ANALISIS WAKTU BERAKHIRNYA GEMPA BUMI SUSULAN DENGAN METODE MOGI

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS WAKTU BERAKHIRNYA GEMPA BUMI SUSULAN DENGAN METODE MOGI"

Transkripsi

1 ANALISIS WAKTU BERAKHIRNYA GEMPA BUMI SUSULAN DENGAN METODE MOGI (STUDI KASUS GEMPA BUMI PAGAI SELATAN 25 OKTOBER 2010 DAN PARIAMAN 30 SEPTEMBER 2009) Skripsi Diajukan Untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana Sains ( S.Si ) Disusun Oleh : Rahmat Efendi PROGRAM STUDI FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2011

2 ANALISIS WAKTU BERAKHIRNYA GEMPA BUMI SUSULAN DENGAN METODE MOGI (STUDI KASUS GEMPA BUMI PAGAI SELATAN 25 OKTOBER 2010 DAN PARIAMAN 30 SEPTEMBER 2009) Skripsi Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains ( S.Si ) Disusun Oleh : Rahmat Efendi PROGRAM STUDI FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2011

3 LEMBAR PENGESAHAN ANALISIS WAKTU BERAKHIRNYA GEMPA BUMI SUSULAN DENGAN METODE MOGI ( STUDI KASUS GEMPA BUMI PAGAI SELATAN 25 OKTOBER 2010 DAN PARIAMAN 30 SEPTEMBER 2009 ) Skripsi Diajukan kepada Fakultas Sains dan Teknologi Untuk memenuhi persyaratan memperoleh gelar Sarjana Sains ( S.Si ) oleh : Rahmat Efendi NIM : Pembimbing I Pembimbing II ( Drs.Sutrisno, M.Si ) ( Arif Tjahjono, M.Si ) NIP : NIP : Mengetahui, Ketua Program Studi Fisika ( Drs.Sutrisno, M.Si ) NIP :

4 PENGESAHAN UJIAN Skripsi berjudul Analisis Waktu Berakhirnya Gempa Bumi Susulan Dengan Metode Mogi (Studi Kasus Gempa Bumi Pagai Selatan 25 Oktober 2010 dan Pariaman 20 September 2009), telah diajukan dalam sidang munaqasyah Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta pada tanggal 19 September Skripsi ini telah diterima sebagai salah satu syarat memperoleh gelar Sarjana Sains ( S.Si ) pada Program Studi Fisika. Jakarta, 19 September 2011 Sidang Munaqasyah Penguji I Penguji II ( Dr. Agus Budiono) ( Tati Zera, M.Si ) NIP : NIP : Mengetahui, Dekan Fakultas Sains dan Teknologi Ketua Prodi Fisika ( DR. Syopiansyah Jaya Putra, M.Sis ) ( Drs.Sutrisno, M.Si ) NIP : NIP :

5 LEMBAR PERNYATAAN DENGAN INI SAYA MENYATAKAN BAHWA SKRIPSI INI BENAR HASIL KARYA SENDIRI YANG BELUM PERNAH DIAJUKAN SEBAGAI SKRIPSI ATAU KARYA ILMIAH PADA PERGURUAN TINGGI ATAU LEMBAGA MANAPUN. Jakarta, September 2011 Rahmat Efendi NIM

6 ABSTRAK Wilayah Sumatera Barat dan sekitarnya merupakan daerah yang rentan terhadap bencana gempa bumi, karena propinsi ini dilalui Patahan Singkarak, Sianok, Sumani, Muaro Labuah, Maninjau, dan Patahan Semangko yang memanjang di Pulau Sumatera dari Aceh hingga Lampung. Penelitian ini bertujuan untuk mengetahui waktu berakhirnya gempa bumi susulan (aftershock) di daerah Pagai Selatan dan Pariaman berdasarkan Metode Mogi yang diolah menggunakan metode least square. Berdasarkan hasil perhitungan ternyata untuk gempa Pagai Selatan dan Pariaman mempunyai tipe gempa yang sama yaitu tanpa adanya gempa pendahuluan. Dimana untuk gempa bumi Pagai Selatan cenderung ke Mogi 2 dengan waktu peluruhannya sekitar pada hari ke 25 setelah gempa bumi utama atau dibawah 100 hari dengan frekuensi gempa bumi susulan = 1 (per 24 jam), sedangkan untuk gempa bumi Pariaman cenderung ke Mogi 1 dengan waktu peluruhannya pada hari ke 154 setelah gempa bumi utama atau diatas 100 hari dengan frekuensi gempa bumi susulan = 1 (per 24 jam). Kata Kunci : Aftershock, Mogi, Least square, Peluruhan

7 ABSTRACT West Sumatra and the surrounding region is a region prone to earthquakes, because the province is traversed Fault Singkarak, Sianok, Sumani, Muaro Labuah, Maninjau, and Semangko Fault that extends on the island of Sumatra from Aceh to Lampung. This study aims to determine the expiration of earthquake aftershocks in the South Pagai and Pariaman based on Mogi methods are processed using the method of least squares. Based on the results of the calculation turns out to quake South Pagai and Pariaman have the same type of earthquake that is without a preliminary earthquake. Where to South Pagai earthquakes tend to Mogi 2 with a decay time around on day 25 after a major earthquake or below 100 days with a frequency of aftershocks earthquake = 1 (per 24 hours), while for earthquakes of Pariaman tend to Mogi 1 with a decay time on day 154 after a major earthquake or over 100 days with a frequency of aftershocks earthquake = 1 (per 24 hours). Keywords : Aftershock, Mogi, Least square, The decay

8 KATA PENGANTAR Alhamdulillahi Rabbil Alamin, puji syukur kehadirat Allah SWT berkat izin dan pertolongannya kepada penulis, sehingga penulis dapat menyelesaikan skripsi yang berjudul : Analisis Gempa Bumi Susulan Dengan Metode Mogi (Studi Kasus Gempa Bumi Pagai Selatan 25 Oktober 2010 dan Pariaman 20 September 2009). Penulisan skripsi ini disusun untuk memenuhi salah satu syarat memperoleh gelar kesarjanaan di peminatan Geofisika, Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta. Skripsi ini diharapkan juga bisa menjadi sarana meningkatkan ilmu dan pengetahuan serta pola pikir penulis khususnya di bidang Geofisika. Selama proses penulisan skripsi ini, penulis banyak dibantu oleh berbagai pihak. Maka pada kesempatan ini perkenankanlah penulis menyampaikan rasa hormat dan terima kasih kepada : 1. Bapak DR. Syopiansyah Jaya Putra, M.Sis, selaku Dekan Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta. 2. Bapak Drs. H.Sutrisno, M.Si, selaku Ketua Program Studi Fisika Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta sekaligus selaku pembimbing I yang ditengah kesibukkannya dapat meluangkan waktu untuk mengarahkan dan berdiskusi dengan penulis. 3. Bapak Arif Tjahjono, M.Si, selaku pembimbing II, beliau tak pernah bosan untuk selalu mengarahkan dan berdiskusi dengan penulis dalam proses penulisan skripsi ini.

9 4. Bapak Wahyudi, MT, teman setia penulis dalam penulisan skripsi ini, terima kasih pak atas ruang kerja bapak, komputer+internetnya, saran dan diskusinya selama ini. 5. Mas Bayu, Mas Siroj dan Mba Novi terima kasih atas bantuan dan perhatiannya selama penulis melakukan penelitian di BMKG Kemayoran Jakarta. 6. Abi, Umi, A endin, Teh Ika, Teh Lili, Ubay, Nurul dan seluruh keluarga besar yang telah membantu baik secara moral maupun material serta untuk alm. Kakak saya Muhammad Syahrullah. 7. Teman-teman perjuangan penulis angkatan 2007 Fisika FST UIN Jakarta. 8. Widia Fatimah seseorang yang spesial di hati penulis. Terima kasih atas segala bantuan dan dorongan yang senantiasa tercurah kepada penulis untuk selalu berusaha menyelesaikan skripsi ini. 9. Semua pihak yang tidak dapat disebutkan satu persatu, yang telah membantu terselesaikannya penulisan skripsi ini. Penulis menyadari bahwa penulisan skrpsi ini masih banyak kekurangannya. Oleh karena itu penulis mengharapkan kritik dan saran yang membangun demi kebaikan penulis pada masa mendatang. Semoga skripsi ini dapat bermanfaat dan menambah wawasan pembaca maupun bagi penulis sendiri. Jakarta, September 2011 Penulis

10 DAFTAR ISI Halaman JUDUL... LEMBAR PENGESAHAN SKRIPSI... LEMBAR PENGESAHAN UJIAN... LEMBAR PERNYATAAN... ABSTRAK... ABSTRACT... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... i ii iii iv v vi vii ix xi xii xiii BAB I PENDAHULUAN 1.1. Latar Belakang Perumusan Masalah Tujuan Penelitian Manfaat Penelitian Batasan Masalah Sistematika Penulisan... 7 BAB II DASAR TEORI 2.1. Pengertian Gempa Bumi... 9

11 2.2. Kondisi Seismotektonik Sumatera Barat Kondisi Geologi Sumatera Barat Efek Struktur Batuan Terhadap Penjalaran Energi Mekanisme Gempa Susulan Hubungan Frekuensi Gempa bumi Susulan Dengan Waktu Menurut Metode Mogi BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Peralatan dan Data Penelitian Pengolahan Data BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Analisis Waktu Berakhirnya Gempa Bumi Pagai Selatan 25 Oktober Hasil Analisis Waktu Berakhirnya Gempa Bumi Pariaman 30 September Hasil Analisis Waktu Berakhirnya Gempa Bumi Pagai Selatan 25 Oktober 2010 Dan Pariaman 30 September BAB V KESIMPULAN DAN SARAN 5.1. Kesimpulan Saran DAFTAR PUSTAKA... 50

12 DAFTAR TABEL Halaman Tabel 1.1. Data-data 4 dari 15 gempa utama yang merusak terjadi di Sumatera Barat dalam kurun Tabel 4.1. Distribusi Gempa Bumi Pagai Selatan 25 Oktober Tabel 4.2. Perhitungan Dari Rumus Persamaan Regresi Linier Metode Mogi 1 Untuk Gempa Pagai Selatan Tabel 4.3. Perhitungan Dari Rumus Persamaan Regresi Linier Metode Mogi 2 Untuk Gempa Pagai Selatan Tabel 4.4. Distribusi Gempa Bumi Pariaman 30 september Tabel 4.5. Perhitungan Dari Rumus Persamaan Regresi Linier Metode Mogi 1 Untuk Gempa Pariaman Tabel 4.6. Perhitungan Dari Rumus Persamaan Regresi Linier Metode Mogi 2 Untuk Gempa Pariaman... 47

13 DAFTAR GAMBAR Halaman Gambar 1.1. Tatanan Tektonik di Indonesia... 1 Gambar 1.2. Tektonik wilayah Indonesia bagian barat dan kecepatan pergerakan Lempeng Indo-Australia yang menunjam di bawah Lempeng Eurasia (Lasitha dkk., 2006)... 3 Gambar 2.1. Jalur Patahan Sumatera Gambar 2.2. Peta Geologi Sumatra Barat Gambar 4.1. Grafik Distribusi Gempa Pagai Selatan 25 oktober Gambar 4.2. Grafik Distribusi Gempa Pariaman 30 September

14 DAFTAR LAMPIRAN Halaman Lampiran 1. Data Distribusi Peluruhan Gempa Bumi Pagai Selatan 25 Oktober Lampiran 2. Data Distribusi Peluruhan Gempa Bumi Pariaman 30 September Lampiran 3. Laporan Observasi BMKG...

15 `BAB I PENDAHULUAN 1.1. Latar Belakang Kepulauan Indonesia merupakan salah satu wilayah yang rawan gempa bumi tektonik, hal ini dikarenakan kepulauan Indonesia merupakan daerah pertemuan tiga lempeng tektonik benua, yaitu : Lempeng Eurasia bergerak dari utara ke selatan tenggara, Lempeng Indo-Australia bergerak dari selatan menuju utara dan Lempeng Pasifik yang bergerak dari timur ke barat. Kondisi ini menjadikan wilayah Indonesia sebagai daerah tektonik aktif dengan tingkat seismisitas atau kegempaan yang tinggi. Salah satunya termasuk di daerah Sumatera Barat. 5-6 cm/yr Gambar 1.1. Tatanan tektonik di Indonesia

16 Wilayah Provinsi Sumatera Barat yang terletak di bagian barat Pulau Sumatera merupakan bagian dari Lempeng Eurasia yang bergerak sangat lambat dan relatif ke arah tenggara dengan kecepatan sekitar 0,4 cm/tahun. Relatif berada di bagian barat provinsi ini, terdapat interaksi antara Lempeng Eurasia dan Lempeng Samudera Hindia yang bergerak relatif ke arah utara dengan kecepatan mencapai 7 cm/tahun. Interaksi ini menghasilkan pola penunjaman atau subduksi menyudut (oblique), yang diperkirakan telah terbentuk sejak Zaman Kapur dan masih terus berlangsung hingga kini. Selain subduksi, interaksi kedua lempeng ini juga menghasilkan pola struktur utama Sumatera, yang dikenal sebagai Zona Sesar Sumatera dan Zona Sesar Mentawai. Wilayah barat Pulau Sumatera merupakan salah satu kawasan yang terletak pada pinggiran lempeng aktif (active plate margin) dunia yang dicerminkan tingginya frekuensi kejadian gempa bumi di wilayah ini. Sebaran gempa bumi di wilayah ini tidak hanya bersumber dari aktivitas zona subduksi, tetapi juga dari sistem sesar aktif di sepanjang Pulau Sumatera.

17 Gambar 1.2. Tektonik wilayah Indonesia bagian barat dan kecepatan pergerakan Lempeng Indo-Australia yang menunjam di bawah Lempeng Eurasia (Lasitha dkk., 2006). Ada dua sumber gempa di Sumatera, pertama gempa yang disebabkan oleh penunjaman Lempeng Samudera Indo-Australia ke bawah Lempeng Benua Eurasia (Sunda Subductian Zone) dan kedua gempa yang berasosiasi dengan patahan aktif di darat yaitu Patahan Semangko yang memanjang di Pulau Sumatera dari Aceh hingga Lampung. Gempa-gempa yang terjadi di sekitar Sunda Subductian Zone sangat berpotensi menimbulkan bencana tsunami yang dapat meluluhlantakan daerah Pantai Barat Sumatera, tidak terkecuali daerah Sumatera Barat. Patahan Semangko bergerak sangat aktif, terutama di beberapa patahan lokal yang ada di Sumatera Barat, seperti Patahan Singkarak, Sianok, Sumani, Muaro Labuah, dan Maninjau.

18 Tabel 1.1. Data-data 4 dari 15 gempa utama yang merusak terjadi di Sumatera Barat dalam kurun No. Kejadian Gempa Episenter Mag. 2 (SR) h 3 (km) Lokasi Tanggal Waktu 1 Lintang ( ) Bujur ( ) 1. 10/04/ :29: LS BT 6,7 19 Perairan Kepulauan Mentawai 115 km Barat Daya Kota Padang 2. 06/03/ :49: LS BT 6,4 19 Sekitar Kota Padang Panjang 50 km Utara Timur Laut Kota Padang 3. 12/09/ :49: LS BT 7,9 30 Perairan Kepulauan Mentawai 190 km Selatan Tenggara Kota Padang 4. 25/02/ :36: LS BT Perairan Kepulauan Mentawai 160 km Selatan Barat Daya Kota Padang 1 Dalam UTC (coordinated universal time), 2 Magnitudo, dan 3 Kedalaman.

19 Gambar 1.3. Peta historis gempa merusak di Sumatera Barat Setiap gempa bumi akan berulang kembali pada daerah yang sama. Seperti halnya untuk gempa bumi Pagai Selatan dan Pariaman. Dengan alasan tersebut maka sangat penting untuk dilakukan penelitian tentang Analisis Waktu Berakhirnya Gempa Bumi Susulan Dengan Metode Mogi (Studi Kasus Gempa Pagai Selatan 25 Oktober 2010 Dan Pariaman 30 September 2009) Perumusan Masalah Berdasarkan uraian dari latar belakang di atas, maka perumusan masalah dalam penelitian ini adalah :

20 1. Bagaimanakah aktivitas gempa bumi susulan untuk gempa bumi Pagai Selatan dan Pariaman ditinjau dari waktu berakhirnya berdasarkan Metode Mogi (studi kasus gempa Pagai Selatan 25 Oktober 2010 dan Pariaman 30 September 2009)? 2. Bagaimanakah tipe gempa bumi susulan dari gempa Pagai Selatan dan Pariaman? 1.3. Tujuan Penelitian 1. Mengetahui waktu berakhirnya gempa bumi susulan (gempa bumi Pagai Selatan tanggal 25 Oktober 2010 dan Pariaman tanggal 30 September 2009 berdasarkan Metode Mogi). 2. Mengetahui tipe gempa bumi tersebut menurut Mogi Manfaat Penelitian Manfaat yang diharapkan dari penelitian ini nantinya adalah : 1. Sebagai acuan memprediksi berakhirnya gempa bumi susulan yang terjadi di daerah Pagai Selatan dan Pariaman di masa datang. 2. Diharapkan dapat memberikan informasi yang sesungguhnya kepada masyarakat sekitar tentang karakteristik dari gempa bumi yang terjadi Batasan Masalah Data yang digunakan dalam penelitian ini adalah : a. Gempa bumi Pagai Selatan, Sumatera Barat pada tanggal 25 Oktober 2010, dengan parameter gempa utama sebagai berikut : Pukul : 21:42:20 WIB

21 Lokasi : 3.61 LS BT, 78 km Barat Daya Pagai Selatan, Mentawai-Sumatera Barat Kedalaman Kekuatan : 10 km : 7.2 SR a. Gempa bumi Pariaman, Sumatera Barat pada tanggal 30 September 2009, dengan parameter gempa utama sebagai berikut : Pukul Lokasi : 17:16:09 WIB : Koordinat 0.84 LS BT, 57 km Barat Daya Pariaman-Sumatera Barat Kedalaman Kekuatan : 71 km : 7.6 SR b. Metode pendekatan statistik yang digunakan adalah metode kuadrat terkecil yang dimasukkan ke dalam metode perhitungan peluruhan gempa Mogi, karena karakteristik gempa bumi di daerah Sumatera Barat yang paling mendekati dengan menggunakan Metode Mogi berdasarkan nilai konstanta r yang mendekati -1 dan hasil laporan lapangan dari BMKG Sistematika Penulisan Sistematika penulisan skripsi ini terbagi dalam 5 bagian, dengan perincian sebagai berikut : BAB I : PENDAHULUAN Bab ini terdiri dari Latar Belakang, Rumusan Masalah, Tujuan Masalah, Tujuan Penelitian, Manfaat Penelitian, Batasan Masalah, dan Sistematika Penulisan.

22 BAB II : LANDASAN TEORI Bab ini terdiri dari Pengertian Gempa Bumi, Kondisi Seismotektonik Sumatera Barat, Kondisi Geologi Sumatera Barat, Efek Struktur Batuan Terhadap Penjalaran Energi, Mekanisme Gempa Susulan, dan Hubungan Frekuensi Gempa Bumi Susulan Dengan Waktu Menurut Metode Mogi. BAB III : METODE PENELITIAN Bab ini terdiri dari Waktu dan Tempat Penelitian, Peralatan dan Data Penelitian, dan Pengolahan Data. BAB IV : HASIL DAN PEMBAHASAN Bab ini terdiri dari Hasil Pengolahan Data, Analisa Aktivitas Gempa Susulan, dan Interpretasi Data Metode Perhitungan Gempa Susulan Mogi. BAB V : PENUTUP Bab ini terdiri dari Kesimpulan dan Saran.

23 BAB II DASAR TEORI 2.1. Pengertian Gempa Bumi Gempa bumi adalah peristiwa pelepasan energi dari terakumulasinya gaya akibat stress (tekanan) dalam bumi dalam bentuk gelombang seismik. Pusat gempa bumi, merupakan titik (tepatnya area karena merupakan luasan) di dalam bumi di mana gempa terjadi disebut hiposenter dan titik di permukaan bumi tepat di atas hiposenter disebut episenter. Karena perambatan gelombang gempa merupakan gelombang seismik maka alat untuk merekamnya disebut seismograf dan hasil rekaman disebut seismogram. Dari rekaman tersebut maka dapat disimpulkan penyebab terjadinya, lokasi asalnya, kekuatannya, jenisnya serta sifat-sifatnya. Bahkan dari gelombang gempa tersebut dapat diketahui struktur bagian bumi. Intensitas atau kekuatan gempa bumi didasarkan pada amplitudo gelombang seismik yang terekam pada seismogram dan dinyatakan dalam skala richter (SR). Gempa bumi yang merusak biasanya mempunyai kekuatan (magnitudo) lebih dari 6 SR, walau sebenarnya ditentukan pula oleh kedalaman hiposenternya. A. Berdasarkan Proses Terjadinya, Gempa Bumi Dibagi Menjadi : 1. Gempa pendahuluan, amplitudo kecil dan terjadi sebelum gempa utama. 2. Gempa utama, amplitudonya besar sehingga dapat dirasakan oleh manusia.

24 3. Gempa susulan, terjadinya setelah gempa utama, lemah tetapi terjadi berulang. B. Proses Terjadinya Gempa Bumi Lempeng samudera yang rapat massanya lebih besar ketika bertumbukkan dengan lempeng benua di zona tumbukan (subduksi) akan menyusup ke bawah. Gerakan lempeng itu akan mengalami perlambatan akibat gesekan dari selubung bumi. Perlambatan gerak itu menyebabkan penumpukkan energi di zona subduksi dan zona patahan. Akibatnya di zona-zona itu terjadi tekanan, tarikan, dan geseran. Pada saat batas elastisitas lempeng terlampaui, maka terjadilah patahan batuan yang diikuti oleh lepasnya energi secara tiba-tiba. Proses ini menimbulkan getaran partikel ke segala arah yang disebut gelombang gempa bumi. Gambar 2.1. Jalur Patahan Sumatera

25 2.2. Kondisi Seismotektonik Sumatera Barat Kondisi seismotektonik sangat mempengaruhi aktifitas kegempaan dan berpengaruh besar terhadap intensitas gempa bumi yang dirasakan di daerah Sumatera Barat dan sekitarnya. Menurut peta seismotektonik dari W. Hamilton (1979) di Sumatera Barat terdapat beberapa sesar atau patahan yang mengakibatkan aktifitas gempa bumi di daerah ini, Pulau Sumatera berada di atas patahan besar Sumatera atau Patahan Semangko. Patahan Semangko itu dimulai dari Teluk Semangko di ujung Sumatera sampai ke Teluk Andaman di Pulau Nicobar. Sampai di teluk tersebut, spreading (pemekaran). Dari sinilah, sumber terjadinya pergerakan lempeng kulit bumi karena adanya magma yang keluar ke permukaan. Terdapat pertemuan dua lempeng besar di Pulau Sumatera, Lempeng Samudra Hindia-Australia dan Lempeng Eurasia atau disebut juga lempeng benua. Ketika magma bergerak memberikan tekanan ke Lempeng Samudra Hindia-Australia dan tekanan itu semakin lama semakin kuat. Sementara Lempeng Eurasia cenderung bersifat pasif. Karena tekanan yang terus semakin kuat, sehingga terjadi beberapa patahan. Akibat patahan tersebut terlepaslah energi yang selama ini tersimpan dan menghasilkan gempa. Patahan itulah yang menjadi episentrum gempa. Adanya subduksi aktif dan patahan di Sumatera menyebabkan munculnya Bukit Barisan sejajar patahan, yang merupakan lapisan permukaan tanah yang terangkat. Sementara itu, di Selat Sunda terjadi mekanisme tekanan dan regangan, yang menimbulkan struktur geologi yang unik seperti munculnya Gunung Krakatau di selat itu. Sepanjang Bukit Barisan berderet-deret lembah yang lurus memanjang, seperti Lembah Semangko (Teluk Semangko di

26 Lampung), Lembah Kepahiang, Ketahun, Kerinci, Muara Labuh, Singkarak Maninjau, Rokan Kiri, Gadis, Angkola, Alas, Tangse, dan Aceh. Lembah-lembah ini merupakan zona lemah patahan besar Sumatera. Disini kulit bumi retak, dan satu sisi dengan sisi lainnya bergerak horizontal. Pergerakan pada umumnya ke kanan, yaitu blok timur bergerak ke tenggara dan blok barat sebaliknya. Di sepanjang Bukit Barisan ditemukan perisai-perisai yang diatasnya terletak sejumlah besar graben-graben. Graben-graben yang terletak diatas kulminasi Bukit Barisan ini pada umumnya berbentuk tidak memanjang, akan tetapi berupa persegi empat. Hal ini disebabkan karena bentuk memanjang dari graben itu telah diganggu oleh aktivitas vulkanik yang kemudian membentuk depresi vulkanotektonik. Wilayah Provinsi Sumatera Barat yang terletak di bagian barat Pulau Sumatera merupakan bagian dari Lempeng Eurasia yang bergerak sangat lambat dan relatif ke arah tenggara dengan kecepatan sekitar 0,4 cm/tahun. Relatif berada di bagian barat provinsi ini, terdapat interaksi antara Lempeng Eurasia dan Lempeng Samudera Hindia yang bergerak relatif ke arah utara dengan kecepatan mencapai 7 cm/tahun. Interaksi ini menghasilkan pola penunjaman atau subduksi menyudut (oblique), yang diperkirakan telah terbentuk sejak Zaman Kapur dan masih terus berlangsung hingga kini. Selain subduksi, interaksi kedua lempeng ini juga menghasilkan pola struktur utama Sumatera, yang dikenal sebagai Zona Sesar Sumatera dan Zona Sesar Mentawai. Wilayah barat Pulau Sumatera merupakan salah satu kawasan yang terletak pada pinggiran lempeng aktif (active plate margin) dunia yang dicerminkan

27 tingginya frekuensi kejadian gempa bumi di wilayah ini. Sebaran gempa bumi di wilayah ini tidak hanya bersumber dari aktivitas zona subduksi, tetapi juga dari sistem sesar aktif di sepanjang Pulau Sumatera Kondisi Geologi Sumatera Barat Geologi daerah Sumatera Barat dibentuk oleh batuan metamorf, batuan sedimen, batuan vulkanik, batuan terobosan dan endapan aluvial. Kisaran umur batuan tersebut dari jura hingga resen. Batuan yang lebih tua berada di bagian timur wilayah kota Padang. Penyebaran batuannya tercermin dari bentuk morfologinya. Morfologi landai atau dataran rendah, seperti tempat dimana bandara Internasional Minangkabau berada, disusun oleh endapan alluvial. Endapan ini terdiri dari lanau, pasir dan kerikil. Selain itu juga dijumpai endapan rawa seperti yang terdapat di sebelah utara bandara. Secara umum, cekungan Padang dapat dibedakan atas 3 unit geologi, pertama "Kipas Aluvial" yang terletak pada dataran bagian selatan dan sebelah timur Kotamadya Padang yang merupakan aluvial multi siklus yang ekstensif, terdiri dan flufiovulkanik yang terkonsolidasi dengan deposit lahar, vulkanik tuff dan andesit yang umumnya ditutupi oleh lapisan pasir kasar pleistosen dengan ketebalan antara 5 sampai dengan 10 m, kedua "Daerah Timbunan Pasir Pantai" terdiri dari 15 buah perbukitan pasir yang rendah yang berisolasi dengan lebar +3 km terletak di sebelah utara dan merupakan tahapan pembentukan pantai pada Masa Pleistosen, ketiga daerah "Rawa Rawa Belakang" yang terdapat antara masing-masing timbunan pasir dan merupakan deposit lagoonal yang dominan diisi oleh lumpur sampai pasir lempungan.

28 Gambar 2.2. Peta Geologi Sumatera Barat 2.4. Efek Struktur Batuan Terhadap Penjalaran Energi Gempa bumi adalah peristiwa pelepasa pelepasan n sejumlah energi pada batuan kerak bumi, salah satu bentuk energi tersebut adalah energi gelombang yang disebut dengan gelombang seismik, gelombang seismik tersebut dipancarkan dari sumbernya dan menjalar ke segala arah (spheris) melewati lapisan-lapisan bumi yang terdiri dari bermacam-macam formasi geologi. Penjalaran ini dipancarkan ke segala arah dengan energi yang sama, tetapi pada saat melewati formasi

29 batuan yang berbeda akan menimbulkan efek yang berbeda pada batuan tersebut, tergantung dari rigiditas / kekerasan batuan. Apabila energi gelombang seismik melewati struktur yang lebih padat maka efek energi itu akan diredam sehingga batuan-batuan tersebut akan mengalami efek yang lebih kecil dari efek yang seharusnya dirasakan apabila formasinya sama dengan formasi geologi asal sumber energi. Apabila energi gelombang melewati formasi geologi yang lebih lunak maka efeknya akan lebih besar daripada efek yang seharusnya dirasakan. Seperti struktur aluvial dimana struktur batuan ini bisa sangat berbahaya terhadap getaran karena dapat memperbesar amplitudo getaran akibat amplifikasi. Pelemahan dari seismik wave ini berkaitan erat dengan sifat elastisitas dari bumi / media dan sifat gelombang itu sendiri, tentu bumi bukan medium yang ideal dan perfectly elastic dan bahwa propagasi gelombang akan teratenuasi dengan fungsi waktu / jarak karena energi yang hilang. Beberapa hal yang mempengaruhi attenuation adalah : 1. Kecepatan rambat gelombang dalam suatu media. 2. Kontras antar kecepatan media yang dilewati saat merambat dari medium satu ke yang lain : Snells law. 3. Frekuensi gelombang, dan lain-lain. Ada satu istilah yang disebut dengan intrinsic attenuation atau yang lebih dikenal dengan Q parameter yaitu suatu ukuran besar energi yang hilang (loss energy) dikarenakan suatu proses nonelastik, semakin besar nilai Q, berarti semakin lemah attenuation bila Q mendekati nol berarti attenuation akan sangat kuat, Q untuk p wave akan lebih besar dari Q untuk S wave, Q akan menguat

30 dengan menguatnya kecepatan / densitas batuan. Pengaruh efek penjalaran energi ini tentu sangat penting mengingat kondisi geologi Sumatera Barat yang beragam sehingga dapat diambil pertimbangan untuk mengetahui penyebab intensitas yang berbeda pada berbagai tempat. Peristiwa penjalaran energi gempa ini juga bisa menimbulkan peristiwa-peristiwa alam yang lain seperti peristiwa liquifaction yaitu keluarnya lumpur dari rekahan-rekahan tanah, hal ini terjadi karena mencairnya lapisan subsurface yang biasanya berstruktur pasir, lapisan pasir yang terletak di bawah permukaan akibat energi getaran gempa akan mencair atau berubah manjadi lumpur sehingga lapisan permukaan yang lebih solid akan turun yang menyebabkan terjadinya pecahan-pecahan, sehingga lumpur akan keluar lewat rekahan tersebut, Peristiwa ini banyak terjadi di tanah pesisir, dan kondisi lapisan tanah seperti ini juga sangat membahayakan terhadap bangunan yang ada diatasnya Mekanisme Gempa Susulan Gempa bumi susulan adalah gempa bumi yang timbul setelah terjadinya gempa bumi utama. Hal ini disebabkan saat gempa bumi utama, energi yang dikeluarkannya belum semuanya dilepaskan, sehingga pelepasan energi yang tersisa inilah gempa bumi susulan (Kiyoo Mogi 1966). Gempa susulan (Mogi) mempunyai tipe-tipe sebagai berikut : 1. Tipe pertama yaitu terjadi gempa bumi utama tanpa gempa pendahuluan, tetapi selalu diikuti oleh gempa bumi susulan, yang terbanyak ini adalah gempa bumi tektonik.

31 2. Tipe kedua secara prinsip gempa bumi bahwa gempa bumi pendahuluan terjadi terlebih dahulu, kemudian terjadi gempa bumi utama, dan disertai oleh gempagempa bumi susulan yang cukup banyak. 3. Tipe ketiga gempa bumi swarm dimana jumlah dan besarnya gempa bumi tersebut lambat laun bertambah sesuai dengan waktu dan berkurang sesudah beberapa lama. Hal ini tidak berpengaruh terhadap prinsip gempa bumi didalam tipe swarm. Dari segi waktu kejadian dan besarnya energi yang dipancarkan oleh gempa susulan bervariasi kejadian berkisar antara beberapa hari sampai dua minggu bahkan bisa mencapai beberapa bulan atau beberapa tahun. Beberapa faktor yang mempengaruhi antara lain kekuatan sumber gempa utama, sifat fisik, kerapuhan, umur batuan, dan lain sebagainya (Kiyoo Mogi, 1966). Pada dasarnya gempa bumi yang mempunyai frekuensi terbanyak adalah gempa bumi-gempa bumi susulan. Gempa bumi susulan yang dirasakan secara umum dinyatakan sebagai patahan lokal dari permukaan bumi. Dalam model lain bahwa gempa bumi susulan tidak selalu terjadi pada patahan yang sama, dan biasanya terjadi di dalam daerah patahan yang luas mengelilingi gempa bumi utama. Hal ini serentak dengan terjadinya pada daerah patahan diantaranya fokus (Masajiro Imoto). Karena banyak sekali tegangan sisa yang umumnya tertinggal di dalam dan disekitar daerah patahan tersebut dan juga tegangan konsentrasi yang tinggi disekitarnya maka akan terjadi bentukan retak-retakan dan patahan-patahan. Ada beberapa bentuk patahan-patahan diantaranya :

32 1. Gerakan sejajar jurus sesar, disebut sesar mendatar atau strike slip fault. Stress yang terbesar adalah stress horisontal dan stress vertikal kecil sekali. 2. Sesar relatif ke bawah terhadap blok dasar, disebut sesar turun / sesar normal atau gravity fault. 3. Gerakan relatif ke atas terhadap blok dasar, disebut sesar naik atau thrust fault / reverse fault. Gempa bumi susulan disebabkan oleh pergerakaan patahan yang sama yang ditimbulkan oleh gempa bumi utama. Mekanisme gempa bumi susulan ini tampak menunjukkan sifat berikut ini : 1. Gempa bumi susulan terjadi terutama pada daerah-daerah yang terangkat naik pada waktu timbulnya gempa bumi utama. Daerah ini bersesuaian pada daerah patahan karena volume daerah ini bertambah akibat suatu proses patahan. 2. Gempa bumi susulan terjadi pada daerah yang luas, sering terjadi pada satu sisi episenter atau patahan, disekitar sekeliling gempa bumi utama. Distribusi yang serupa dari model patahan yang dikemukakan oleh Mogi di dalam laboratorium. Sedangkan distribusi yang tidak serupa dari model patahan sebagai akibat pada struktur sifat patahan yang peka. 3. Gempa bumi susulan jarang terjadi pada daerah-daerah yang dalam. Mekanisme gempa susulan ini dari kerak bumi yang bebas permukaan adalah pengaruh utama pada kelanjutan dari suatu kerapatan daerah patahan karena itu gempa bumi susulan pada daerah-daerah dalam tidak diharapkan terjadi. Bertambah regangan yang disebabkan oleh tekanan tinggi, suhu tinggi dan

33 juga regangan ulang yang terjadi berlanjut dari suatu daerah patahan (Matuzuwa 1954 dan Mogi 1962). 4. Konstanta b dalam hubungan magnitude frekuensi dari gempa bumi susulan lebih besar dari pada gempa bumi lainnya, kecuali gempa bumi pendahuluan (Mogi 1962 dan Sujehiro 1964). Nilai b yang besar menunjukkan keadaan patahan dari pada daerah-daerah gempa bumi susulan. Jadi fenomena gempa bumi susulan tampak menjelaskan sebagai bagian fundamental dari suatu patahan pada lapisan bumi. Dalam kenyataan di lapangan gempa bumi pendahuluan sulit untuk dikenali dan kadang sulit membedakan antara gempa bumi pendahuluan dengan gempagempa kecil (micro earthquake) atau aktifitas kegempaan harian. Seperti halnya peristiwa kejadian gempa bumi belum ada suatu negara maju dibidang seismologi dan berhasil dengan baik membuat ramalan tentang kapan (waktu) terjadinya gempa bumi, maupun gempa susulan. Tetapi berdasarkan Teori Mogi ini, gempa susulan dapat dipastikan terjadi dengan kekuatan lebih kecil dari gempa utamanya, namun tetap saja belum dapat diramalkan kapan secara pasti terjadi. Bahaya dari gempa yang terjadi yaitu bahaya yang diakibatkan oleh getaran gempa itu sendiri. Pada umumnya tanah yang lunak akan mengalami getaran yang lebih kuat dari tanah padat, pada tanah pasir pada gelombang gempa tertentu ada kalanya terjadi proses pencairan (liquifaction). Sehingga tanah dasar menjadi lunak sama sekali. Bangunan yang diatasnya dapat tenggelam. Bahaya lainnya yaitu terjadi karena tanah longsor, keluarnya gas-gas dari dalam tanah melalui rekahan-rekahan yang terjadi, gelombang laut (tsunami), kebakaran akibat

34 konsleting listrik atau pecahnya pipa gas, banjir akibat bobolnya tanggul sungai atau bendungan, luapan air danau karena guncangan gempa. Dalam banyak hal, gempa bumi susulan dapat juga menambah kerusakan atau merobohkan suatu bangunan. Setelah terjadinya suatu gempa bumi kuat biasanya akan diikuti oleh gempa bumi-gempa bumi susulan yang pada umumnya baik kekerapan maupun kekuatannya makin lama makin berkurang. Gempa bumi-gempa bumi susulan ini dapat dirasakan selama 3 bulan atau kadang-kadang sampai 6 bulan setelah terjadinya gempa bumi utama (main shock) Hubungan Frekuensi Gempa bumi Susulan Dengan Waktu Menurut Metode Mogi Proses terjadinya patahan yang sifatnya tergantung pada tingkat tegangan, dan juga kurva frekuensi dari gempa bumi elastis yang disertai patahan-patahan lokal dibawah tegangan konstan yang diperkirakan, merupakan suatu fungsi eksponensial. Sesuai dengan percobaan laboratorium (Mogi, 1962) kurva frekuensi gempa bumi elastis dibawah beban konstan dinyatakan dengan fungsi eksponensial. Karena itu jika tegangan pada daerah gempa bumi susulan adalah konstan, maka merupakan kurva frekuensi eksponensial yang diharapkan (Rasyidi Sulaiman, 2006). Menurut Mogi I (1962) bahwa tingkat aktivitas gempa bumi susulan (t 100 hari), dalam hubungan antara frekuensi gempa bumi terhadap waktu adalah : N(t) = a..... (2.1) Dimana: N(t) = frekuensi dari gempa bumi susulan pada selang waktu tertentu.

35 t = waktu sesudah gempa bumi utama terjadi. a, b = keduanya merupakan konstanta. [a = tingkat seismisitas daerah yang diteliti, dan b = parameter seismotektonik (Mogi-Miyamura)]. Tingkat frekuensi yang menurun didalam gempa bumi susulan berurutan. Ternyata nilai b dari persamaan (2.1) menunjukkan tingkat penurunan frekuensi dari gempa bumi susulan. Hal ini tergantung pada kenyataan bahwa tegangan sisa pada daerah gempa bumi susulan berkurang cepat dalam daerah yang bersuhu tinggi karena akibat suatu aliran batuan (rock-flow). Sedangkan Metode Mogi II (1962) menyatakan bahwa tinggat aktifitas gempa bumi susulan (t 100 hari) dalam hubungan antara frekuensi gempa bumi terhadap waktu adalah sebagai berikut : N(t) = a.... (2.2) Dimana: N(t) = frekuensi dari gempa bumi susulan pada selang waktu tertentu. t = waktu sesudah gempa utama terjadi. a, b = keduanya merupakan konstanta.

36 BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Kegiatan Penelitian ini dilakukan selama tujuh bulan dari tanggal 01 Oktober April Penelitian ini dilaksanakan di Badan Meteorologi dan Klimatologi Geofisika (BMKG) yang beralamat di Jalan Angkasa 1 No. 2 Kemayoran Jakarta 10720, Indonesia Peralatan dan Data Penelitian Peralatan dan data yang digunakan dalam penelitian sebagai berikut : A. Peralatan Penelitian : 1. Perangkat keras : a. Satu unit komputer Intel Pentium IV. b. Printer Laser Jet c. Flashdisk 2 GB. 2. Perangkat Lunak : a. Microsoft Office Excel 2007 untuk mengolah data-data gempa bumi susulan. b. Microsoft Office Word 2007 untuk pengetikan. B. Data Penelitian : Data penelitian yang digunakan dalam perhitungan frekuensi gempa bumi susulan terhadap waktu adalah jumlah data gempa-gempa susulan yang terjadi setelah terjadi setelah gempa bumi Pagai Selatan tanggal 25 Oktober 2010 dan

37 gempa bumi Pariaman tanggal 30 September 2009 berdasarkan rekaman data gempa bumi dari Badan Meteorologi dan Klimatologi Geofisika (BMKG) Jakarta. 3.3 Pengolahan Data Diagram Alur Pengolahan Data : INPUT DATA FREKUENSI WAKTU KONSTANTA a KONSTANTA b KONSTANTA r 1. MOGI-1 (t 100 hari) Log n(t) = log a - b. log t N(t) = a. 2. MOGI-2 (t 100 hari) Ln n (t) = Ln a b.t N(t) = a. ANALISIS KESIMPULAN

38 Data frekuensi gempa bumi susulan Pagai Selatan dan Pariaman dihitung setelah terjadinya gempa bumi utama. Kemudian untuk mendapatkan nilai konstanta dari persamaan Metode Mogi I dan Metode Mogi II pada hubungan antara frekuensi gempa bumi susulan terhadap waktu biasanya ditentukan metode kuadrat terkecil. Hubungan antara frekuensi dan waktu dari metoda di atas tadi dapat dianggap sebagai suatu hubungan linier. Jika disusun pengamatan banyaknya frekuensi gempa bumi susulan yang menurun terhadap waktu, maka konstanta-konstanta dan koefisien korelasi dari persamaan regresi linier misal persamaan liniernya : Y = A + BX (3.1) Maka nilai konstanta a dan b dapat di peroleh, yaitu : Σ Σ {Σ } B = b = Σ {Σ }..... (3.2) Σ {Σ } A = Log a =... (3.3) ( ) ( ) ( ) r = (3.4) { ) { ( ) } Dimana: n = banyaknya data = jumlah data y berjalan dari I = 1,2,3 r = koefisien korelasi -1 r 1 Bila nilai r mendekati -1, hubungan variabel y dan x adalah negative sangat kuat. Bila nilai r mendekati 1, hubungan variabel y dan x positif sangat

39 kuat. Bila nilai r mendekati nol, tidak ada hubungan variabel y dan x artinya tidak ada hubungan diantara waktu (t) dan frekuensi gempa susulan n(t). Setelah di dapat konstanta A, B dan r kemudian konstanta-konstanta tersebut dimasukkan ke persamaan Metode Mogi I dan Metode Mogi 2 yaitu : Metode Mogi 1 : Log n(t) = log a - b. log t (3.5) Dimana : Y = Log n(t) A = Log a B = b X = Log t Metode Mogi 2 : Ln n (t) = Ln a b.t (3.6) Dimana : Y = Ln n (t) A = Ln a B = b X = t

40 BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Analisis Waktu Berakhirnya Gempa Bumi Pagai Selatan 25 Oktober 2010 Dari hasil pengelompokan dan pengolahan data yang diambil dari kantor Badan Meteorologi dan Klimatologi Geofisika (BMKG) dapat dilihat seperti pada tabel 4.1 berikut ini : Tabel 4.1. Distribusi Gempa Bumi Pagai Selatan 25 Oktober 2010 : Interval (t) hari Frekuensi Gempa n(t) Penjelasan dari penurunan distribusi frekuensi harian gempa bumi susulan berdasarkan tabel 4.1 adalah : pada hari pertama tanggal 25 Oktober ada 431 kali, hari kedua 26 Oktober ada 262 kali, hari ketiga 27 Oktober ada 152 kali, hari keempat 28 Oktober ada 109 kali, hari kelima 29 Oktober ada 40 kali, hari

41 keenam 30 Oktober ada 31 kali, hari ketujuh 31 Oktober ada 33 kali, hari kedelapan 1 November ada 29 kali, hari kesembilan 2 November ada 19 kali, hari kesepuluh 3 November ada 13 kali, hari kesebelas 4 November ada 17 kali, hari keduabelas 5 November ada 17 kali, hari ketigabelas 6 November ada 15 kali, hari keempatbelas 7 November ada 14 kali, hari kelimabelas 8 November ada 10 kali, dan pada hari keenambelas 9 November ada 15 kali gempa bumi susulan. Berikut ini gambar grafik distribusi gempa bumi Pagai Selatan 25 Oktober 2010 : N, Jumlah Gempa Bumi Susulan Peluruhan Gempa Bumi Pagai y = x R² = t, interval waktu per 24 jam-an Frekuensi Gempa n(t) Linear (Frekuensi Gempa n(t)) Gambar 4.1. Grafik Distribusi Gempa Pagai Selatan 25 Oktober 2010 Tabel perhitungan dari rumus persamaan regresi linear Metode Mogi 1 untuk gempa bumi Pagai Selatan bisa dilihat pada tabel 4.2 berikut ini :

42 Tabel 4.2. Perhitungan Dari Rumus Persamaan Regresi Linier Metode Mogi 1 : No (t) n(t) X (log t) Y (log n(t)) X.Y X 2 Y Dari tabel di atas diperoleh hasil untuk masing-masing kolom adalah : y = x 2 = xy = x = y 2 =

43 Dengan demikian konstanta a, b, dan r sudah dapat dihitung dengan menggunakan rumus : Σ Σ {Σ } B = b = Σ {Σ } b =. (.. ). (. ) b = Dengan demikian diperoleh konstanta b = Untuk perhitungan konstanta a dapat dilakukan dengan rumus sebagai berikut : A = log a = Σ {Σ } A = log a = ( ) ( x )) A = log a = a = = Dengan demikian diperoleh konstanta a = Koefisien korelasi dapat dihitung dengan menggunakan rumus : ( ) ( ) ( ) r = { ) { ( ) } (. ) (. ) (. ) r = {.. ) {. (. )}

44 r = Dari persamaan regresi linearnya didapat nilai-nilai konstanta sebagai berikut ini : a = b = r = Mogi-1: log n(t) = log a + b log t.. (4.1) Y = log n(t), A = log a, B = b, X = log t n(t) = a x Peluruhan frekuensi gempanya n(t) = 1, maka : = x..... (4.2) Kemudian kita lihat kembali persamaan (4.1) bahwa : log n(t) = log a + b log t log 1 = log {( ) log t} log 1 - log = ( ) log t = ( ) log t log t = = =

45 t = = 81 hari t = 81 hari Metoda Mogi-1 (1962) : n(t) = * t Bila n(t) = 1 maka diperoleh t = 81 hari. Jadi menurut Metode Mogi 1 waktu berakhirnya gempa bumi susulan di daerah Pagai Selatan pada hari ke 81 setelah gempa bumi utama. Tabel perhitungan dari rumus persamaan regresi linear Metode Mogi 2 untuk gempa bumi Pagai Selatan bisa dilihat pada tabel 4.3 berikut ini : Tabel 4.3. Perhitungan Dari Rumus Persamaan Regresi Linier Metode Mogi 2 : No (t) n(t) X (t) Y (ln n(t)) X.Y X 2 Y

46 Dari tabel di atas diperoleh hasil untuk masing-masing kolom adalah : y = x 2 = 1496 x = 136 y 2 = xy = Dengan demikian konstanta a, b, dan r sudah dapat dihitung dengan menggunakan rumus : Σ Σ Σ B = b = Σ Σ.. b = b = Dengan demikian diperoleh konstanta b = Untuk perhitungan konstanta a dapat dilakukan dengan rumus sebagai berikut :

47 Σ {Σ } A = ln a = A = ln a = ( ) ( x 136)) A = ln a = a = = Dengan demikian diperoleh konstanta a = Koefisien korelasi dapat dihitung dengan menggunakan rumus : ( ) ( ) ( ) r = { ) { ( ) } (. ) (. ) (. ) r = { ) {. (. )} r = Dari persamaan regresi linearnya didapat nilai-nilai konstanta sebagai berikut ini : a = b = r = Mogi-2 : ln n(t) = ln a b t.... (4.3) Y = ln n(t), A = ln a, B = b, X = t

48 n(t) = a x e bt Peluruhan frekuensi gempanya n(t) = 1, maka : 1 = x e t... (4.4) Kemudian kita lihat kembali persamaan (4.3) bahwa : ln n(t) = ln a b t ln 1 = ln t ln1 ln = t t = = 25 hari Metoda Mogi-2 (1962) : n(t) = x e t Bila n(t) = 1 maka diperoleh t = 25 hari. Jadi menurut Metode Mogi 2 waktu berakhirnya gempa bumi susulan di daerah Pagai Selatan pada hari ke 25 setelah gempa bumi utama. Dari data tabulasi distribusi gempa bumi susulan di atas gempa bumi Pagai Selatan setelah terjadinya gempa bumi utama dihari pertama menunjukkan distribusi gempa buminya lebih besar dibanding hari kedua ini dikarenakan mulai terjadinya gempa bumi Pagai Selatan itu terjadi pada siang hari yaitu pada jam 14:42:20 untuk waktu GMT (Greenwich) atau 21:42:20 WIB malam jadi sudah dalam pertengahan hari / pertengahan waktu untuk GMT (Greenwich) dan untuk

49 daerah Sumatera Barat sudah memasuki ¾ waktu. Dengan demikian perbedaanperbedaan distribusi gempa bumi susulan tersebut sangat jauh dibandingkan dengan gempa bumi di hari yang kedua. Sedangkan dari grafiknya untuk gempa bumi susulan Pagai Selatan menunjukkan tiap grafik yang pertama yaitu didahului adanya gempa utama dahulu baru adanya gempa-gempa susulan dan lambat laun menurun bersamaan dengan waktunya. Adapun dari perhitungan-perhitungannya menunjukkan bahwa dari hasil perhitungan untuk gempa bumi Pagai Selatan lebih cocok ke Mogi 2. Dengan demikian untuk prediksi gempa bumi daerah Pagai Selatan, maka gempanya akan berakhir kurang dari 100 hari yaitu 25 hari setelah gempa bumi utama. Hal ini hampir mendekati dengan hasil di lapangan oleh BMKG kalau gempa bumi di Pagai Selatan 25 Oktober 2010 berakhir 29 hari setelah gempa bumi utama Hasil Analisis Waktu Berakhirnya Gempa Bumi Pariaman 30 September 2009 Dari hasil pengelompokan dan pengolahan data yang diambil dari kantor Badan Meteorologi dan Klimatologi Geofisika (BMKG) dapat dilihat seperti pada tabel 4.4 berikut ini :

50 Tabel 4.4. Distribusi Gempa Bumi Pariaman 30 September 2009 : Interval (t) hari Frekuensi Gempa n(t) Berikut penjelasan dari penurunan distribusi frekuensi harian gempa bumi susulan : pada hari pertama tanggal 30 September ada 155 kali, hari kedua 1 Oktober ada 71 kali, hari ketiga 2 Oktober ada 129 kali, hari keempat 3 Oktober

51 ada 88 kali, hari kelima 4 Oktober ada 111 kali, hari keenam 5 Oktober ada 93 kali, hari ketujuh 6 Oktober ada 70 kali, hari kedelapan 7 Oktober ada 70 kali, hari kesembilan 8 Oktober ada 56 kali, hari kesepuluh 9 Oktober ada 47 kali, hari kesebelas 10 Oktober ada 33 kali, hari keduabelas 11 Oktober ada 27 kali, hari ketigabelas 12 Oktober ada 39 kali, hari keempatbelas 13 Oktober ada 20 kali, hari kelimabelas 14 Oktober ada 33 kali, hari keenambelas 15 Oktober ada 35 kali, hari ketujuhbelas 16 Oktober ada 23 kali, hari kedelapanbelas 17 Oktober ada 26 kali, hari kesembilanbelas 18 Oktober ada 26 kali, hari keduapuluh 19 Oktober ada 14 kali, hari keduapuluhsatu 20 Oktober ada 28 kali, hari keduapuluhdua 21 Oktober ada 23 kali, hari keduapuluhtiga 22 Oktober ada 23 kali, hari keduapuluhempat 23 Oktober ada 17 kali, hari keduapuluhlima 24 Oktober ada 22 kali, hari keduapuluhenam 25 Oktober ada 11 kali, hari keduapuluhtujuh 26 Oktober ada 17 kali, hari keduapuluhdelapan 27 Oktober ada 21 kali, hari keduapuluhsembilan 28 Oktober ada 14 kali, hari ketigapuluh 29 Oktober ada 14 kali, hari ketigapuluhsatu 30 Oktober ada 29 kali, hari ketigapuluhdua 31 Oktober ada 17 kali, dan pada hari ketigapuluhtiga 1 November ada 13 kali gempa bumi susulan.

52 Berikut ini gambar grafik distribusi gempa bumi Pariaman 30 September 2009 : Peluruhan Gempa Bumi Pariaman 180 N, Jumlah Gempa Bumi Susulan y = x R² = Frekuensi Gempa n(t) Linear (Frekuen si Gempa n(t)) t, interval waktu per 24 jam-an Gambar 4.2. Grafik Distribusi Gempa Pariaman 30 September 2009 Tabel perhitungan dari rumus persamaan regresi linear Metode Mogi 1 untuk gempa bumi Pariaman bisa dilihat pada tabel 4.5 berikut ini : Tabel 4.5. Perhitungan Dari Rumus Persamaan Regresi Linier Metode Mogi 1 : No (t) n(t) X (log t) Y (log n(t)) X.Y X 2 Y

53

54 Dari tabel di atas diperoleh hasil untuk masing-masing kolom adalah : y = x 2 = x = y 2 = xy = Dengan demikian konstanta a, b, dan r sudah dapat dihitung dengan menggunakan rumus : Σ Σ Σ B = b = Σ Σ b =. (.. ). (. ) b = Dengan demikian diperoleh konstanta b = Untuk perhitungan konstanta a dapat dilakukan dengan rumus sebagai berikut : A = log a = Σ {Σ } A = log a = ( ) - ( x )) A = log a= 1.662

55 a = 10. = Dengan demikian diperoleh konstanta a = Koefisien korelasi dapat dihitung dengan menggunakan rumus : ( ) ( ) ( ) r = { ) { ( ) }. (.. ) r = {. (. ) } {. (. ) } r = Dari persamaan regresi linearnya didapat nilai-nilai konstanta sebagai berikut ini : a = b = r = Mogi-1: log n(t) = log a + b log t Y = log n(t), A = log a, B = b, X = log t n(t) = a x Peluruhan frekuensi gempanya n(t) = 1, maka : 1 = x. log n(t) = log a + b log t

56 log 1 = log {( ) log t} log 1 - log = ( ) log t = ( ) log t log t =.. = t = 10. = 154 hari Metoda Mogi-1 (1962) : n(t) = x. Bila n(t) = 1 maka diperoleh t = 154 hari. Jadi menurut Metode Mogi 1 waktu berakhirnya gempa bumi susulan di daerah Pariaman pada hari ke 154 setelah gempa bumi utama. Tabel perhitungan dari rumus persamaan regresi linear Metode Mogi 2 untuk gempa bumi Pariaman bisa dilihat pada tabel 4.6 berikut ini : Tabel 4.6. Perhitungan Dari Rumus Persamaan Regresi Linier Metode Mogi 2 : No (t) n(t) X (t) Y (ln n(t)) X.Y X 2 Y

Analisis Karakteristik Prakiraan Berakhirnya Gempa Susulan pada Segmen Aceh dan Segmen Sianok (Studi Kasus Gempa 2 Juli 2013 dan 11 September 2014)

Analisis Karakteristik Prakiraan Berakhirnya Gempa Susulan pada Segmen Aceh dan Segmen Sianok (Studi Kasus Gempa 2 Juli 2013 dan 11 September 2014) Analisis Karakteristik Prakiraan Berakhirnya Gempa Susulan pada Segmen Aceh dan Segmen Sianok (Studi Kasus Gempa 2 Juli 2013 dan 11 September 2014) Ekarama Putri 1,*, Dwi Pujiastuti 1, Irma Kurniawati

Lebih terperinci

ANALISIS REKAHAN GEMPA BUMI DAN GEMPA BUMI SUSULAN DENGAN MENGGUNAKAN METODE OMORI

ANALISIS REKAHAN GEMPA BUMI DAN GEMPA BUMI SUSULAN DENGAN MENGGUNAKAN METODE OMORI ANALISIS REKAHAN GEMPA BUMI DAN GEMPA BUMI SUSULAN DENGAN MENGGUNAKAN METODE OMORI A. Wirma Sari R, Jasruddin, Nasrul Ihsan Universitas Negeri Makassar. Jl. Dg. Tata Raya Jurusan Fisika Kampus UNM Parang

Lebih terperinci

BAB I PENDAHULUAN. Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng

BAB I PENDAHULUAN. Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng BAB I PENDAHULUAN A. Latar Belakang Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng Eurasia, Indo-Australia dan Pasifik. Konsekuensi tumbukkan lempeng tersebut mengakibatkan negara

Lebih terperinci

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS. Bayu Baskara

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS. Bayu Baskara PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS Bayu Baskara ABSTRAK Bali merupakan salah satu daerah rawan bencana gempa bumi dan tsunami karena berada di wilayah pertemuan

Lebih terperinci

KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN

KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN 1950-2013 Samodra, S.B. & Chandra, V. R. Diterima tanggal : 15 November 2013 Abstrak Pulau Sumatera dan Pulau Jawa merupakan tempat yang sering

Lebih terperinci

LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010

LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010 LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010 BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA JAKARTA 2010 1 OUTLINE I. LOKASI GEMPABUMI MENTAWAI SUMATERA BARAT II. 1. TIME LINE GEMPABUMI MENTAWAI SUMATERA BARAT.

Lebih terperinci

ANCAMAN GEMPABUMI DI SUMATERA TIDAK HANYA BERSUMBER DARI MENTAWAI MEGATHRUST

ANCAMAN GEMPABUMI DI SUMATERA TIDAK HANYA BERSUMBER DARI MENTAWAI MEGATHRUST ANCAMAN GEMPABUMI DI SUMATERA TIDAK HANYA BERSUMBER DARI MENTAWAI MEGATHRUST Oleh : Rahmat Triyono,ST,MSc Kepala Stasiun Geofisika Klas I Padang Panjang Email : rahmat.triyono@bmkg.go.id Sejak Gempabumi

Lebih terperinci

KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI DESEMBER 2017

KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI DESEMBER 2017 KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI 2016 15 DESEMBER 2017 Oleh ZULHAM. S, S.Tr 1, RILZA NUR AKBAR, ST 1, LORI AGUNG SATRIA, A.Md 1

Lebih terperinci

tektonik utama yaitu Lempeng Eurasia di sebelah Utara, Lempeng Pasifik di

tektonik utama yaitu Lempeng Eurasia di sebelah Utara, Lempeng Pasifik di BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan suatu wilayah yang sangat aktif kegempaannya. Hal ini disebabkan oleh letak Indonesia yang berada pada pertemuan tiga lempeng tektonik utama yaitu

Lebih terperinci

Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan.

Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan. 1.1 Apakah Gempa Itu? Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan. Getaran tersebut disebabkan oleh pergerakan

Lebih terperinci

batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik.

batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik. BAB I PENDAHULUAN 1.1 Latar Belakang Gempa bumi merupakan peristiwa bergetarnya bumi karena pergeseran batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik. Pergerakan tiba-tiba

Lebih terperinci

BAB I PENDAHULUAN Latar belakang

BAB I PENDAHULUAN Latar belakang BAB I PENDAHULUAN 1.1. Latar belakang Indonesia merupakan salah satu negara dimana terdapat pertemuan 3 lempeng tektonik utama bumi. Lempeng tersebut meliputi lempeng Eurasia, lempeng Indo-Australia, dan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Secara tektonik, Indonesia terletak pada pertemuan lempeng Eurasia, lempeng Indo-Australia, lempeng Pasifik, dan lempeng mikro Filipina. Interaksi antar lempeng mengakibatkan

Lebih terperinci

LAPORAN GEMPABUMI Sungai Penuh - Jambi, 1 Oktober 2009 BMKG

LAPORAN GEMPABUMI Sungai Penuh - Jambi, 1 Oktober 2009 BMKG LAPORAN GEMPABUMI Sungai Penuh - Jambi, 1 Oktober 2009 BMKG BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA JAKARTA 2009 1 LAPORAN GEMPABUMI Jambi, 1 Oktober 2009 Badan Meteorologi Klimatologi dan Geofisika

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang subduksi Gempabumi Bengkulu 12 September 2007 magnitud gempa utama 8.5

BAB I PENDAHULUAN I.1. Latar Belakang subduksi Gempabumi Bengkulu 12 September 2007 magnitud gempa utama 8.5 BAB I PENDAHULUAN I.1. Latar Belakang Indonesia terletak pada pertemuan antara lempeng Australia, Eurasia, dan Pasifik. Lempeng Australia dan lempeng Pasifik merupakan jenis lempeng samudera dan bersifat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sumatera Barat merupakan salah satu provinsi di Indonesia yang terletak di sepanjang pesisir barat pulau Sumatera bagian tengah. Provinsi ini memiliki dataran seluas

Lebih terperinci

Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014)

Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014) Jurnal Fisika Unand Vol. 5, No. 1, Januari 2016 ISSN 2302-8491 Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014) Marlisa 1,*, Dwi Pujiastuti

Lebih terperinci

GEMPA BUMI DAN AKTIVITASNYA DI INDONESIA

GEMPA BUMI DAN AKTIVITASNYA DI INDONESIA GEMPA BUMI DAN AKTIVITASNYA DI INDONESIA Disusun Oleh: Josina Christina DAFTAR ISI Kata Pengantar... 2 BAB I... 3 1.1 Latar Belakang... 3 1.2 Tujuan... 3 1.3 Rumusan Masalah... 4 BAB II... 5 2.1 Pengertian

Lebih terperinci

Studi Analisis Parameter Gempa Bengkulu Berdasarkan Data Single-Station dan Multi-Station serta Pola Sebarannya

Studi Analisis Parameter Gempa Bengkulu Berdasarkan Data Single-Station dan Multi-Station serta Pola Sebarannya Berkala Fisika ISSN : 1410-9662 Vol. 13, No. 4, Oktober 2010, hal 105 112 Studi Analisis Parameter Gempa Bengkulu Berdasarkan Data Single-Station dan Multi-Station serta Pola Sebarannya Arif Ismul Hadi,

Lebih terperinci

*

* Jurnal Natural Vol.6, No.2, 26 ISSN 4-853 KAJIAN STATISTIK SEISMISITAS KAWASAN SUMATERA* Warni Asnita*, Didik Sugiyanto 2, Ibnu Rusydy 3 Department of Geophysics Engineering, Syiah Kuala University, Banda

Lebih terperinci

ANALISIS SEISMISITAS DAN PERIODE ULANG GEMPA BUMI WILAYAH SULAWESI TENGGARA BERDASARKAN B-VALUE METODE LEAST SQUARE OLEH :

ANALISIS SEISMISITAS DAN PERIODE ULANG GEMPA BUMI WILAYAH SULAWESI TENGGARA BERDASARKAN B-VALUE METODE LEAST SQUARE OLEH : ANALISIS SEISMISITAS DAN PERIODE ULANG GEMPA BUMI WILAYAH SULAWESI TENGGARA BERDASARKAN B-VALUE METODE LEAST SQUARE OLEH : Astari Dewi Ratih, Bambang Harimei, Syamsuddin Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA. Oleh : Hendro Murtianto*)

POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA. Oleh : Hendro Murtianto*) POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA Oleh : Hendro Murtianto*) Abstrak Aktivitas zona patahan Sumatera bagian tengah patut mendapatkan perhatian,

Lebih terperinci

ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON

ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON Hapsoro Agung Nugroho Stasiun Geofisika Sanglah Denpasar soro_dnp@yahoo.co.id ABSTRACT Bali is located on the boundaries of the two

Lebih terperinci

BAB 1 PENDAHULUAN. manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi

BAB 1 PENDAHULUAN. manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi BAB 1 PENDAHULUAN 1.1. Latar Belakang Rekayasa gempa berhubungan dengan pengaruh gempa bumi terhadap manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi pengaruhnya. Gempa bumi merupakan

Lebih terperinci

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian BAB I PENDAHULUAN A. Latar Belakang Masalah Kepulauan Indonesia terletak pada pertemuan tiga lempeng tektonik utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian Utara, dan

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI BARAT LAUT KEP. SANGIHE SULAWESI UTARA Oleh Artadi Pria Sakti*, Robby Wallansha*, Ariska

Lebih terperinci

PENGENALAN. Irman Sonjaya, SE

PENGENALAN. Irman Sonjaya, SE PENGENALAN Irman Sonjaya, SE PENGERTIAN Gempa bumi adalah suatu gangguan dalam bumi jauh di bawah permukaan yang dapat menimbulkan korban jiwa dan harta benda di permukaan. Gempa bumi datangnya sekonyong-konyong

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Dzikri Wahdan Hakiki, 2015

BAB I PENDAHULUAN 1.1 Latar Belakang Dzikri Wahdan Hakiki, 2015 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terdiri dari 3 lempeng tektonik yang bergerak aktif, yaitu lempeng Eurasia diutara, lempeng Indo-Australia yang menujam dibawah lempeng Eurasia dari selatan,

Lebih terperinci

ENERGI POTENSIAL GEMPABUMI DI KAWASAN SEGMEN MUSI, KEPAHIANG-BENGKULU EARTHQUAKE POTENTIAL ENERGY IN THE MUSI SEGMENT, KEPAHIANG-BENGKULU AREA

ENERGI POTENSIAL GEMPABUMI DI KAWASAN SEGMEN MUSI, KEPAHIANG-BENGKULU EARTHQUAKE POTENTIAL ENERGY IN THE MUSI SEGMENT, KEPAHIANG-BENGKULU AREA ENERGI POTENSIAL GEMPABUMI DI KAWASAN SEGMEN MUSI, KEPAHIANG-BENGKULU EARTHQUAKE POTENTIAL ENERGY IN THE MUSI SEGMENT, KEPAHIANG-BENGKULU AREA Sabar Ardiansyah Stasiun Geofisika Kepahiang-Bengkulu, Jl.Pembangunan

Lebih terperinci

BAB II GEMPA BUMI DAN GELOMBANG SEISMIK

BAB II GEMPA BUMI DAN GELOMBANG SEISMIK BAB II GEMPA BUMI DAN GELOMBANG SEISMIK II.1 GEMPA BUMI Seperti kita ketahui bahwa bumi yang kita pijak bersifat dinamis. Artinya bumi selalu bergerak setiap saat, baik itu pergerakan akibat gaya tarik

Lebih terperinci

BAB 1 PENDAHULUAN. tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah

BAB 1 PENDAHULUAN. tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Permasalahan Negara Kesatuan Republik Indonesia adalah negara kepulauan dengan tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah penduduk lebih

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Sebaran episenter gempa di wilayah Indonesia (Irsyam dkk, 2010). P. Lombok

BAB I PENDAHULUAN. Gambar 1.1 Sebaran episenter gempa di wilayah Indonesia (Irsyam dkk, 2010). P. Lombok 2 BAB I PENDAHULUAN 1.1 Latar Belakang Gempabumi sangat sering terjadi di daerah sekitar pertemuan lempeng, dalam hal ini antara lempeng benua dan lempeng samudra akibat dari tumbukan antar lempeng tersebut.

Lebih terperinci

Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010

Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Emilia Kurniawati 1 dan Supriyanto 2,* 1 Laboratorium Geofisika Program Studi Fisika FMIPA Universitas Mulawarman 2 Program

Lebih terperinci

BAB I PENDAHULUAN. dan dikepung oleh tiga lempeng utama (Eurasia, Indo-Australia dan Pasifik),

BAB I PENDAHULUAN. dan dikepung oleh tiga lempeng utama (Eurasia, Indo-Australia dan Pasifik), BAB I PENDAHULUAN A. Latar Belakang Masalah Secara geografis, posisi Indonesia yang dikelilingi oleh ring of fire dan dikepung oleh tiga lempeng utama (Eurasia, Indo-Australia dan Pasifik), lempeng eura-asia

Lebih terperinci

BAB I PENDAHULUAN I.1. Judul Penelitian I.2. Latar Belakang Masalah

BAB I PENDAHULUAN I.1. Judul Penelitian I.2. Latar Belakang Masalah BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian ini berjudul Hubungan Persebaran Episenter Gempa Dangkal dan Kelurusan Berdasarkan Digital Elevation Model di Wilayah Daerah Istimewa Yogyakarta I.2.

Lebih terperinci

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu 364 Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu Rahmad Aperus 1,*, Dwi Pujiastuti 1, Rachmad Billyanto 2 Jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Pantai selatan Pulau Jawa merupakan wilayah yang paling besar berpotensi gempa bumi sampai kekuatan 9 skala

BAB I PENDAHULUAN 1.1 Latar Belakang Pantai selatan Pulau Jawa merupakan wilayah yang paling besar berpotensi gempa bumi sampai kekuatan 9 skala BAB I PENDAHULUAN 1.1 Latar Belakang Pantai selatan Pulau Jawa merupakan wilayah yang paling besar berpotensi gempa bumi sampai kekuatan 9 skala Richter sehingga dapat menyebabkan terjadinya tsunami. Halini

Lebih terperinci

ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1

ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1 ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1 1 PMG Stasiun Geofisika Mata Ie Banda Aceh Pendahuluan Aceh merupakan

Lebih terperinci

INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA

INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG Rasmid 1, Muhamad Imam Ramdhan 2 1 Stasiun Geofisika klas I BMKG Bandung, INDONESIA 2 Fisika Fakultas Sains dan Teknologi UIN SGD Bandung, INDONESIA

Lebih terperinci

STUDI AWAL HUBUNGAN GEMPA LAUT DAN GEMPA DARAT SUMATERA DAN SEKITARNYA

STUDI AWAL HUBUNGAN GEMPA LAUT DAN GEMPA DARAT SUMATERA DAN SEKITARNYA STUDI AWAL HUBUNGAN GEMPA LAUT DAN GEMPA DARAT SUMATERA DAN SEKITARNYA Listya Dewi Rifai 1, I Putu Pudja 2 1 Akademi Meteorologi dan Geofisika 2 Puslitbang BMKG ABSTRAK Secara umum, wilayah Sumatera di

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Indonesia termasuk daerah yang rawan terjadi gempabumi karena berada pada pertemuan tiga lempeng, yaitu lempeng Indo-Australia, Eurasia, dan Pasifik. Aktivitas kegempaan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 15 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada pertemuan tiga lempeng utama dunia yaitu lempeng India-Australia, Eurasia, dan Pasifik. Ketiga lempeng tersebut bergerak dan saling bertumbukan

Lebih terperinci

BAB I PENDAHULUAN. Indonesia yang terletak di pertemuan tiga lempeng aktif (triple junction) yang saling

BAB I PENDAHULUAN. Indonesia yang terletak di pertemuan tiga lempeng aktif (triple junction) yang saling BAB I PENDAHULUAN I.1. Latar Belakang Indonesia memiliki tatanan tektonik yang kompleks, hal ini karena wilayah Indonesia yang terletak di pertemuan tiga lempeng aktif (triple junction) yang saling bertumbukan,

Lebih terperinci

BAB 1 : PENDAHULUAN. bumi dan dapat menimbulkan tsunami. Ring of fire ini yang menjelaskan adanya

BAB 1 : PENDAHULUAN. bumi dan dapat menimbulkan tsunami. Ring of fire ini yang menjelaskan adanya BAB 1 : PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang tergolong rawan terhadap kejadian bencana alam, hal tersebut berhubungan dengan letak geografis Indonesia yang terletak di antara

Lebih terperinci

MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH

MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH Oleh Abdi Jihad dan Vrieslend Haris Banyunegoro PMG Stasiun Geofisika Mata Ie Banda Aceh disampaikan dalam Workshop II Tsunami Drill Aceh 2017 Ditinjau

Lebih terperinci

ANALISIS PERIODE ULANG DAN AKTIVITAS KEGEMPAAN PADA DAERAH SUMATERA BARAT DAN SEKITARNYA

ANALISIS PERIODE ULANG DAN AKTIVITAS KEGEMPAAN PADA DAERAH SUMATERA BARAT DAN SEKITARNYA ANALISIS PERIODE ULANG DAN AKTIVITAS KEGEMPAAN PADA DAERAH SUMATERA BARAT DAN SEKITARNYA Arif Budiman 1, Riva Nandia 1, dan Moh. Taufik Gunawan 2 1 Laboratorium Fisika Bumi Jurusan Fisika Fakultas Matematika

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA A ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI DELISERDANG SUMATRA UTARA Oleh Fajar Budi Utomo*, Trisnawati*, Nur Hidayati Oktavia*, Ariska Rudyanto*,

Lebih terperinci

Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda?

Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda? Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda? Supriyanto Rohadi, Bambang Sunardi, Rasmid Pusat Penelitian dan Pengembangan BMKG

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN 52 V. HASIL DAN PEMBAHASAN 5.1. Distribusi Hiposenter Gempa dan Mekanisme Vulkanik Pada persebaran hiposenter Gunung Sinabung (gambar 31), persebaran hiposenter untuk gempa vulkanik sangat terlihat adanya

Lebih terperinci

TEORI TEKTONIK LEMPENG

TEORI TEKTONIK LEMPENG Pengenalan Gempabumi BUMI BENTUK DAN UKURAN Bumi berbentuk bulat seperti bola, namun rata di kutub-kutubnya. jari-jari Khatulistiwa = 6.378 km, jari-jari kutub=6.356 km. Lebih dari 70 % permukaan bumi

Lebih terperinci

Bab I Pendahuluan. I.1 Latar Belakang

Bab I Pendahuluan. I.1 Latar Belakang Bab I Pendahuluan I.1 Latar Belakang Selama peradaban manusia, gempa bumi telah dikenal sebagai fenomena alam yang menimbulkan efek bencana yang terbesar, baik secara moril maupun materiil. Suatu gempa

Lebih terperinci

Tes Kemampuan Kognitif Materi Pokok Gempa Bumi

Tes Kemampuan Kognitif Materi Pokok Gempa Bumi Tes Kemampuan Kognitif Materi Pokok Gempa Bumi Berilah tanda silang (X) pada huruf a, b, c, d atau e dengan benar di lembar jawaban yang telah disediakan! 1. Pergerakan tiba-tiba dari kerak bumi dan menyebabkan

Lebih terperinci

Perbandingan Energi Gempa Bumi Utama dan Susulan (Studi Kasus : Gempa Subduksi Pulau Sumatera dan Jawa)

Perbandingan Energi Gempa Bumi Utama dan Susulan (Studi Kasus : Gempa Subduksi Pulau Sumatera dan Jawa) Jurnal Fisika FLUX Volume 14, Nomor 1, Februari 2017 ISSN : 1829-796X (print); 2514-1713(online) http://ppjp.unlam.ac.id/journal/index.php/f/ Perbandingan Energi Gempa Bumi Utama dan Susulan (Studi Kasus

Lebih terperinci

ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU

ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU Yeza Febriani, Ika Daruwati, Rindi Genesa Hatika Program

Lebih terperinci

I. PENDAHULUAN. semakin kuat gempa yang terjadi. Penyebab gempa bumi dapat berupa dinamika

I. PENDAHULUAN. semakin kuat gempa yang terjadi. Penyebab gempa bumi dapat berupa dinamika 1 I. PENDAHULUAN 1.1 Latar Belakang Gempa bumi adalah peristiwa pelepasan energi regangan elastis batuan dalam bentuk patahan atau pergeseran lempeng bumi. Semakin besar energi yang dilepas semakin kuat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bencana merupakan suatu peristiwa atau rangkaian peristiwa yang mengancam dan mengganggu kehidupan dan penghidupan masyarakat yang disebabkan, baik oleh faktor alam

Lebih terperinci

SEISMISITAS VERSUS ENERGI RELEASE

SEISMISITAS VERSUS ENERGI RELEASE SEISMISITAS VERSUS ENERGI RELEASE (Studi Kasus Gempa Bumi per Segmen Patahan Wilayah SulSelBar tahun 2016-2017) Oleh : Marniati.S.Si,MT Firdaus Muhiddin.S.Si Seimisitas dan Energi Release Seismisitas adalah

Lebih terperinci

PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA

PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA GEMPA BUMI 1. PENGERTIAN GEMPA Gempa adalah pergeseran tiba-tiba dari lapisan tanah di bawah permukaan bumi. Ketika pergeseran ini terjadi, timbul getaran yang disebut

Lebih terperinci

Berkala Fisika ISSN : Vol. 18, No. 1, Januari 2015, hal 25-42

Berkala Fisika ISSN : Vol. 18, No. 1, Januari 2015, hal 25-42 Berkala Fisika ISSN : 1410-9662 Vol. 18, No. 1, Januari 2015, hal 25-42 STUDI PROBABILITAS GEMPA DAN PERBANDINGAN ATENUASI PERCEPATAN TANAH METODE JOYNER DAN BOORE (1988), CROUSE (1991) DAN SADIGH (1997)

Lebih terperinci

PERKUAT MITIGASI, SADAR EVAKUASI MANDIRI DALAM MENGHADAPI BENCANA TSUNAMI

PERKUAT MITIGASI, SADAR EVAKUASI MANDIRI DALAM MENGHADAPI BENCANA TSUNAMI PERKUAT MITIGASI, SADAR EVAKUASI MANDIRI DALAM MENGHADAPI BENCANA TSUNAMI Oleh : Rahmat Triyono, ST, MSc Kepala Stasiun Geofisika Klas I Padang Panjang Email : rahmat.triyono@bmkg.go.id (Hasil Penelitian

Lebih terperinci

Gb 2.5. Mekanisme Tsunami

Gb 2.5. Mekanisme Tsunami TSUNAMI Karakteristik Tsunami berasal dari bahasa Jepang yaitu dari kata tsu dan nami. Tsu berarti pelabuhan dan nami berarti gelombang. Istilah tersebut kemudian dipakai oleh masyarakat untuk menunjukkan

Lebih terperinci

BAB I PENDAHULUAN. lempeng Indo-Australia dan lempeng Pasifik, serta lempeng mikro yakni lempeng

BAB I PENDAHULUAN. lempeng Indo-Australia dan lempeng Pasifik, serta lempeng mikro yakni lempeng 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada kerangka tektonik yang didominasi oleh interaksi dari tiga lempeng utama (kerak samudera dan kerak benua) yaitu lempeng Eurasia, lempeng Indo-Australia

Lebih terperinci

BAB I PENDAHULUAN. bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan

BAB I PENDAHULUAN. bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan 1 BAB I PENDAHULUAN A. Latar Belakang Penelitian Mitigasi bencana merupakan serangkaian upaya untuk mengurangi resiko bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan kemampuan

Lebih terperinci

BAB I PENDAHULUAN. adalah inti, putih telurnya adalah selubung, dan cangkang telurnya adalah kerak.

BAB I PENDAHULUAN. adalah inti, putih telurnya adalah selubung, dan cangkang telurnya adalah kerak. 1 BAB I PENDAHULUAN 1.1 Latar belakang Bumi memiliki struktur dalam yang hampir sama dengan telur. Kuning telurnya adalah inti, putih telurnya adalah selubung, dan cangkang telurnya adalah kerak. Berdasarkan

Lebih terperinci

ANALISA SESAR AKTIF MENGGUNAKAN METODE FOCAL MECHANISM (STUDI KASUS DATA GEMPA SEPANJANG CINCIN API ZONA SELATAN WILAYAH JAWA BARAT PADA TAHUN

ANALISA SESAR AKTIF MENGGUNAKAN METODE FOCAL MECHANISM (STUDI KASUS DATA GEMPA SEPANJANG CINCIN API ZONA SELATAN WILAYAH JAWA BARAT PADA TAHUN ANALISA SESAR AKTIF MENGGUNAKAN METODE FOCAL MECHANISM (STUDI KASUS DATA GEMPA SEPANJANG CINCIN API ZONA SELATAN WILAYAH JAWA BARAT PADA TAHUN 1999-2009) Oleh: Siti Rahmatul Aslamiah Roemaf ABSTRAK: Daerah

Lebih terperinci

BAB 1 : PENDAHULUAN Latar Belakang

BAB 1 : PENDAHULUAN Latar Belakang BAB 1 : PENDAHULUAN A. Latar Belakang Gempa bumi sebagai suatu kekuatan alam terbukti telah menimbulkan bencana yang sangat besar dan merugikan. Gempa bumi pada skala kekuatan yang sangat kuat dapat menyebabkan

Lebih terperinci

ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR

ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR Daz Edwiza Laboratorium Geofisika Jurusan Teknik Sipil Unand ABSTRAK Sehubungan semakin meningkatnya frekuensi gempa bebrapa tahun

Lebih terperinci

Analisis Tingkat Resiko Gempa Bumi Tektonik

Analisis Tingkat Resiko Gempa Bumi Tektonik Analisis Tingkat Resiko Gempa Bumi Tektonik di Papua pada Periode 1960-2010 Lilik Wahyuni Purlisstyowati, Madlazim, Tjipto Prastowo Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

Gambar 1. Peta Seismisitas Indonesia (Irsyam et al., 2010 dalam Daryono, 2011))

Gambar 1. Peta Seismisitas Indonesia (Irsyam et al., 2010 dalam Daryono, 2011)) BAB I PENDAHULUAN I.1. Latar Belakang Penelitian Berdasarkan tatanan tektoniknya, wilayah Indonesia merupakan daerah pertemuan antara tiga lempeng benua dan samudra yang sangat aktif bergerak satu terhadap

Lebih terperinci

Bab III Kondisi Seismotektonik Wilayah Sumatera

Bab III Kondisi Seismotektonik Wilayah Sumatera Bab III Kondisi Seismotektonik Wilayah Sumatera III.1 Seismotektonik Indonesia Aktifitas kegempaan di Indonesia dipengaruhi oleh letak Indonesia yang berada pada pertemuan empat lempeng tektonik dunia.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bencana Gempa bumi merupakan sebuah ancaman besar bagi penduduk pantai di kawasan Pasifik dan lautan-lautan lainnya di dunia. Indonesia merupakan salah satu negara

Lebih terperinci

UNIT X: Bumi dan Dinamikanya

UNIT X: Bumi dan Dinamikanya MATERI KULIAH IPA-1 JURUSAN PENDIDIKAN IPA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM FOTO YANG RELEVAN UNIT X: Bumi dan Dinamikanya I Introduction 5 Latar Belakang Pada K-13 Kelas VII terdapat KD sebagai

Lebih terperinci

PENGIDENTIFIKASIAN DAERAH SESAR MENGGUNAKAN METODE SEISMIK REFRAKSI DI KECAMATAN PANTI KABUPATEN JEMBER SKRIPSI. Oleh:

PENGIDENTIFIKASIAN DAERAH SESAR MENGGUNAKAN METODE SEISMIK REFRAKSI DI KECAMATAN PANTI KABUPATEN JEMBER SKRIPSI. Oleh: PENGIDENTIFIKASIAN DAERAH SESAR MENGGUNAKAN METODE SEISMIK REFRAKSI DI KECAMATAN PANTI KABUPATEN JEMBER SKRIPSI Oleh: Firdha Kusuma Ayu Anggraeni NIM 091810201001 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

STUDI A ALISIS PARAMETER GEMPA DA POLA SEBARA YA BERDASARKA DATA MULTI-STATIO (STUDI KASUS KEJADIA GEMPA PULAU SULAWESI TAHU )

STUDI A ALISIS PARAMETER GEMPA DA POLA SEBARA YA BERDASARKA DATA MULTI-STATIO (STUDI KASUS KEJADIA GEMPA PULAU SULAWESI TAHU ) STUDI A ALISIS PARAMETER GEMPA DA POLA SEBARA YA BERDASARKA DATA MULTI-STATIO (STUDI KASUS KEJADIA GEMPA PULAU SULAWESI TAHU 2000-2014) Heri Saputra 1, Muhammad Arsyad, dan Sulistiawaty Jurusan Fisika

Lebih terperinci

KARAKTERISTIK MIKROTREMOR BERDASARKAN ANALISIS SPEKTRUM, ANALISIS TFA (TIME FREQUENCY ANALYSIS) DAN ANALISIS SEISMISITAS PADA KAWASAN JALUR SESAR OPAK

KARAKTERISTIK MIKROTREMOR BERDASARKAN ANALISIS SPEKTRUM, ANALISIS TFA (TIME FREQUENCY ANALYSIS) DAN ANALISIS SEISMISITAS PADA KAWASAN JALUR SESAR OPAK Karakteristik Mikrotremor Berdasarkan (Umi Habibah) 93 KARAKTERISTIK MIKROTREMOR BERDASARKAN ANALISIS SPEKTRUM, ANALISIS TFA (TIME FREQUENCY ANALYSIS) DAN ANALISIS SEISMISITAS PADA KAWASAN JALUR SESAR

Lebih terperinci

BAB I PENDAHULUAN. komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar

BAB I PENDAHULUAN. komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar BAB I PENDAHULUAN I.1. Latar Belakang Indonesia merupakan Negara yang memiliki tatanan geologi yang cukup komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar I.1). Indonesia dibatasi

Lebih terperinci

Analisis Kejadian Rangkaian Gempa Bumi Morotai November 2017

Analisis Kejadian Rangkaian Gempa Bumi Morotai November 2017 Analisis Kejadian Rangkaian Gempa Bumi Morotai 18 27 November 2017 Sesar Prabu Dwi Sriyanto Stasiun Geofisika Kelas I Winangun, Manado Pada hari Sabtu, 18 November 2017 pukul 23:07:02 WIB telah terjadi

Lebih terperinci

Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun

Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun 1977 2010 Fitri Puspasari 1, Wahyudi 2 1 Metrologi dan Instrumentasi Departemen Teknik Elektro dan Informatika

Lebih terperinci

DAFTAR ISI. BAB III. DASAR TEORI 3.1. Seismisitas Gelombang Seismik Gelombang Badan... 16

DAFTAR ISI. BAB III. DASAR TEORI 3.1. Seismisitas Gelombang Seismik Gelombang Badan... 16 DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii PERNYATAAN KEASLIAN KARYA ILMIAH... iii KATA PENGANTAR... iv ABSTRAK... v ABSTRACT... vi DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xv DAFTAR

Lebih terperinci

BAB II GEOLOGI REGIONAL

BAB II GEOLOGI REGIONAL BAB II GEOLOGI REGIONAL 2.1 Fisiografi dan Geomorfologi Regional Secara fisiografis, daerah Jawa Barat dibagi menjadi 6 zona yang berarah timur-barat ( van Bemmelen, 1949 ). Zona tersebut dari arah utara

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang

BAB I PENDAHULUAN. A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Indonesia terletak pada pertemuan tiga lempeng dunia yaitu lempeng Eurasia, lempeng Pasifik, dan lempeng Australia yang bergerak saling menumbuk. Akibat tumbukan antara

Lebih terperinci

Karakteristik mikrotremor dan analisis seismisitas pada jalur sesar Opak, kabupaten Bantul, Yogyakarta

Karakteristik mikrotremor dan analisis seismisitas pada jalur sesar Opak, kabupaten Bantul, Yogyakarta J. Sains Dasar 2014 3(1) 95 101 Karakteristik mikrotremor dan analisis seismisitas pada jalur sesar Opak, kabupaten Bantul, Yogyakarta (Microtremor characteristics and analysis of seismicity on Opak fault

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Peta Tektonik Indonesia (Bock, dkk., 2003)

BAB I PENDAHULUAN. Gambar 1.1 Peta Tektonik Indonesia (Bock, dkk., 2003) 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada tiga pertemuan lempeng besar dunia yaitu Lempeng Indo-Australia di bagian selatan, Lempeng Pasifik di bagian timur, dan Lempeng Eurasia di

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1. Subduksi antara Lempeng Samudera dan Lempeng Benua [Katili, 1995]

BAB II DASAR TEORI. Gambar 2.1. Subduksi antara Lempeng Samudera dan Lempeng Benua [Katili, 1995] BAB II DASAR TEORI II. 1. Gempabumi II. 1.1. Proses Terjadinya Gempabumi Dinamika bumi memungkinkan terjadinya Gempabumi. Di seluruh dunia tidak kurang dari 8000 kejadian Gempabumi terjadi tiap hari, dengan

Lebih terperinci

Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun Dengan Menggunakan Rumusan Mcguire

Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun Dengan Menggunakan Rumusan Mcguire Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun 1976 2016 Dengan Menggunakan Rumusan Mcguire Rido Nofaslah *, Dwi Pujiastuti Laboratorium Fisika Bumi, Jurusan

Lebih terperinci

II. TINJAUAN PUSTAKA. 1. Wilayah Administratif Kabupaten Tanggamus

II. TINJAUAN PUSTAKA. 1. Wilayah Administratif Kabupaten Tanggamus II. TINJAUAN PUSTAKA A. Gambaran Umum Kabupaten Tanggamus 1. Wilayah Administratif Kabupaten Tanggamus Secara geografis wilayah Kabupaten Tanggamus terletak pada posisi 104 0 18 105 0 12 Bujur Timur dan

Lebih terperinci

Sulawesi. Dari pencatatan yang ada selama satu abad ini rata-rata sepuluh gempa

Sulawesi. Dari pencatatan yang ada selama satu abad ini rata-rata sepuluh gempa BAB I PENDAHULUAN 1.1 Latar Belakang Gempa bumi merupakan satu bencana alam yang disebabkan kerusakan kerak bumi yang terjadi secara tiba-tiba dan umumnya diikuti dengan terjadinya patahan atau sesar.

Lebih terperinci

Kelompok VI Karakteristik Lempeng Tektonik ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N

Kelompok VI Karakteristik Lempeng Tektonik ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N Kelompok VI Karakteristik Lempeng Tektonik Created By: ASRAWAN TENRIANGKA ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N 1. JENIS LEMPENG Berdasarkan jenis bahan batuan pembentuknya,

Lebih terperinci

S e l a m a t m e m p e r h a t i k a n!!!

S e l a m a t m e m p e r h a t i k a n!!! S e l a m a t m e m p e r h a t i k a n!!! 14 Mei 2011 1. Jawa Rawan Gempa: Dalam lima tahun terakhir IRIS mencatat lebih dari 300 gempa besar di Indonesia, 30 di antaranya terjadi di Jawa. Gempa Sukabumi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Gempabumi Gempabumi adalah peristiwa bergetarnya bumi akibat pelepasan energi di dalam bumi secara tiba-tiba yang ditandai dengan patahnya lapisan batuan pada kerak

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada pertemuan tiga lempeng/kulit bumi aktif yaitu lempeng Indo-Australia di bagian selatan, Lempeng Euro-Asia di bagian utara dan Lempeng Pasifik

Lebih terperinci

ANALISIS TINGKAT SEISMISITAS DAN PERIODE ULANG GEMPA BUMI DI SUMATERA BARAT PADA PERIODE

ANALISIS TINGKAT SEISMISITAS DAN PERIODE ULANG GEMPA BUMI DI SUMATERA BARAT PADA PERIODE Analisis Tingkat Seismisitas dan Periode Ulang Gempa Bumi di Wilayah Sumatera Barat Pada Periode 1961-2010 ANALISIS TINGKAT SEISMISITAS DAN PERIODE ULANG GEMPA BUMI DI SUMATERA BARAT PADA PERIODE 1961-2010

Lebih terperinci

BAB I PENDAHULUAN. I.1. Judul Penelitian. I.2. Latar Belakang

BAB I PENDAHULUAN. I.1. Judul Penelitian. I.2. Latar Belakang BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian yang dilakukan mengambil topik tentang gempabumi dengan judul : Studi Mikrotremor untuk Zonasi Bahaya Gempabumi Daerah Surakarta Provinsi Jawa Tengah.

Lebih terperinci

BAB II GEOLOGI REGIONAL

BAB II GEOLOGI REGIONAL BAB II GEOLOGI REGIONAL 2.1 Fisiografi Regional Fisiografi Jawa Barat dibagi menjadi empat bagian besar (van Bemmelen, 1949): Dataran Pantai Jakarta (Coastal Plain of Batavia), Zona Bogor (Bogor Zone),

Lebih terperinci

MENENTUKAN PELUANG DAN PERIODE ULANG GEMPA DENGAN MAGNITUDE TERTENTU BERDASARKAN MODEL GUTTENBERG - RITCHER

MENENTUKAN PELUANG DAN PERIODE ULANG GEMPA DENGAN MAGNITUDE TERTENTU BERDASARKAN MODEL GUTTENBERG - RITCHER MENENTUKAN PELUANG DAN PERIODE ULANG GEMPA DENGAN MAGNITUDE TERTENTU BERDASARKAN MODEL GUTTENBERG - RITCHER Tati Zera Prodi Fisika, FST UIN Syarif Hidayatullah, Jln. Ir. H. Juanda no. 95 Ciputat, Jakarta

Lebih terperinci

BAB I PENDAHULUAN. Kepulauan Indonesia secara geografis terletak di 6 LU - 11 LS dan

BAB I PENDAHULUAN. Kepulauan Indonesia secara geografis terletak di 6 LU - 11 LS dan BAB I PENDAHULUAN A. Latar Belakang Masalah Penelitian Kepulauan Indonesia secara geografis terletak di 6 LU - 11 LS dan 95 BT - 141 BT merupakan zona pertemuan empat lempeng tektonik aktif dunia, yaitu:

Lebih terperinci

BAB II GEOLOGI REGIONAL

BAB II GEOLOGI REGIONAL BAB II GEOLOGI REGIONAL 2.1 Fisiografi Menurut Van Bemmelen (1949), secara fisiografis dan struktural daerah Jawa Barat dapat di bagi menjadi 4 zona, yaitu Dataran Pantai Jakarta, Zona Bogor, Zona Bandung

Lebih terperinci

BAB III METODA PENELITIAN

BAB III METODA PENELITIAN 44 BAB III METODA PENELITIAN 3.1. Metoda Pembacaan Rekaman Gelombang gempa Metode geofisika yang digunakan adalah metode pembacaan rekaman gelombang gempa. Metode ini merupakaan pembacaan dari alat yang

Lebih terperinci

BAB II GEOLOGI REGIONAL

BAB II GEOLOGI REGIONAL BAB II GEOLOGI REGIONAL 2.1 Fisiografi Secara umum wilayah utara Jawa Barat merupakan daerah dataran rendah, sedangkan kawasan selatan merupakan bukit-bukit dengan sedikit pantai serta dataran tinggi.

Lebih terperinci

BAB II GEOLOGI REGIONAL

BAB II GEOLOGI REGIONAL BAB II GEOLOGI REGIONAL 2.1 Fisiografi Secara fisiografis, van Bemmelen (1949) membagi Jawa Barat menjadi 4 bagian yaitu Dataran Pantai Jakarta, Zona Bogor, Zona Bandung, dan Zona Pegunungan Selatan Jawa

Lebih terperinci