Mekanika Analitik. Muhammad Farchani Rosyid

Ukuran: px
Mulai penontonan dengan halaman:

Download "Mekanika Analitik. Muhammad Farchani Rosyid"

Transkripsi

1 Mekanika Analitik Muhammad Farchani Rosyid Kelompok Penelitian Kosmologi, Astrofisika, dan Fisika Matematik, Jurusan Fisika, Universitas Gadjah Mada, Yogyakarta 1/22/2013 1

2 Die Mathematiker sind eine Art Franzosen; redet man zu ihnen, so übersetzen sie es in ihre eigene Sprache, und dann ist es alsobald etwas ganz anderes. (Johann Wolfgang von Goethe) (Mathematicians are a kind of Frenchmen. Whenever you say anything or talk to them, they translate it into their own language, and right away it is something completely different.) 1/22/2013 2

3 Die Geometrie ist eine Wissenschaft, welche im Wesentlichen so weit fortgeschritten ist, dass alle ihre Tatsachen bereits durch logische Schlüsse aus früheren abgeleitet werden können.... Nach dem Muster der Geometrie sind nun auch alle anderen Wissenschaften in ester Linie Mechanik, hernach aber auch Optik, Elektrizitätstheorie usw. zu behandeln. (David Hilbert) (Geometry is a science which essentially has developed to such a state that all its facts may be derived by logical deduction from previous ones.... Now also all other sciences are to be treated following the model of geometry, first of all mechanics, but then also optics and electricity theory.) 1/22/2013

4 Pengantar 1/22/2013 4

5 Berikut berapa pandangan tentang kaitan antara fisika dan matematika: Pertama, pandangan yang paling lunak mendudukkan matematika hanya sebagai peranti yang memudahkan fisika dan sebagai bahasa untuk mengungkapkan hukum-hukum fisika. (Persamaan bukan segalanya, ada esensi lain dalam suatu hukum fisika yang tidak dapat dirumuskan secara matematis) Semua fisikawan eksperimental dan sebagian fisikawan teoretis mengambil posisi ini.

6 Einstein: Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher, und sofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit. (If a theorem of mathematics refers to a reality, it is not rigorous. If it is rigorous, it does not refer to a reality) 1/22/2013 6

7 Kedua, adalah pandangan yang mendudukkan matematika sebagai tujuan, fisika adalah upaya memilih atau membangun struktur matematik yang cocok untuk menggambarkan pola-pola keteraturan gejala alamiah. Jadi, fisika dipahami sebagai upaya menemukan realitas matematis sebagai model yang mewakili realitas fisis. Matematika adalah kerangka bagi sebuah teori fisika. Kenyataan mengajarkan kepada kita bahwa semakin sempurna sebuah teori dalam fisika, semakin canggih matematika yang dibutuhkan untuk menjadi kerangka bagi teori itu.

8 Ketiga, adalah pandangan radikal bahwa fisika adalah upaya menemukan matematika alam, yakni matematika yang mengatur alam semesta ini, keseluruhannya. Alam semesta ini sebagai bangunan matematis, satu koheren dengan yang lain dalam kerangka matematika yang sama.

9 Minggu Pertama Kilas Balik: Mekanika Newton dan segala keterbatasannya Menguasai dan mampu menerapkan Hukum Newton. Dapat menjelaskan kesulitan-kesulitan yang muncul dalam penyelesaian masalah-masalah mekanika melalui hukum Newton. Dapat menjelaskan pentingnya terobosan guna mengatasi kesulitan-kesulitan itu. 1/22/2013 9

10 Hukum Newton : Hukum Pertama : Setiap benda akan terus berada pada keadaan diam atau bergerak dengan kelajuan tetap sepanjang garis lurus jika tidak dipaksa untuk merubah keadaan geraknya itu oleh gaya-gaya yang bekerja padanya. Hukum Kedua : Resultan gaya yang bekerja pada suatu benda mengakibatkan terjadinya perubahan momentum. Perubahan momentum tiap satu satuan waktu yang dialami oleh benda itu berbanding lurus dengan resultan gaya yang bekerja padanya: F = dp dt 1/22/

11 Hukum Ketiga : Apabila suatu benda (sebut benda pertama) mengerjakan gaya pada benda lain (sebut benda kedua), maka benda kedua akan melakukan gaya pada benda pertama yang besarnya sama tetapi arahnya berlawanan dengan gaya yang dikerjakan oleh benda pertama pada benda kedua. Gaya aksi dan gaya reaksi tidak pernah bekerja pada benda yang sama. Gaya reaksi bekerja pada benda yang melakukan gaya aksi. 1/22/

12 Karena p = mv, maka F = dp dt = ma + dm dt v Jika massa benda yang bergerak itu tetap, maka dm dt = 0. Akibatnya, hukum kedua dapat dituliskan sebagai F = ma Secara umum benda yang bergerak mengalami perubahan massa : roket, meteorit, komet, dll. 1/22/

13 Hal-hal penting yang harus selalu diperhatikan dalam penerapan hukum Newton kedua : Ruas kiri persamaan (1) merupakan jumlahan vektor semua gaya yang bekerja pada sistem mekanis yang ditinjau. Apabila persamaan (1) hendak diterapkan hanya pada suatu bagian dari suatu sistem mekanis, maka lupakanlah gaya-gaya yang tidak bekerja pada bagian itu. Gaya-gaya yang bekerja pada sistem mekanik sangat bervariasi. Gayagaya itu dapat berupa gaya-gaya konstan. Tetapi, pada umumnya, gayagaya itu bergantung pada posisi dan waktu serta beberapa parameter yang lain (lihat Fowles mulai hal. 40). Meskipun demikian, semua gaya yang terlibat dalam mekanika dapat dikembalikan ke empat gaya mendasar : gaya gravitasi, gaya elektromagnetik, gaya kuat dan gaya lemah. 1/22/

14 Apabila hukum Newton diterapkan pada suatu sistem mekanis, maka akan diperoleh persamaan gerak. Jawaban persamaan ini adalah koordinat benda sebagai fungsi waktu : x(t), y(t), dan z(t). Fungsi-fungsi ini sangat bergatung pada syarat awal, yakni diketahuinya posisi dan kecepatan benda pada suatu saat tertentu (biasanya saat t = 0). Keterbatasan Hukum Newton: dari segi kecepatan dari segi kompleksitas sistem (munculnya kendala) 1/22/

15 Kendala: Mampu menjelaskan konsep kendala dan pengaruhnya pada masalah-masalah mekanika. Mampu merumuskan persamaan-persamaan kendala. Mampu menjelaskan jenis-jenis kendala Mampu menentukan jenis kendala yang ada pada setiap masalah mekanika. 1/22/

16 Seluruh masalah dalam mekanika secara prinsip dapat dikembalikan ke persamaan d 2 x i = 1 Fi N ij dt 2 m i x + F x i j=1, d 2 y i = 1 Fi N ij dt 2 m i y + F y i j=1, d 2 z i = 1 Fi N ij dt 2 m i z + F z i j=1. dengan i,j = 1, 2, 3,..., N adalah indeks/nomor partikel. 1/22/

17 Prosedur penyelesaiannya seolah-olah tampak jelas : memasukkan komponen-komponen gaya yang terlibat, mencari jawaban persamaan diferensial dan yang terakhir menentukan tetapan-tetapan berdasarkan syarat awal. Tetapi, tidak semuanya sederhana. Masalah muncul apabila terdapat kendala-kendala (constraints). Kendalakendala ini membatasi partikel-partikel untuk saling bebas. 1/22/

18 Jenis-jenis kendala : Kendala Holonomik: Apabila kendala dapat dituliskan sebagai persamaan-persamaan yang menghubungkan posisi-posisi partikel dalam bentuk f 1 r 1, r 2,, r N = 0, f 2 r 1, r 2,, r N = 0,... f k r 1, r 2,, r N = 0, (2) maka kendala semacam ini disebut kendala holonomik. 1/22/

19 Kendala Nonholonomik adalah kendala yang tidak holonomik. Artinya, kendala yang tidak dapat dituliskan sebagai persamaan-persamaan seperti di atas. Contoh : Sebuah benda yang dikukung dalam tangki berbentuk silinder berjari-jari a dan tinggi h mengalami kendala x 2 + y 2 a 2 < 0 dan 0 < z < h. Sebuah benda yang berada di luar sebuah bola berjari-jari a 2 terkekang oleh kendala yang hanya dapat dituliskan dalam bentuk ketidaksamaan x 2 + y 2 + z 2 a /22/

20 Koordinat Umum: Dapat menjelaskan konsep derajat kebebasan. Dapat menentukan derajat kebebasan terkait dengan suatu sistem mekanik. Dapat menjelaskan konsep koordinat umum. Dapat membangun sistem koordinat umum yang sesuai bagi suatu sistem mekanik. Dapat menjelaskan konsep transformasi koordinat. Dapat merumuskan persamaan-persamaan terkait dengan transformasi koordinat. 20

21 Adanya kendala mengakibatkan dua masalah dalam penyelesaian masalah mekanika : Pertama, koordinat x i, y i dan z i tidak lagi bebas satu dari yang lain sehingga persamaan-persamaan (1) tidak bebas satu dari yang lain. Kedua, adanya gaya kendala yang tidak dapat ditentukan terlebih dahulu sebab gaya tersebut termasuk ke dalam masalah yang harus diselesaikan. Untuk kendala yang holonomik, masalah pertama dapat diselesaikan dengan memperkenalkan koordinat umum. 1/22/

22 Andaikan sistem mekanis yang ditinjau tersusun atas N buah partikel. Oleh karena itu diperlukan 3N koordinat (x 1, y 1, z 1, x 2, y 2, z 2,..., x i, y i, z i,..., x N, y N, z N ) untuk menggambarkan konfigurasi sistem (yakni posisi masing-masing partikel). Hal ini berarti terdapat 3N derajat kebebasan. Apabila terdapat k buah persamaan kendala f 1 (x 1, y 1, z 1, x 2, y 2, z 2,..., x i, y i, z i,..., x N, y N, z N ) = 0, f 2 (x 1, y 1, z 1, x 2, y 2, z 2,..., x i, y i, z i,..., x N, y N, z N ) = 0... f k (x 1, y 1, z 1, x 2, y 2, z 2,..., x i, y i, z i,..., x N, y N, z N ) = 0, maka derajat kebebasan sistem menyusut menjadi 3N k. 1/22/

23 Dalam hal ini diperlukan sistem koordinat umum yang terdiri dari 3N k koordinat, katakanlah (q 1, q 2,..., q 3N k ). Terdapat transformasi koordinat r 1 = r 1 (q 1, q 2,..., q 3N k ) r i = r i (q 1, q 2,..., q 3N k ) (3) r N = r N (q 1, q 2,..., q 3N k ). 1/22/

24 Prinsip d Alembert dan persamaan Euler- Lagrange: Mampu menjelaskan konsep pergeseran maya. Mampu mengkonstruksi pergeseran maya yang konsisten dengan kendala. Mampu menjelaskan prinsip usaha maya. Mampu menerapkan prinsip usaha maya untuk berbagai masalah statika. Mampu menjelaskan prinsip d Alembert. Mampu menerapkan prinsip d Alembert. Mampu menjelaskan bahwa penerapan prinsip d Alembert dengan koordinat umum menghasilkan persamaan Eulerlagrange. 1/22/

25 Pergeseran Maya Suatu pergeseran maya suatu sistem adalah perubahan konfigurasi (posisi atau orientasi) sistem sebagai akibat pergeseran infinitisimal r i (i = 1,2,..., N) yang konsisten dengan gaya-gaya dan kendala yang bekerja pada sistem itu pada saat t. Penting : Pergeseran maya terjadi tanpa membutuhkan waktu. 1/22/

26 Prinsip kerja maya pada sistem yang berada dalam keseimbangan F i (a) r i + f i r i = 0, dengan F i (a) adalah gaya luar total yang bekerja pada partikel nomor i dan f i adalah gaya kendala yang bekerja pada partikel nomor i. Bila sistem yang ditinjau sedemikian rupa sehingga gaya kendala tegaklurus dengan pergeseran maya yang mungkin, maka suku kedua persamaan terakhir lenyap. Jadi, F i (a) r i = 0. 1/22/

27 Prinsip d Alembert Prinsip d Alembert merupakan perluasan prinsip usaha maya dengan menambahkan suku tambahan untuk gaya total pada tiap partikel menjadi F i (a) + f i + p i sehingga (F i (a) + f i + p i ) r i = 0. 1/22/

28 Dengan asumsi bahwa gaya kendala selalu tegak lurus terhadap pergeseran maya, maka didapat (F i (a) + p i ) r i = 0. Karena r 1, r 2,..., r N tidak bebas satu dari yang lain (akibat adanya) kendala, maka tidak serta merta dapat disimpulkan bahwa F i (a) + p i = 0. Melalui transformasi koordinat (3) masalah ini dapat di atasi. 1/22/

29 Persamaan Lagrange Melalui transformasi koordinat (3) didapatkan d dt L q α L q α Q α nonkon = 0, dengan L = T V tenaga kinetik total sistem dikurangi energi potensial total sistem dan Q α nonkon gaya umum yang tak konservatif yang diberikan oleh Q α nonkon = i r i q α F a,nonkon i. 1/22/

30 Penerapan Persamaan Euler-Lagrange: Mampu menjelaskan perihal persamaan Euler-Lagrange. Mampu menjelaskan domain persamaan Euler-Lagrange. Mampu menerapkan persamaan Euler-Lagrange untuk berbagai masalah mekanika sederhana dengan kendala holonomik. Mampu menerapkan persamaan Euler Lagrange untuk berbagai masalah dengan potensial umum. Mampu menerapkan persamaan Euler Lagrange untuk berbagai masalah yang terkait dengan fungsi disipasi. 1/22/

31 Contoh : Bandul Matematis : Sebuah bola bermassa m dan digantung dengan sebuah batang yang ringan pada atap sebuah ruangan. Panjang batang penggatunga itu l. Ujung batang tersambung dengan atap melalui sebuah engsel sehingga bandul tersebut bebas mengayun pada bidang vertikal (bidang XY). Gambar di bawah memperlihatkan posisi bola pada suatu saat sembarang. Bola mendapatkan kendala x 2 + y 2 = l 2 dan z = 0. 1/22/

32 Bandul matematis yang berayun pada manik-manik yang diuntai pada kawat mendatar : Sebuah manikmanik bermassa m 1 diuntai pada kawat lurus datar sehingga bebas bergerak sepanjang kawat itu. Sebuah bola bermassa m 2 ditempelkan pada ujung sebuah batang yang ringan. Ujung batang yang lain ditempelkan pada manik-manik melalui engsel titik sehingga dapat berayun pada semabarang arah. Panjang batang l. 1/22/

33 Dalam koordinat kartesius tentunya ada enam koordinat (x 1, y 1, z 1, x 2, y 2, z 2 ), dengan sumbu z keluar bidang gambar. Tetapi manik-manik selalu berada pada garis yang sama, yakni kawat mendatar. Jika pada kawat mendatar itu ditempelkan sumbu y, maka posisi manikmanik selalu berada pada sumbu y. Oleh karena itu x 1 = 0 dan z 1 = 0. 1/22/

34 Prinsip Variasi dan Persamaan Lagrange: Mampu menjelaskan prinsip Hamilton. Mampu menerapkan prinsip Hamilton. Mampu menjelaskan bahwa persamaan Euler-Lagrange dapat diturunkan dari prinsip Hamilton (prinsip variasi). Mampu menjelaskan konsep kalkulus variasi (prinsip variasi). Mampu menerapkan kalkulus variasi (prinsip variasi). Menjelaskan kelebihan menggunakan prinsip variasi 1/22/

35 Perluasan Prinsip Hamilton dan Kesetangkupan (Simetri) dan Hukum Kelestarian pada Mekanika Lagrange: Mampu menjelaskan perluasan prinsip Hamilton untuk sistem mekanik dengan kendala nonholonomik. Mampu menyelesaikan masalah mekanika dengan kendala nonholonomik. Mampu menjelaskan konsep kesetangkupan dalam mekanika Lagrange. Mampu menjelaskan hukum kelestarian dalam mekanika Lagrange. Mampu menerapkan kesetangkupan dan hukum kelestarian dalam mekanika Lagrange. 1/22/

36 Persamaan Gerak Hamilton: Mampu menjelaskan konsep ruang fase kecepatan dan ruang fase momentum. Mampu mengkonstruksi ruang fase kecepatan dan ruang fase momentum suatu sistem mekanik. Mampu menjelaskan transformasi Legendre. Mampu menerapkan transformasi Legendre. Mampu menerapkan formulasi Hamilton untuk berbagai masalah mekanika yang sesuai. Mampu menjelaskan konsep koordinat siklis dan kaitannya dengan hukum kelestarian. Mampu menentukan koordinat siklis dalam berbagai masalah mekanika 1/22/

37 Momentum Umum Jika L Lagrangan suatu sistem fisis dengan siatem koordinat umum (q 1, q 2,..., q 3N k ). Maka besaran p dengan ( = 1, 2,..., 3N 1) yang didefiniskan sebagai p α L q α disebut momentum umum atau momentum kanonik pasangan bagi koordinat q. 1/22/

38 Transformasi Legendre Transformasi Legendre adalah transformasi L H q α p α L Fungsi H disebut Hamiltonan. H tidak lagi bergantung pada. Fungsi H bergantung pada (q 1, q 2,..., q 3N k, p 1, p 2,..., p 3N k, t). Hal ini dapat dipahami sebab Jadi, H q α = 0, untuk setiap α (Buktikan). H = H(q 1, q 2,..., q 3N k, p 1, p 2,..., p 3N k, t). 1/22/

39 Persamaan gerak Hamilton Meskipun telah dilakukan transformasi Legendre, masih akan muncul variable-variabel q α dalam ungkapan untuk H. Namun ungkapan untuk H dapat segera dibersihkan dari q α dengan melakukan subtitusi dari persamaan-persamaan p α L q α Persamaan gerak Hamilton diberikan oleh q α H p α dan p α H q α, untuk ( = 1, 2,..., 3N 1). Jadi, akan terdapat 6N 2 persamaan. 1/22/

40 Kalkulus Variasi dan persamaan Hamilton dan Transformasi Kanonik : Mampu menjelaskan penurunan persamaan Hamilton dari prinsip variasi. Mampu menjelaskan prinsip aksi terkecil. Mampu menerapkan prinsip aksi terkecil. Mampu menjelaskan konsep transformasi kanonik. Mampu menentukan kanonik tidaknya suatu transformasi 1/22/

41 Transformasi Kanonik (lanjutan): Mampu menjelaskan konsep fungsi pembangkit. Mampu mengkonstruksi fungsi pembangkit. Mampu mengkonstruksi transformasi kanonik. Mampu memilih fungsi pembangkit yang sesuai dalam penyelesaian masalah mekanika. Mampu menentukan sajian/wakilan matriks suatu transformasi. Mampu memastikan/menentukan keanggotakan suatu matriks dalam grup simplektik. Mampu menjelaskan formulasi simplektik transformasi kanonik. Mampu menjelaskan peranan kurung. Poisson dan invariansi kanonik dalam masalah mekanika 1/22/

42 Persamaan Gerak dalam formulasi kurung Poisson: Mampu menjelaskan formulasi persamaan gerak dengan kurung Poisson. Mampu menyajikan persamaan gerak suatu sistem mekanik dengan kurung Poisson. Mampu menjelaskan kelebihan formulasi persamaan gerak dengan kurung Poissaon. Mampu menjabarkan kaitan komponen-komponen momentum sudut dengan kurung poisson. Mampu menjelaskan kaitan kurung Poisson dengan dinamika sistem mekanik. Mampu menerapkan konsep kesetangkupan dalam penyelesaian masalah mekanika. Menjelaskan Teorema Liouville. 1/22/

43 Teori Hamilton-Jacobi: Mampu menjelaskan persamaan Hamilton-Jacobi untuk Funsi Hamilton Utama. Mampu menjabarkan persamaan Hamilton-Jacobi. Mampu menerapkan teori Hamilton Jacobi pada masalah-masalah mekanika (getaran selaras sebagai contoh). Mampu menjabarkan persamaan Hamilton-Jacobi untuk fungsi karakteristik Hamilton. Mampu menerapkan metode pemisahan peubah pada persamaan Hamilton-Jacobi. 1/22/

44 Terapan mekanika analitik: Mampu menerapkan mekanika analitik untuk sebuah benda yang berada dalam medan gaya terpusat. Mampu menerapkan mekanika analitik untuk masalah dua benda. Mampu menjelaskan gerak planet-planet, satelit-satelit, dll. 1/22/

45 Masalah Dua Benda dan Medan Sentral Contoh masalah dua benda: Bintang ganda biasa, Pluto dan pasangannya, sistem Bumi-Bulan, Bintang Ganda sinar-x, dll.

46

47

48

49

50

51

52 Dengan memahami orbit bintang ganda, kita dapat mengukur gaya gravitasi yang bekerja pada masing-masing kedua bintang itu. Pada akhirnya, kita dapat menentukan massa masing-masing bintang itu atau rasio massa keduanya. Jenis-jenis bintang ganda berdasarkan cara pengamatan : bintang ganda optis, bintang ganda visual, bintang ganda spektral, bintang ganda gerhana, bintang ganda astrometrik.

53 Medan Sentral Ditinjau partikel bermassa m yang berada di bawah pengaruh medan gaya terpusat: Momen gaya medan gaya relatif terhadap pusat koordinat (0,0,0) tersebut lenyap: N = r F = 0. Akibatnya, momentum sudut partikel itu tetap : L = r mv= tetapan.

54 Akibatnya selanjutnya, partikel itu bergerak pada bidang yang melalui titik pangkal (0,0,0) dan tegak lurus pada vektor L. Bidang tersebut ditentukan dari posisi awal dan kecepatan awal partikel.

55 Andaikan bidang-xy dipilih sebagai bidang orbit. Vektor L mengarah ke sumbu-z positif L z = L.

56 Koordinat polar (r, ) : Komponen momentum sudut sepanjang sumbu-z diberikan oleh

57 Apa akibat tetapnya besar momentum sudut partikel? ds = r 2 d /2 O d r ds

58 Teorema : Laju perubahan luas wilayah yang disapu oleh vektor posisi, bersifat tetap. S 2 O S 1

59 Setiap partikel yang berada di bawah pengaruh medan gaya terpusat selalu terkait dengan energi potensial V(r) sedemikian rupa sehingga Dari hukum kedua Newton didapat

60 Dengan tenaga potensial V tersebut persamaan Euler-Lagrange memberikan:

61 Jika didefinisikan maka Energi keseluruhan partikel itu dapat dihitung :

62 Jika sebagai fungsi waktu bersifat monoton, maka memiliki invers. Karenanya dari ungkapan tenaga didapatkan

63 Hubungan antara r dan (persamaan orbit) diperoleh dari dengan r 0 = r( 0 ).

64 Dengan subtitusi r = 1/u ke dalam persamaan didapat bentuk lain persamaan orbit, yaitu dan

65 Potensial Kepler Energi potensial Kepler diberikan oleh Potensial efektif diberikan oleh

66 Dengan mensubtitusikan potensial efektif ke dalam persamaan orbit, didapatkan Jawaban persamaan homogen terakhir adalah

67 Sementara, jawaban khususnya adalah Jawaban terakhir ini terkait dengan orbit melingkar dengan jari-jari dan energi

68 Oleh karena itu, persamaan orbit, pada akhirnya diberikan oleh atau dengan e 0 disebut eksentrisitas dan ditentukan oleh

69 Untuk orbit yang berupa ellips, sumbu panjang dan sumbu pendek ditentukan dari persamaan Luas ellips tentu saja sama dengan laju sapuan vektor posisi partikel dikalikan dengan periode T :

70 Mengingat dan maka didapatkan atau (Hukum ketiga Kepler!)

71 Masalah Dua Benda m 1 r = r 2 r 1 m 2 r 1 R r 2

72 Dengan persamaan gerak untuk masing-masing benda Dengan mengurangkan persamaan-persamaan itu didapat

73 Dengan mudah dapat ditunjukkan bahwa Ini berarti bahwa pusat massa bergerak dengan kecepatan tetap. Persamaan dapat dituliskan sebagai

74 dengan Terlihat bahwa persamaan gerak tersebut tidak lain adalah persamaan gerak benda di bawah pengaruh medan terpusat Kepler dengan

75 Jadi, jawabannya adalah

76 Jika penyelesaiaanya ellips, maka

77 Diamati dari pusat massa, posisi masing-masing benda adalah

78 Terapan mekanika analitik: Mampu menjelaskan hakekat benda tegar. Mampu menjelaskan gerak benda tegar. Mampu menerapkan mekanika analitik dalam bidang-bidang lain: teknik, kedokteran, dll. 1/22/

79 Konsep Benda Tegar Batasan : Benda tegar adalah sebuah benda sedemikian rupa sehingga jarak antar titik-titik massa pada benda itu tidak berubah (tetap). Contoh : - Gas yang berada di dalam sebuah balon mainan bukan merupakan benda tegar sebab jarak partikel-partikel gas itu satu dari yang lain berubah-ubah. - Sepotong pipa paralon yang menggelinding (tanpa tergencet) merupakan benda tegar. - Sistem tata surya kita bukan merupakan benda tegar karena jarak satu planet dengan planet yang lain maupun jarak masingmasing planet dari matahari selalu berubah-ubah. - Beberapa bola kecil yang dihubungkan dengan batang-batang yang kukuh (lihat gambar di bawah) merupakan benda tegar. 1/22/

80 1/22/

81 Pertanyaan : Apakah bumi kita merupakan benda tegar. Mengapa? Jelaskan! Dapatkah sekumpulan partikel-partikel yang bergerak-gerak dikatakan bukan merupakan benda tegar? Perhatikan gambar di bawah ini. Gambar tersebut memperlihatkan kedudukan sistem tiga partikel pada saat t 1, t 2 dan t 3 sembarang. Dapatkah sistem tiga partikel itu dikatakan sebagai benda tegar? t = t 2 t = t 1 t = t 3 1/22/

82 Pusat Massa Benda Tegar Batasan : Pusat massa sebuah benda tegar adalah suatu titik dalam ruang yang menjadi posisi terpusatnya seluruh massa benda tegar itu. Jadi, pusat massa sebuah benda tegar adalah posisi sebuah partikel titik yang memiliki massa sebesar benda tegar itu. 1/22/

83 Pertanyaan : Haruskan pusat massa sebuah benda tegar berada di dalam benda tegar itu? Perkirakanlah kedudukan titik pusat massa bendabenda berikut ini. 1/22/

84 Rotasi Terhadap Sumbu Tetap Anda telah belajar tentang gerak lurus, gerak parabola dan gerak melingkar. Gerak-gerak semacam itu disebut gerak translasi. Pada gerak translasi, hal yang menjadi pokok perhatian adalah posisi dan pergeseran. Benda dikatakan bergerak bila posisinya berubah. Artinya, benda itu mengalami pergeseran. Kecepatan (sesaat), misalnya didefinisikan sebagai pergeseran posisi tiap satu satuan waktu. Konsep setelah kecepatan adalah percepatan, yakni perubahan kecepatan persatusatuan waktu. Gerak kemudian diklasifikasikan berdasarkan perilaku percepatan ini. Ada gerak lurus beraturan ada gerak lurus berubah beraturan, dan lain sebagainya. 1/22/

85 Rotasi adalah gerak yang menyangkut orientasi dan perputaran. Jadi, orientasi merupakan padanan posisi dan perputaran adalah padanan pergeseran. Sumbu rotasi : tempat kedudukan titik-titik yang tidak bergeming terhadap perubahan orientasi. 1/22/

86 Pengertian Dasar : momen inersia adalah kelembaman (inersia) untuk gerak rotasi. Jadi, momen inersia menunjukkan keengganan untuk melakukan perubahan rotasi. Penting : Momen inersia bergantung pada sumbu rotasi yang dipilih. 1/22/

RPKPM (RANCANGAN PROGRAM KEGIATAN PEMBELAJARAN MINGGUAN)

RPKPM (RANCANGAN PROGRAM KEGIATAN PEMBELAJARAN MINGGUAN) 1. Nama Mata Kuliah : Mekanika Analitik 2. Kode/SKS : MFF 2403 / 3 SKS 3. Prasarat : Mekanika 4. Status Matakuliah : Wajib 5. Deskripsi singkat matakuliah: RPKPM (RANCANGAN PROGRAM KEGIATAN PEMBELAJARAN

Lebih terperinci

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI Momen gaya : Simbol : τ Momen gaya atau torsi merupakan penyebab benda berputar pada porosnya. Momen gaya terhadap suatu poros tertentu

Lebih terperinci

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat 1 I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat : Tidak Ada IV. Status Matakuliah : Wajib V. Deskripsi Mata Kuliah Mata kuliah ini merupakan mata kuliah wajib Program Studi

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule.

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule. Gerak Translasi dan Rotasi A. Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Misalnya anak yang bermain jungkat-jungkit, dengan titik acuan adalah

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/36 FISIKA DASAR (TEKNIK SISPIL) BENDA TEGAR Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Rotasi Benda Tegar Benda tegar adalah sistem partikel yang

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Nama/Kode mata kuliah : Mekanika/FI342 Jumlah SKS/Semester : 4 / 4 Program : S1 (Pendidikan Fisika, Fisika murni) Nama Dosen : 1. Drs. I Made Padri, M.Pd 2. Selly Feranie, S.Pd,

Lebih terperinci

I. Hukum lintasan : Semua planet bergerak dalarn lintasan berupa elips, dengan matahari pada salah satu titik fokusnya.

I. Hukum lintasan : Semua planet bergerak dalarn lintasan berupa elips, dengan matahari pada salah satu titik fokusnya. RENCANA PEMBELAJARAN 10. POKOK BAHASAN: GAYA SENTRAL Gaya sentral adalah gaya bekerja pada benda, di mana garis kerjanya selalu melalui titik tetap, disebut pusat gaya. Arah gaya sentral mungkin menuju

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI BIDANG FISIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep

Lebih terperinci

BAB 1 Keseimban gan dan Dinamika Rotasi

BAB 1 Keseimban gan dan Dinamika Rotasi BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi)

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi) Gerak Rotasi Momen Inersia Terdapat perbedaan yang penting antara masa inersia dan momen inersia Massa inersia adalah ukuran kemalasan suatu benda untuk mengubah keadaan gerak translasi nya (karena pengaruh

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Mekanika geometrik merupakan bidang kajian yang merupakan persimpangan antara fisika matematik, teknik, dan matematika yang kaya akan tema penelitian.pengembangan

Lebih terperinci

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1 . Pengantar a. Hubungan Gerak Melingkar dan Gerak Lurus Gerak melingkar adalah gerak benda yang lintasannya berbentuk lingkaran dengan jari jari r Kedudukan benda ditentukan berdasarkan sudut θ dan jari

Lebih terperinci

FIsika DINAMIKA ROTASI

FIsika DINAMIKA ROTASI KTS & K- Fsika K e l a s X DNAMKA ROTAS Tujuan embelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep momen gaya dan momen inersia.. Memahami teorema sumbu

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

C. Momen Inersia dan Tenaga Kinetik Rotasi

C. Momen Inersia dan Tenaga Kinetik Rotasi C. Momen Inersia dan Tenaga Kinetik Rotasi 1. Sistem Diskrit Tinjaulah sistem yang terdiri atas 2 benda. Benda A dan benda B dihubungkan dengan batang ringan yang tegar dengan sebuah batang tegak yang

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Fisika Kelas XI SCI Semester I Oleh: M. Kholid, M.Pd. 43 P a g e 6 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Kompetensi Inti : Memahami, menerapkan, dan

Lebih terperinci

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut.

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut. Pengertian Gerak Translasi dan Rotasi Gerak translasi dapat didefinisikan sebagai gerak pergeseran suatu benda dengan bentuk dan lintasan yang sama di setiap titiknya. gerak rotasi dapat didefinisikan

Lebih terperinci

MEKANIKA TEKNIK. Sitti Nur Faridah

MEKANIKA TEKNIK. Sitti Nur Faridah 1 MEKANIKA TEKNIK Sitti Nur Faridah Diterbitkan oleh : Pusat Kajian Media dan Sumber Belajar LKPP Universitas Hasanuddin 2016 MEKANIKA TEKNIK Penulis : Dr. Ir. Sitti Nur Faridah, MP. Desain cover : Nur

Lebih terperinci

GRAVITASI B A B B A B

GRAVITASI B A B B A B 23 B A B B A B 2 GRAVITASI Sumber: www.google.co.id Pernahkah kalian berfikir, mengapa bulan tidak jatuh ke bumi atau meninggalkan bumi? Mengapa jika ada benda yang dilepaskan akan jatuh ke bawah dan mengapa

Lebih terperinci

Bab 6 Momentum Sudut dan Rotasi Benda Tegar

Bab 6 Momentum Sudut dan Rotasi Benda Tegar Bab 6 Momentum Sudut dan Rotasi Benda Tegar A. Torsi 1. Pengertian Torsi Torsi atau momen gaya, hasil perkalian antara gaya dengan lengan gaya. r F Keterangan: = torsi (Nm) r = lengan gaya (m) F = gaya

Lebih terperinci

MEKANIKA BENDA LANGIT MARIANO N., S.SI.

MEKANIKA BENDA LANGIT MARIANO N., S.SI. MEKANIKA BENDA LANGIT MARIANO N., S.SI. MEKANIKA BENDA LANGIT Adalah ilmu yang mempelajari gerakan benda-benda langit secara kinematika maupun dinamika : Posisi Kecepatan Percepatan Interaksi Gaya Energi

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 5 MOMEN INERSIA

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 5 MOMEN INERSIA LAPORAN PRAKTIKUM FISIKA DASAR MODUL 5 MOMEN INERSIA Nama : Lukman Santoso NPM : 240110090123 Tanggal / Jam Asisten : 17 November 2009/ 15.00-16.00 WIB : Dini Kurniati TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap II Semifinal Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap II Semifinal Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap II Semifinal Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika Tingkat SMA yaitu dalam bentuk Essay panjang. 2. Soal essay panjang

Lebih terperinci

SILABUS. Indikator Pencapaian Kompetensi

SILABUS. Indikator Pencapaian Kompetensi SILABUS Mata Pelajaran : Fisika Nama Satuan Pendidikan : SMA Negeri 1 Sleman Kelas : X inti : (Permendikbud Nomor 24 Tahun 2016, Lampiran 03) 3. Memahami, menerapkan, menganalisis pengetahuan faktual,

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: PEMBAHASAN SOAL LATIHAN 2 1. Bola awalnya bergerak dengan lintasan lingkaran hingga sudut sebelum bergerak dengan lintasan parabola seperti sketsa di bawah ini. Koordinat pada titik B adalah. Persamaan

Lebih terperinci

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L)

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L) Dinamika Rotasi adalah kajian fisika yang mempelajari tentang gerak rotasi sekaligus mempelajari penyebabnya. Momen gaya adalah besaran yang menyebabkan benda berotasi DINAMIKA ROTASI momen inersia adalah

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) MATA KULIAH KODE MATA KULIAH/SKS DESKRIPSI SINGKAT : MEKANIKA : PAF 4201/ 4 SKS : Matakuliah ini dapat memberikan penjelasan dan pemahaman analisis & deskriptif

Lebih terperinci

KOMPETENSI INTI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA SMA NEGERI 78 JAKARTA

KOMPETENSI INTI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA SMA NEGERI 78 JAKARTA DAN MATA PELAJARAN FISIKA SMA NEGERI 78 JAKARTA FISIKA 1 (3 sks) responsif dan proaktif) dan menunjukan sikap sebagai bangsa dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

Stephen Hawking. Muhammad Farchani Rosyid

Stephen Hawking. Muhammad Farchani Rosyid Stephen Hawking Muhammad Farchani Rosyid Kelompok Penelitian Kosmologi, Astrofisika, Partikel, dan Fisika Matematik (KAMP), Laboratorium Fisika Atom dan Inti, Jurusan Fisika FMIPA, Universitas Gadjah Mada,

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor

BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor BAB II LANDASAN TEORI A. Tinjauan Pustaka 1. Vektor Ada beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. Ada juga besaran fisis yang tidak

Lebih terperinci

PRISMA FISIKA, Vol. I, No. 1 (2013), Hal. 1-7 ISSN : Visualisasi Efek Relativistik Pada Gerak Planet

PRISMA FISIKA, Vol. I, No. 1 (2013), Hal. 1-7 ISSN : Visualisasi Efek Relativistik Pada Gerak Planet PRISMA FISIKA, Vol. I, No. 1 (13), Hal. 1-7 ISSN : 337-8 Visualisasi Efek Relativistik Pada Gerak Planet Nurul Asri 1, Hasanuddin 1, Joko Sampurno 1, Azrul Azwar 1 1 Program Studi Fisika, FMIPA, Universitas

Lebih terperinci

SILABUS. Mata Pelajaran : Fisika 2 Standar Kompetensi : 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik

SILABUS. Mata Pelajaran : Fisika 2 Standar Kompetensi : 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik SILABUS Mata Pelajaran : Fisika 2 Standar Kompetensi : 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik Kompetensi Dasar Kegiatan Indikator Penilaian Alokasi 1.1 Menganalisis

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton

Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton Nugroho Adi P January 19, 2010 1 Pendekatan Penyelesaian Masalah Fisika 1.1

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Mekanika geometrik merupakan bidang kajian yang membahas subyek-subyek seperti persamaan diferensial, kalkulus variasi, analisis vektor dan tensor, aljabar

Lebih terperinci

SILABUS MATA PELAJARAN SEKOLAH MENENGAH KEJURUAN FISIKA

SILABUS MATA PELAJARAN SEKOLAH MENENGAH KEJURUAN FISIKA SILABUS SEKOLAH MENENGAH KEJURUAN FISIKA STANDAR KOMPETENSI : Mengukur besaran dan menerapkan satuannya KODE KOMPETENSI : 1 : 10 x 45 menit SILABUS KOMPETENSI DASAR KEGIATAN 1.1 Menguasai konsep besaran

Lebih terperinci

r 21 F 2 F 1 m 2 Secara matematis hukum gravitasi umum Newton adalah: F 12 = G

r 21 F 2 F 1 m 2 Secara matematis hukum gravitasi umum Newton adalah: F 12 = G Gaya gravitasi antara dua benda merupakan gaya tarik menarik yang besarnya berbanding lurus dengan massa masing-masing benda dan berbanding terbalik dengan kuadrat jarak antara keduanya Secara matematis

Lebih terperinci

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas Soal Multiple Choise 1.(4 poin) Sebuah benda yang bergerak pada bidang dua dimensi mendapat gaya konstan. Setelah detik pertama, kelajuan benda menjadi 1/3 dari kelajuan awal benda. Dan setelah detik selanjutnya

Lebih terperinci

SILABUS Mata Pelajaran : Fisika

SILABUS Mata Pelajaran : Fisika SILABUS Mata Pelajaran : Fisika Kelas/Semester : XI/1 Standar Kompetensi: 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik Kompetensi Dasar Alokasi per Semester: 72 jam

Lebih terperinci

dan penggunaan angka penting ( pembacaan jangka sorong / mikrometer sekrup ) 2. Operasi vektor ( penjumlahan / pengurangan vektor )

dan penggunaan angka penting ( pembacaan jangka sorong / mikrometer sekrup ) 2. Operasi vektor ( penjumlahan / pengurangan vektor ) 1. 2. Memahami prinsipprinsip pengukuran dan melakukan pengukuran besaran fisika secara langsung dan tidak langsung secara cermat, teliti, dan obyektif Menganalisis gejala alam dan keteraturannya dalam

Lebih terperinci

SOAL SOAL FISIKA DINAMIKA ROTASI

SOAL SOAL FISIKA DINAMIKA ROTASI 10 soal - soal fisika Dinamika Rotasi SOAL SOAL FISIKA DINAMIKA ROTASI 1. Momentum Sudut Seorang anak dengan kedua lengan berada dalam pangkuan sedang berputar pada suatu kursi putar dengan 1,00 putaran/s.

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

10. Mata Pelajaran Fisika Untuk Paket C Program IPA

10. Mata Pelajaran Fisika Untuk Paket C Program IPA 10. Mata Pelajaran Fisika Untuk Paket C Program IPA A. Latar Belakang Ilmu Pengetahuan Alam (IPA) bukan hanya kumpulan pengetahuan yang berupa fakta-fakta, konsep-konsep, atau prinsip-prinsip saja tetapi

Lebih terperinci

Pemanfaatan Komputasi pada Pembelajaran Fisika dalam Merumuskan Dinamika Benda Ruang 3D

Pemanfaatan Komputasi pada Pembelajaran Fisika dalam Merumuskan Dinamika Benda Ruang 3D Pemanfaatan Komputasi pada Pembelajaran Fisika dalam Merumuskan Dinamika Benda Ruang 3D Melly Ariska Dosen (Universitas Sriwijaya dan Jln. Hasan Bastari Perum. Arcadia) Jalan Raya Palembang-Prabumulih

Lebih terperinci

Gerak rotasi: besaran-besaran sudut

Gerak rotasi: besaran-besaran sudut Gerak rotasi Benda tegar Adalah kumpulan benda titik dengan bentuk yang tetap (jarak antar titik dalam benda tersebut tidak berubah) Gerak benda tegar dapat dipandang sebagai gerak suatu titik tertentu

Lebih terperinci

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17, 3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik

Lebih terperinci

Momen inersia yaitu ukuran kelembapan suatu benda untuk berputar. Rumusannya yaitu sebagai berikut:

Momen inersia yaitu ukuran kelembapan suatu benda untuk berputar. Rumusannya yaitu sebagai berikut: Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Momen gaya merupakan hasil kali gaya dan jarak terpendek arah garis kerja terhadap titik tumpu. Momen

Lebih terperinci

Mengukur Kebenaran Konsep Momen Inersia dengan Penggelindingan Silinder pada Bidang Miring

Mengukur Kebenaran Konsep Momen Inersia dengan Penggelindingan Silinder pada Bidang Miring POSDNG SKF 16 Mengukur Kebenaran Konsep Momen nersia dengan Penggelindingan Silinder pada Bidang Miring aja Muda 1,a), Triati Dewi Kencana Wungu,b) Lilik Hendrajaya 3,c) 1 Magister Pengajaran Fisika Fakultas

Lebih terperinci

SILABUS. Kompetensi Dasar Kegiatan Pembelajaran Penilaian Alokasi Waktu Sumber Belajar

SILABUS. Kompetensi Dasar Kegiatan Pembelajaran Penilaian Alokasi Waktu Sumber Belajar SILABUS Satuan Pendidikan : SMA NEGERI... Semester/Kelas : Ganjil/XI Mata Pelajaran : Fisika Kompetensi Inti : 1. Menghayati dan mengamalkan ajaran agama yang dianutnya. 2. Menghayati dan mengamalkan perilaku

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 80 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya dengan jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang B. Tujuan

52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang B. Tujuan 52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang Ilmu Pengetahuan Alam (IPA) berkaitan dengan cara mencari tahu tentang fenomena alam secara sistematis,

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

MAKALAH MOMEN INERSIA

MAKALAH MOMEN INERSIA MAKALAH MOMEN INERSIA A. Latar belakang Dalam gerak lurus, massa berpengaruh terhadap gerakan benda. Massa bisa diartikan sebagai kemampuan suatu benda untuk mempertahankan kecepatan geraknya. Apabila

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN 37 BAB IV HASIL PENELITIAN A. Deskripsi Objek Penelitian Objek penelitian ini adalah konsep-konsep Fisika pada materi Dinamika Rotasi Benda Tegar yang terdapat dalam 3 buku SMA kelas XI yang diteliti yaitu

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : E123101 / FISIKA DASAR 1 Revisi 3 Satuan Kredit Semester : 3 SKS Tgl revisi : 05 Januari 2012 Jml Jam kuliah dalam seminggu

Lebih terperinci

3.6.1 Menganalisis momentum sudut pada benda berotasi Merumuskan hukum kekekalan momentum sudut.

3.6.1 Menganalisis momentum sudut pada benda berotasi Merumuskan hukum kekekalan momentum sudut. I. Kompetensi Inti KI 1: Menghayati dan mengamalkan ajaran agama yang dianutnya. KI 2: Menghayati dan mengamalkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerja sama, toleran, damai),

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN

DINAMIKA ROTASI DAN KESETIMBANGAN FIS A. BENDA TEGAR Benda tegar adalah benda yang tidak mengalami perubahan bentuk dan volume selama bergerak. Benda tegar dapat mengalami dua macam gerakan, yaitu translasi dan rotasi. Gerak translasi

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: Treefy Education PEMBAHASAN LATIHAN 1 1.a) Bayangkan bola berada di puncak pipa. Ketika diberikan sedikit dorongan, bola akan bergerak dan menabrak tanah dengan kecepatan. Gerakan tersebut merupakan proses

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR BAB DNAMKA OTAS DAN KESEMBANGAN BENDA TEGA. SOA PHAN GANDA. Dengan menetapkan arah keluar bidang kertas, sebagai arah Z positif dengan vektor satuan k, maka torsi total yang bekerja pada batang terhadap

Lebih terperinci

DINAMIKA GERAK FISIKA DASAR (TEKNIK SIPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.

DINAMIKA GERAK FISIKA DASAR (TEKNIK SIPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac. 1/30 FISIKA DASAR (TEKNIK SIPIL) DINAMIKA GERAK Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Definisi Dinamika Cabang dari ilmu mekanika yang meninjau

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik. gaya yang muncul ketika BENDA BERSENTUHAN dengan PERMUKAAN KASAR. ARAH GAYA GESEK selalu BERLAWANAN dengan ARAH GERAK BENDA. gaya gravitasi/gaya berat gaya normal GAYA GESEK Jenis Gaya gaya gesek gaya

Lebih terperinci

HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN

HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN Pernahkah Anda berpikir; mengapa kita bisa begitu mudah berjalan di atas lantai keramik yang kering, tetapi akan begitu kesulitan jika lantai

Lebih terperinci

Statika. Pusat Massa Dan Titik Berat

Statika. Pusat Massa Dan Titik Berat Statika Pusat Massa Dan Titik Berat STATIKA adalah ilmu kesetimbangan yang menyelidiki syarat-syarat gaya yang bekerja pada sebuah benda/titik materi agar benda/titik materi tersebut setimbang. PUSAT MASSA

Lebih terperinci

MEKANIKA NEWTONIAN. Persamaan gerak Newton. Hukum 1 Newton. System acuan inersia (diam)

MEKANIKA NEWTONIAN. Persamaan gerak Newton. Hukum 1 Newton. System acuan inersia (diam) MEKANIKA NEWTONIAN Persamaan gerak Newton Seperti diketahui bahwa dinamika adalah cabang dari mekanika yang membahas tentang hokum-hukum fisika tentang gerak benda. Dalam catatan kecil ini kita akan membahas

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

Penulis : Fajar Mukharom Darozat. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com

Penulis : Fajar Mukharom Darozat. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com Penulis : Fajar Mukharom Darozat Copyright 2013 pelatihan-osn.com Cetakan I : Oktober 2012 Diterbitkan oleh : Pelatihan-osn.com Kompleks Sawangan Permai Blok A5 No.12 A Sawangan, Depok, Jawa Barat 16511

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

KESEIMBANGAN BENDA TEGAR

KESEIMBANGAN BENDA TEGAR Dinamika Rotasi, Statika dan Titik Berat 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal ME KANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINE MATI KA = Ilmu

Lebih terperinci

Olimpiade Sains Nasional 2012 Tingkat Propinsi. F i s i k a

Olimpiade Sains Nasional 2012 Tingkat Propinsi. F i s i k a Olimpiade Sains Nasional 2012 Tingkat Propinsi Bidang F i s i k a Ketentuan Umum: 1- Periksa lebih dulu bahwa jumlah soal Saudara terdiri dari 7 (tujuh) buah soal. 2- Waktu total untuk mengerjakan tes

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 85 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya di mana jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

STANDAR KOMPETENSI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA

STANDAR KOMPETENSI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA STANDAR KOMPETENSI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA A. Latar Belakang Ilmu Pengetahuan Alam (IPA) berkaitan dengan cara mencari tahu tentang fenomena alam secara sistematis, sehingga IPA bukan

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 4) Dinamika Gaya dan Hukum Gaya Massa dan Inersia Hukum Gerak Dinamika Gerak Melingkar Dinamika Mempelajari pengaruh lingkungan terhadap keadaan gerak suatu

Lebih terperinci

DINAMIKA GERAK LURUS

DINAMIKA GERAK LURUS DINAMIKA GERAK LURUS Mekanika klasik atau mekanika Newton adalah teori tentang gerak yang didasarkan pada konsep massa dan gaya dan hukum-hukum yang menghubungkan konsep-konsep fisis ini dengan besaran

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN No. 01/ 01 / XI

RENCANA PELAKSANAAN PEMBELAJARAN No. 01/ 01 / XI RENCANA PELAKSANAAN PEMBELAJARAN No. 01/ 01 / XI SATUAN PENDIDIKAN : SMA NEG. KHUSUS RAHA MATA PELAJARAN : F I S I K A KELAS / SEM./ PROGRAM : XI / 1 / IPA ALOKASI WAKTU : 2 x 45 I. STANDAR KOMPETENSI

Lebih terperinci

KISI KISI SOAL UJIAN AKHIR MADRASAH TAHUN PELAJARAN 2013/2014

KISI KISI SOAL UJIAN AKHIR MADRASAH TAHUN PELAJARAN 2013/2014 KISI KISI SOAL UJIAN AKHIR MADRASAH TAHUN PELAJARAN 2013/2014 Mata Pelajaran : Fisika Kurikulum : KTSP Alokasi waktu : 120 menit Jenis Sekolah : Madrasah Aliyah Jumlah soal : 40 butir Penyusun : FARLIN

Lebih terperinci

KISI-KISI PENULISAN SOAL USBN FISIKA KURIKULUM 2013

KISI-KISI PENULISAN SOAL USBN FISIKA KURIKULUM 2013 Jenis Sekolah : SMA Mata Pelajaran : FISIKA Kurikulum : 2013 Alokasi Waktu : 120 menit Jumlah Soal : Pilihan Ganda : 35 Essay : 5 KISI-KISI PENULISAN USBN FISIKA KURIKULUM 2013 1 2 3 3.2 Menerapkan prinsipprinsip

Lebih terperinci

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. Dinamika Page 1/11 Gaya Termasuk Vektor DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan

Lebih terperinci

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1 Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen

Lebih terperinci

Bahan Minggu XV Tema : Pengantar teori relativitas umum Materi :

Bahan Minggu XV Tema : Pengantar teori relativitas umum Materi : Bahan Minggu XV Tema : Pengantar teori relativitas umum Materi : Teori Relativitas Umum Sebelum teori Relativitas Umum (TRU) diperkenalkan oleh Einstein pada tahun 1915, orang mengenal sedikitnya tiga

Lebih terperinci

MOMENTUM - TUMBUKAN FISIKA DASAR (TEKNIK SISPIL) (+GRAVITASI) Mirza Satriawan. menu

MOMENTUM - TUMBUKAN FISIKA DASAR (TEKNIK SISPIL) (+GRAVITASI) Mirza Satriawan. menu FISIKA DASAR (TEKNIK SISPIL) 1/34 MOMENTUM - TUMBUKAN (+GRAVITASI) Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Sistem Partikel Dalam pembahasan-pembahasan

Lebih terperinci

BAB IV HUKUM NEWTON DALAM GERAK

BAB IV HUKUM NEWTON DALAM GERAK BAB IV HUKUM NEWTON DALAM GERAK Pendahuluan Barangkali anda pernah berpikir, mengapa sebuah benda terkadang begitu mudah didorong, dan benda lain tidak bergerak sekalipun didorong dengan kekuatan yang

Lebih terperinci

8. KOMPETENSI INTI DAN KOMPTENSI DASAR FISIKA SMA/MA KELAS: X

8. KOMPETENSI INTI DAN KOMPTENSI DASAR FISIKA SMA/MA KELAS: X 8. KOMPETENSI INTI DAN KOMPTENSI DASAR FISIKA SMA/MA KELAS: X Tujuan kurikulum mencakup empat kompetensi, yaitu (1) kompetensi sikap spiritual, (2) sikap sosial, (3) pengetahuan, dan (4) keterampilan.

Lebih terperinci