setelah energi dipancarkan atau dilepaskan dari target, elemen penting yang dibutuhkan adalah sensor untuk mengumpulkan dan merekam radiasi elektromagnetik. 5. Transmisi, penerimaan dan pemrosesan energi yang terekam oleh sensor harus ditransmisikan untuk diterima oleh stasiun pengolahan, dimana data diolah menjadi citra (hardcopy ataupun digital) 6. Interpretasi dan Analisis, merupakan pengolahan image dengan interpretasi secara visual atau digital untuk mengekstrak informasi tentang target. 7. Aplikasi, elemen terakhir adalah pengaplikasian informasi tentang target untuk memperoleh pengertian yang lebih baik, menerima beberapa informasi baru, dan membantu pemecahan masalah. Sensor adalah alat perekam objek bumi. sensor dipasang pada wahana (platform) dan letaknya jauh dari objek yang diindera, maka diperlukan tenaga elektromagnetik yang dipancarkan atau dipantulkan oleh objek tersebut. sensor elektronik membangkitkan sinyal elektrik yang sesuai dengan variasi tenaga elektromagnetik. Tenaga radiasi yang dipantulkan oleh objek dan ditangkap oleh sensor, dapat menghasilkan citra yang sesuai dengan wujud aslinya. setiap sensor mempunyai kepekaan spektral yang terbatas, batas kemampuan sensor untuk memisahkan objek disebut resolusi. Resolusi suatu citra merupakan indikator tentang kemampuan sensor dan atau kualitas sensor dalam merekam objek. Empat

3 5 resolusi yang biasa digunakan sebagai parameter kemampuan sensor, yaitu resolusi spasial, resolusi spektral, resolusi radiometrik, dan resolusi temporal (Purwadhi, 2001). Data penginderaan jauh digital (citra digital) direkam menggunakan sensor non-kamera, antara lain scanner, radiometer, spectometer. Detektor yang digunakan dalam sensor penginderaan jauh adalah detektor elektronik dengan menggunakan tenaga elektromagnetik yang luas, yaitu spektrum tampak, ultraviolet, inframerah dekat, inframerah termal, dan gelombang mikro (Gambar 1). Citra digital dibentuk dari elemen-elemen gambar atau pixel (picture element) yang menyatakan tingkat keabuan pada gambar. Citra bersifat digital dapat secara langsung disimpan pada suatu pita magnetik. Citra digital dapat direkam dalam beberapa spektrum secara sekaligus sehingga disebut citra multispektral. Gambar 1 Spektrum elektromagnetik (Purwadhi 2001). Sumber data citra penginderaan jauh digital saat ini mulai berkembang dan bervariasi, yaitu data dapat diperoleh dari rekaman satelit penginderaan jauh komersial, rekaman data satelit meteorologi, rekaman scanner dari pesawat udara, data digital dari kamera foto udara, citra digital dari rekaman sensor mikro densitometer, dan citra digital dari hasil rekaman beberapa sistem dijitasi dengan resolusi tinggi (Purwadhi 2001). Komponen dasar pengambilan data penginderaan jauh sistem pasif meliputi sumber tenaga, atmosfer, interaksi tenaga dengan objek dipermukaan bumi, sensor, sistem pengolahan data, dan berbagai penggunaan data. Penginderaan jauh sistem aktif menggunakan tenaga elektromagnetik yang dibangkitkan oleh sensor Radar (Radio Detection And Ranging).

4 6 Tabel 1 Spektrum elektromagnet. Spektrum/saluran Panjang gelombang Keterangan Gamma 0,03 nm Diserap oleh atmosfer, benda radioaktif dapat diindera dari pesawat terbang rendah. X nm Diserap oleh atmosfer, sinar buatan digunakan dalam kedokteran. Ultraviolet (UV) UV Fotografik Tampak Biru Hijau Merah Inframerah (IM) NIR SWIR MWIR LWIR FIR Ka K Ku X C S L P Radio Sumber : Prahasta (2009) 0,03-0,4 μm 0,3 0,4 μm 0,4 0,7 μm 0,4 0,5 μm 0,5 0,6 μm 0,6 0,7 μm 0,7 300 μm 0,7 1,5 μm 1,5 3 μm 3 8 μm 8 15 μm 15 μm 0,75 1,1 cm 1,1 1,7 cm 1,7 2,4 cm 2,4 3,8 cm 3,8 7,5 cm 7,5 15 cm cm cm Radiasi UV diserap oleh ozon. UV Fotografik dapat direkam oleh film fotografi, diperlukan lensa kuarsa dalam kamera. Jendela atmosfer terpisah oleh saluran absorpsi. Film khusus dapat merekam hingga panjang gelombang hampir 1,2 μm. MWIR dan LWIR dikenal dengan sebagai thermal infrared (TIR). Gelombang Mikro 8 14 μm Gelombang panjang yang mampu menembus awan, citra dapat dibuat dengan cara aktif. Radar 0, cm Penginderaan jauh sistem aktif. Yang paling sering digunakan. 2.2 Citra Satelit Sistem RADAR Tidak digunakan dalam penginderaan jauh. Radar (Radio Detecting and Ranging) dikembangkan sebagai suatu cara untuk mendeteksi adanya objek dan menentukan posisi objek tersebut dengan menggunakan radio. Karena penginderaan jauh sistem radar merupakan penginderaan jauh sistem aktif, tenaga elektromagnetik yang digunakan di dalam penginderaan jauh dibangkitkan pada sensor. Tenaga ini berupa pulsa bertenaga tinggi yang dipancarkan dalam waktu yang sangat pendek yaitu sekitar 10-6 detik (Purwadhi 2001). Antena pada radar mentransmisi dan menerima gelombang (pulsa) pada panjang gelombang dan polarisasi tertentu. Energi gelombang radar menyebar ke seluruh bagian permukaan bumi, dengan sebagian energi yang dikenal sebagai backscatter atau hamburan balik.

5 7 Gambar 2 Transmisi dan reflektansi pada radar (NASA 1996). Hamburan balik ini dipantulkan kembali pada radar sebagai pantulan gelombang radar yang lemah dan diterima oleh antena pada bentuk polarisasi tertentu (horizontal atau vertikal, tidak selalu sama dengan yang ditransmisikan). Pantulan gelombang tersebut dikonversikan menjadi data dijital dan dikirim ke perekaman data kemudian ditampilkan menjadi image (citra satelit). Biasanya lama waktu sebuah gelombang sampai pada objek digunakan sebagai penghitung jarak ke objek (bandwidth). Semakin besar bandwidth semakin baik resolusi yang dihasilkan pada dimensi objek tersebut. Panjang antena radar menentukan resolusi pada image searah azimuth, semakin panjang antena semakin baik resolusi yang di hasilkan. Synthetic Aperture Radar (SAR) menunjuk pada sebuah teknik yang digunakan untuk mensintetis antena yang sangat panjang dengan mengombinasikan sinyal yang diterima radar yang bergerak pada jalur terbangnya. Aperture berarti pembukaan yang terjadi dalam proses penyerapan refleksi energi yang digunakan dalam pembuatan gambar, sebagai contoh, pada kamera pembukaan ini berarti pembukaan lensa kamera, sedangkan pada radar adalah pembukaan antena. Sebuah aperture sintetis dibangun oleh pergerakan antena pada berbagai posisi di sepanjang jalur penerbangan. Pada radar, antena dipasang dibagian bawah pesawat dan diarahkan kesamping, sistem ini dikenal sebagai Side Looking Aperture Radar (SLAR). SAR merupakan teknik yang digunakan untuk menghasilkan radar image, dan menyediakan kemampuan yang unik sebagai alat pencitraan. SAR dapat menghasilkan penerangan sendiri (pulsa radar) tidak bergantung pada penerangan matahari, sehingga dapat melakukan peliputan baik di siang hari maupun di malam hari. Dan, karena panjang gelombang radar lebih besar dari sinar tampak

6 8 maupun Infra merah, SAR dapat menembus awan maupun debu dimana kondisi ini tidak memungkinkan untuk sistem optik (NASA 1996). Sinyal radar dapat disaring sedemikian rupa sehingga getaran gelombang elektrik dibatasi hanya pada bidang datar yang tegak lurus arah perjalanan gelombang. Gambar 3 Wahana dan arah tembak sensor (NASA 1996). Satu sinyal radar dapat ditransmisikan pada bidang horizontal (H) ataupun vertikal (V), demikian pula dapat diterima pada bidang mendatar maupun tegak sehingga ada empat kombinasi sinyal transmisi dan penerimaan yang berbeda, yaitu dikirim H diterima H (HH), dikirim H diterima V (HV), dikirim V diterima H (VH), dan dikirim V diterima V (VV). Karena berbagai objek mengubah polarisasi tenaga yang dipantulkan dalam berbagai tingkatan maka bentuk polarisasi sinyal mempengaruhi kenampakan objek pada citra yang dihasilkan. Banyak sifat khas medan yang bekerja bersama panjang gelombang dan polarisasi sinyal radar untuk menentukan intensitas hasil balik radar dari objek. Akan tetapi faktor utama yang mempengaruhi intensitas hasil balik sinyal objek adalah ukuran (geometris) dan sifat khas elektrik objek. Efek geometri sensor/objek dari intensitas backscatter radar terpadu dengan efek kekasaran permukaan. Permukaan yang kasar bertindak sebagai pemantul baur dan memencar tenaga datang ke semua arah dan hanya mengembalikan sebagian kecil ke antena. Suatu permukaan halus pada umumnya memantulkan sebagian besar

7 9 tenaga menjauhi sensor dan mengakibatkan sinyal hasil balik yang rendah. Meskipun demikian orientasi objek terhadap sensor harus dipikirkan juga karena permukaan halus yang mengarah ke sensor akan menghasilkan sinyal balik yang sangat kuat (Lillesand & Kiefer 1979). Gambar 4 Mekanisme hamburan balik pada radar di setiap jenis permukaan (NASA 1996). NASA (1996) mengategorikan nilai hamburan balik pada radar ke dalam beberapa kelas, yaitu nilai backscatter sangat tinggi (berkisar -5dB ke atas) biasanya terjadi pada objek lereng menghadap sensor, incident angle kecil, permukaan objek yang sangat kasar, hutan yang tergenang, dan objek buatan. Pada kelas nilai backscatter tinggi (berkisar 0 sampai -10dB) bisanya terjadi pada objek dengan permukaan yang kasar dan vegetasi rapat. Hamburan balik pada radar merupakan ukuran kuantitatif dari intensitas energi yang kembali ke antena. Nilai hamburan balik yang dihasilkan pada sebuah sensor radar dipengaruhi beberapa faktor antara lain kedalaman penetrasi dari gelombang radar, kekasaran permukaan objek dan sifat-sifat dielektrik volume objek. Michigan Microwave Canopy Scattering Model (MIMICS) telah dikembangkan untuk memberikan pemahaman terhadap hamburan balik (backscatter) radar pada vegetasi. Beberapa bentuk hamburan yang dapat dikalkulasi adalah hamburan pada permukaan dan volume tajuk, hamburan langsung pada permukaan tanah, hamburan langsung pada batang, hamburan dari permukaan tanah ke batang, dan hamburan dari permukaan tanah ke tajuk (Dobson et al. 1990). Mekanisma hamburan balik ini digambarkan sebagai berikut.

8 10 Gambar 5 Mekanisme hamburan balik pada tegakan hutan (Dobson et al. 1990). Gelombang radar yang lebih panjang menghasilkan nilai backscatter yang tinggi pada penetrasi batang, percabangan, permukaan tanah dan tajuk. Sedangkan gelombang yang lebih pendek menghasilkan nilai backscatter yang tinggi hanya pada tajuk saja. Kemampuan gelombang panjang untuk mempenetrasikan kanopi hutan dengan lebih baik menjadi dasar kemampuan dari sistem SAR untuk secara langsung menduga kuantiti dari struktur tegakan dalam hal ini yang berkaitan dengan biomassa dimana sebagian besar biomassa berada pada batang dan percabangan (ranting-ranting besar). Hamburan balik yang kuat dari vegetasi akan dihasilkan oleh tipe vegetasi rapat. Sistem radar L-band bekerja pada gelombang maksimum untuk citra radar yang tersedia. L-band memiliki kemampuan besar untuk menembus daun-daunan hingga ke pokok batang yang paling bawah. Banyak studi yang telah dilakukan dan menemukan hubungan yang kuat antara biomassa dan hamburan balik pada SAR (Mitchard et al. 2009; Sarker & Nichol 2010). Studi-studi tersebut selain menemukan hubungan yang kuat antara biomassa dan backscatter juga menemukan bahwa backscatter SAR meningkat seiring peningkatan biomassa sampai mencapai nilai saturasi tertentu yang mana nilai pendugaan tertinggi akan berada pada frekuensi yang rendah atau memiliki nilai backscatter rendah (Bergen & Dobson 1999) Citra Satelit ALOS PALSAR ALOS (Advanced land Observing Sattelite) merupakan satelit yang diluncurkan oleh Badan Luar Angkasa Jepang pada bulan Januari Satelit ALOS ini membawa tiga jenis sensor yaitu PALSAR (Phased Array L-band

9 11 Synthetic Aperture Radar), PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping), dan AVNIR-2 (Advanced Visible and Near Infrared Radiometer type-2). PALSAR merupakan sensor gelombang mikro aktif yang bekerja pada frekuensi band L. Sensor PALSAR mempunyai kemampuan untuk menembus awan, sehingga informasi permukaan bumi dapat diperoleh setiap saat, baik malam ataupun siang hari. Data PALSAR ini dapat digunakan untuk pembuatan DEM, Interferometri untuk mendapatkan pergeseran tanah, maupun kandungan biomassa, monitoring kehutanan, pertanian, tumpahan minyak (oil spill), soil moisture, mineral, dan lain-lain (Rosenqvist et al. 2004). Untuk dapat bekerja dengan ketiga instrumen di atas, ALOS dilengkapi dengan dua teknologi yang lebih maju. Pertama teknologi yang mampu mengerjakan data dalam kapasitas yang sangat besar dengan kecepatan tinggi, dan selanjutnya kapasitas untuk menentukan posisi satelit dengan ketinggian yang lebih tepat. Keterangan umum tentang ALOS disajikan pada Tabel 2. Tabel 2 Keterangan umum ALOS Alat Peluncuran Tempat Peluncuran Berat Satelit Power Waktu Operasional Orbit Sumber: Jaxa 2010 Roket H-IIA Pusat Ruang Angkasa Tanagashima 4000 Kg 7000 W 3-5 Tahun Sun-Synchronous Sub-Recurr Orbit Recurrent Period: 46 Hari Sub Cycle 2 hari Tinggi Lintasan: 692 km diatas Ekuator Inklinasi: 98,2 Secara ringkas terdapat lima misi dari satelit ALOS (JAXA 2010), yaitu: 1. Kartografi : Untuk menyediakan peta wilayah Jepang dan wilayah Asia Pasifik 2. Pemantauan Regional : Melakukan pemantauan regional untuk pengembangan pembangunan yang berkelanjutan dan harmonisasi antara kesediaan sumber daya alam pengembangan pembangunan 3. Monitoring Bencana : Melakukan monitoring bencana alam 4. Survei Sumberdaya : Untuk survei sumber daya alam

10 12 5. Pengembangan Teknologi : Mengembangkan teknologi penginderaan jauh yang tepat untuk masa sekarang dan akan datang. PALSAR merupakan salah satu instrumen ALOS dengan sensor aktif untuk pengamatan cuaca dan permukaan daratan pada siang dan malam hari dengan sistem yang lebih maju dari JERS-1 SAR. Sensor PALSAR mempunyai sorotan yang dapat disetir dalam elevasi, disamping mode ScanSAR. Bentuk dari instrumen PALSAR dan prinsip pengambilan obyeknya disajikan pada Gambar 6 dan Gambar 7. Sedangkan karakter teknik sensor PALSAR disajikan pada Tabel 3. Gambar 6 Instrumen PALSAR (JAXA 2010). Gambar 7 Prinsip geometri dari PALSAR (JAXA 2010).

11 13 Sensor ini merupakan sensor gelombang mikro aktif yang dapat melakukan observasi siang dan malam tanpa terpengaruh pada kondisi cuaca. Melalui salah satu observasinya, yaitu ScanSAR sensor ini memungkinkan untuk melakukan pengamatan permukaan bumi dengan cakupan area yang cukup luas yaitu 250 hingga 350 km. ScanSAR mempunyai kemudi berkas cahaya (yang dapat diatur) pada elevasi (ketinggian) dan didesain untuk memperoleh cakupan yang lebih lebar daripada SAR konvensional. Bentuk dari instrument PALSAR dan prinsip pengambilan objeknya disajikan pada Tabel 3. Tabel 3 Karakteristik PALSAR Mode Fine ScanSAR Polarimetric (Experiment Mode) Frekuensi Lebar Kanal Polarisasi HH/VV/HH+HV atau VV+VH MHz (L-Band) 28/114 MHz HH atau VV HH+HV+VH+VV Resolusi Spasial 10 m (2 look)/20 m (4 look) 100 m (multi look) 30 m Lebar cakupan 70 km km 30 km Incidence Angle 8-60 derajat derajat 8-30 derajat NE Sigma 0 <-23 db (70 km) <-25 db <-29 db <-25 db (60 km) Panjang Bit 3 bit atau 5 bit 5 bit 3 bit atau 5 bit Ukuran AZ:8.9 m x EL :2.9 m Sumber : Jaxa (2010) 2.3 Sistem Informasi Geografi Johnson (1992) mendefinisikan SIG sebagai sebuah sistem yang berguna untuk menangani dan menganalisis data geografi untuk banyak pemakai dan aplikasi. Data yang digunakan dalam SIG adalah data geografis yang terdiri dari data geometrik dan data deskriptif. Data geometrik berhubungan dengan lokasi, bentuk dan hubungan antar kenampakan, misal peta-peta atau data dari penginderaan jauh. Sementara itu, data deskriptif berhubungan dengan sifat-sifat dari kenampakan, misal tabel, grafis dan keterangan lainnya. Data-data tersebut dipakai sebagai visualisasi dan menerangkan keadaan dunia yang sesungguhnya. SIG adalah informasi yang dibuat untuk berbagai data yang dikumpulkan dengan keruangan atau koordinat geografi. Dengan kata lain, SIG adalah sebuah sistem database dengan kemampuan spesifik untuk data keruangan dan juga sebuah perangkat operasi untuk bekerja dengan data.

12 14 Menurut Paryono (1994) SIG memerlukan data masukan agar berfungsi dan memberikan informasi hasil analisisnya. Data masukan tersebut dapat diperoleh dari tiga sumber, yaitu : (a) Data lapangan, data ini diperoleh langsung dari pengukuran lapangan secara langsung, seperti misalnya ph tanah, salinitas air, curah hujan, jenis tanah, dan sebagainya (b) Data peta, informasi yang lebih terekam pada peta kertas atau film, dikonversikan ke dalam bentuk digital. Misalnya, peta geologi, peta tanah dan sebagainya. Apabila data sudah terekam dalam bentuk peta, tidak lagi diperlukan data lapangan, kecuali untuk mengecek kebenarannya. (c) Data citra pengideraan jauh, citra penginderaan jauh yang berupa foto udara atau radar dapat diinterpretasi terlebih dahulu sebelum dikonversi ke dalam bentuk digital. Sementara itu, citra yang diperoleh dari satelit yang sudah dalam bentuk digital dapat langsung digunakan setelah diadakan koreksi seperlunya. Lebih lanjut dikatakan bahwa ketiga sumber tersebut saling mendukung satu terhadap yang lain. Data lapangan dapat digunakan untuk membuat peta fisis, sedangkan data penginderaan jauh juga memerlukan data lapangan untuk lebih memastikan kebenaran data tersebut. Jadi ketiga sumber data saling berkaitan, melengkapi dan mendukung, sehingga tidak boleh ada yang diabaikan. Menurut Jaya (2002) pada bidang kehutanan, SIG sangat diperlukan guna mendukung pengambilan keputusan untuk memecahkan masalah keruangan (spasial) mulai dari tahap perencanaan, pengelolaan sampai dengan pengawasan. SIG sangat membantu memecahkan permasalahan yang menyangkut luasan (polygon), batas (line atau Arc) dan lokasi (point). Data spasial (peta) yang umum digunakan di bidang kehutanan antara lain adalah: 1. Peta Rencana Tata Ruang, 2. Peta Rencana Tata Guna Hutan, 3. Peta Rupa Bumi (Kontur), 4. Peta Jaringan Jalan, 5. Peta Jaringan Sungai, 6. Peta Tata Batas, 7. Peta Batas Unit Pengelolaan Hutan, 8. Peta Batas Administrasi Kehutanan,

13 15 9. Peta Tanah, 10. Peta Iklim, 11. Peta Geologi, 12. Peta Vegetasi, 13. Peta Potensi Sumberdaya Hutan. 2.4 Jati (Tectona grandis Linn F.) Jati (Tectona grandis Linn F.) hingga saat ini masih menjadi komoditas mewah yang banyak diminati masyarakat. Tanaman jati diklasifikasikan ke dalam famili verbenaceae, genus tectona, dengan nama species terbanyak di Indonesia adalah Tectona grandis Linn F, dimana jenis ini merupakan jenis terbaik dibandingkan dengn jenis Jati lainnya. Kayu jati memiliki berat jenis antara Saat ini budidaya jati banyak dilakukan di daerah-daerah tropis, di Panama lahan tidur yang lama tidak dimanfaatkan kemudia dilakukan penanaman jati dan telah dilakukan reforestasi dari hingga ha. Jati merupakan kayu terkuat ke tiga di dunia, dan budidaya jati telah di lakukan di banyak daerah tropis untuk menghasilkan kayu kualitas tinggi. Pertumbuhan jati terbaik biasanya pada daerah-daerah rendah dan panas, di pulau Jawa terutama pada dataran rendah dan berbukit-bukit, kurang air, yang terdiri dari formasi tua kapur dan megalit. Tanaman jati juga tumbuh pada daerah yang memiliki musim kering 3-5 bulan kering, curah hujan rata-rata mm/tahun dengan ketinggian kurang dari 700 mdpl dan temperatur rata-rata o C (Khaerudin 1994). Tajuk pepohonan dalam hutan jati akan menyerap dan menguraikan zat-zat pencemar (polutan) dan cahaya berlebihan. Seperti halnya daun lain, daun jati juga melakukan fotosintesis yang menyerap karbondioksida dari udara dan kemudian melepaskannya kembali sebagai oksigen dan uap air. Hal ini membantu menjaga kestabilan iklim di dalam dan di sekitar hutan. Sejak abad ke-9 tanaman jati yang merupakan tanaman tropika dan subtropika telah dikenal sebagai pohon yang memiliki kayu kualitas tinggi dan bernilai jual tinggi. Jati digolongkan sebagai kayu mewah dan memiliki kelas awet tinggi yang tahan terhadap gangguan rayap serta jamur dan mampu bertahan sampai 500 tahun.

14 16 Secara alamiah tanaman jati banyak ditemukan di negara-negara Asia Tenggara dan Asia Selatan. Pada abad ke-19 jati juga mulai dibudidayakan di Amerika tropik. Keberhasilan permudaan sejak akhir abad 19 telah dapat mengembangkan luas kawasan hutan jati di pulau Jawa. Pada akhir abad 19 luas hutan jati di pulau jawa seluruhnya diperkirakan berkisar ha. Dan hingga tahun 1985 luas hutan jati terus bertambah hingga mencapai ha. Hutan jati yang sebagian besar berada di Pulau Jawa dikelola oleh PT. Perhutani. Dimana luas daerah pengelolaannya mencapai 2.6 juta ha, terdiri dari 54 KPH (Kesatuan Pemangkuan Hutan). Produksi hutan jati yang dikelola oleh Perhutani rata-rata m3/tahun, dimana sebagian besar produksi hutan jati dijual dalam bentuk log. 2.5 Biomassa Brown (1997) mendefinisikan biomassa hutan sebagai bobot total materi organisma hidup setiap pohon di atas permukaan tanah dinyatakan dalam bobot kering ton per unit area. Biomassa dapat pula didefinisikan sebagai bobot dari material tumbuhan hidup per unit area. Total biomassa yang terdapat pada areal hutan dibagi ke dalam dua bagian yaitu biomassa di atas permukaan dan biomassa di bawah permukaan tanah. Biomassa pada dasarnya terdiri dari bobot organisma hidup di atas permukaan dan di bawah permukaan tanah, seperti pohon, semak belukar, tumbuhan menjalar, akar dan berat organisma mati dan sampah kasar yang terasosiasi dengan tanah. Karena terdapat kesulitan pada pengumpulan data lapangan biomassa di bawah permukaan (Below-Ground Biomass, BGB), penelitian estimasi biomassa yang telah banyak dilakukan sebelumnya terfokus pada biomassa di atas permukaan (Above-Ground Biomass, AGB) (Lu 2006). Tabel 4 menyajikan rangkuman dari beberapa teknik pendugaan biomassa yang berbeda berdasarkan (1) pengukuran lapangan, (2) remote sensing, dan (3) GIS. Biomassa tegakan hutan dipengaruhi oleh umur tegakan hutan, sejarah perkembangan vegetasi, komposisi dan struktur tegakan (Lugo & Snedaker 1974). Pengukuran biomassa pada dasarnya mengacu pada empat teknik pengukuran (Lu 2006): (a) teknik pemetaan pemanenan atau teknik sampling destruktif (b) teknik sampling non-destruktif (c) pengukuran berdasarkan data remote sensing yang

15 17 dihasilkan oleh sistem airborne/spaceborne, and (d) estimasi menggunakan model. Tabel 4 Beberapa metode untuk menduga biomassa Ketegori Metode Data digunakan Karakteristik Metode Dasar- Pengukuran Lapangan Metode Dasar- Penginderaan Jauh Penarikan contoh Destruktif Allometric equations (persamaan allometric) Konversi dari volume ke biomassa Metode berdasarkan fine spatialresolution data Metode berdasarkan medium spatialresolution data Metode berdasarkan coarse spatialresolution data Metode berdasarkan data Radar Referensi Pohon contoh Individu pohon Klinge et al. (1975) Pohon contoh Individu pohon Overman et al.(1994), Honzak et al. (1996), Nelson et al. (1999) Volume dari pohon contoh atau tegakan Aerial photographs, IKONOS Landsat TM/ETM+, SPOT IRS-1C WiFS, AVHRR Individu pohon atau tegakan vegetasi Per-pixel level Per-pixel level Per-pixel level Brown dan Lugo (1984), Brown et al. (1989), Brown dan Lugo (1992), Gillespie et al. (1992), Segura dan Kanninen (2005) Tiwari dan Singh (1984), Thenkabail et al. (2004) Roy dan Ravan (1996), Nelson et al. (2000a), Steininger (2000), Foody et al. (2003), Lu (2005) Barbosa et al. (1999), Wylie et al. (2002), Dong et al. (2003) Radar, lidar Per-pixel level Harrel et al. (1997), Lefsky et al. (1999b), Santos et al. (2002, 2003) Metode Dasar- SIG Sumber: Lu 2005 Metode berdasarkan Ancillary data Elevasi, kemiringan, tanah, presipitasi, dll. Per-pixel level atau per-field level Brown et al. (1994), Iverson et al. (1994), Brown dan Gaston (1995)

16 18 Metode Pendugaan Biomassa dengan Non-Destruktif Sampling Pendekatan destruktif untuk menduga biomassa memberikan hasil yang paling akurat, tetapi penerapan teknik ini tidak dapat dilakukan pada seluruh areal hutan karena kerusakan yang diakibatkan cukup besar. Selain kerusakan yang diakibatkan, mahalnya biaya dan banyaknya waktu yang dibutuhkan dibandingkan dengan teknik pendugaan biomassa yang lain menjadi bahan pertimbangan dalam penggunaan teknik ini. Teknik pendugaan biomasa yang banyak dilakukan pada saat ini adalah pendekatan non-destruktif sampling dimana pada pendekatan ini tidak diperlukan pemanenan pohon. Pendekatan non-destruktif sampling memilik persamaan regresi yang berbeda-beda, dengan parameter penyusunya seperti tinggi pohon, diameter pohon, volume batang, dan basal area untuk menduga biomassa. Berikut merupakan persamaan regresi yang banyak digunakan untuk menduga biomassa menurut Husch et al. (2003); B = C 0 + C 1 S B = C 0 + C 1 S + C 2 S 2 B = exp (C 1 S) B = exp (C 2 S C 1) B = C 0 + C 1 logs Menurut Chave et al. (2005) berdasarkan pengujian yang telah dilakukan didapatkan bahwa diameter pohon merupakan salah satu variabel yang penting bagi pendugaan biomassa selain berat jenis pohon dan tipe hutan. Teknik estimasi biomassa non-destruktif memiliki efisiensi yang baik jika dibandingkan dengan teknik sampling destruktif. Pada kasus area hutan tropis campuran yang heterogen, survey lapangan tidak mungkin dilakukan untuk mengambil sample pada plot dengan aksesibilitas yang rendah. Untuk memonitoring area hutan tropis campuran yang heterogen maupun hutan tropis homogen, penginderaan jauh menyediakan alat yang paling sesuai dan efektivitas waktu serta biaya jauh lebih baik dibandingkan pengukuran in-situ. Beberapa tahun terakhir, teknik penginderaan jauh (remote sensing) telah menjadi hal umum dalam menduga AGB (Lu 2005). Penginderaan jauh sistem

17 19 optik pada dasarnya merespon pada struktur kimia daun seperti Normilize Difference Vegetation Index (NDVI) (Dong et al. 2003). Berdasarkan resolusi spasial, Lu (2006) mengategorikan data penginderaan jauh (citra satelit) untuk estimasi AGB ke dalam tiga kategori yaitu fine spatial-resolution data (resolusi spasial kurang dari 5 m), medium spatial-resolution data (resolusi spasial pada kisaran antara 10 m hingga 100 m), dan coarse spatial-resolution data (resolusi spasial lebih dari 100 m). Penggunaan coarse spatial-resolution data memiliki keterbatasan dikarenakan ukuran pixelnya yang besar, dimana berbagai jenis pohon dari bermacam-macam area hutan terdapat di dalam pixel tersebut dan perbedaan yang amat besar antara ukuran pixel dengan plot yang dibuat untuk pengukuran lapangan. Pendugaan Biomassa Hutan Jati Berdasarkan Model Alometrik Pada pendugaan nilai biomassa tegakan jati di lokasi peneltian digunakan model alometrik biomassa terukur yang telah dikembangkan oleh Hendri (2001) di daerah KPH Cepu yang merupakan daerah Hutan Tanaman Jati yang berseberangan langsung dengan lokasi peneltian. Dimana R 2 pada persamaan alometik dengan destructive sampling ini sebesar 94,1%. Selain itu kondisi umum lapangan baik kondisi tegakan maupun kondisi iklim daerah KPH Cepu memiliki kesamaan dengan kondisi umum lapangan KPH Kebonharjo. Berikut merupakan persamaan alometrik yang dikembangkan oleh Hendri (2001) (Hendri dalam Tiryana 2011). W = D (R 2 = 0.941) Pendugaan Biomassa Hutan Jati Berdasarkan Nilai Biomass Expansion Factor (BEF) Biomass Expansion Factor (BEF) didefinisikan sebagai rasio total bobot biomassa kering tanur di atas permukaan tanah pada diameter minimum (dbh) 10 cm atau lebih dengan bobot biomassa kering tanur pada volume yang diinventarisasi atau rasio antara AGB total dengan biomassa batang yang dapat dimanfaatkan. BEF pada setiap tegakan hutan di berbagai negara sangat bervariasi, penghitungan BEF yang banyak dilakukan adalah dengan menggunakan dua metode, yaitu perhitungan BEF dari diameter pohon secara

18 20 langsung dan BEF yang dihitung dengan menggunakan Double Sampling. Expansion Factor berdasarkan diameter saja secara konsisten memiliki nilai yang lebih baik dari Expansion Factor yang dicari berdasarkan Double sampling. Hipotesis yang diuji sebelumnya menunjukkan bahwa perbedaan nilai Expansion Factor pada daerah-daerah yang berbeda disebabkan oleh perbedaan rata-rata ukuran pohon yang diinventarisasi. Biomass Expansion Factor (BEF) pada tegakan jati yang dikembangkan di daerah tropis Panama, di hitung dengan membagi total prororsi biomassa dengan biomassa batang sehingga menghasilkan nilai BEF sebesar 1,53186 (Kraenzel et al. 2003).

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan tehnik dan seni untuk memperoleh informasi tentang suatu objek, wilayah atau fenomena dengan menganalisa data yang diperoleh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan suatu teknik pengukuran atau perolehan informasi dari beberapa sifat obyek atau fenomena dengan menggunakan alat perekam yang secara

Lebih terperinci

I. PENDAHULUAN 1.1 Latar Belakang

I. PENDAHULUAN 1.1 Latar Belakang 1 I. PENDAHULUAN 1.1 Latar Belakang Posisi Indonesia berada di daerah tropis mengakibatkan hampir sepanjang tahun selalu diliputi awan. Kondisi ini mempengaruhi kemampuan citra optik untuk menghasilkan

Lebih terperinci

PENYUSUNAN MODEL PENDUGAAN DAN PEMETAAN BIOMASSA PERMUKAAN PADA TEGAKAN JATI

PENYUSUNAN MODEL PENDUGAAN DAN PEMETAAN BIOMASSA PERMUKAAN PADA TEGAKAN JATI PENYUSUNAN MODEL PENDUGAAN DAN PEMETAAN BIOMASSA PERMUKAAN PADA TEGAKAN JATI (Tectona grandis Linn.F) MENGGUNAKAN CITRA ALOS PALSAR RESOLUSI 50 M DAN 12,5 M (Studi Kasus : KPH Kebonharjo Perhutani Unit

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan salah satu negara yang memiliki hutan tropis terbesar di dunia, dengan kondisi iklim basa yang peluang tutupan awannya sepanjang tahun cukup tinggi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA 2.1 Sistem Informasi Geografis (SIG) SIG dirancang untuk mengumpulkan, menyimpan, dan menganalisis objekobjek serta fenomena

BAB II TINJAUAN PUSTAKA 2.1 Sistem Informasi Geografis (SIG) SIG dirancang untuk mengumpulkan, menyimpan, dan menganalisis objekobjek serta fenomena 3 BAB II TINJAUAN PUSTAKA 2.1 Sistem Informasi Geografis (SIG) SIG dirancang untuk mengumpulkan, menyimpan, dan menganalisis objekobjek serta fenomena dimana lokasi geografi merupakan karakteristik yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Penginderaan Jauh Penginderaan jauh merupakan ilmu dan seni untuk memperoleh informasi tentang suatu objek, daerah, atau fenomena melalui analisis data yang diperoleh dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh (Remote Sensing) Penginderaan jauh (remote sensing) merupakan ilmu dan seni pengukuran untuk mendapatkan informasi dan pada suatu obyek atau fenomena, dengan

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang 1 I PENDAHULUAN 1.1 Latar Belakang Luas kawasan hutan Indonesia berdasarkan Surat Keputusan Menteri Kehutanan tentang penunjukan kawasan hutan dan perairan provinsi adalah 133.300.543,98 ha (Kementerian

Lebih terperinci

SENSOR DAN PLATFORM. Kuliah ketiga ICD

SENSOR DAN PLATFORM. Kuliah ketiga ICD SENSOR DAN PLATFORM Kuliah ketiga ICD SENSOR Sensor adalah : alat perekam obyek bumi. Dipasang pada wahana (platform) Bertugas untuk merekam radiasi elektromagnetik yang merupakan hasil interaksi antara

Lebih terperinci

ISTILAH DI NEGARA LAIN

ISTILAH DI NEGARA LAIN Geografi PENGERTIAN Ilmu atau seni untuk memperoleh informasi tentang obyek, daerah atau gejala dengan jalan menganalisis data yang diperoleh dengan menggunakan alat tanpa kontak langsung terhadap obyek

Lebih terperinci

PENGINDERAAN JAUH. --- anna s file

PENGINDERAAN JAUH. --- anna s file PENGINDERAAN JAUH copyright@2007 --- anna s file Pengertian Penginderaan Jauh Beberapa ahli berpendapat bahwa inderaja merupakan teknik yang dikembangkan untuk memperoleh data di permukaan bumi, jadi inderaja

Lebih terperinci

Phased Array Type L-Band Synthetic Aperture Radar (PALSAR)

Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) LAMPIRAN 51 Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) Sensor PALSAR merupakan pengembangan dari sensor SAR yang dibawa oleh satelit pendahulunya, JERS-1. Sensor PALSAR adalah suatu sensor

Lebih terperinci

PERBEDAAN INTERPRETASI CITRA RADAR DENGAN CITRA FOTO UDARA

PERBEDAAN INTERPRETASI CITRA RADAR DENGAN CITRA FOTO UDARA PERBEDAAN INTERPRETASI CITRA RADAR DENGAN CITRA FOTO UDARA I. Citra Foto Udara Kegiatan pengindraan jauh memberikan produk atau hasil berupa keluaran atau citra. Citra adalah gambaran suatu objek yang

Lebih terperinci

11/25/2009. Sebuah gambar mengandung informasi dari obyek berupa: Posisi. Introduction to Remote Sensing Campbell, James B. Bab I

11/25/2009. Sebuah gambar mengandung informasi dari obyek berupa: Posisi. Introduction to Remote Sensing Campbell, James B. Bab I Introduction to Remote Sensing Campbell, James B. Bab I Sebuah gambar mengandung informasi dari obyek berupa: Posisi Ukuran Hubungan antar obyek Informasi spasial dari obyek Pengambilan data fisik dari

Lebih terperinci

BAB II DASAR TEORI. 2.1 DEM (Digital elevation Model) Definisi DEM

BAB II DASAR TEORI. 2.1 DEM (Digital elevation Model) Definisi DEM BAB II DASAR TEORI 2.1 DEM (Digital elevation Model) 2.1.1 Definisi DEM Digital Elevation Model (DEM) merupakan bentuk penyajian ketinggian permukaan bumi secara digital. Dilihat dari distribusi titik

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Kekeringan

II. TINJAUAN PUSTAKA. 2.1 Kekeringan II. TINJAUAN PUSTAKA 2.1 Kekeringan Kekeringan (drought) secara umum bisa didefinisikan sebagai kurangnya persediaan air atau kelembaban yang bersifat sementara secara signifikan di bawah normal atau volume

Lebih terperinci

BAB I PENDAHULUAN 1.1.Latar Belakang

BAB I PENDAHULUAN 1.1.Latar Belakang BAB I PENDAHULUAN 1.1.Latar Belakang Sumberdaya alam ialah segala sesuatu yang muncul secara alami yang dapat digunakan untuk pemenuhan kebutuhan manusia pada umumnya. Hutan termasuk kedalam sumber daya

Lebih terperinci

q Tujuan dari kegiatan ini diperolehnya peta penggunaan lahan yang up-to date Alat dan Bahan :

q Tujuan dari kegiatan ini diperolehnya peta penggunaan lahan yang up-to date Alat dan Bahan : MAKSUD DAN TUJUAN q Maksud dari kegiatan ini adalah memperoleh informasi yang upto date dari citra satelit untuk mendapatkan peta penggunaan lahan sedetail mungkin sebagai salah satu paramater dalam analisis

Lebih terperinci

ULANGAN HARIAN PENGINDERAAN JAUH

ULANGAN HARIAN PENGINDERAAN JAUH ULANGAN HARIAN PENGINDERAAN JAUH 01. Teknologi yang terkait dengan pengamatan permukaan bumi dalam jangkauan yang sangat luas untuk mendapatkan informasi tentang objek dipermukaan bumi tanpa bersentuhan

Lebih terperinci

L A P O R A N. Kelompok Pelaksana Litbang Teknologi Eksploitasi Tambang Dan Pengelolaan Sumberdaya

L A P O R A N. Kelompok Pelaksana Litbang Teknologi Eksploitasi Tambang Dan Pengelolaan Sumberdaya Puslitbang tekmira Jl. Jend. Sudirman No. 623 Bandung 40211 Telp : 022-6030483 Fax : 022-6003373 E-mail :Info@tekmira.esdm.go.id L A P O R A N Kelompok Pelaksana Litbang Teknologi Eksploitasi Tambang Dan

Lebih terperinci

GEOGRAFI. Sesi PENGINDERAAN JAUH : 2 A. PENGINDERAAN JAUH NONFOTOGRAFIK. a. Sistem Termal

GEOGRAFI. Sesi PENGINDERAAN JAUH : 2 A. PENGINDERAAN JAUH NONFOTOGRAFIK. a. Sistem Termal GEOGRAFI KELAS XII IPS - KURIKULUM GABUNGAN 09 Sesi NGAN PENGINDERAAN JAUH : 2 A. PENGINDERAAN JAUH NONFOTOGRAFIK Menggunakan sensor nonkamera atau sensor elektronik. Terdiri dari inderaja sistem termal,

Lebih terperinci

PENGINDERAAN JAUH D. SUGANDI NANIN T

PENGINDERAAN JAUH D. SUGANDI NANIN T PENGINDERAAN JAUH D. SUGANDI NANIN T PENGERTIAN Penginderaan Jauh atau Remote Sensing merupakan suatu ilmu dan seni untuk memperoleh data dan informasi dari suatu objek dipermukaan bumi dengan menggunakan

Lebih terperinci

penginderaan jauh remote sensing penginderaan jauh penginderaan jauh (passive remote sensing) (active remote sensing).

penginderaan jauh remote sensing penginderaan jauh penginderaan jauh (passive remote sensing) (active remote sensing). Istilah penginderaan jauh merupakan terjemahan dari remote sensing yang telah dikenal di Amerika Serikat sekitar akhir tahun 1950-an. Menurut Manual of Remote Sensing (American Society of Photogrammetry

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. DEM ( Digital Elevation Model

II. TINJAUAN PUSTAKA 2.1. DEM ( Digital Elevation Model 15 II. TINJAUAN PUSTAKA 2.1. DEM (Digital Elevation Model) Digital Elevation Model (DEM) merupakan bentuk 3 dimensi dari permukaan bumi yang memberikan data berbagai morfologi permukaan bumi, seperti kemiringan

Lebih terperinci

GEOGRAFI. Sesi PENGINDERAAN JAUH : 1 A. PENGERTIAN PENGINDERAAN JAUH B. PENGINDERAAN JAUH FOTOGRAFIK

GEOGRAFI. Sesi PENGINDERAAN JAUH : 1 A. PENGERTIAN PENGINDERAAN JAUH B. PENGINDERAAN JAUH FOTOGRAFIK GEOGRAFI KELAS XII IPS - KURIKULUM GABUNGAN 08 Sesi NGAN PENGINDERAAN JAUH : 1 A. PENGERTIAN PENGINDERAAN JAUH Penginderaan jauh (inderaja) adalah cara memperoleh data atau informasi tentang objek atau

Lebih terperinci

09 - Penginderaan Jauh dan Pengolahan Citra Dijital. by: Ahmad Syauqi Ahsan

09 - Penginderaan Jauh dan Pengolahan Citra Dijital. by: Ahmad Syauqi Ahsan 09 - Penginderaan Jauh dan Pengolahan Citra Dijital by: Ahmad Syauqi Ahsan Remote Sensing (Penginderaan Jauh) is the measurement or acquisition of information of some property of an object or phenomena

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Suhu Permukaan Suhu permukaan dapat diartikan sebagai suhu terluar suatu obyek. Untuk suatu tanah terbuka, suhu permukaan adalah suhu pada lapisan terluar permukaan tanah. Sedangkan

Lebih terperinci

Kegiatan konversi hutan menjadi lahan pertambangan melepaskan cadangan

Kegiatan konversi hutan menjadi lahan pertambangan melepaskan cadangan Kegiatan konversi hutan menjadi lahan pertambangan melepaskan cadangan karbon ke atmosfir dalam jumlah yang cukup berarti. Namun jumlah tersebut tidak memberikan dampak yang berarti terhadap jumlah CO

Lebih terperinci

JENIS CITRA

JENIS CITRA JENIS CITRA PJ SENSOR Tenaga yang dipantulkan dari obyek di permukaan bumi akan diterima dan direkam oleh SENSOR. Tiap sensor memiliki kepekaan tersendiri terhadap bagian spektrum elektromagnetik. Kepekaannya

Lebih terperinci

KOMPONEN PENGINDERAAN JAUH. Sumber tenaga Atmosfer Interaksi antara tenaga dan objek Sensor Wahana Perolehan data Pengguna data

KOMPONEN PENGINDERAAN JAUH. Sumber tenaga Atmosfer Interaksi antara tenaga dan objek Sensor Wahana Perolehan data Pengguna data PENGINDERAAN JAUH KOMPONEN PENGINDERAAN JAUH Sumber tenaga Atmosfer Interaksi antara tenaga dan objek Sensor Wahana Perolehan data Pengguna data Lanjutan Sumber tenaga * Alamiah/sistem pasif : sinar matahari

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.. Variasi NDVI Citra AVNIR- Citra AVNIR- yang digunakan pada penelitian ini diakuisisi pada tanggal Desember 008 dan 0 Juni 009. Pada citra AVNIR- yang diakuisisi tanggal Desember

Lebih terperinci

PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH KOTA PADANG ABSTRACT

PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH KOTA PADANG ABSTRACT Eksakta Vol. 18 No. 1, April 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH

Lebih terperinci

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997 LAMPIRAN Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997 17 Lampiran 2. Peta klasifikasi penutup lahan Kodya Bogor tahun 2006 18 Lampiran 3. Peta sebaran suhu permukaan Kodya Bogor tahun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deskripsi Jati (Tectona grandis Linn. f) Jati (Tectona grandis Linn. f) termasuk kelompok tumbuhan yang dapat menggugurkan daunnya sebagaimana mekanisme pengendalian diri terhadap

Lebih terperinci

GEOGRAFI. Sesi PENGINDERAAN JAUH : 3 A. CITRA NONFOTO. a. Berdasarkan Spektrum Elektromagnetik

GEOGRAFI. Sesi PENGINDERAAN JAUH : 3 A. CITRA NONFOTO. a. Berdasarkan Spektrum Elektromagnetik GEOGRAFI KELAS XII IPS - KURIKULUM GABUNGAN 10 Sesi NGAN PENGINDERAAN JAUH : 3 A. CITRA NONFOTO Citra nonfoto adalah gambaran yang dihasilkan oleh sensor nonfotografik atau sensor elektronik. Sensornya

Lebih terperinci

1. BAB I PENDAHULUAN PENDAHULUAN

1. BAB I PENDAHULUAN PENDAHULUAN 1. BAB I PENDAHULUAN PENDAHULUAN 1.1. Latar Belakang Peta menggambarkan data spasial (keruangan) yang merupakan data yang berkenaan dengan lokasi atau atribut dari suatu objek atau fenomena di permukaan

Lebih terperinci

Puslitbang tekmira Jl. Jend. Sudirman No. 623 Bandung 40211

Puslitbang tekmira Jl. Jend. Sudirman No. 623 Bandung 40211 Puslitbang tekmira Jl. Jend. Sudirman No. 623 Bandung 40211 Telp : 022-6030483 Fax : 022-6003373 E-mail :Info@tekmira.esdm.go.id L A P O R A N Kelompok Pelaksana Litbang Teknologi Eksploitasi Tambang Dan

Lebih terperinci

Gambar 11. Citra ALOS AVNIR-2 dengan Citra Komposit RGB 321

Gambar 11. Citra ALOS AVNIR-2 dengan Citra Komposit RGB 321 V. HASIL DAN PEMBAHASAN 5.1. Analisis Spektral Citra yang digunakan pada penelitian ini adalah Citra ALOS AVNIR-2 yang diakuisisi pada tanggal 30 Juni 2009 seperti yang tampak pada Gambar 11. Untuk dapat

Lebih terperinci

BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Bahan dan Alat

BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Bahan dan Alat 21 BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian Penelitian ini dilakukan di KPH Kebonharjo Perum Perhutani Unit I, Jawa Tengah. Meliputi Bagian Hutan (BH) Tuder dan Balo, pada Kelas Perusahaan Jati.

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA . II. TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan ilmu dan seni untuk memperoleh informasi tentang objek, daerah atau gejala dengan jalan menganalisis data yang diperoleh dengan

Lebih terperinci

LAPORAN ESTIMASI KEMAMPUAN BIOMASSA DALAM PENYERAPAN KARBON DI DAERAH REKLAMASI PERTAMBANGAN

LAPORAN ESTIMASI KEMAMPUAN BIOMASSA DALAM PENYERAPAN KARBON DI DAERAH REKLAMASI PERTAMBANGAN Puslitbang tekmira Jl. Jend. Sudirman No. 623 Bandung 40211 Telp : 022-6030483 Fax : 022-6003373 E-mail :Info@tekmira.esdm.go.id LAPORAN Kelompok Pelaksana Litbang Teknologi Eksploitasi Tambang dan Pengelolaan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Hasil sensus jumlah penduduk di Indonesia, dengan luas wilayah kurang lebih 1.904.569 km 2 menunjukkan adanya peningkatan jumlah penduduk, dari tahun 2010 jumlah penduduknya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Pemantauan Padi dengan SAR Polarisasi Tunggal Pada awal perkembangannya, sensor SAR hanya menyediakan satu pilihan polarisasi saja. Masalah daya di satelit, kapasitas pengiriman

Lebih terperinci

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut :

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut : Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut : NDVI=(band4 band3)/(band4+band3).18 Nilai-nilai indeks vegetasi di deteksi oleh instrument pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh adalah ilmu dan seni untuk memperoleh informasi tentang suatu obyek, daerah, atau fenomena melalui analisis data yang diperoleh dengan

Lebih terperinci

MENU STANDAR KOMPETENSI KOMPETENSI DASAR MATERI SOAL REFERENSI

MENU STANDAR KOMPETENSI KOMPETENSI DASAR MATERI SOAL REFERENSI Arif Supendi, M.Si MENU STANDAR KOMPETENSI KOMPETENSI DASAR MATERI SOAL REFERENSI STANDAR KOMPETENSI Memahami pemanfaatan citra penginderaan jauh ( PJ ) dan Sistem Informasi Geografi KOMPETENSI DASAR Menjelaskan

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Usahatani Padi dan Mobilitas Petani Padi

II. TINJAUAN PUSTAKA 2.1. Usahatani Padi dan Mobilitas Petani Padi II. TINJAUAN PUSTAKA 2.1. Usahatani Padi dan Mobilitas Petani Padi Usahatani merupakan organisasi dari alam, kerja, dan modal yang ditujukan kepada produksi lapangan pertanian (Hernanto, 1995). Organisasi

Lebih terperinci

Radiasi Elektromagnetik

Radiasi Elektromagnetik Radiasi Elektrmagnetik 3. Radiasi Elektrmagnetik Berangkat dari bahasan kita di atas mengenai kmpnen sistem PJ, energi elektrmagnetik adalah sebuah kmpnen utama dari kebanyakan sistem PJ untuk lingkungan

Lebih terperinci

ix

ix DAFTAR ISI viii ix x DAFTAR TABEL Tabel 1.1. Emisivitas dari permukaan benda yang berbeda pada panjang gelombang 8 14 μm. 12 Tabel 1.2. Kesalahan suhu yang disebabkan oleh emisivitas objek pada suhu 288

Lebih terperinci

Legenda: Sungai Jalan Blok sawah PT. Sang Hyang Seri Kabupaten Subang

Legenda: Sungai Jalan Blok sawah PT. Sang Hyang Seri Kabupaten Subang 17 III. METODOLOGI 3.1. Waktu dan Tempat Penelitian Penelitian ini dimulai pada bulan Oktober 2010 dan berakhir pada bulan Juni 2011. Wilayah penelitian berlokasi di Kabupaten Subang, Jawa Barat (Gambar

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1 Lahan dan Penggunaan Lahan Pengertian Lahan

II. TINJAUAN PUSTAKA 2.1 Lahan dan Penggunaan Lahan Pengertian Lahan II. TINJAUAN PUSTAKA 2.1 Lahan dan Penggunaan Lahan 2.1.1 Pengertian Lahan Pengertian lahan tidak sama dengan tanah, tanah adalah benda alami yang heterogen dan dinamis, merupakan interaksi hasil kerja

Lebih terperinci

TINJAUAN PUSTAKA. Dalam Pasal 12 Undang-undang Kehutanan disebutkan bahwa. penyusunan rencana kehutanan. Pembentukan wilayah pengelolaan hutan

TINJAUAN PUSTAKA. Dalam Pasal 12 Undang-undang Kehutanan disebutkan bahwa. penyusunan rencana kehutanan. Pembentukan wilayah pengelolaan hutan TINJAUAN PUSTAKA KPH (Kesatuan Pengelolaan Hutan) Dalam Pasal 12 Undang-undang Kehutanan disebutkan bahwa perencanaan kehutanan meliputi inventarisasi hutan, pengukuhan kawasan hutan, penatagunaan kawasan

Lebih terperinci

III. METODOLOGI. Gambar 1. Peta Administrasi Kota Palembang.

III. METODOLOGI. Gambar 1. Peta Administrasi Kota Palembang. III. METODOLOGI 3.1 Waktu dan Tempat Penelitian dilaksanakan pada bulan Juli-Oktober 2010. Lokasi penelitian di Kota Palembang dan Laboratorium Analisis Spasial Lingkungan, Departemen Konservasi Sumberdaya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Penginderaan jauh yaitu berbagai teknik yang dikembangkan untuk perolehan dan analisis informasi tentang bumi. Informasi tersebut berbentuk radiasi elektromagnetik

Lebih terperinci

Cara memperoleh Informasi Tidak kontak langsung dari jauh Alat pengindera atau sensor Data citra (image/imagery) a. Citra Foto Foto udara

Cara memperoleh Informasi Tidak kontak langsung dari jauh Alat pengindera atau sensor Data citra (image/imagery) a. Citra Foto Foto udara PENGINDERAAN JAUH (INDERAJA) remote sensing (Inggris), teledetection (Prancis), fernerkundung (Jerman), distantsionaya (Rusia), PENGERTIAN. Lillesand and Kiefer (1994), Inderaja adalah ilmu dan seni untuk

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kandungan air kanopi (Canopy Water Content) sangat erat kaitannya dalam kajian untuk mengetahui kondisi vegetasi maupun kondisi ekosistem terestrial pada umumnya. Pada

Lebih terperinci

ACARA I SIMULASI PENGENALAN BEBERAPA UNSUR INTERPRETASI

ACARA I SIMULASI PENGENALAN BEBERAPA UNSUR INTERPRETASI ACARA I SIMULASI PENGENALAN BEBERAPA UNSUR INTERPRETASI Oleh: Nama Mahasiswa : Titin Lichwatin NIM : 140722601700 Mata Kuliah : Praktikum Penginderaan Jauh Dosen Pengampu : Alfi Nur Rusydi, S.Si., M.Sc

Lebih terperinci

PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA

PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA Atriyon Julzarika Alumni Teknik Geodesi dan Geomatika, FT-Universitas Gadjah Mada, Angkatan 2003 Lembaga Penerbangan

Lebih terperinci

I. PENDAHULUAN 1.1. Latar Belakang

I. PENDAHULUAN 1.1. Latar Belakang 1 I. PENDAHULUAN 1.1. Latar Belakang Di Indonesia seringkali terjadi bencana alam yang sering mendatangkan kerugian bagi masyarakat. Fenomena bencana alam dapat terjadi akibat ulah manusia maupun oleh

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1. Sistem Remote Sensing (Penginderaan Jauh)

BAB 2 LANDASAN TEORI 2.1. Sistem Remote Sensing (Penginderaan Jauh) BAB 2 LANDASAN TEORI 2.1. Sistem Remote Sensing (Penginderaan Jauh) Remote Sensing didefinisikan sebagai ilmu untuk mendapatkan informasi mengenai obyek-obyek pada permukaan bumi dengan analisis data yang

Lebih terperinci

PERANAN TEKNOLOGI PENGINDERAAN JAUH DALAM MEMPERCEPAT PEROLEHAN DATA GEOGRAFIS UNTUK KEPERLUAN PEMBANGUNAN NASIONAL ABSTRAK

PERANAN TEKNOLOGI PENGINDERAAN JAUH DALAM MEMPERCEPAT PEROLEHAN DATA GEOGRAFIS UNTUK KEPERLUAN PEMBANGUNAN NASIONAL ABSTRAK PERANAN TEKNOLOGI PENGINDERAAN JAUH DALAM MEMPERCEPAT PEROLEHAN DATA GEOGRAFIS UNTUK KEPERLUAN PEMBANGUNAN NASIONAL Rokhmatuloh Departemen Geografi FMIPA Universitas Indonesia Kampus UI Depok 16424, Tel/Fax.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Teh merupakan salah satu komoditi subsektor perkebunan yang memiliki berbagai peranan dan manfaat. Teh dikenal memiliki kandungan katekin (antioksidan alami) yang

Lebih terperinci

BAB I PENDAHULUAN Perumusan Masalah

BAB I PENDAHULUAN Perumusan Masalah 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pertumbuhan jumlah penduduk yang cukup tinggi di dunia khususnya Indonesia memiliki banyak dampak. Dampak yang paling mudah dijumpai adalah kekurangan lahan. Hal

Lebih terperinci

SUB POKOK BAHASAN 10/16/2012. Sensor Penginderaan Jauh menerima pantulan energi. Sensor Penginderaan Jauh menerima pantulan energi

SUB POKOK BAHASAN 10/16/2012. Sensor Penginderaan Jauh menerima pantulan energi. Sensor Penginderaan Jauh menerima pantulan energi MATA KULIAH : SISTEM INFORMASI GEOGRAFIS (SIG) PERIKANAN KODE MK : M10A.125 SKS : 2 (11) DOSEN : SYAWALUDIN ALISYAHBANA HRP, S.Pi, MSc. SUB POKOK BAHASAN DEFINIS DAN PENGERTIAN TENAGA UNTUK PENGINDERAAN

Lebih terperinci

+ MODEL SPASIAL PENDUGAAN DAN PEMETAAN BIOMASSA DI ATAS PERMUKAAN TANAH MENGGUNAKAN CITRA ALOS PALSAR RESOLUSI 12.5 M MITRA ELISA HUTAGALUNG

+ MODEL SPASIAL PENDUGAAN DAN PEMETAAN BIOMASSA DI ATAS PERMUKAAN TANAH MENGGUNAKAN CITRA ALOS PALSAR RESOLUSI 12.5 M MITRA ELISA HUTAGALUNG + MODEL SPASIAL PENDUGAAN DAN PEMETAAN BIOMASSA DI ATAS PERMUKAAN TANAH MENGGUNAKAN CITRA ALOS PALSAR RESOLUSI 12.5 M MITRA ELISA HUTAGALUNG DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN

Lebih terperinci

Spektrum Gelombang. Penginderaan Elektromagnetik. Gelombang Mikro - Pasif. Pengantar Synthetic Aperture Radar

Spektrum Gelombang. Penginderaan Elektromagnetik. Gelombang Mikro - Pasif. Pengantar Synthetic Aperture Radar Spektrum Gelombang Pengantar Synthetic Aperture Radar Bambang H. Trisasongko Department of Soil Science and Land Resources, Bogor Agricultural University. Bogor 16680. Indonesia. Email: trisasongko@live.it

Lebih terperinci

BAB III METODOLOGI 3.1 Waktu dan Tempat 3.2 Alat dan Data 3.3 Tahapan Pelaksanaan

BAB III METODOLOGI 3.1 Waktu dan Tempat 3.2 Alat dan Data 3.3 Tahapan Pelaksanaan 15 BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian ini dilaksanakan mulai bulan Juli sampai dengan April 2011 dengan daerah penelitian di Kabupaten Bogor, Kabupaten Sukabumi, dan Kabupaten Cianjur,

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Seiring dengan berkembangnya permintaan akan pemetaan suatu wilayah dalam berbagai bidang, maka semakin berkembang pula berbagai macam metode pemetaan. Dengan memanfaatkan

Lebih terperinci

II. TINJAUAN PUSTAKA. permukaan lahan (Burley, 1961 dalam Lo, 1995). Konstruksi tersebut seluruhnya

II. TINJAUAN PUSTAKA. permukaan lahan (Burley, 1961 dalam Lo, 1995). Konstruksi tersebut seluruhnya 5 II. TINJAUAN PUSTAKA A. Penutupan Lahan dan Perubahannya Penutupan lahan menggambarkan konstruksi vegetasi dan buatan yang menutup permukaan lahan (Burley, 1961 dalam Lo, 1995). Konstruksi tersebut seluruhnya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Penginderaan jauh didefinisikan sebagai proses perolehan informasi tentang suatu obyek tanpa adanya kontak fisik secara langsung dengan obyek tersebut (Rees, 2001;

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Perubahan Penggunaan Lahan Pengertian lahan berbeda dengan tanah, namun dalam kenyataan sering terjadi kekeliruan dalam memberikan batasan pada kedua istilah tersebut. Tanah

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 24 BAB V HASIL DAN PEMBAHASAN 5.1 Hasil Pengolahan data Biomassa Penelitian ini dilakukan di dua bagian hutan yaitu bagian Hutan Balo dan Tuder. Berdasarkan hasil pengolahan data lapangan diperoleh dari

Lebih terperinci

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002)

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002) BAB III METODA 3.1 Penginderaan Jauh Pertanian Pada penginderaan jauh pertanian, total intensitas yang diterima sensor radar (radar backscattering) merupakan energi elektromagnetik yang terpantul dari

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.1 Identifikasi Tutupan Lahan di Lapangan Berdasarkan hasil observasi lapangan yang telah dilakukan di Kabupaten Humbang Hasundutan, Kabupaten Tapanuli Utara, dan Kabupaten

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Lahan, Penggunaan Lahan dan Perubahan Penggunaan Lahan

II. TINJAUAN PUSTAKA 2.1. Lahan, Penggunaan Lahan dan Perubahan Penggunaan Lahan II. TINJAUAN PUSTAKA 2.1. Lahan, Penggunaan Lahan dan Perubahan Penggunaan Lahan Lahan adalah suatu wilayah daratan yang ciri-cirinya menerangkan semua tanda pengenal biosfer, atsmosfer, tanah geologi,

Lebih terperinci

TINJAUAN PUSTAKA. non hutan atau sebaliknya. Hasilnya, istilah kebakaran hutan dan lahan menjadi. istilah yang melekat di Indonesia (Syaufina, 2008).

TINJAUAN PUSTAKA. non hutan atau sebaliknya. Hasilnya, istilah kebakaran hutan dan lahan menjadi. istilah yang melekat di Indonesia (Syaufina, 2008). 3 TINJAUAN PUSTAKA Kebakaran hutan didefenisikan sebagai suatu kejadian dimana api melalap bahan bakar bervegetasi, yang terjadi didalam kawasan hutan yang menjalar secara bebas dan tidak terkendali di

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi penginderaan jauh (remote sensing) dikenal sebagai teknologi yang memiliki manfaat yang luas. Pemanfaatan yang tepat dari teknologi ini berpotensi meningkatkan

Lebih terperinci

Generated by Foxit PDF Creator Foxit Software For evaluation only. 23 LAMPIRAN

Generated by Foxit PDF Creator Foxit Software  For evaluation only. 23 LAMPIRAN 23 LAMPIRAN 24 Lampiran 1 Diagram Alir Penelitian Data Citra LANDSAT-TM/ETM Koreksi Geometrik Croping Wilayah Kajian Kanal 2,4,5 Kanal 1,2,3 Kanal 3,4 Spectral Radiance (L λ ) Albedo NDVI Class Radiasi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar belakang BAB I PENDAHULUAN 1.1 Latar belakang Berdasarkan Undang-Undang Nomor 41 Tahun 1999, bahwa mangrove merupakan ekosistem hutan, dengan definisi hutan adalah suatu ekosistem hamparan lahan berisi sumber daya

Lebih terperinci

TINJAUAN PUSTAKA. lahan dengan data satelit penginderaan jauh makin tinggi akurasi hasil

TINJAUAN PUSTAKA. lahan dengan data satelit penginderaan jauh makin tinggi akurasi hasil 4 TINJAUAN PUSTAKA Makin banyak informasi yang dipergunakan dalam klasifikasi penutup lahan dengan data satelit penginderaan jauh makin tinggi akurasi hasil klasifikasinya. Menggunakan informasi multi

Lebih terperinci

PENELITIAN FISIKA DALAM TEKNOLOGI PENGINDERAAN JAUH UNTUK MONITORING PERUBAHAN GARIS PANTAI (STUDI KASUS DI WILAYAH PESISIR PERAIRAN KABUPATEN KENDAL)

PENELITIAN FISIKA DALAM TEKNOLOGI PENGINDERAAN JAUH UNTUK MONITORING PERUBAHAN GARIS PANTAI (STUDI KASUS DI WILAYAH PESISIR PERAIRAN KABUPATEN KENDAL) 54 Prosiding Pertemuan Ilmiah XXIV HFI Jateng & DIY, Semarang 10 April 2010 hal. 54-60 PENELITIAN FISIKA DALAM TEKNOLOGI PENGINDERAAN JAUH UNTUK MONITORING PERUBAHAN GARIS PANTAI (STUDI KASUS DI WILAYAH

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Kegiatan inventarisasi sumberdaya hutan merupakan salah satu kegiatan yang sangat penting dalam perencanaan hutan. Inventarisasi hutan diperlukan untuk mengetahui

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Informasi Geografis Sistem Informasi Geografis adalah sistem berbasis komputer yang terdiri atas perangkat keras komputer (hardware), perangkat lunak (software), data

Lebih terperinci

I. PENDAHULUAN 1.1 Latar Belakang

I. PENDAHULUAN 1.1 Latar Belakang I. PENDAHULUAN 1.1 Latar Belakang Kemampuan hutan dan ekosistem didalamnya sebagai penyimpan karbon dalam bentuk biomassa di atas tanah dan di bawah tanah mempunyai peranan penting untuk menjaga keseimbangan

Lebih terperinci

TINJAUAN PUSTAKA. Lillesand dan Kiefer (1997), mendefenisikan penginderaan jauh sebagai

TINJAUAN PUSTAKA. Lillesand dan Kiefer (1997), mendefenisikan penginderaan jauh sebagai TINJAUAN PUSTAKA Penginderaan Jarak Jauh Lillesand dan Kiefer (1997), mendefenisikan penginderaan jauh sebagai ilmu dan seni untuk memperoleh informasi tentang objek, daerah atau gejala dengan jalan menganalisis

Lebih terperinci

LAPAN sejak tahun delapan puluhan telah banyak

LAPAN sejak tahun delapan puluhan telah banyak KAJIAN AWAL KEBUTUHAN TEKNOLOGI SATELIT PENGINDERAAN JAUH UNTUK MENDUKUNG PROGRAM REDD DI INDONESIA Oleh : Dony Kushardono dan Ayom Widipaminto LAPAN sejak tahun delapan puluhan telah banyak menyampaikan

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Geografi

K13 Revisi Antiremed Kelas 12 Geografi K13 Revisi Antiremed Kelas 12 Geografi 01. Suatu ilmu atau teknik untuk mengetahui suatu benda, gejala, dan area dan jarak jauh dengan menggunakan alat pengindraan berupa sensor buatan disebut... (A) citra

Lebih terperinci

Gambar 1.1 Siklus Hidrologi (Kurkura, 2011)

Gambar 1.1 Siklus Hidrologi (Kurkura, 2011) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan yang mutlak bagi setiap makhluk hidup di permukaan bumi. Seiring dengan pertambahan penduduk kebutuhan air pun meningkat. Namun, sekarang

Lebih terperinci

TINJAUAN PUSTAKA. Secara geografis DAS Besitang terletak antara 03 o o LU. (perhitungan luas menggunakan perangkat GIS).

TINJAUAN PUSTAKA. Secara geografis DAS Besitang terletak antara 03 o o LU. (perhitungan luas menggunakan perangkat GIS). TINJAUAN PUSTAKA Daerah Aliran Sungai (DAS) Besitang Sekilas Tentang DAS Besitang Secara geografis DAS Besitang terletak antara 03 o 45 04 o 22 44 LU dan 97 o 51 99 o 17 56 BT. Kawasan DAS Besitang melintasi

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Ilmu penginderaan jauh berkembang sangat pesat dari masa ke masa. Teknologi sistem sensor satelit dan berbagai algoritma pemrosesan sinyal digital memudahkan pengambilan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Permukaan bumi yang tidak rata membuat para pengguna SIG (Sistem Informasi Geografis) ingin memodelkan berbagai macam model permukaan bumi. Pembuat peta memikirkan

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1 Pengertian Lahan dan Penggunaan Lahan 2.2 Perubahan Penggunaan Lahan dan Faktor-faktor yang Mempengaruhinya

II. TINJAUAN PUSTAKA 2.1 Pengertian Lahan dan Penggunaan Lahan 2.2 Perubahan Penggunaan Lahan dan Faktor-faktor yang Mempengaruhinya 3 II. TINJAUAN PUSTAKA 2.1 Pengertian Lahan dan Penggunaan Lahan Lahan adalah suatu lingkungan fisik yang meliputi tanah, iklim, relief, hidrologi, dan vegetasi, dimana faktor-faktor tersebut mempengaruhi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Era Teknologi merupakan era dimana informasi serta data dapat didapatkan dan ditransfer secara lebih efektif. Perkembangan ilmu dan teknologi menyebabkan kemajuan

Lebih terperinci

BAB II METODE PENELITIAN 2.1 Waktu dan Tempat Penelitian ini dilaksanakan mulai bulan Agustus 2010 sampai bulan September 2011, diawali dengan tahap pengambilan data sampai dengan pengolahan dan penyusunan

Lebih terperinci

BAB I PENDAHULUAN. global, sehingga terjadi penyimpangan pemanfaatan fungsi hutan dapat merusak

BAB I PENDAHULUAN. global, sehingga terjadi penyimpangan pemanfaatan fungsi hutan dapat merusak BAB I PENDAHULUAN 1.1. Latar Belakang Hutan merupakan kesatuan ekosistem berupa hamparan lahan berisi sumber daya alam hayati yang didominasi pepohonan dalam komunitas alam lingkungannya dan tidak dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Kebakaran Hutan BAB II TINJAUAN PUSTAKA 2.1.1 Definisi dan Tipe Kebakaran Hutan dan Lahan Kebakaran hutan adalah sebuah kejadian terbakarnya bahan bakar di hutan oleh api dan terjadi secara luas tidak

Lebih terperinci

TINJAUAN PUSTAKA. Indonesia adalah salah satu Negara Mega Biodiversity yang terletak

TINJAUAN PUSTAKA. Indonesia adalah salah satu Negara Mega Biodiversity yang terletak TINJAUAN PUSTAKA Kondisi Penutupan Lahan Indonesia Indonesia adalah salah satu Negara Mega Biodiversity yang terletak dalam lintasan distribusi keanekaragaman hayati benua Asia (Pulau Jawa, Sumatera dan

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12

4. HASIL DAN PEMBAHASAN. Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12 4. HASIL DAN PEMBAHASAN 4.1 Sebaran Tumpahan Minyak Dari Citra Modis Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12 dan 9 dengan resolusi citra resolusi 1km. Composite RGB ini digunakan

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli-November Penelitian ini

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli-November Penelitian ini METODE PENELITIAN Waktu dan Tempat Penelitian ini dilaksanakan pada bulan Juli-November 2012. Penelitian ini dilaksanakan di lahan sebaran agroforestri yaitu di Kecamatan Sei Bingai, Kecamatan Bahorok,

Lebih terperinci