REL. Nursyamsu Hidayat, Ph.D.

Ukuran: px
Mulai penontonan dengan halaman:

Download "REL. Nursyamsu Hidayat, Ph.D."

Transkripsi

1 REL Nursyamsu Hidayat, Ph.D. 1

2 Rel Rel pada jalan rel mempunyai fungsi sebagai pijakan menggelindingnya roda kereta api dan untuk meneruskan beban dan roda kereta api kepada bantalan Rel berguna untuk memindahkan tekanan roda-roda KA ke atas bantalan-bantalan dan juga sebagai penghantar roda-roda tadi 2

3 Gaya-gaya pada Rel Rel ditumpu oleh bantatan-bantalan, sehingga rel merupakan batang yang ditumpu oleh penumpupenumpu. Pada sistem tumpuan yang sedemikian, tekanan tegak lurus dan roda menyebabkan momen lentur pada rel di antara bantalan-bantalan. Selain itu, gaya arah horisontal yang disebabkan oleh gaya angin, goyangan kereta api, dan gaya sentrifugal (pada rel sebelah luar) menyebabkan tenjadinya momen lentur arah horisontal 3

4 Gaya-gaya pada Rel 4

5 Bentuk-bentuk Rel Untuk mengimbangi momen-momen yang bekerja, rel didesain dgn bentuk sbb: 5

6 Potongan Melintang Rel 6

7 Tipe Rel Kelas Jalan Rel Tipe Rel I R.60 / R.54 II R.54 / R.50 III R.54 / R.50 / R.42 IV R.54 / R.50 / R.42 V R.42 7

8 Karakteristik Rel 8

9 Bahan dan Kekuatan Rel Untuk mendapatkan rel yang tahan aus dan tidak mudah retak bahan dasar rel selain Fe sebagai bahan utama, juga mengandung C, dan Mn. Kandungan C diperlukan untuk mendapatkan sifat kuat dan keras, Mn diperlukan sebagai bahan deoxidasi dan sebagai bahan campuran. Mn akan mengikat 0 dan S menjadi MnO dan MnS yang tidak merugikan. Jika tidak terdapat Mn maka akan terbentuk FeO dan FeS yang menjadikan rel getas dan mudah patah. Dengan pertimbangan perlunya rel yang kuat, keras, tahan terhadap aus, tidak getas, dan tidak mudah patah maka rel yang digunakan di Indonesia ialah jenis rel tahan aus yang sejenis dengan rel WR-A pada klasifikasi UIC. 9

10 Macam Rel Ada 3 macam rel tahan aus (Wear Resistant WR): WR-A WR-B WR-C 10

11 Jenis Rel 11

12 Dimensi Rel Permukaan cukup lebar; supaya tegangan kontak sekecil mungkin Kepala rel harus cukup tebal; memberikan umur panjang Badan rel harus cukup tebal; antisipasi korosi, tegangan lentur dan tegangan horisontal Dasar rel harus cukup lebar; supaya mengecilkan distribusi tegangan ke bantalan Dasar rel harus cukup tebal; antisipasi korosi dan menjaga kekakuan Momen inersia harus tinggi; tinggi rel semaksimal mungkin Kepala dan dasar rel harus cukup lebar; untuk menahan gaya horisontal 12

13 Dimensi Rel Perbandingan lebar dan tinggi harus cukup; untuk kestabilan horisontal Titik pusat sebaiknya ditengah rel Geometri badan harus sesuai dengan pelat sambung Jari-jari kepala rel harus cukup besar supaya tegangan kontak sekecil mungkin 13

14 Pemilihan Dimensi Pemilihan dimensi Tegangan ijin (S i ) Tegangan lentur; S base <S i Beban 1 gandar Beban 6 gandar CC dan 4 gandar BB Perancangan Rel 14

15 Pemilihan Dimensi Tegangan Ijin Besarnya tegangan ijin sangat tergantung kepada mutu rel yang dipakai, pada umumnya mutu rel yang dipakai bertegangan ultimate di atas 7000 kg/cm. Dalam menentukan tegangan ijin, beberapa negara memakai dasar kelas jalan (Jepang dan Jerman), dan ada negara yang memakai metoda pemasangan rel, rel pendek atau rel panjang (Amerika). Perumka dalam peraturan barunya, memakai dasar kelas jalan, sehingga tegangan ijin di dasar rel, makin besar untuk kelas di bawahnya. Untuk jelasnya dapat dilihat pada Tabel. 15

16 Tabel contoh perhitungan dimensi rel pada kelas jalan rel Perumka 16

17 Pemilihan Dimensi Tegangan Lentur tegangan lentur dihitung berdasarkan balok di atas tumpuan elastis beban yang bekerja adalah beban roda-roda kendaraan rel Formula untuk tegangan lentur M x P e 4 x cosxsin x) 17

18 Pemilihan Dimensi Tegangan Lentur Beban 1 gandar a P x Jika x = 0 maka M a P 4 18

19 Tegangan Lentur Pemilihan Dimensi Beban 6 gandar CC dan 4 gandar BB a x a x P1 P2 P3 P1 P2 P3 P1 P2 P1 P2 M M a a 6 i1 4 i1 P 4 P 4 e e x x cosx cosx sin sin x x 0,82 0,75 P 4 P 4 19

20 Perancangan Rel Formula yang digunakan M a P 0,85 4 Sehingga persamaan tegangan di dasar rel S base dengan: M W a b 0,85 P 4W P=tekanan roda dinamis = Ps X Ip Ps = tekanan roda statis Ip = faktor dinamis = 1 + 0,01 (v/1,609 5) v = kecepatan rencana (km/jam) b 20

21 Perancangan Rel S base M W a b 0,85 P 4W b Dengan (lanjutan): = damping factor = k = kekakuan jalan rel (kg/cm 2 ) I = momen inersia rel (cm 4 ) W b = section modulus base (cm 3 ) E = modulus elastisitas jalan rel (kg/cm 2 ) 4 k 4EI 21

22 Latihan Jalan rel kelas V, dengan data-data sbb: Daya angkut lintas < 2,5 juta ton/tahun Tekanan gandar 18 ton; Ps = 9000 kg Kecepatan rencana 100 km/jam; Ip = 1+0,01(100/1,609-5) Kekakuan jalan rel (k) = 180 kg/cm 2 Momen inersia rel R-42 (I) = 1369 cm 4 Tahanan momen dasar (Wb) = 200 cm 3 Modulus elastisitas rel (E) = 2, kg/cm 2 Rencanakan profil rel yang sesuai 22

23 Latihan Momen Maks M a x1 0,01x 5 1,609 0,85x 0,25 4x x2,1x10 x

24 Latihan Tegangan ijin σ x = M y = 1369 I X = kg/cm 2 ( < 2000 kg/ cm 2 ) OK! 24

25 Latihan Tahanan Momen S base M W a b , ,09 kg / cm ,5kg / cm 2 Jadi rel R-42 dianggap cukup untuk kelas jalan V Note: dengan cara yang sama, tegangan yang terjadi di dasar rel untuk kelas jalan lain dapat dilihat pada tabel Dimensi Rel 25

26 Umur Rel Umur rel sangat dipengaruhi oleh mutu rel, keadaan lingkungan dan beban yang bekerja (daya angkut lintas). Pada jalan lurus umur rel banyak yang lebih besar dari 40 tahun, studi lain umur rel bisa mencapai 60 tahun, tetapi biasanya umur 40 tahun dijadikan sebagai dasar umur. Umur rel dapat ditentukan dari : Kerusakan ujung rel Keausan baik di lurus maupun lengkung Lelah 26

27 Kerusakan Ujung Rel Pembatas umur rel adalah pada sambungan, terutama pada rel pendek Kerusakan di sambungan tjd akibat: Beban gandar yang tinggi Lebar Celah Mutu rel Beda tinggi rel Diameter roda yang kecil Kondisi kendaraan rel (pemegasan) Jari-jari permukaan rel Kekakuan jalan rel Kecepatan kendaraan rel 27

28 Kerusakan Ujung Rel Akibat kerusakan tersebut, ada hantaman roda ke sambungan Contoh kerusakan akibat hantaman: Tercabutnya tirpon dari bantalan Retaknya pelat sambungan rel Longgarnya baut-baut sambungan rel Naiknya lumpur di bawah bantalan sehingga umur bantalan rendah (lapuk atau patah) Ketidakstabilan geometri (angkatan maupun alinyemen) 28

29 Kerusakan Ujung Rel Antisipasinya: Pengerasan pada ujung rel Pemeliharaan yang baik Mengelas sambungan 29

30 UMUR REL BERDASARKAN KEAUSAN Konstruksi rel dapat diukur umur manfaatnya melalui keausan. Meskipun demikian faktor kelelahan dan masalah shelling akibat beban gandar (tegangan kontak) adalah faktor yang menentukan umur rel. PT.KAI membatasi besarnya keausan rel berdasarkan asumsi bahwa pada saat rel dan roda pada aus maksimum, pergerakan roda tidak menumbuk sambungan rel.(=lihat pembatasan keausan maksimum) 30

31 Persamaan Empiris AREA untuk Perhitungan Umur Rel AREA (American Railway Engineering Association) membuat model persamaan empiris untuk menentukan umur rel berdasarkan keausan sebagai berikut : T = K W D dengan T = umur rel (juta ton) K = konstanta kondisi rel W = berat rel (lbs/yard), 1 lb/yd = kg/m D = daya angkut lintas (juta ton/tahun atau mgt) 1 mgt = juta ton 31

32 Besaran nilai K Nilai K ditentukan sebagai : Jalan baru : , CWR = 1,3544 1,3930 Rel > 123 RE : , High Silicon Rail = 1,4210-1,4616 Tabel hubungan jari-jari lengkung dengan Nilai K 32

33 Contoh Perhitungan Direncanakan sebuah konstruksi jalan rel baru kelas IV dengan daya lintas 5 juta ton per tahun (5,5 mgt), dengan menggunakan rel tipe R 54. Panjang jalan 50 km 10 km lurus 10 km R = 500 m 5 km R = 150 m 10 km R = 800 m 15 km R = 300 m Tentukan umur rel...! 33

34 Contoh Perhitungan Menentukan nilai K Untuk jalan baru K = 0,9538 (lurus) Karena tidak semua lurus, K dihitung jika jalan tanpa pelumasan sbb Nilai K total = 27,755 / 50 = 0,555 34

35 Contoh Perhitungan Perhitungan Nilai T dan Umur Manfaat Rel (U) T = 0,555 x 109 x 5,5 mgt = 158,5 mgt = 144,14 juta ton U = (158,5 juta ton) / (5 juta ton/tahun) = 28,8 tahun Jadi umur rel 28,8 tahun 35

36 Percobaan Ttg Keausan Selain menggunakan persamaan di atas digunakan pula metode perhitungan keausan dengan percobaan di laboratorium maupun lapangan. Beberapa contoh spesifikasi pembatasan keausan: 0,056 in/100 mgt untuk rel 115RE (University of Illinois) 0,058 in/100 mgt untuk 132 RE (University of Illinois) 0,028 in/mgt untuk 136 RE (Zarembski & Abbot) 36

37 3. UMUR REL BERDASARKAN LELAH (FATIGUE) Jalan rel adalah struktur elastis yang dibebani secara siklus (cyclic) bahaya lelah Fatigue dimulainya retak yang semakin lama semakin melebar dan diakhiri dengan patah. Jika tegangan total di kepala rel, akibat beban kombinasi tegangan lentur, kontak dan suhu melebihi tegangan lelah maka umur rel dihitung berdasarkan umur lelah. 37

38 Tegangan yang Bekerja di Kepala Rel 1. Tegangan Lentur (Sl) Sl M W a dengan, Sl = tegangan lentur M = momen lentur W a = tahanan momen atas 38

39 Tegangan yang Bekerja di Kepala Rel 2. Tegangan Kontak (Sk), Rumus HR. Thomas : S k dengan, S k P R R 1 2 0, R = tegangan kontak (psi) P = beban dinamis (lbs) R 1 = Jari-jari roda kereta (inch) R 2 = Jari-jari rel (inch)

40 Tegangan yang Bekerja di Kepala Rel 3. Tegangan Suhu, (Ss) L L t L(t PL Ss L L AE E E L Ss E (t L dengan, L = panjang rel t p = suhu pemasangan( C) t = suhu maksimum di lapangan ( C) = koefisien muai panjang = 1, / C t P t ) P ) 40

41 Tegangan yang Bekerja di Kepala Rel Tegangan Lelah (S f ), Yaitu batas umur rel yang dihitung dengan analisis keausan atau analisis lelah. Besarnya tegangan lelah tergantung mutu rel dan standar pembuatan rel yang disajikan dalam grafik tegangan vs siklus (Grafik SN Curve) 41

42 Linear Cumulative Damage Theory Miners mengusulkan perhitungan umur lelah dengan asumsi bahwa : 1. Tegangan kombinasi < tegangan lelah 2. Akibat beban dianggap berterusan 3. Tidak ada retak awal 4. Tidak ada bahaya negatif dari siklus beban 5. Asumsi Beban : Grafik SN adalah linear dan Batas Umur Lelah 10 7 siklus 42

43 S-N Curve Tegangan St 1 St 2 k St n Sf N 1 N 2 N n 10 7 Siklus 43

44 Umur Rel dari Grafik S-N Ne Ni k Sti 1 Sf 1 D N N 1 umurrel 2 L 2 N 1 D tahun N n n i N i Ni = siklus penyebab failure pada tegangan Sti (siklus) k = slope pada S-N diagram Ne = batas berulangnya beban jika terjadi lelah i = siklus yang bekerja untuk setiap beban Sti N = siklus per waktu (siklus/tahun) 44

45 Klasifikasi Rel Panjang Menurut panjangnya, rel ada 3 jenis: 1. Rel Standar, dengan panjang 25 meter (sebelumnya 6 10 meter), 2. Rel Pendek, dengan panjang maksimum 100 meter atau 4 x 25 meter, 3. Rel Panjang, adalah rel yang mempunyai panjang statis, yaitu daerah yang tidak terpengaruh pergerakan sambungan rel, biasanya dengan panjang minimal 200 meter. 45

46 Bagaimana Rel Panjang Dibuat? Sambungan rel merupakan titik terlemah jika terjadi beban kejut yang besar dapat merusak struktur jalan rel. Oleh itu, rel dari pabrik yang diproduksi 25 meter akan dilas dengan flash butt welding dan di lapangan akan disambung lagi dengan las thermit welding sehingga menjadi rel panjang. 46

47 Bahaya Pada Stabilitas Rel Panjang Pada rel panjang dapat terjadi bahaya tekuk (buckling) akibat gaya longitudinal dan perubahan suhu. Solusi: Rel tidak boleh berkembang bebas, dimana akan dihambat oleh perkuatan pada bantalan dan balas. 47

48 Bahaya Tekuk pada Rel Panjang 48

49 1. Perhitungan Panjang Minimum Permasalahan yang ditimbulkan dalam rel panjang adalah penentuan panjang minimal rel panjang yang diakibatkan oleh dilatasi pemuaian sebagaimana dituliskan dalam persamaan berikut : L = L T dimana : L = Pertambahan panjang (m) L = Panjang rel (m) = Koefisien muai panjang ( C -1) T = Kenaikan temperature ( C) 49

50 Konsep Penurunan Rumus dari Hukum Hooke Gaya yang terjadi pada rel (hukum Hooke) : F ΔL E A = E A T L dimana : E = modulus elastisitas Young (kg/cm 2 ) A = luas penampang (cm 2 ) L = L T 50

51 Penentuan Panjang Minimum (L) Diagram gaya normal : L F = E A T Diagram gaya lawan bantalan: O l M F = E A T = r l M' l O' Panjang l : E A α ΔT l = O M = r r = tg = gaya lawan bantalan per satuan panjang L 2 l 51

52 Contoh Perhitungan : Digunakan konstruksi rel dengan bantalan beton pada rel tipe R.42 (E = 2, kg/cm 2 ), dimana gaya lawan bantalan diketahui sebesar 450 kg/m, dan = 1, C -1. Jika rel dipasang pada 20 C dan suhu maksimum terukur 50 C, tentukan panjang rel minimum yang diperlukan! Jawaban : Gunakan persamaan untuk menentukan nilai l : 6 5 2, ,26 1, l = = 91,1568 m 450 Panjang minimum rel R.42 yang dipersyaratkan dengan bantalan beton = L L = 2 l = 2 91,1568 = 182,3136 m 200 m (Dibulatkan kelipatan 25 m) 52

53 Longitudinal Creep Resistance (Gaya/Tahanan Rayapan Longitudinal] 1. Gaya akibat suhu P = EA (t - tp) 2. Pergerakan sambungan (Gap) Jika suhu mulai meningkat, rel merayap yang ditahan oleh bantalan dan balas sampai menutup sambungan. Ada bagian yang bergerak (breathing length) dan ada bagian yang tidak bergerak/tetap (static, unmovable) G = EA 2 (t - tp) 2 / 2r 53

54 Distribusi Gaya Longitudinal Tahapan penentuan distribusi gaya longitudinal : 1. Tegangan Pada Suhu Maksimum, 2. Lebar dan Suhu (t 1 ) dimana celah tertutup (G maksimum ), 3. Penentuan Gaya Longitudinal terhadap berbagai nilai variasi suhunya. 54

55 Distribusi Gaya Longitudinal Diketahui : R.42 dengan A = 54,26 cm 2, dan E = 2, kg/cm 2, dipasang pada suhu 26 C pada bantalan beton dengan tahanan balas 450 kg/m. Jika lebar celah direncanakan sebesar 13 mm dan suhu lapangan maksimum dari pengamatan sebesar 50 C, tentukan distribusi gaya longitudinalnya! 55

56 Solusi 1. P maksimum terletak pada t maksimum = 50 C. P maksimum = EA (t-tp) P = 2, ,26. 1, C -1. (50 26) P = ,6 kg 2. Suhu (t 1 ) dimana celah tertutup maksimum (G = 0). e 1 = G/2 = 13/2 = 6,5 mm e 2 = EA 2 (t-tp) 2 /2r = 2, ,26.(1, C -1 ) 2. (t 1 26) 2 / 2 (450) dari subtitusi e 1 dalam e 2 diperoleh bahwa : t 1 26 C = 19,9 C, sehingga t 1 = 44,9 C 56

57 Solusi 3. Gaya longitudinal pada saat celah tertutup (t 1 = 44,9 C) : P pada t 1 = EA (t-tp) P = 2, ,26.1, C -1.(44,9 26) P = kg 57

58 Diagram Distribusi P maksimum = EA (t mak -tp) P = EA (t 1 -tp) B A B C D C Keterangan : A, D : Sambungan Rel AB CD : Daerah Bergerak (breathing length) B C : Daerah Statik (static area/unmovable) 58

59 Longitudinal Creep Resistance (Gaya/Tahanan Rayapan Longitudinal) 3. Gaya Tekuk (Buckling Forces) : C l Wl Pb EIs 2 2 l 16D Qb D Qb dengan, Is = momen inersia (2 Iy) (cm 4 ) E = modulus elastisitas rel = 2, kg/cm 2 C = koefisien torsi penambat (tm/rad, kgm/rad) D = jarak bantalan (cm) W = tahanan lateral balas (kg/meter) l = panjang ketidaklurusan (meter) Qb = ketidaklurusan, misalignment (meter/cm/mm) 59

60 Tahanan Torsi Penambat Koefisien torsi penambat diperoleh dari pengujian terhadap penambat di laboratorium. Satuan koefisien yang diperolehi adalah ton inch/rad

61 Tahanan Momen Lateral Diketahui dengan pengujian tahanan momen lateral dari struktur rel, penambat dan bantalan. 61

62 Tahanan Balas Diketahui dengan pengujian tahanan lateral dan longitudinal balas. Tahanan lateral dapat diperbesar dengan memperberat bantalan, penggemukan bahu jalan dan memakai safety caps. 62

63 Ketidaklurusan Beberapa penyebab ketidaklurusan jalur rel (jalan rel) : Kerusakan Tanah Dasar Ketidakstabilan Jalan Rel Pemeliharaan yang tidak teratur 63

64 Referensi Penerbit ITB, 2001, Rekayasa Jalan Rel. 64

Komponen dan Disain Rel

Komponen dan Disain Rel Kuliah Prasarana Transportasi Pertemuan Minggu Ke-3 Komponen dan Disain Rel Sri Atmaja P. Rosyidi, ST., M.Sc.(C.Eng), P.E. Staff Pengajar Bidang Transportasi Jurusan Teknik Sipil UMY Komponen Rel Suatu

Lebih terperinci

REKAYASA JALAN REL MODUL 3 : KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA PROGRAM STUDI TEKNIK SIPIL

REKAYASA JALAN REL MODUL 3 : KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA PROGRAM STUDI TEKNIK SIPIL REKAYASA JALAN REL MODUL 3 : KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA OUTPUT : Mahasiswa dapat menjelaskan komponen struktur jalan rel dan kualitas rel yang baik berdasarkan standar yang berlaku di

Lebih terperinci

KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA. Nursyamsu Hidayat, Ph.D.

KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA. Nursyamsu Hidayat, Ph.D. KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA Nursyamsu Hidayat, Ph.D. Struktur Jalan Rel Struktur Atas Struktur Bawah Struktur jalan rel adalah struktur elastis dengan pola distribusi beban yang rumit

Lebih terperinci

PERENCANAAN GEOMETRI JALAN REL KERETA API TRASE KOTA PINANG- MENGGALA STA STA PADA RUAS RANTAU PRAPAT DURI II PROVINSI RIAU

PERENCANAAN GEOMETRI JALAN REL KERETA API TRASE KOTA PINANG- MENGGALA STA STA PADA RUAS RANTAU PRAPAT DURI II PROVINSI RIAU PERENCANAAN GEOMETRI JALAN REL KERETA API TRASE KOTA PINANG- MENGGALA STA 104+000- STA 147+200 PADA RUAS RANTAU PRAPAT DURI II PROVINSI RIAU Vicho Pebiandi 3106 100 052 Dosen Pembimbing Ir. Wahyu Herijanto,

Lebih terperinci

Nursyamsu Hidayat, Ph.D.

Nursyamsu Hidayat, Ph.D. Nursyamsu Hidayat, Ph.D. 1 Mengikat rel, sehingga lebar sepur terjaga Meneruskan beban dari rel ke lapisan balas Menumpu batang rel agar tidak melengkung ke bawah saat dilewati rangkaian KA 2 Kayu Beton

Lebih terperinci

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul Sistem Struktur 2ton y Sambungan batang 5ton 5ton 5ton x Contoh Detail Sambungan Batang Pelat Buhul a Baut Penyambung Profil L.70.70.7 a Potongan a-a DESAIN BATANG TARIK Dari hasil analisis struktur, elemen-elemen

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

BAB IV PEMBEBANAN PADA STRUKTUR JALAN REL

BAB IV PEMBEBANAN PADA STRUKTUR JALAN REL BAB IV PEMBEBANAN PADA STRUKTUR JALAN REL 1. TUJUAN INSTRUKSIONAL UMUM Setelah mempelajari pokok bahasan ini, mahasiswa diharapkan mampu : 1. Mengetahui prinsip pembebanan yang bekerja pada struktur jalan

Lebih terperinci

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran:

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran: BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API 3.1. Kerangka Berpikir Dalam melakukan penelitian dalam rangka penyusunan tugas akhir, penulis melakukan penelitian berdasarkan pemikiran: LATAR

Lebih terperinci

REKAYASA JALAN REL. MODUL 5 : Bantalan PROGRAM STUDI TEKNIK SIPIL

REKAYASA JALAN REL. MODUL 5 : Bantalan PROGRAM STUDI TEKNIK SIPIL REKAYASA JALAN REL MODUL 5 : Bantalan OUTPUT : Mahasiswa dapat menjelaskan fungsi bantalan dalam konstruksi jalan rel Mahasiswa dapat menjelaskan perbedaan tipe bantalan serta penggunaan yang tepat sesuai

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN ABSTRAK KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN i ii iii iv vii xiii xiv xvii xviii BAB

Lebih terperinci

PERENCANAAN GEOMETRIK JALAN REL ANTARA BANYUWANGI-SITUBONDO- PROBOLINGGO

PERENCANAAN GEOMETRIK JALAN REL ANTARA BANYUWANGI-SITUBONDO- PROBOLINGGO PERENCANAAN GEOMETRIK JALAN REL ANTARA BANYUWANGI-SITUBONDO- PROBOLINGGO Oleh, RIFCHI SULISTIA ROSADI 3109100066 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Lebih terperinci

2- ELEMEN STRUKTUR KOMPOSIT

2- ELEMEN STRUKTUR KOMPOSIT 2- ELEMEN STRUKTUR KOMPOSIT Pendahuluan Elemen struktur komposit merupakan struktur yang terdiri dari 2 material atau lebih dengan sifat bahan yang berbeda dan membentuk satu kesatuan sehingga menghasilkan

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB I KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANAN NYA

BAB I KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANAN NYA BAB I KOMPONEN STRUKTUR JALAN DAN PEMBEBANAN NYA 1.1 STRUKTUR JALAN Struktur jalan rel adalah struktur elastis, dengan pola distribusi beban yang cukup rumit, sebagai gambaran adalah tegangan kontak antara

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

KEPUTUSAN DIREKTUR JENDERAL PERHUBUNGAN DARAT NOMOR : SK. 516/KA. 604/DRJD/2002 TENTANG

KEPUTUSAN DIREKTUR JENDERAL PERHUBUNGAN DARAT NOMOR : SK. 516/KA. 604/DRJD/2002 TENTANG KEPUTUSAN DIREKTUR JENDERAL PERHUBUNGAN DARAT NOMOR : SK. 516/KA. 604/DRJD/2002 TENTANG PETUNJUK TEKNIS PENGGUNAAN BANTALAN BETON MONOBLOK DENGAN PROSES PRETENSION DIREKTUR JENDERAL PERHUBUNGAN DARAT Menimbang

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

Perencanaan Jalur Ganda Kereta Api Surabaya -Krian

Perencanaan Jalur Ganda Kereta Api Surabaya -Krian Perencanaan Jalur Ganda Kereta Api Surabaya - Krian DISUSUN OLEH ARIA DWIPA SUKMANA 3109100012 DOSEN PEMBIMBING BUDI RAHARDJO, ST, MT. JUDUL TUGAS AKHIR PERENCANAAN JALUR GANDA KERETA API SURABAYA - KRIAN

Lebih terperinci

SAMBUNGAN LAS 6.1 PERHITUNGAN KEKUATAN SAMBUNGAN LAS Sambungan Tumpu ( Butt Joint ).

SAMBUNGAN LAS 6.1 PERHITUNGAN KEKUATAN SAMBUNGAN LAS Sambungan Tumpu ( Butt Joint ). SAMBUNGAN LAS Mengelas adalah menyambung dua bagian logam dengan cara memanaskan sampai suhu lebur dengan memakai bahan pengisi atau tanpa bahan pengisi. Dalam sambungan las ini, yang akan dibahas hanya

Lebih terperinci

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka:

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: BAB VIII SAMBUNGAN MOMEN DENGAN PAKU KELING/ BAUT Momen luar M diimbangi oleh

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

BAB III LANDASAN TEORI. Tujuan utama dilakukannya analisis interaksi sistem ini oleh para

BAB III LANDASAN TEORI. Tujuan utama dilakukannya analisis interaksi sistem ini oleh para BAB III LANDASAN TEORI 3.1 Interaksi Sistem Kegiatan Dan Jaringan Tujuan utama dilakukannya analisis interaksi sistem ini oleh para perencana transportasi adalah sebagai berikut: 1. Memahami cara kerja

Lebih terperinci

STUDIO PERANCANGAN II PERENCANAAN GELAGAR INDUK

STUDIO PERANCANGAN II PERENCANAAN GELAGAR INDUK PERANCANGAN II PERENCANAAN GELAGAR INDUK DATA PERENCANAAN : Panjang jembatan = 20 m Lebar jembatan = 7,5 m Tebal plat lantai = 20 cm (BMS 1992 K6 57) Tebal lapisan aspal = 5 cm (BMS 1992 K2 13) Berat isi

Lebih terperinci

PERENCANAAN JALUR GANDA KERETA API SURABAYA - KRIAN

PERENCANAAN JALUR GANDA KERETA API SURABAYA - KRIAN JURNAL TEKNIK POMITS Vol. 1, No. 1, (014) 1-5 1 PERENCANAAN JALUR GANDA KERETA API SURABAYA - KRIAN Aria Dwipa Sukmana, Budi Rahardjo Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Institut

Lebih terperinci

BAB III LANDASAN TEORI. Dimensi, berat kendaraan, dan beban yang dimuat akan menimbulkan. dalam konfigurasi beban sumbu seperti gambar 3.

BAB III LANDASAN TEORI. Dimensi, berat kendaraan, dan beban yang dimuat akan menimbulkan. dalam konfigurasi beban sumbu seperti gambar 3. BAB III LANDASAN TEORI 3.1. Beban Lalu Lintas Dimensi, berat kendaraan, dan beban yang dimuat akan menimbulkan gaya tekan pada sumbu kendaraan. Gaya tekan sumbu selanjutnya disalurkan ke permukaan perkerasan

Lebih terperinci

MESIN PEMINDAH BAHAN

MESIN PEMINDAH BAHAN MESIN PEMINDAH BAHAN PERANCANGAN DAN ANALISA PERHITUNGAN BEBAN ANGKAT MAKSIMUM PADA VARIASI JARAK LENGAN TOWER CRANE KAPASITAS ANGKAT 3,2 TON TINGGI ANGKAT 40 METER DAN RADIUS LENGAN 70 METER SKRIPSI Skripsi

Lebih terperinci

PERENCANAAN GEOMETRI JALAN REL

PERENCANAAN GEOMETRI JALAN REL PEENCANAAN GEOMETI JALAN EL Dasar prencanaan Geometri jalan rel: Kecepatan rencana dan ukuran kereta/lok yang akan melewatinya dengan memperhatikan faktor keamanan, kenyamanan, ekonomi dan keserasian dengan

Lebih terperinci

BAB I PENDAHULUAN 1.2. JENIS PEMBANGUNAN JALAN REL

BAB I PENDAHULUAN 1.2. JENIS PEMBANGUNAN JALAN REL BAB I PENDAHULUAN 1.1. PERENCANAAN JALAN REL Lintas kereta api direncanakan untuk melewatkan berbagai jumlah angkutan barang dan atau penumpang dalam suatu jangka waktu tertentu. Perencanaan konstruksi

Lebih terperinci

ANALISIS KELAYAKAN KONSTRUKSI BAGIAN ATAS JALAN REL DALAM KEGIATAN REVITALISASI JALUR KERETA API LUBUK ALUNG-KAYU TANAM (KM 39,699-KM 60,038)

ANALISIS KELAYAKAN KONSTRUKSI BAGIAN ATAS JALAN REL DALAM KEGIATAN REVITALISASI JALUR KERETA API LUBUK ALUNG-KAYU TANAM (KM 39,699-KM 60,038) ANALISIS KELAYAKAN KONSTRUKSI BAGIAN ATAS JALAN REL DALAM KEGIATAN REVITALISASI JALUR KERETA API LUBUK ALUNG-KAYU TANAM (KM 39,699-KM 60,038) Wilton Wahab 1 * dan Sicilia Afriyani 2 1 Jurusan Teknik Sipil,

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Struktur Atas Bangunan MULAI Skematik struktur 1. Penentuan spesifikasi material Input : 1. Beban Mati 2. Beban Hidup 3. Beban Angin 4. Beban

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas Teknik Program Studi Teknik Sipil

Lebih terperinci

TUGAS PERENCANAAN JALAN REL

TUGAS PERENCANAAN JALAN REL TUGAS PERENCANAAN JALAN REL Pebriani Safitri 21010113120049 Ridho Fauzan Aziz 210101131200050 Niken Suci Untari 21010113120104 Aryo Bimantoro 21010113120115 BAB I Pendahuluan Latar Belakang Maksud Tujuan

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m Soal 2 Suatu elemen struktur sebagai balok pelat berdinding penuh (pelat girder) dengan ukuran dan pembebanan seperti tampak pada gambar di bawah. Flens tekan akan diberi kekangan lateral di kedua ujung

Lebih terperinci

BAB 1 PENDAHULUAN. 1. Perencanaan Interior 2. Perencanaan Gedung 3. Perencanaan Kapal

BAB 1 PENDAHULUAN. 1. Perencanaan Interior 2. Perencanaan Gedung 3. Perencanaan Kapal BAB 1 PENDAHULUAN Perencanaan Merencana, berarti merumuskan suatu rancangan dalam memenuhi kebutuhan manusia. Pada mulanya, suatu kebutuhan tertentu mungkin dengan mudah dapat diutarakan secara jelas,

Lebih terperinci

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc PERENCANAAN SAMBUNGAN KAKU BALOK KOLOM TIPE END PLATE MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03 1729 2002) MENGGUNAKAN MICROSOFT EXCEL 2002 Henny Uliani NRP : 0021044 Pembimbing

Lebih terperinci

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton DAI'TAH NOTASI DAFTAR NOTASI a = tinggi balok tegangan beton persegi ekivalen Ab = luas penampang satu bentang tulangan, mm 2 Ag Ah AI = luas penampang bruto dari beton = luas dari tulangan geser yang

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15 Mata Kuliah : Mekanika Bahan Kode : TS 05 SKS : 3 SKS Kolom ertemuan 14, 15 TIU : Mahasiswa dapat melakukan analisis suatu elemen kolom dengan berbagai kondisi tumpuan ujung TIK : memahami konsep tekuk

Lebih terperinci

Bab II STUDI PUSTAKA

Bab II STUDI PUSTAKA Bab II STUDI PUSTAKA 2.1 Pengertian Sambungan, dan Momen 1. Sambungan adalah lokasi dimana ujung-ujung batang bertemu. Umumnya sambungan dapat menyalurkan ketiga jenis gaya dalam. Beberapa jenis sambungan

Lebih terperinci

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN TUGAS AKHIR PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Strata Satu (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

STUDI PEMBUATAN BEKISTING DITINJAU DARI SEGI KEKUATAN, KEKAKUAN DAN KESTABILAN PADA SUATU PROYEK KONSTRUKSI

STUDI PEMBUATAN BEKISTING DITINJAU DARI SEGI KEKUATAN, KEKAKUAN DAN KESTABILAN PADA SUATU PROYEK KONSTRUKSI STUDI PEMBUATAN BEKISTING DITINJAU DARI SEGI KEKUATAN, KEKAKUAN DAN KESTABILAN PADA SUATU PROYEK KONSTRUKSI DENIE SETIAWAN NRP : 9721019 NIRM : 41077011970255 Pembimbing : Maksum Tanubrata, Ir., MT. FAKULTAS

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

JEMBATAN RANGKA BAJA. bentang jembatan 30m. Gambar 7.1. Struktur Rangka Utama Jembatan

JEMBATAN RANGKA BAJA. bentang jembatan 30m. Gambar 7.1. Struktur Rangka Utama Jembatan JEMBATAN RANGKA BAJA 7.2. Langkah-Langkah Perancangan Struktur Jembatan Rangka Baja Langkah perancangan bagian-bagian jembatan rangka baja adalah sbb: a. Penetapan data teknis jembatan b. Perancangan pelat

Lebih terperinci

BAB III LANDASAN TEORI A. Struktur Jalur Kereta Api

BAB III LANDASAN TEORI A. Struktur Jalur Kereta Api BAB III LANDASAN TEORI A. Struktur Jalur Kereta Api Perencanaan jalan rel merupakan suatu konstruksi yang direncanakan sebagai prasarana atau infrastruktur perjalanan kereta api. Struktur jalan rel merupakan

Lebih terperinci

MODUL 12 WESEL 1. PENGANTAR

MODUL 12 WESEL 1. PENGANTAR MODUL 12 WESEL 1. PENGANTAR Telah disebutkan bahwa pada jalan rel perpindahan jalur dilakukan melalui peralatan khusus yang dikenal sebagai wesel. Apabila dua jalan rel yang terletak pada satu bidang saling

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

PERANCANGAN JEMBATAN

PERANCANGAN JEMBATAN TEORI DASAR PERANCANGAN JEMBATAN RANGKA BAJA Pengertian umum - Defenisi Rangka Baja Suatu konstruksi rangka didefenisikan sebagai sebuah struktur datar yang terdiri dari sejumlah batang batang yang disambung

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

BAB III LANDASAN TEORI (3.1)

BAB III LANDASAN TEORI (3.1) BAB III LANDASAN TEORI 3.1 Kelangsingan Kelangsingan suatu kolom dapat dinyatakan dalam suatu rasio yang disebut rasio kelangsingan. Rasio kelangsingan dapat ditulis sebagai berikut: (3.1) Keterangan:

Lebih terperinci

BAB 3 LANDASAN TEORI. perencanaan underpass yang dikerjakan dalam tugas akhir ini. Perencanaan

BAB 3 LANDASAN TEORI. perencanaan underpass yang dikerjakan dalam tugas akhir ini. Perencanaan BAB 3 LANDASAN TEORI 3.1. Geometrik Lalu Lintas Perencanan geometrik lalu lintas merupakan salah satu hal penting dalam perencanaan underpass yang dikerjakan dalam tugas akhir ini. Perencanaan geometrik

Lebih terperinci

DESAIN GEOMETRIK, STRUKTUR BESERTA PERKIRAAN BIAYA PERENCANAAN JALAN REL SEBAGAI ALTERNATIF TRANSPORTASI ANGKUTAN TAMBANG PASIR DI KABUPATEN LUMAJANG

DESAIN GEOMETRIK, STRUKTUR BESERTA PERKIRAAN BIAYA PERENCANAAN JALAN REL SEBAGAI ALTERNATIF TRANSPORTASI ANGKUTAN TAMBANG PASIR DI KABUPATEN LUMAJANG JURNAL TEKNIK POMITS Vol. 1, No. 1, (01) 1-6 1 DESAIN GEOMETRIK, STRUKTUR BESERTA PERKIRAAN BIAYA PERENCANAAN JALAN REL SEBAGAI ALTERNATIF TRANSPORTASI ANGKUTAN TAMBANG PASIR DI KABUPATEN LUMAJANG Dodik

Lebih terperinci

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori BAB II Dasar Teori 2.1 Umum Jembatan secara umum adalah suatu konstruksi yang berfungsi untuk menghubungkan dua bagian jalan yang terputus oleh adanya beberapa rintangan seperti lembah yang dalam, alur

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

V. BATANG TEKAN. I. Gaya tekan kritis. column), maka serat-serat kayu pada penampang kolom akan gagal

V. BATANG TEKAN. I. Gaya tekan kritis. column), maka serat-serat kayu pada penampang kolom akan gagal V. BATANG TEKAN Elemen struktur dengan fungsi utama mendukung beban tekan sering dijumpai pada struktur truss atau frame. Pada struktur frame, elemen struktur ini lebih dikenal dengan nama kolom. Perencanaan

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik

Lebih terperinci

PERHITUNGAN BALOK DENGAN PENGAKU BADAN

PERHITUNGAN BALOK DENGAN PENGAKU BADAN PERHITUNGAN BALOK DENGAN PENGAKU BADAN A. DATA BAHAN [C]2011 : M. Noer Ilham Tegangan leleh baja (yield stress ), f y = 240 MPa Tegangan sisa (residual stress ), f r = 70 MPa Modulus elastik baja (modulus

Lebih terperinci

PERENCANAAN BATANG MENAHAN TEGANGAN TEKAN

PERENCANAAN BATANG MENAHAN TEGANGAN TEKAN PERENCANAAN BATANG MENAHAN TEGANGAN TEKAN TUJUAN: 1. Dapat menerapkan rumus tegangan tekuk untuk perhitungan batang tekan. 2. Dapat merencanakan dimensi batang tekan. PENDAHULUAN Perencanaan batang tekan

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur BAB III METODOLOGI PERANCANGAN 3.1 Bagan Alir Perancangan Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur sistematika perancangan struktur Kubah, yaitu dengan cara sebagai berikut: START

Lebih terperinci

1 HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL SEMARANG

1 HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL SEMARANG TUGAS AKHIR 1 HALAMAN JUDUL PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas Teknik Program

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu IV. HASIL DAN PEMBAHASAN Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu pengujian mekanik beton, pengujian benda uji balok beton bertulang, analisis hasil pengujian, perhitungan

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

PERENCANAAN JALUR GANDA KERETA API DARI STASIUN PEKALONGAN KE STASIUN TEGAL

PERENCANAAN JALUR GANDA KERETA API DARI STASIUN PEKALONGAN KE STASIUN TEGAL TUGAS AKHIR PERENCANAAN JALUR GANDA KERETA API DARI STASIUN PEKALONGAN KE STASIUN TEGAL Diajukan untuk memenuhi persyaratan dalam menyelesaikan Pendidikan Tingkat Sarjana (S-1) pada Jurusan Teknik Sipil

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( ) TUGAS AKHIR STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7 Oleh : RACHMAWATY ASRI (3109 106 044) Dosen Pembimbing: Budi Suswanto, ST. MT. Ph.D

Lebih terperinci

Geometri Jalan Rel. Nursyamsu Hidayat, Ph.D.

Geometri Jalan Rel. Nursyamsu Hidayat, Ph.D. Geometri Jalan Rel Nursyamsu Hidayat, Ph.D. Geometri Jalan Rel Meliputi bentuk dan ukuran jalan rel, pada arah memanjang-melebar, yang meliputi lebar sepur, kelandaian, lengkung horizontal dan vertikal,

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

KULIAH PRASARANA TRANSPORTASI PERTEMUAN KE-8 PERENCANAAN GEOMETRIK JALAN REL

KULIAH PRASARANA TRANSPORTASI PERTEMUAN KE-8 PERENCANAAN GEOMETRIK JALAN REL KULIAH PASAANA TANSPOTASI PETEMUAN KE-8 PEENCANAAN GEOMETIK JALAN EL 1. Standar Jalan el A. KETENTUAN UMUM Segala ketentuan yang berkaitan dengan jenis komponen jalan rel di dalam perencanaan geometrik

Lebih terperinci

SAMBUNGAN DALAM STRUKTUR BAJA

SAMBUNGAN DALAM STRUKTUR BAJA SAMBUNGAN DALAM STRUKTUR BAJA Sambungan di dalam struktur baja merupakan bagian yang tidak mungkin diabaikan begitu saja, karena kegagalan pada sambungan dapat mengakibatkan kegagalan struktur secara keseluruhan.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol BAB II DASAR TEORI 2.1 Pengertian Rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

Mekanika Bahan TEGANGAN DAN REGANGAN

Mekanika Bahan TEGANGAN DAN REGANGAN Mekanika Bahan TEGANGAN DAN REGANGAN Sifat mekanika bahan Hubungan antara respons atau deformasi bahan terhadap beban yang bekerja Berkaitan dengan kekuatan, kekerasan, keuletan dan kekakuan Tegangan Intensitas

Lebih terperinci

MATERI/MODUL MATA PRAKTIKUM

MATERI/MODUL MATA PRAKTIKUM PENGUJIAN BETON 4.1. Umum Beton adalah material struktur bangunan yang mempunyai kelebihan kuat menahan gaya desak, tetapi mempunyai kelebahan, yaitu kuat tariknya rendah hanya 9 15% dari kuat desaknya.

Lebih terperinci

PENGUJIAN BANTALAN BETON UNTUK TRACK JALAN KERETA API SEPUR 1435 MM MENGGUNAKAN STANDAR UJI AREMA

PENGUJIAN BANTALAN BETON UNTUK TRACK JALAN KERETA API SEPUR 1435 MM MENGGUNAKAN STANDAR UJI AREMA Pengujian Bantalan Beton untuk Track Jalan Kereta Api (Dwi Purwanto) PENGUJIAN BANTALAN BETON UNTUK TRACK JALAN KERETA API SEPUR 1435 MM MENGGUNAKAN STANDAR UJI AREMA Dwi Purwanto Abstract This paper discuss

Lebih terperinci

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector)

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Dr. AZ Department of Civil Engineering Brawijaya University Pendahuluan JEMBATAN GELAGAR BAJA BIASA Untuk bentang sampai dengan

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

BAB III LANDASAN TEORI. Kayu memiliki berat jenis yang berbeda-beda berkisar antara

BAB III LANDASAN TEORI. Kayu memiliki berat jenis yang berbeda-beda berkisar antara BAB III LANDASAN TEORI 3.1 Berat Jenis dan Kerapatan Kayu Kayu memiliki berat jenis yang berbeda-beda berkisar antara 0.2-1.28 kg/cm 3. Berat jenis kayu merupakan suatu petunjuk dalam menentukan kekuatan

Lebih terperinci

REKAYASA JALAN REL. MODUL 8 ketentuan umum jalan rel PROGRAM STUDI TEKNIK SIPIL

REKAYASA JALAN REL. MODUL 8 ketentuan umum jalan rel PROGRAM STUDI TEKNIK SIPIL REKAYASA JALAN REL MODUL 8 ketentuan umum jalan rel OUTPUT : Mahasiswa dapat menjelaskan persyaratan umum dalam desain jalan rel Mahasiswa dapat menjelaskan beberapa pengertian kecepatan kereta api terkait

Lebih terperinci

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan NOTASI 1 DAFfAR NOTASI a = Tinggi blok tegangan beton persegi ekivalen Ab = Luas penampang satu batang tulangan. mm 2 Ag Ah AI = Luas penampang bruto dari beton = Luas dari tulangan geser yang pararel

Lebih terperinci

Bahan poros S45C, kekuatan tarik B Faktor keamanan Sf 1 diambil 6,0 dan Sf 2 diambil 2,0. Maka tegangan geser adalah:

Bahan poros S45C, kekuatan tarik B Faktor keamanan Sf 1 diambil 6,0 dan Sf 2 diambil 2,0. Maka tegangan geser adalah: Contoh soal: POROS:. Tentukan diameter sebuah poros bulat untuk meneruskan daya 0 (kw) pada putaran 450 rpm. Bahan diambil baja dingin S45C. Solusi: Daya P = 0 kw n = 450 rpm f c =,0 Daya rencana = f c

Lebih terperinci

REKAYASA JALAN REL. MODUL 4 : Penambat rel dan balas PROGRAM STUDI TEKNIK SIPIL

REKAYASA JALAN REL. MODUL 4 : Penambat rel dan balas PROGRAM STUDI TEKNIK SIPIL REKAYASA JALAN REL MODUL 4 : Penambat rel dan balas OUTPUT : Mahasiswa dapat menjelaskan fungsi dari komponen penambat dan balas Mahasiswa dapat menjelaskan kelebihan dan kekurangan dari jenis penambat

Lebih terperinci

PERENCANAAN GEOMETRIK JALAN REL ANTARA BANYUWANGI-SITUBONDO-PROBOLINGGO

PERENCANAAN GEOMETRIK JALAN REL ANTARA BANYUWANGI-SITUBONDO-PROBOLINGGO JURNAL TEKNIK POMITS Vol., No. 1, (013) ISSN: 337-3539 (301-971 Print) 1 PERENCANAAN GEOMETRIK JALAN REL ANTARA BANYUWANGI-SITUBONDO-PROBOLINGGO Rifchi Sulistia Rosadi, Anak Agung Gde Kartika Jurusan Teknik

Lebih terperinci

Perancangan Batang Desak Tampang Ganda Yang Ideal Pada Struktur Kayu

Perancangan Batang Desak Tampang Ganda Yang Ideal Pada Struktur Kayu Perancangan Batang Desak Tampang Ganda Yang Ideal Pada Struktur Kayu Arusmalem Ginting Dosen Jurusan Teknik Sipil Fakultas Teknik Universitas Janabadra Yogyakarta Jurnal Janateknika Fakultas Teknik Universitas

Lebih terperinci

KAJIAN GEOMETRIK JALUR GANDA DARI KM SAMPAI DENGAN KM ANTARA CIGANEA SUKATANI LINTAS BANDUNG JAKARTA

KAJIAN GEOMETRIK JALUR GANDA DARI KM SAMPAI DENGAN KM ANTARA CIGANEA SUKATANI LINTAS BANDUNG JAKARTA KAJIAN GEOMETRIK JALUR GANDA DARI KM 109+635 SAMPAI DENGAN KM 116+871 ANTARA CIGANEA SUKATANI LINTAS BANDUNG JAKARTA DOUBLE TRACK GEOMETRIC INVESTIGATION FROM KM 109+635 UNTIL KM 116+870 BETWEEN CIGANEA

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

Perencanaan Lengkung Horizontal Jalan Rel Kandangan-Rantau Provinsi Kalimantan Selatan

Perencanaan Lengkung Horizontal Jalan Rel Kandangan-Rantau Provinsi Kalimantan Selatan Rekaracana Teknik Sipil Itenas No.x Vol.xx Jurnal Online Institut Teknologi Nasional Januari 2016 Perencanaan Lengkung Horizontal Jalan Rel Kandangan-Rantau Provinsi Kalimantan Selatan NURMAN NUGRAHA 1,

Lebih terperinci

Penambat. Nursyamsu Hidayat, Ph.D.

Penambat. Nursyamsu Hidayat, Ph.D. Penambat Nursyamsu Hidayat, Ph.D. Penambat rel Penambat rel adalah suatu komponen yang menambatkan rel pada bantalan sedemikian rupa sehingga kedudukan rel adalah tetap, kokoh dan tidak bergeser. Jenis

Lebih terperinci

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK SEMINAR TUGAS AKHIR JULI 2011 MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK Oleh : SETIYAWAN ADI NUGROHO 3108100520

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

Gambar 6.1 Gaya-gaya yang Bekerja pada Tembok Penahan Tanah Pintu Pengambilan

Gambar 6.1 Gaya-gaya yang Bekerja pada Tembok Penahan Tanah Pintu Pengambilan BAB VI ANALISIS STABILITAS BENDUNG 6.1 Uraian Umum Perhitungan Stabilitas pada Perencanaan Modifikasi Bendung Kaligending ini hanya pada bangunan yang mengalami modifikasi atau perbaikan saja, yaitu pada

Lebih terperinci

V. PENDIMENSIAN BATANG

V. PENDIMENSIAN BATANG V. PENDIMENSIAN BATANG A. Batang Tarik Batang yang mendukung gaya aksial tarik perlu diperhitungkan terhadap perlemahan (pengurangan luas penampang batang akibat alat sambung yang digunakan). Luas penampang

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci