BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI 2.1. Citra Digital Citra digital adalah citra yang bersifat diskrit yang dapat diolah oleh computer. Citra ini dapat dihasilkan melalui kamera digital dan scanner ataupun citra yang telah mengalami proses digitalisasi (Fahzuanta, 2010). Pada sebuah citra masing-masing pixelnya memiliki warna tertentu, warna tersebut adalah merah (Red), hijau (Green) dan biru (Blue). Jika masing-masing warna memiliki range 0-225, maka totalnya adalah = (16 k) variasi warna berbeda pada gambar, dimana variasi warna ini cukup untuk gambar apapun. Karena jumlah bit yang diperlukan untuk setiap pixel, gambar tersebut juga disebut gambar-bit warna. (Kusumanto, 2011) Color image ini terdiri dari tiga matriks yang mewakili nilai-nilai merah, hijau dan biru untuk setiap pixelnya. Misalnya diambil suatu kotak kecil dari bagian citra direpresentasikan dengan matriks berukuran 6x7, seperti terlihat pada gambar 2.1. Gambar 2.1 Color Image (Kusumanto, 2011)

2 Pengolahan Citra Digital Citra digital dapat didefinisikan sebagai fungsi dua variabel f(x,y), dimana x dan y adalah koordinat spasial dan nilai f(x,y) adalah intensitas citra pada koordinat tersebut. Hal tersebut diilustrasikan pada Gambar 2.2. Teknologi dasar untuk menciptakan dan menampilkan warna pada citra digital, citra merupakan kombinasi dari tiga warna dasar, yaitu merah, hijau dan biru (Iqbal, 2010). Komposisi warna RGB tersebut dapat dijelaskan pada Gambar 2.2. Gambar 2.2 Citra Digital (Iqbal, 2010) Sebuah citra di konversi ke bentuk digital agar dapat disimpan dalam memori komputer atau media lain. Ketika sebuah citra sudah diubah ke dalam bentuk digital bermacam-macam proses pengolahan citra dapat diperlakukan terhadap citra tersebut. Pengolahan citra merupakan proses untuk menghasilkan citra sesuai dengan keinginan atau kualitasnya menjadi lebih baik. Inputannya adalah citra dan keluarannya juga citra tapi dengan kualitas lebih baik daripada citra masukan. Misal citra warnanya kurang tajam, kabur (blurring) dan mengandung noise (misal bintik-bintik putih) sehingga perlu ada pemrosesan untuk memperbaiki citra karena citra tersebut menjadi sulit diinterpretasikan karena informasi yang disampaikan menjadi berkurang (Fahzuanta, 2010).

3 Edge Linking Secara ideal, teknik yang digunakan untuk mendeteksi diskontinuitas seharusnya hanya menghasilkan pixel-pixel yang berada pada batas region. Namun dalam prakteknya hal ini jarang terjadi karena adanya noise, batas yang terpisah karena pencahayaan yang tidak merata, dan efek lain yang mengakibatkan variasi intensitas. Untuk itu algoritma edge detection biasanya dilanjutkan dengan prosedur Edge Linking untuk merangkai pixel-pixel tersebut menjadi satu kesatuan sehingga memberikan suatu informasi yang berarti (Fahzuanta, 2010). Teknik yang dapat digunakan untuk Edge Linking adalah local processing, yaitu dengan menganalisa karakteristik pixel-pixel di dalam suatu tetangga (3 x 3 atau 5 x 5) pada semua titik (x,y) di dalam citra yang telah mengalami edge-detection. Selanjutnya semua titik yang sejenis dihubungkan sehingga membentuk kumpulan pixel yang memiliki sifat-sifat yang sama. Dua sifat utama yang digunakan untuk menentukan kesamaan edge pixel dalam analisa ini adalah : 1. Besarnya respon gradien operator yang digunakan 2. Arah gradien Sifat yang pertama dinyatakan dengan nilai f yang telah dibahas sebelumnya. Jadi suatu edge pixel dengan koordinat (x,y ) dan bertetangga dengan (x,y), dikatakan memiliki magnitude sama dengan pixel di (x,y) jika : dimana f = vektor dan T = threshold positif. Suatu edge pixel dengan koordinat (x,y ) dan bertetangga dengan (x,y), dikatakan memiliki sudut yang sama dengan pixel di (x,y) jika : di mana A = threshold sudut. Suatu titik yang menjadi tetangga dari (x,y) dihubungkan dengan titik (x,y) jika memenuhi kedua kriteria di atas, baik magnitude maupun sudutnya. Proses linking ini diulang untuk seluruh lokasi titik yang ada di dalam citra 2.4. Kohonen Neural Network Kohonen Neural Network atau Kohonen Self Organizing Network merupakan analogi sederhana dari cara kerja otak manusia dalam mengelompokan informasi. Penelitian menunjukan bahwa kulit otak manusia terbagi ke dalam bagian-bagian yang berbeda,

4 9 masing-masing merespon fungsi-fungsi khusus. Sel-sel saraf mengelompokan dirinya sendiri sesuai dengan informasi yang diterima. Pengelompokan seperti ini disebut unsupervised learning (Kusumadewi,2003). Kohonen Neural Network terdiri dari 2 lapisan, lapisan masukan dan lapisan keluaran. Keluaran pada Kohonen Neural Network berjumlah sama dengan jumlah pola yang membentuk neuron keluaran, dan hanya satu neuron keluaran yang menjadi pemenang (Heaton, 2003). Proses pembelajaran Kohonen Neural Network bersifat kompetitif atau bersaing. Untuk setiap pelatihan terdapat satu neuron keluaran dalam kondisi firing (neuron keluaran yang bernilai paling besar). Bobot yang terkoneksi pada neuron keluaran tersebut akan disesuaikan sehingga nilainya lebih kuat pada latihan berikutnya. Berikut proses pembelajaran Kohonen Neural Network (Zamasari,2005): 1. Inisialisasi seluruh bobot dengan nilai random: w ij normalisasi seluruh bobot dan vektor masukan x, set parameter learning rate. 2. Kerjakan a-f sampai kondisi berhenti bernilai BENAR a. evaluasi kesalahan untuk setiap vektor masukan x. b. simpan bobot dengan kesalahan palingminimal. c. cek neuron keluaran yang telah firing atau aktif, jika terdapat neuron. keluaran yang tidak pernah firing, maka forcewin dan kembali ke a). Jika tidak lanjutkan langkah e). d. Forcewin hitung aktifasi setiap vektor masukan dan ambil indeks vektor masukan dengan aktifasi yang paling kecil. setiap neuron keluaran dengan vektor masukan yang didapat pada a) dan pilih indeks neuron keluaran dengan nilai terbesar yang tidak pernah aktif selama latihan. modifikasi bobot dari neuron keluaran pada butir b. e. Sesuaikan bobot dengan (persamaan 2.1) w = w + α(x-w)..(2.1) f. Perbaiki learning rate g.test kondisi berhenti. 3. Ambil bobot terbaik 4. Normalisasi bobot

5 Standard Deviasi Standard Deviasi adalah akar kuadrat dari total selisih dengan nilai rata-ratanya. Standard deviasi adalah salah satu teknik statistik yg digunakan untuk menjelaskan homogenitas kelompok. Standard deviasi disebut juga dengan atau simpangan baku. Standard deviasi merupakan variasi sebaran data. semakin kecil nilai sebarannya berarti variasi nilai data makin sama. Jika sebarannya bernilai 0, maka nilai semua datanya adalah sama. Semakin besar nilai sebarannya berarti data semakin bervariasi. Dengan menghitung nilai standar deviasi dari sebuah citra, akan didapat jumlah ukuran yang detail pada sub band (Thaiyalnayaki, 2010). Ada dua bentuk rumus standard deviasi yang dapat digunakan, yaitu rumus standard deviasi untuk populasi (persamaan 2.3) dan rumus standard deviasi untuk sampel (persamaan 2.2). σ =.....(2.2) σ =..(2.3) Dimana : σ = Nilai standar deviasi N = Jumlah total pixel = Nilai pixel pada posisi ke-i µ = Nilai rata-rata pixel dalam citra 2.6. Kurtosis Kurtosis adalah derajat keruncingan suatu distribusi (biasanya diukur relatif terhadap distribusi normal). Kurva yang lebih runcing dari distribusi normal dinamakan leptokurtik, yang lebih datar platikurtik dan distribusi normal disebut mesokurtik (Thaiyalnayaki, 2010). Adapun rumus kurtosis yang digunakan, seperti terlihat pada (persamaan 2.4). (2.4)

6 11 Dimana : k = Nilai kurtosis σ = Nilai standar deviasi N = Jumlah total pixel = Nilai pixel pada posisi ke-i µ = Nilai rata-rata pixel dalam citra 2.7. Skewness Skewness adalah derajat ketidaksimetrisan suatu distribusi. Jika kurva frekuensi suatu distribusi memiliki ekor yang lebih memanjang ke kanan (dilihat dari meannya) maka dikatakan menceng kanan (positif) dan jika sebaliknya maka menceng kiri (negatif). Skewness digunakan untuk mengukur simetris atau kemencengan suatu kurva. Skewness adalah ukuran asimetri data di sekitar mean sampel. (Thaiyalnayaki, 2010). Gambar 2.3 Kurva Skweness dan Kurtosis Adapun rumus skewness yang digunakan seperti terlihat pada (persamaan 2.5). g =..(2.5) Dimana : g N = Nilai kurtosis = Jumlah total pixel

7 12 = Nilai pixel pada posisi ke-i µ = Nilai rata-rata pixel dalam citra 2.8. Penelitian Terdahulu Bagian ini menjelaskan beberapa penelitian terdahulu terkait dengan penelitian pengolahan citra, kohonen neural network dan pendeteksian garis tepi. Penelitian yang telah dilakukan dalam pendeteksian garis tepi terdapat pada penentuan model kerangka kepala manusia dengan banyak gambar yang berbeda sebagai objek penelitiannya (Constantio. 2010), Putra (2010) membandingkan metode Edge Linking dan Sobel untuk mendeteksi citra digital menghasilkan kecepatan proses pendeteksian garis tepi dengan menggunakan metode Edge Linking lebih cepat dibandingkan operator Sobel.. Tabel penelitian terdahulu ditunjukkan pada tabel 2.1. Putra Maqrifad Qalbi Fahzuanta(2010) Tabel 2.1 Tabel Penelitian Terdahulu Penulis Teori Yang Digunakan Kelebihan dan Kekurangan Analisis Perbandingan Pendeteksi Garis Tepi Pada Citra Digital Antara Metode Edge LinkingDan Operator Sobel Constantio Carlos Reyes-Aldaroso (2010) Alvia Ferry Mandalasari (2013) Image Segmentation with Kohonen Neural Network Self- Organising Map Segmentasi Citra Medis Menggunakan Metode Otsu dan Iterasi Kelebihan : Menampilkan perbandingan antara operator sobel dan edge linking Kekurangan : Belum mengolah citra digital dengan format PNG atau GIF. Kelebihan : Mampu menghasilkan segmentasi terhadap citra medis yang kompleks. Kekurangan : Masih memiliki keterbatasan dalam hal jumlah neuron yang dapat digunakan. Kelebihan : Mengulas mengenai kelebihan proses segmentasi terhadap citra digital pada tahap preprocessing. Kekurangan : Metode segmentasi masih menggunakan metode iterasi yang sederhana.

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi informasi saat ini sangatlah pesat. Berbagai ragam jenis informasi dapat diakses dari berbagai jenis media. Image digital merupakan salah satu

Lebih terperinci

Pertemuan 2 Representasi Citra

Pertemuan 2 Representasi Citra /29/23 FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 2 Representasi Citra Representasi Citra citra Citra analog Citra digital Matrik dua dimensi yang terdiri

Lebih terperinci

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan Jurnal Sains & Matematika (JSM) ISSN Kajian 0854-0675 Pustaka Volume14, Nomor 4, Oktober 2006 Kajian Pustaka: 147-153 Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pendeteksi senyum pada skripsi ini, meliputi metode Viola Jones, konversi citra RGB ke grayscale,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Citra menurut kamus Webster adalah suatu representasi atau gambaran, kemiripan, atau imitasi dari suatu objek atau benda, contohnya yaitu foto seseorang dari kamera yang

Lebih terperinci

PENGOLAHAN CITRA DIGITAL

PENGOLAHAN CITRA DIGITAL PENGOLAHAN CITRA DIGITAL Aditya Wikan Mahastama mahas@ukdw.ac.id Sistem Optik dan Proses Akuisisi Citra Digital 2 UNIV KRISTEN DUTA WACANA GENAP 1213 v2 Bisa dilihat pada slide berikut. SISTEM OPTIK MANUSIA

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya, dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap titik merupakan

Lebih terperinci

BAB 2 KONSEP DASAR PENGENAL OBJEK

BAB 2 KONSEP DASAR PENGENAL OBJEK BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra merupakan salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun sebuah citra kaya akan informasi, namun sering

Lebih terperinci

PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN

PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN Dolly Indra dolly.indra@umi.ac.id Teknik Informatika Universitas Muslim Indonesia Abstrak Pada tahap melakukan ekstraksi ciri (feature extraction) faktor

Lebih terperinci

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL 2.1 Citra Secara harafiah, citra adalah representasi (gambaran), kemiripan, atau imitasi pada bidang dari suatu objek. Ditinjau dari sudut pandang matematis,

Lebih terperinci

KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM)

KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM) KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM) Bambang Trianggono *, Agus Zainal Arifin * Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Digital Secara harafiah, citra (image) adalah gambar pada bidang dua dimensi. Ditinjau dari sudut pandang matematis, citra merupakan fungsi kontinu dari intensitas cahaya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Citra (image) atau yang secara umum disebut gambar merupakan representasi spasial dari suatu objek yang sebenarnya dalam bidang dua dimensi yang biasanya ditulis dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

Statistik Deskriptif: Central Tendency & Variation

Statistik Deskriptif: Central Tendency & Variation Statistik Deskriptif: Central Tendency & Variation Widya Rahmawati Central Tendency (Ukuran Pemusatan) dan Variation (Ukuran Simpangan) 1) Ukuran pemusatan atau ukuran lokasi adalah beberapa ukuran yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengolahan Citra Pengolahan citra adalah kegiatan memanipulasi citra yang telah ada menjadi gambar lain dengan menggunakan suatu algoritma atau metode tertentu. Proses ini mempunyai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sel Darah Merah Sel yang paling banyak di dalam selaput darah adalah sel darah merah atau juga dikenal dengan eritrosit. Sel darah merah berbentuk cakram bikonkaf dengan diameter

Lebih terperinci

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital LANDASAN TEORI 2.1 Citra Digital 2.1.1 Pengertian Citra Digital Citra dapat didefinisikan sebagai sebuah fungsi dua dimensi, f(x,y) dimana x dan y merupakan koordinat bidang datar, dan harga fungsi f disetiap

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengenalan Pola Pengenalan pola (pattern recognition) adalah suatu ilmu untuk mengklasifikasikan atau menggambarkan sesuatu berdasarkan pengukuran kuantitatif fitur atau sifat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Digital Istilah citra biasanya digunakan dalam bidang pengolahan citra yang berarti gambar. Suatu citra dapat didefinisikan sebagai fungsi dua dimensi, di mana dan adalah

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Citra Citra merupakan istilah lain untuk gambar sebagai salah satu komponen multimedia memegang peranan sangat penting sebagai bentuk informasi visual. Citra mempunyai karakteristik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Sel Darah Merah Sel darah merah atau eritrositmemiliki fungsi yang sangat penting bagi kelangsungan hidup manusia. Sel darah merah mengandung hemoglobin yang berfungsi untuk

Lebih terperinci

Pendeteksian Tepi Citra CT Scan dengan Menggunakan Laplacian of Gaussian (LOG) Nurhasanah *)

Pendeteksian Tepi Citra CT Scan dengan Menggunakan Laplacian of Gaussian (LOG) Nurhasanah *) Pendeteksian Tepi Citra CT Scan dengan Menggunakan Laplacian of Gaussian (LOG) Nurhasanah *) *) Jurusan Fisika, FMIPA Universitas Tanjungpura Abstrak CT scan mampu menghasilkan citra organ internal (struktur

Lebih terperinci

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini. BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tanda Tangan Tanda tangan atau dalam bahasa Inggris disebut signature berasal dari latin signare yang berarti tanda atau tulisan tangan, dan biasanya diberikan gaya tulisan

Lebih terperinci

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Wawan Kurniawan Jurusan PMIPA, FKIP Universitas Jambi wwnkurnia79@gmail.com Abstrak

Lebih terperinci

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi. TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi. UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. 1 Tinjauan Studi Berbagai penelitian telah dilakukan untuk menunjukkan betapa pentingnya suatu edge detection dalam perkembangan pengolahan suatu citra, berikut

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK Fany Hermawan Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung E-mail : evan.hawan@gmail.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Citra Digital Gambar atau citra merupakan informasi yang berbentuk visual. Menurut kamus Webster citra adalah suatu representasi, kemiripan atau imitasi dari suatu objek atau

Lebih terperinci

Pembentukan Citra. Bab Model Citra

Pembentukan Citra. Bab Model Citra Bab 2 Pembentukan Citra C itra ada dua macam: citra kontinu dan citra diskrit. Citra kontinu dihasilkan dari sistem optik yang menerima sinyal analog, misalnya mata manusia dan kamera analog. Citra diskrit

Lebih terperinci

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses 8 BAB 2 LANDASAN TEORI 2.1 Teori Neuro Fuzzy Neuro-fuzzy sebenarnya merupakan penggabungan dari dua studi utama yaitu fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

Lebih terperinci

BAB II TEORI PENUNJANG

BAB II TEORI PENUNJANG BAB II TEORI PENUNJANG 2.1 Computer Vision Komputerisasi memiliki ketelitian yang jauh lebih tinggi bila dibandingkan dengan cara manual yang dilakukan oleh mata manusia, komputer dapat melakukan berbagai

Lebih terperinci

BAB II TI JAUA PUSTAKA

BAB II TI JAUA PUSTAKA BAB II TI JAUA PUSTAKA Pada bab ini akan dibahas mengenai teori-teori yang menunjang tugas akhir ini. Antara lain yaitu pengertian citra, pengertian dari impulse noise, dan pengertian dari reduksi noise.

Lebih terperinci

SEGMENTASI CITRA DIGITAL IKAN MENGGUNAKAN METODE THRESHOLDING DIGITAL FISH IMAGE SEGMENTATION BY THRESHOLDING METHOD

SEGMENTASI CITRA DIGITAL IKAN MENGGUNAKAN METODE THRESHOLDING DIGITAL FISH IMAGE SEGMENTATION BY THRESHOLDING METHOD SEGMENTASI CITRA DIGITAL IKAN MENGGUNAKAN METODE THRESHOLDING Max R. Kumaseh 1), Luther Latumakulita 1), Nelson Nainggolan 1) 1) Program Studi Matematika FMIPA Universitas Sam Ratulangi Jl. Kampus Unsrat,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi tersebut pada setiap titik (x,y) merupakan

Lebih terperinci

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA HASNAH(12110738) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja No. 338

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Uang Kertas Rupiah Uang Rupiah Kertas adalah Uang Rupiah dalam bentuk lembaran yang terbuat dari Kertas Uang yang dikeluarkan oleh Bank Indonesia, dimana penggunaannya dilindungi

Lebih terperinci

PENGENALAN PLAT NOMOR KENDARAAN DENGAN METODE KOHONEN SOM

PENGENALAN PLAT NOMOR KENDARAAN DENGAN METODE KOHONEN SOM PENGENALAN PLAT NOMOR KENDARAAN DENGAN METODE KOHONEN SOM Didik Styawan 1, Catur Supriyanto 2 Teknik Informatika, Universitas Dian Nuswantoro Jl. Nakula I No. 5-11, Semarang Jawa Tengah 50131 E-mail :

Lebih terperinci

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL Andri STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 andri@mikroskil.ac.id Abstrak

Lebih terperinci

Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc

Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc Pertemuan 3 Perbaikan Citra pada Domain Spasial (1), S.Kom, M.Comp.Sc Tujuan Memberikan pemahaman kepada mahasiswa mengenai berbagai teknik perbaikan citra pada domain spasial, antara lain : Transformasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Jaringan Saraf Tiruan Jaringan saraf tiruan adalah paradigma pengolahan informasi yang terinspirasi oleh sistem saraf secara biologis, seperti proses informasi pada otak manusia.

Lebih terperinci

Pengolahan Citra : Konsep Dasar

Pengolahan Citra : Konsep Dasar Pengolahan Citra Konsep Dasar Universitas Gunadarma 2006 Pengolahan Citra Konsep Dasar 1/14 Definisi dan Tujuan Pengolahan Citra Pengolahan Citra / Image Processing Proses memperbaiki kualitas citra agar

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Nurul Fuad 1, Yuliana Melita 2 Magister Teknologi Informasi Institut Saint Terapan & Teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengolahan Citra Pengolahan citra (image processing) merupakan proses untuk mengolah pixel-pixel dalam citra digital untuk tujuan tertentu. Beberapa alasan dilakukan pengolahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Secara harafiah, citra (image) adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus (continue) dari intensitas

Lebih terperinci

Representasi Citra. Bertalya. Universitas Gunadarma

Representasi Citra. Bertalya. Universitas Gunadarma Representasi Citra Bertalya Universitas Gunadarma 2005 Pengertian Citra Digital Ada 2 citra, yakni : citra kontinu dan citra diskrit (citra digital) Citra kontinu diperoleh dari sistem optik yg menerima

Lebih terperinci

PERBANDINGAN METODE ROBERTS DAN SOBEL DALAM MENDETEKSI TEPI SUATU CITRA DIGITAL. Lia Amelia (1) Rini Marwati (2) ABSTRAK

PERBANDINGAN METODE ROBERTS DAN SOBEL DALAM MENDETEKSI TEPI SUATU CITRA DIGITAL. Lia Amelia (1) Rini Marwati (2) ABSTRAK PERBANDINGAN METODE ROBERTS DAN SOBEL DALAM MENDETEKSI TEPI SUATU CITRA DIGITAL Lia Amelia (1) Rini Marwati (2) ABSTRAK Pengolahan citra digital merupakan proses yang bertujuan untuk memanipulasi dan menganalisis

Lebih terperinci

IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH

IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH Fitri Afriani Lubis 1, Hery Sunandar 2, Guidio Leonarde Ginting 3, Lince Tomoria Sianturi 4 1 Mahasiswa Teknik Informatika, STMIK Budi Darma

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN 61 BAB III ANALISIS DAN PERANCANGAN 3.1 Analisis 3.1.1 Analisis Permasalahan Proses Segmentasi citra dapat dilakukan dengan berbagai cara, antara lain dengan metode konvensional secara statistik maupun

Lebih terperinci

BAB II. Computer vision. teknologi. yang. dapat. Vision : Gambar 2.1

BAB II. Computer vision. teknologi. yang. dapat. Vision : Gambar 2.1 BAB II LANDASAN TEORI Computer vision adalah bagian dari ilmu pengetahuan dan teknologi yang membuat mesin seolah-olah dapat melihat. Komponen dari Computer Vision tentunya adalah gambar atau citra, dengan

Lebih terperinci

PEMANFAATAN PENGOLAHAN CITRA DIGITAL DALAM MENENTUKAN KEMATANGAN BUAH KAKAO MENGGUNAKAN METODE EUCLIDEAN DISTANCE SKRIPSI

PEMANFAATAN PENGOLAHAN CITRA DIGITAL DALAM MENENTUKAN KEMATANGAN BUAH KAKAO MENGGUNAKAN METODE EUCLIDEAN DISTANCE SKRIPSI Artikel Skripsi PEMANFAATAN PENGOLAHAN CITRA DIGITAL DALAM MENENTUKAN KEMATANGAN BUAH KAKAO MENGGUNAKAN METODE EUCLIDEAN DISTANCE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan membahas landasan teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teknik-teknik yang dibahas mengenai pengenalan pola, prapengolahan citra,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap

Lebih terperinci

Segmentasi Citra Berwarna Menggunakan Deteksi Tepi dan Fuzzy C-Means yang Dimodifikasi Berdasarkan Informasi Ketetanggaan

Segmentasi Citra Berwarna Menggunakan Deteksi Tepi dan Fuzzy C-Means yang Dimodifikasi Berdasarkan Informasi Ketetanggaan Segmentasi Citra Berwarna Menggunakan Deteksi Tepi dan Fuzzy C-Means yang Dimodifikasi Berdasarkan Informasi Ketetanggaan Septi Wulansari (5109100175) Pembimbing I: Prof. Ir. Handayani Tjandrasa, M.Sc.,

Lebih terperinci

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya 5 BAB 2 LANDASAN TEORI 2.1 Citra Secara harfiah citra atau image adalah gambar pada bidang dua dimensi. Ditinjau dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya pada

Lebih terperinci

KLASIFIKASI TELUR AYAM DAN TELUR BURUNG PUYUH MENGGUNAKAN METODE CONNECTED COMPONENT ANALYSIS

KLASIFIKASI TELUR AYAM DAN TELUR BURUNG PUYUH MENGGUNAKAN METODE CONNECTED COMPONENT ANALYSIS Ikhwan Ruslianto KLASIFIKASI TELUR AYAM DAN TELUR BURUNG PUYUH MENGGUNAKAN METODE CONNECTED COMPONENT ANALYSIS IKHWAN RUSLIANTO Program Studi Teknik Informatika Sekolah Tinggi Manajemen Informatika dan

Lebih terperinci

Penerapan Kohonen Self Organized Map Dalam Kuantisasi Vektor Pada Kompresi Citra Bitmap 24 Bit

Penerapan Kohonen Self Organized Map Dalam Kuantisasi Vektor Pada Kompresi Citra Bitmap 24 Bit Penerapan Kohonen Self Organized Map Dalam Kuantisasi Vektor Pada Kompresi Citra Bitmap 24 Bit Gadis Fransiska Yulianti Tae, Sri Suwarno, Widi Hapsari Fakultas Teknologi Informasi, Program Studi Teknik

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Dispersi Data Dispersi Data Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Beberapa jenis ukuran dispersi data : Jangkauan (range) Simpangan rata-rata

Lebih terperinci

Konvolusi. Esther Wibowo Erick Kurniawan

Konvolusi. Esther Wibowo Erick Kurniawan Konvolusi Esther Wibowo esther.visual@gmail.com Erick Kurniawan erick.kurniawan@gmail.com Filter / Penapis Digunakan untuk proses pengolahan citra: Perbaikan kualitas citra (image enhancement) Penghilangan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra 2.1.1 Definisi Citra Secara harfiah, citra adalah gambar pada bidang dwimatra (dua dimensi). Jika dipandang dari sudut pandang matematis, citra merupakan hasil pemantulan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1. Citra Digital Citra digital dapat didefenisikan sebagai fungsi f(x,y) yaitu dua dimensi, dimana x dan y merupakan koordinat spasial dan f(x,y) disebut dengan intensitas atau

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Citra Citra (image) atau istilah lain untuk gambar sebagai salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun

Lebih terperinci

BAB 3 METODE PERANCANGAN

BAB 3 METODE PERANCANGAN BAB 3 METODE PERANCANGAN 3.1 Konsep dan Pendekatan Tujuan utama yang ingin dicapai dalam pengenalan objek 3 dimensi adalah kemampuan untuk mengenali suatu objek dalam kondisi beragam. Salah satu faktor

Lebih terperinci

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI Oleh Nama : Januar Wiguna Nim : 0700717655 PROGRAM GANDA TEKNIK INFORMATIKA DAN MATEMATIKA

Lebih terperinci

SAMPLING DAN KUANTISASI

SAMPLING DAN KUANTISASI SAMPLING DAN KUANTISASI Budi Setiyono 1 3/14/2013 Citra Suatu citra adalah fungsi intensitas 2 dimensi f(x, y), dimana x dan y adalahkoordinat spasial dan f pada titik (x, y) merupakan tingkat kecerahan

Lebih terperinci

Distribution. Contoh Kasus. Widya Rahmawati

Distribution. Contoh Kasus. Widya Rahmawati Distribution Widya Rahmawati Contoh Kasus Mahasiswa A sudah mendapatkan data hasil penelitian Mahasiswa A sedang mempertimbangkan angka statistik mana yang sebaiknya ditampilkan (mean atau median) analisis

Lebih terperinci

KONSEP DASAR PENGOLAHAN CITRA

KONSEP DASAR PENGOLAHAN CITRA KONSEP DASAR PENGOLAHAN CITRA Copyright @ 2007 by Emy 2 1 Kompetensi Mampu membangun struktur data untuk merepresentasikan citra di dalam memori computer Mampu melakukan manipulasi citra dengan menggunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dan suatu obyek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa foto,

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM Dalam bab ini akan dibahas mengenai perancangan dan pembuatan sistem aplikasi yang digunakan sebagai user interface untuk menangkap citra ikan, mengolahnya dan menampilkan

Lebih terperinci

BAB III PROSEDUR DAN METODOLOGI

BAB III PROSEDUR DAN METODOLOGI BAB III PROSEDUR DAN METODOLOGI 3.1 Analisis Masalah Dewasa ini keberadaan robot sebagai mesin yang menggantikan manusia dalam melakukan berbagai pekerjaan semakin diperlukan. Oleh karena itu robot dituntut

Lebih terperinci

BAB I PENDAHULUAN. bit serta kualitas warna yang berbeda-beda. Semakin besar pesat pencuplikan data

BAB I PENDAHULUAN. bit serta kualitas warna yang berbeda-beda. Semakin besar pesat pencuplikan data BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Citra digital merupakan suatu tampilan hasil dari proses digitalisasi citra analog yang diambil dari dunia nyata. Hasil dari proses digitalisasi citra analog

Lebih terperinci

SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON

SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON 30 BAB IV SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON 4.1 Gambaran Umum Sistem Diagram sederhana dari program yang dibangun dapat diilustrasikan dalam diagram konteks berikut. Gambar

Lebih terperinci

BAB 3 ANALISIS DAN PENGEMBANGAN ALGORITMA. ketidakpastian. Citra tersebut terkadang belum tentu dapat diketahui objeknya,

BAB 3 ANALISIS DAN PENGEMBANGAN ALGORITMA. ketidakpastian. Citra tersebut terkadang belum tentu dapat diketahui objeknya, BAB 3 ANALISIS DAN PENGEMBANGAN ALGORITMA 3.1 Analisis Permasalahan Pengolahan citra merupakan sebuah proses yang memiliki banyak faktor ketidakpastian. Citra tersebut terkadang belum tentu dapat diketahui

Lebih terperinci

DOKUMENTASI ULANG NASKAH BRAILLE MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

DOKUMENTASI ULANG NASKAH BRAILLE MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK DOKUMENTASI ULANG NASKAH BRAILLE MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Chairisni Lubis 1, Yoestinus 2 1 Fakultas Teknologi Informasi, Universitas Tarumanagara-Jakarta, Chairisni.fti.untar@gmail.com

Lebih terperinci

EDGE DETECTION MENGGUNAKAN METODE ROBERTS CROSS

EDGE DETECTION MENGGUNAKAN METODE ROBERTS CROSS EDGE DETECTION MENGGUNAKAN METODE ROBERTS CROSS Arifin 1, Budiman 2 STMIK Mikroskil Jl. Thamrin No. 112, 124, 140 Medan 20212 arifins2c@yahoo.com 1, sync_vlo@yahoo.com 2 Abstrak Pengolahan citra digital

Lebih terperinci

IMPLEMENTASI SELF ORGANIZING MAP DALAM KOMPRESI CITRA DIGITAL

IMPLEMENTASI SELF ORGANIZING MAP DALAM KOMPRESI CITRA DIGITAL IMPLEMENTASI SELF ORGANIZING MAP DALAM KOMPRESI CITRA DIGITAL Hisar M. Simbolon (1) Sri Suwarno (2) Restyandito (3) hisarliska@gmail.com sswn@ukdw.ac.id dito@ukdw.ac.id Abstraksi Kompresi citra digital

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tahapan Penelitian Tahapan yang dilakukan dalam penelitian ini disajikan pada Gambar 14, terdiri dari tahap identifikasi masalah, pengumpulan dan praproses data, pemodelan

Lebih terperinci

SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM)

SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM) SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM) Jani Kusanti Program Studi Teknik Informatika, Fakultas Teknik Elektro dan Informatika Universitas Surakarta (UNSA),

Lebih terperinci

Gambar 4.1 Diagram Percobaan

Gambar 4.1 Diagram Percobaan BAB 4 HASIL DAN PEMBAHASAN 4.1 Kerangka Percobaan Pada bab ini dilakukan pembahasan dari implementasi terhadap sistem yang telah dirancang, berupa cara kerja sistem dan pembahasan data-data percobaan yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- 8 BAB II TINJAUAN PUSTAKA 2.1 Studi Pendahuluan Sebelumnya telah ada penelitian tentang sistem pengenalan wajah 2D menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- Means dan jaringan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab landasan teori ini akan diuraikan mengenai teori-teori yang terkait dengan Content Based Image Retrieval, ekstraksi fitur, Operator Sobel, deteksi warna HSV, precision dan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Rancangan Penelitian Pengerjaan tugas akhir ini ditunjukkan dalam bentuk blok diagram pada gambar 3.1. Blok diagram ini menggambarkan proses dari sampel citra hingga output

Lebih terperinci

SEGMENTASI CITRA DIGITAL DENGAN MENGGUNAKAN ALGORITMA WATERSHED DAN LOWPASS FILTER SEBAGAI PROSES AWAL ( November, 2013 )

SEGMENTASI CITRA DIGITAL DENGAN MENGGUNAKAN ALGORITMA WATERSHED DAN LOWPASS FILTER SEBAGAI PROSES AWAL ( November, 2013 ) SEGMENTASI CITRA DIGITAL DENGAN MENGGUNAKAN ALGORITMA WATERSHED DAN LOWPASS FILTER SEBAGAI PROSES AWAL ( November, 2013 ) Pramuda Akariusta Cahyan, Muhammad Aswin, Ir., MT., Ali Mustofa, ST., MT. Jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Menginterprestasi sebuah citra untuk memperoleh diskripsi tentang citra tersebut melalui beberapa proses antara lain preprocessing, segmentasi citra, analisis

Lebih terperinci

Citra Digital. Petrus Paryono Erick Kurniawan Esther Wibowo

Citra Digital. Petrus Paryono Erick Kurniawan Esther Wibowo Citra Digital Petrus Paryono Erick Kurniawan erick.kurniawan@gmail.com Esther Wibowo esther.visual@gmail.com Studi Tentang Pencitraan Raster dan Pixel Citra Digital tersusun dalam bentuk raster (grid atau

Lebih terperinci

FUZZY-NEURO LEARNING VECTOR QUANTIZATION (FNLVQ)

FUZZY-NEURO LEARNING VECTOR QUANTIZATION (FNLVQ) BAB 2 FUZZY-NEURO LEARNING VECTOR QUANTIZATION (FNLVQ) Bab ini akan menjelaskan algoritma pembelajaran FNLVQ konvensional yang dipelajari dari berbagai sumber referensi. Pada bab ini dijelaskan pula eksperimen

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Citra Digital Citra digital dapat diartikan sebagai suatu fungsi dua dimensi f(x.y), dengan x maupun y adalah posisi koordinat sedangkan f merupakan amplitude pada posisi (x,y)

Lebih terperinci

DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI

DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI Marina Gracecia1, ShintaEstriWahyuningrum2 Program Studi Teknik Informatika Universitas Katolik Soegijapranata 1 esthergracecia@gmail.com,

Lebih terperinci

BAB I PENDAHULUAN. Citra (image) istilah lain untuk gambar sebagai salah satu komponen

BAB I PENDAHULUAN. Citra (image) istilah lain untuk gambar sebagai salah satu komponen BAB I PENDAHULUAN 1.1 LATAR BELAKANG Citra (image) istilah lain untuk gambar sebagai salah satu komponen multimedia memegang peranan sangat penting sebagai bentuk informasi visual. Citra mempunyai karakteristik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS

ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS Egi Badar Sambani 1), Neneng Sri Uryani 2), Rifki Agung Kusuma Putra 3) Jurusan Teknik Informatika,

Lebih terperinci

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan BAB II LANDASAN TEORI 2.1. Citra Citra adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus dan intensitas cahaya pada bidang dwimatra

Lebih terperinci

BAB II CITRA DIGITAL

BAB II CITRA DIGITAL BAB II CITRA DIGITAL DEFINISI CITRA Citra adalah suatu representasi(gambaran),kemiripan,atau imitasi dari suatu objek. DEFINISI CITRA ANALOG Citra analog adalahcitra yang bersifat kontinu,seperti gambar

Lebih terperinci

BAB 2 LANDASAN TEORI. citra, piksel, convolution, dan Software Development Life Cycle.

BAB 2 LANDASAN TEORI. citra, piksel, convolution, dan Software Development Life Cycle. BAB 2 LANDASAN TEORI Pada bab ini diuraikan beberapa landasan teori dan konsep konsep yang berhubungan dengan pengolahan citra, di antaranya adalah tentang pengolahan citra, citra, piksel, convolution,

Lebih terperinci

Sesi 2: Image Formation. Achmad Basuki PENS-ITS 2006

Sesi 2: Image Formation. Achmad Basuki PENS-ITS 2006 Sesi 2: Image Formation Achmad Basuki PENS-ITS 2006 Materi Representasi Penglihatan Model Kamera Sampling Dan Kuantisasi Jenis-JenisCitra Mdel Citra Berwarna Format Warna RGB Membaca dan Menampilkan Citra

Lebih terperinci

Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson

Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson Veronica Lusiana Program Studi Teknik Informatika, Universitas Stikubank email: verolusiana@yahoo.com Abstrak Segmentasi citra sebagai

Lebih terperinci

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Kompetensi : 1. Mahasiswa memahami konsep Jaringan Syaraf Tiruan Sub Kompetensi : 1. Dapat mengetahui sejarah JST 2. Dapat mengetahui macam-macam

Lebih terperinci