BAB II KAJIAN TEORI A.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II KAJIAN TEORI A."

Transkripsi

1 BAB II KAJIAN TEORI A. Tahap-tahap Berpikir van Hiele Pierre van Hiele dan Dina van Hiele-Geldof adalah sepasang suami-istri bangsa Belanda yang mengabdi sebagai guru matematika di negaranya. Pada tahun 1957 mereka berhasil mempertahankan disertasinya tentang pengajaran geometri. Disertasi disertasi itu ditulis berdasarkan hasil penelitian di lapangan. Mereka menemukan antara lain: tahap-tahap berpikir dalam belajar geometri, sifat-sifat yang berkaitan dengan tahap-tahap berpikir dalam belajar geometri, dan tahaptahap urutan pembelajaran geometri. Penelitian yang dilakukan van Hiele menyatakan perkembangan kognitif siswa dalam memahami geometri. Menurut Piere van Hiele dan Dina van Hiele Geldof dalam belajar geometri seseorang akan melalui lima tahapan hierarkis (van de Walle, 2002; Aisyah 2006; Pitajeng 2006; Idris, 2005, Idris, 2008). Lima tahapan tersebut adalah: tahap 0 pengenalan (visualisasi), tahap 1: analisis (analysis), tahap 2: deduksi informal, tahap 3: deduksi (deduction) dan tahap 4: Ketepatan (rigor). Siswa yang didukung dengan pengalaman pengajaran yang tepat, akan melewati lima tahapan tersebut, dimana siswa tidak dapat mencapai satu tahapan pemikiran tanpa melewati tahapan sebelumnya. Setiap tahap menunjukkan proses berpikir yang digunakan seseorang dalam belajar konsep geometri. Menurut van Hiele (dalam van de Walle, 2002) tahap tahap berpikir tersebut diuraikan sebagai berikut: Tahap 0: Pengenalan (visualisasi). Obyek obyek pikiran pada tahap 0 berupa bentuk bentuk dan bagaimana rupa mereka. Siswa pada tahap awal ini mengenal dan menamakan bentuk bentuk berdasarkan pada karakteristik luas dan tampilan dari bentuk-bentuk tersebut. Siswa mampu membuat pengukuran dan bahkan berbicara tentang sifat sifat bentuk, tetapi sifat sifat itu tersebut tak terpisahkan dari wujud yang sebenarnya. Sebagai contoh, sebuah bujur sangkar dikatakan seperti bujur sangkar karena terlihat seperti bujur sangkar. Wujud/tampilan begitu dominan pada tahapan ini, wujud/tampilan dapat menentukan sifat sifat dari suatu bentuk. Berdasarkan pada tampilan bentuk, siswa mampu meninjau apakah bentuk bentuk tersebut serupa atau berbeda. Hasil pemikiran pada tahap 0 adalah kelas kelas atau kelompok kelompok dari bentuk bentuk yang terlihat mirip. Karakteristik yang muncul pada tahap ini adalah siswa mengidentifikasi, memberi nama, membandingkan dan mengoperasikan gambargambar geometri berdasarkan penampakannya (Bekti, 2012). Tahap 1: Analisis (analysis). Obyek obyek pemikiran pada tahap 1 berupa kelompok bentuk bukan bentuk bentuk individual. Siswa pada tahap analisis ini dapat menyatakan semua bentuk dalam golongan selain bentuk satuannya. Saat 5

2 memfokuskan pada golongan bentuk, siswa dapat berpikir tentang bagaimana sebuah persegi panjang terbentuk (empat sisi, sisi sisi berlawanan yang sejajar, sisi sisi berlawanan yang sama panjang, empat sudut siku siku, diagonal diagonal yang kongruen, dsb). Pada tahap ini, siswa mulai mengerti bahwa sebuah kumpulan bentuk tergolong serupa berdasarkan sifat/ciri cirinya. Siswa juga diminta untuk menyebutkan sifat sifat dari bentuk sebanyak yang mereka tahu. Hasil pemikiran pada tahap 1 adalah sifat sifat dari bentuk. Karakteristik yang muncul pada tahap ini adalah siswa menganalisis bangun berdasarkan sifat-sifat dari komponen dan hubungan antar komponen, menyusun sifat-sifat pada sebuah kelas bangun-bangun secara nyata, dan menggunakan sifat-sifat tersebut untuk memecahkan persoalan (Bekti, 2012). Tahap 2: Deduksi Informal. Obyek pemikiran pada tahap 2 adalah sifat sifat dari bentuk. Siswa mulai dapat berpikir tentang sifat sifat obyek tertentu, mereka dapat membuat hubungan diantara sifat sifat itu. Jika keempat sudut adalah sikusiku, bangun tersebut sudah pasti persegi panjang. Jika bentuknya persegi, semua titik sudutnya sudah pasti siku siku. Jika bentuknya persegi, bangun tersebut juga merupakan persegi panjang. Sebagai contoh, persegi panjang merupakan jajargenjang dengan sudut siku siku. Siswa pada tahap 2 ini akan dapat mengikuti dan mengapresiasi pendapat pendapat informal, deduktif tentang bentuk dan sifat sifatnya. Hasil pemikiran pada tahap 2 adalah hubungan di antara sifat sifat obyek geometri. Karakteristik yang muncul pada tahap ini adalah siswa merumuskan dan menggunakan definisi, memberikan argumen informal, mengikuti dan memberikan argumen secara deduktif (Bekti, 2012). Tahap 3: Deduksi. Obyek pemikiran pada tahap 3 berupa hubungan diantara sifat sifat obyek geometri. Pada tahap 3, siswa mampu meneliti bukan hanya sifat sifat bentuk saja. Pemikiran mereka sebelumnya telah menghasilkan dugaan mengenai hubungan antar sifat sifat. Apakah perkiraan ini tepat? Apakah itu semua benar? Ketika analisis pendapat informal ini berlangsung, struktur sebuah sistem lengkap dengan aksioma, definisi, teorema, efek dan postulat mulai berkembang dan dapat dihargai sebagai alat dalam pembentukan kebenaran geometri. Seorang siswa pada tahap 3 dapat dengan jelas mengamati bahwa garis diagonal dari sebuah persegi panjang saling berpotongan, sebagaimana siswa pada tahap yang lebih rendah pun dapat melakukannya. Pada tahap 3, terdapat apresiasi akan kebutuhan untuk membuktikannya berdasarkan serangkaian pendapat deduktif. Hasil pemikiran pada tahap 3 berupa sistem sistem deduktif dasar dari geometri. Karakteristik yang muncul pada tahap ini adalah siswa menetapkan dalam sistem postulational, teorema dan hubungan antara jaringan teorema (Bekti, 2012). Tahap 4: Ketepatan (rigor). Obyek obyek pemikiran pada tahap 4 berupa sistem sistem deduktif dasar dari geometri. Pada tahap teratas dalam tahapan van Hiele, obyek obyek perhatian adalah sistem dasarnya sendiri, bukan hanya penyimpulan dalam sistem. Terdapat sebuah apresiasi akan perbedaan dan hubungan antara berbagai sistem dasar. Sebagai contoh, geometri bola 6

3 berdasarkan garis-garis yang tergambar pada bola bukannya pada bidang atau ruang biasa. Geometri ini memiliki rangkaiannya sendiri akan aksioma atau teorema. Secara umum ini adalah tahapan mahasiswa jurusan matematika yang mempelajari geometri sebagai cabang dari ilmu matematika. Hasil pemikiran pada tahap 4 berupa perbandingan dan perbedaan di antara berbagai sistem-sistem geometri dasar. Menurut Burger (dalam Bekti, 2012) karakteristik yang muncul pada tahap ini adalah siswa menilai penyelidikan dari bermacam-macam sistem aksioma dan logika. Juga dapat memberi alasan dalam cara yang sangat tepat dengan sistem yang bermacam-macam. Hubungan dari tahap tahap berpikir van Hiele diilustrasikan oleh (Van de Walle, 2002) pada gambar berikut: Gambar 2.1 Tahap-Tahap Berpikir Geometri van Hiele Selain mengemukakan mengenai tahap tahap perkembangan kognitif dalam memahami geometri, van Hiele (dalam Aisyah dkk, 2007) juga mengemukakan beberapa teori berkaitan dengan pembelajaran geometri. Teori yang dikemukakan van Hiele antara lain adalah sebagai berikut: 1. Tiga unsur yang utama pada pembelajaran geometri yaitu waktu, materi pembelajaran dan metode penyusun yang apabila dikelola secara terpadu dapat mengakibatkan meningkatnya kemampuan berpikir siswa kepada tahap yang lebih tinggi dari tahap yang sebelumnya. 2. Bila dua orang yang mempunyai tahap berpikir berlainan satu sama lain, kemudian saling bertukar pikiran maka kedua orang tersebut tidak akan mengerti. Sebagai contoh, seorang siswa tidak mengerti mengapa gurunya membuktikan bahwa jumlah sudut-sudut dalam sebuah jajargenjang adalah 360, misalnya siswa tersebut berada pada tahap pengurutan ke bawah. Menurut siswa pada tahap yang disebutkan, pembuktiannya tidak perlu sebab sudah jelas bahwa jumlah sudut-sudutnya adalah 360. Contoh lain, seorang siswa yang berada pada tahap kedua atau tahap analisis, tidak mengerti apa 7

4 yang dijelaskan gurunya bahwa kubus itu adalah balok, belahketupat itu layanglayang. Gurunya pun sering tidak mengerti mengapa siswa yang diberi penjelasan tersebut tidak memahaminya. Menurut van Hiele seorang siswa yang berada pada tahap yang lebih rendah tidak mungkin dapat mengerti atau memahami materi yang berada pada tahap yang lebih tinggi dari siswa tersebut. Walaupun siswa tersebut dipaksakan untuk memahaminya, siswa itu baru bisa memahami melalui hafalan saja bukan melalui pengertian. 3. Agar mendapatkan hasil belajar yang diinginkan, yaitu siswa dapat memahami konsep geometri dengan penuh pemahaman, pembelajaran harus sesuai dengan tingkat perkembangan siswa atau sesuai dengan tahap berpikirnya. Setiap tahap dalam teori van Hiele menunjukkan karakteristik proses berpikir siswa dalam geometri dan pemahamannya dalam konteks geometri. Kualitas pengetahuan siswa tidak ditentukan oleh akumulasi pengetahuannya, tetapi lebih ditentukan oleh tahap berpikir yang digunakan, (Ferdianto, 2010). B. Deskriptor Tahapan Berpikir van Hiele Fuys (dalam Bekti, 2012) mengemukakan deskriptor penentu tahap berpikir siswa menurut teori van Hiele. Untuk tahap 0, pengenalan (visualisasi) sebagai berikut: 1. Siswa mengidentifikasi hal-hal tentang suatu bentuk melalui penampakannya secara keseluruhan. 2. Siswa mengkonstruksi, manggambar atau menyalin sebuah bentuk. 3. Siswa memberi nama atau memberi lebel bangun dan konfigurasi yang lain menggunakan nama-nama standart dan atau non standart yang cocok. 4. Siswa membandingkan dan memilah bentuk-bentuk berdasarkan penampakannya secara keseluruhan. 5. Secara verbal siswa mendeskripsikan bangun dengan penampakannya secara keseluruhan. 6. Dalam memecahkan persoalan rutin, siswa cenderung menggunakan operasi pada bentuk-bentuk daripada menggunakan sifat yang diterapkan secara umum. 7. Siswa mengidentifikasi bagian-bagian bangun, tetapi: a. Tidak menganalisis bangun tersebut berdasar sifat dari komponennya. b. Tidak berpikir sifat-sifat sebagai ciri dari suatu bangun. c. Tidak membuat generalisasi mengenai bentuk-bentuk atau menggunakan bahasa hubung. Untuk tahap 1, analisis (analysis) sebagai berikut: 1. Siswa mengidentifikasi dan menguji hubungan antar komponen bangunbangun (misalnya kekongruenan dari sisi yang berhadapan pada sebuah jajargenjang). 2. Siswa mengingat dan menggunakan dengan tepat istilah untuk komponen dan hubungan antar komponen. 8

5 3a. Siswa membandingkan dua bentuk berdasarkan hubungan antara komponenkomponennya. b. Siswa memilah bentuk-bentuk dalam berbagai cara berdasar sifat-sifat tertentu, termasuk memilah contoh dan bukan contoh pada sebuah kelas. 4a. Siswa menginterpretasikan dan menggunakan deskripsi verbal tentang bangun dalam istilah sifat-sifatnya dan menggunakan deskripsi itu untuk menggambarkan atau mengkonstruksi bangun. b. Siswa menginterpretasikan pernyataan verbal atau simbolik tentang aturanaturan dan menerapkannya. 5. Siswa menemukan sifat-sifat bangun khusus secara nyata dan menggeneralisasikan sifat itu untuk kelas dari bangun tersebut. 6a. Siswa mendeskripsikan kelas bangun dalam istilah sifatnya. b. Siswa menyatakan bentuk dari sebuah bangun berdasarkan sifat tertentu yang diberikan. 7. Siswa mengidentifikasi sifat yang digunakan untuk mengkarakterisasi satu kelas bangun adalah kelas bangun yang lain dan membandingkan kelas-kelas bangun dengan sifatnya. 8. Siswa menemukan sifat-sifat kelas bangun yang tidak biasa dikenal. 9. Siswa memecahkan masalah geometri dengan menggunakan sifat bangun yang diketahui atau melalui wawasan yang mendalam. 10. Siswa merumuskan dan menggeneralisasikan sifat-sifat bangun (diarahkan oleh guru/materi atau secara spontan dari dirinya sendiri) dan menggunakan bahasa hubung (contoh: semua, setiap, tidak ada), tetapi a. Tidak menjelaskan bagaimana sifat-sifat tertentu sebuah bangun saling berhubungan; b. Tidak merumuskan dan menggunakan definisi formal; c. Tidak menjelaskan hubungan subkelas diluar pengecekan contoh-khusus pada sifat yang telah terdaftar. d. Tidak mengusahakan keperluan untuk bukti atau keterangan logika pada generalisasi yang ditemukan secara nyata dan tidak menggunakan bahasa hubung (misalnya: jika-maka, karena) secara tepat. Untuk tahap 2, pengurutan/deduksi informal sebagai berikut: 1a. Siswa mengidentifikasi perbedaan kumpulan sifat yang mengkarakteristikkan sebuah kelas dari bangun dan memeriksa bahwa hal tersebut sudah cukup. b. Siswa mengidentifikasi kumpulan sifat minimum yang dapat dipakai untuk mengkarakteristikkan sebuah bangun. c. Siswa merumuskan dan menggunakan definisi untuk kelas bangun. 2. Siswa memberikan alasan informal (menggunakan diagram, potongan bangun yang dapat dilipat atau materi lain). a. Menggambarkan sebuah kesimpulan dari informasi yang diberikan mengambil kesimpulan dengan menggunakan hubungan logika. b. Mengurutkan kelas-kelas bentuk. c. Mengurutkan dua sifat. 9

6 d. Menemukan sifat baru dengan deduksi. e. Menghubungkan beberapa sifat dalam sebuah silsilah. 3. Siswa memberikan argumen deduktif informal a. Mengikuti sebuah argumen deduktif dan dapat memberikan bagian-bagian dari argumen. b. Memberi sebuah kesimpulan atau variasi dari sebuah argumen deduktif. c. Memberi argumen deduktif berdasarkan pendapatnya sendiri. 4. Siswa memberikan lebih dari satu keterangan untuk membuktikan sesuatu dan memberi penjelasan tersebut dengan menggunakan silsilah. 5. Siswa mengenal perbedaan antara pernyataan dan konversnya secara informal. 6. Siswa mengidentifikasi dan menggunakan strategi atau alasan dengan wawasan yang mendalam untuk menyelesaikan masalah. 7. Siswa mengenal peran argumen deduktif dan pendekatan masalah secara deduktif, tetapi: a. Tidak berpegang pada pengertian deduktif dalam sebuah sistem aksioma (misalnya tidak melihat keperluan untuk definisi dan asumsi dasar). b. Tidak membedakan secara formal antara pernyataan dan konversnya c. Belum bisa membangun antar hubungan antar jaringan kerja dari teorema. Untuk tahap 3, deduksi sebagai berikut: 1. Mengakui kebutuhan istilah yang tidak didefinisikan, definisi dan dasar asumsi tertentu (misalnya, postulat). 2. Mengakui karakteristik definisi formal (misalnya, kondisi perlu dan cukup) dan kesetaraan definisi. 3. Membuktikan dalam sebuah hubungan pengaturan aksiomatik yang dijelaskan secara informal. 4. Membuktikan hubungan antara teorema dan pernyataan terkait (misalnya konvers, invers, kontrapositif). 5. Menetapkan keterkaitan antara jaringan teorema. 6. Membandingkan dan mengkontraskan bukti yang berbeda dari teorema. 7. Meneliti efek dari perubahan definisi awal, atau postulat dalam suatu urutan logika. 8. Menetapkan prinsip umum yang menyatukan beberapa dalil yang berbeda. 9. Menciptakan bukti dari set aksioma sederhana sering menggunakan model untuk mendukung argumen. 10. Memberikan argumen deduktif formal tetapi tidak menyelidiki axiomatics sendiri atau membandingkan sistem aksioma. Untuk tahap 4, Ketepatan (rigor) sebagai berikut: 1. Siswa secara rigor membangun teorema dalam sistem aksiomatik yang berbeda. 2. Siswa membandingkan sistem aksiomatik (misal, geometri Euclides dan non- Euclides); secara spontan menggali bagaimana mengubah aksioma dalam mempengaruhi hasil geometri. 10

7 3. Siswa membangun secara konsisten kumpulan aksioma, kebebasan suatu aksioma dan ekivalensi perbedaan kumpulan aksioma, mengkreasikan suatu sistem aksiomatik untuk suatu geometri. 4. Siswa menemukan metode umum untuk menyelesaikan kelas-kelas masalah. 5. Siswa mencari konteks yang lebih luas untuk teorema/prinsip matematika yang akan diaplikasikan. 6. Siswa melakukan studi yang lebih dalam dari logika untuk mengembangkan pengertian baru dan pendekatan untuk inferensi logis. C. Pembelajaran Geometri Berbasis Teori van Hiele Pembelajaran geometri berbasis teori van Hiele adalah pembelajaran yang dalam bagian kegiatan inti dilaksanakan fase van Hiele yang terdiri atas 5 fase, informasi, orientasi, penjelasan, orientasi bebas dan integrasi. Kelima fase tersebut dijelaskan oleh van Hiele (dalam Aisyah dkk, 2007) sebagai berikut: 1. Fase Informasi Pada awal tahap ini, guru dan siswa menggunakan tanya jawab dan kegiatan tentang obyek obyek yang akan dipelajari pada tahap berpikir siswa. Pada hal ini obyek yang dipelajari adalah sifat komponen dan hubungan antar komponen bangun bangun segiempat. Guru mengajukan pertanyaan kepada siswa sambil melakukan observasi. Tujuan dari kegiatan ini adalah: (1) guru mempelajari pengalaman awal yang dimiliki siswa tentang topik yang dibahas, (2) guru mempelajari petunjuk yang muncul dalam rangka menentukan pembelajaran selanjutnya yang akan diambil. 2. Fase Orientasi Siswa menggali topik topik yang dipelajari melalui alat alat yang dengan cermat telah disiapkan guru. Aktivitas ini akan berangsur angsur menampakkan kepada siswa struktur yang memberi ciri ciri sifat komponen dan hubungan antar komponen suatu bangun segiempat. Alat ataupun bahan dirancang menjadi tugas pendek sehingga dapat mendatangkan respon khusus. 3. Fase Penjelasan Berdasarkan pengalaman sebelumnya, siswa menyatakan pandangan yang muncul mengenai struktur yang diobservasi. Di samping itu, untuk membantu siswa menggunakan bahasa yang tepat dan akurat, guru memberi bantuan sesedikit mungkin. Hal tersebut berlangsung sampai sistem hubungan pada tahap berpikir mulai tampak nyata. 4. Fase Orientasi Bebas Siswa menghadapi banyak tugas-tugas yang kompleks berupa tugas yang memerlukan banyak langkah, tugas yang dilengkapi dengan banyak cara dan tugas yang open ended. Siswa memperoleh pengalaman dalam menemukan cara mereka sendiri, maupun dalam menyelesaikan tugas-tugas. Melalui orientasi di antara para siswa dalam bidang investigasi, banyak hubungan antar obyek menjadi jelas. 11

8 5. Fase Integrasi Siswa meninjau kembali dan meringkas apa yang telah dipelajari. Guru dapat membantu siswa dalam membuat sintesis ini dengan melengkapi survey secara global terhadap apa yang telah dipelajari. Hal ini penting, tetapi kesimpulan ini tidak menunjukkan sesuatu yang baru. Pada akhir fase kelima ini siswa mencapai tahap berpikir yang baru. Siswa siap untuk mengulangi fase fase belajar pada tahap sebelumnya. Van Hiele menyatakan bahwa kemajuan dari satu tahap berpikir ke tahapan selanjutnya melibatkan kelima fase tersebut. Guru juga mempunyai peranan yang penting dalam keberhasilan pembelajaran geometri berbasis Teori van Hiele ini. Ada beberapa karakter pada fase pembelajaran van Hiele, yaitu: 1. Rangkaian urutan (Sequential) Memperhatikan tahap berpikir geometri siswa yang harus maju dari satu tahap ke tahap berikutnya, maka para pengajar dapat menyusun langkah pembelajaran sesuai dengan tahap berpikir geometri siswa. 2. Pengembangan (Advancement) Kemajuan tahap berpikir geometri siswa dari satu tahap ke tahap berikutnya, sangat bergantung pada hasil pembelajaran dengan lima fase pembelajaran van Hiele, bukan tergantung pada usia. Tidak ada metode pembelajaran yang memperbolehkan siswa untuk melompati tahapan berikutnya tanpa melalui tahapan sebelumnya. 3. Unsur Intrinsik dan Ekstrinsik (Intrinsic and Extrinsic) Objek dan sifat-sifat berikutnya yang dipahami pada satu tahap menjadi obyek pada tahap berikutnya. Pada tahap pengenalan (visualisasi) hanya sosok bentuk yang dipahami. Sosok bentuk tersebut dipertimbangkan oleh sifat-sifatnya tetapi tidak kepada tahap analisis, sosok bentuk tersebut dianalisis sehingga tiap komponen dan sifat-sifatnya ditemukan pada tahap berikutnya. 4. Kebahasaan (Linguistics) Setiap tahap berpikir geometri mempunyai lambang dan bahasa masing-masing, mempunyai sistem hubungan antar lambang itu. Hubungan yang benar pada satu tahap, mungkin dimodifikasi pada tahap yang lain. Sebagai contoh, sebuah persegi adalah juga persegi panjang (dan juga merupakan jajargenjang). 5. Ketaksepadanan (Mismatch) Jika siswa berada pada satu tahap berpikir geometri tertentu dan pembelajaran pada tahap yang lain, minat dan kemajuan belajar mungkin tidak akan terjadi. Secara khusus terutama jika guru, bahan ajar, kosakata, dll berada pada tahap yang lebih tinggi dari pembelajaran, maka siswa tidak akan mengikuti tahap berpikir yang sedang digunakan Tahap suatu kegiatan dapat dibuat bervariasi, meskipun untuk materi yang sama. Hal ini merupakan tipe pemikiran yang harus dilakukan siswa yang ingin membuat suatu perbedaan dalam pembelajaran, bukan dalam materi khusus. Menurut van Hiele (dalam van de Walle, 2002) terdapat kegiatan kegiatan 12

9 pengajaran yang tepat untuk setiap tiga tahap awal. Berikut diuraikan kegiatan kegiatan tersebut yang pada penelitian ini membahas tentang geometri segiempat meliputi: Pengajaran pada tahap 0. Kegiatan pengajaran dalam geometri yang tepat untuk tahap 0 berupa: 1. Meliputi berbagai pemilihan dan pengelompokkan. Meninjau bagaimana bentuk dapat serupa atau berbeda adalah fokus utama pada tahap 0. Ketika siswa belajar lebih banyak materi, jenis benda-benda yang mereka perhatikan akan lebih rumit. 2. Mengandung keragaman contoh bentuk yang cukup sehingga fitur fitur yang tidak relevan tetap penting. Pengajaran pada tahap 1. Kegiatan pengajaran dalam geometri yang tepat untuk tahap 1 berupa: 1. Berfokus lebih pada sifat sifat bentuk daripada identifikasi sederhana. Ketika konsep geometri yang baru telah dipelajari, jumlah sifat sifat dari bentuk dapat dikembangkan. 2. Terapkan ide ide ke seluruh kelompok bentuk (contoh semua persegi panjang) daripada model model bentuk per individu. Pengajaran pada tahap 2. Kegiatan pengajaran dalam geometri yang tepat untuk tahap 2 berupa: 1. Dorong pembuatan dan pengujian hipotesis atau perkiraan Apakah hal tersebut akan berlaku setiap saat?. 2. Periksa sifat sifat bentuk untuk menentukan kondisi yang diperlukan untuk berbagai bentuk atau konsep. 3. Gunakan bahasa deduksi informal: semua, beberapa, tidak satupun, jika..maka, bagaimana jika, dsb. 4. Dorong siswa untuk mencari bukti bukti alternatif. D. Geometri Segiempat Menurut kurikulum Tingkat Satuan Pendidikan (2006) Standar Kompetensi SD yang membahas tentang geometri dan pengukurannya tentang pokok bahasan bangun datar menyimpulkan bahwa geometri dan pengukurannya adalah bagian yang penting dari standar kompetensi di SD. Pada penelitian ini, peneliti membahas bangun datar kelompok segiempat. Segiempat merupakan materi yang tergolong dasar bagi siswa, namun siswa masih merasa kesulitan untuk memahaminya (Yadil, 2009). Agar lebih memahami materi segiempat, maka materi ini disajikan dalam bentuk peta konsep (Pitajeng, 2006). 13

10 Dasar penyusunan peta konsep di atas adalah: 1. Bangun bangun tersebut merupakan segiempat karena dibentuk oleh empat garis dan mempunyai empat sudut. 2. Segiempat terbagi menjadi tiga bagian atau komponen utama yaitu trapesium, jajargenjang dan layang layang. 3. Jajargenjang merupakan belahketupat yang mempunyai dua sisi berhadapan sama panjang. 4. Persegi panjang merupakan jajargenjang yang keempat sudutnya siku siku. 5. Belahketupat merupakan jajargenjang yang keempat sisinya sama panjang. 6. Persegi merupakan persegi panjang yang keempat sisinya sama panjang. 7. Persegi merupakan belahketupat yang keempat sudutnya siku siku. Berdasarkan penyusunan peta konsep di atas dapat disimpulkan bahwa segiempat bukan hanya persegi, tetapi segiempat mempunyai banyak hubungan dengan bangun bangun lainnya. Diharapkan melalui peta konsep tersebut, siswa dapat menyelidiki hubungan segiempat dengan bangun bangun lainnya berdasarkan kesamaan sifat dan unsur unsur pembentuknya, sehingga memudahkan siswa untuk memahami konsep konsep geometri pada pokok bahasan segiempat. 14

TEORI BELAJAR VAN HIELE

TEORI BELAJAR VAN HIELE TEORI BELAJAR VAN HIELE A. Pendahuluan Banyak teori belajar yang berkembang yang dijadikan landasan proses belajar mengajar matematika. Dari berbagai teori tersebut, jarang yang membahas tentang pembelajaran

Lebih terperinci

Pengalaman Belajar sesuai Teori Berpikir van Hiele

Pengalaman Belajar sesuai Teori Berpikir van Hiele Pengalaman Belajar sesuai Teori Berpikir van Hiele Posted by abdussakir on May 5, 2009 A. Teori Berpikir van Hiele Teori van Hiele yang dikembangkan oleh dua pendidik berkebangsaan Belanda, Pierre Marie

Lebih terperinci

UNIT TEORI BELAJAR VAN HIELE. Purwoko PENDAHULUAN

UNIT TEORI BELAJAR VAN HIELE. Purwoko PENDAHULUAN UNIT 4 TEORI BELAJAR VAN HIELE Purwoko PENDAHULUAN D alam mata kuliah Kapita Selekta, Anda telah diperkenalkandengan Teori Belajar Van Hiele. Selanjutnya, dalam bahan ajar Anda masih akan diperkenalkan

Lebih terperinci

BAB II KAJIAN TEORETIS DAN HIPOTESIS TINDAKAN. kecakapan, keterampilan, sikap, pengertian, harga diri, minat, watak, penyesuaian

BAB II KAJIAN TEORETIS DAN HIPOTESIS TINDAKAN. kecakapan, keterampilan, sikap, pengertian, harga diri, minat, watak, penyesuaian 7 BAB II KAJIAN TEORETIS DAN HIPOTESIS TINDAKAN 2.1 Hakikat Belajar Matematika Menurut Sadirman, (2011: 21) Belajar adalah berubah. Dalam hal ini yang dimaksud belajar berarti usaha mengubah tingkah laku.

Lebih terperinci

BELAJAR VAN HIELE. Oleh: Andi Ika Prasasti Abrar Prodi Pendidikan Matematika Jurusan Tarbiyah STAIN Papopo

BELAJAR VAN HIELE. Oleh: Andi Ika Prasasti Abrar Prodi Pendidikan Matematika Jurusan Tarbiyah STAIN Papopo BELAJAR VAN HIELE Oleh: Andi Ika Prasasti Abrar Prodi Pendidikan Matematika Jurusan Tarbiyah STAIN Papopo Abstrak: Dalam pembelajaran geometri terdapat teori belajar yang dikemukakan oleh Pierre Van Hiele,

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Salah satu cabang matematika yang diajarkan di sekolah adalah Geometri. Dari sudut pandang psikologi, geometri merupakan penyajian abstraksi dari pengalaman

Lebih terperinci

Geometri dan Pengukuran dalam Kurikulum Matematika

Geometri dan Pengukuran dalam Kurikulum Matematika Geometri dan Pengukuran dalam Kurikulum Matematika Farida Nurhasanah 2012 SI SD kelas I smt 1 Geometri dan Pengukuran 2. Menggunakan pengukuran waktu dan panjang 3. Mengenal beberapa bangun ruang 2.1 Menentukan

Lebih terperinci

ANALISIS LEVEL PERTANYAAN GEOMETRI BERDASARKAN TINGKATAN VAN HIELE PADA BUKU TEKS MATEMATIKA SMP KELAS VII

ANALISIS LEVEL PERTANYAAN GEOMETRI BERDASARKAN TINGKATAN VAN HIELE PADA BUKU TEKS MATEMATIKA SMP KELAS VII ANALISIS LEVEL PERTANYAAN GEOMETRI BERDASARKAN TINGKATAN VAN HIELE PADA BUKU TEKS MATEMATIKA SMP KELAS VII Ema Sintia Ramadhani 9, Sunardi 10, Nurcholif Diah Sri Lestari 11 Abstrac.: This research aims

Lebih terperinci

BAB I PENDAHULUAN. kehidupannya akan selalu berkembang ke arah yang lebih baik. Oleh karena itu,

BAB I PENDAHULUAN. kehidupannya akan selalu berkembang ke arah yang lebih baik. Oleh karena itu, BAB I PENDAHULUAN 1.1 Latar Belakang Pendidikan merupakan aspek penting dalam perkembangan kehidupan masyarakat dan kemajuan bangsa. Manusia yang selalu diiringi pendidikan, kehidupannya akan selalu berkembang

Lebih terperinci

TEORI BELAJAR VAN HIELE

TEORI BELAJAR VAN HIELE TEORI BELAJAR VAN HIELE A. PENDAHULUAN Kalau sebelumnya telah diketahui tentang teori-teori belajaryang menjadi landasan dalam proses belajar mengajar matematika, pada bagian ini akan diuraikan mengenai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Deskripsi Konseptual 1. Analisis Analisis merupakan suatu tahapan yang harus ditempuh untuk mengetahui derajat kualitas (Arifin, 2011). Analisis adalah proses mencari dan menyusun

Lebih terperinci

BAB II TINGKAT BERPIKIR VAN HIELE, PEMAHAMAN KONSEP GEOMETRI, KOMUNIKASI MATEMATIS DAN PEMBELAJARAN GEOMETRI BERBASIS TEORI VAN HIELE

BAB II TINGKAT BERPIKIR VAN HIELE, PEMAHAMAN KONSEP GEOMETRI, KOMUNIKASI MATEMATIS DAN PEMBELAJARAN GEOMETRI BERBASIS TEORI VAN HIELE BAB II TINGKAT BERPIKIR VAN HIELE, PEMAHAMAN KONSEP GEOMETRI, KOMUNIKASI MATEMATIS DAN PEMBELAJARAN GEOMETRI BERBASIS TEORI VAN HIELE A. Tingkat Berpikir Van Hiele Sepasang suami istri kebangsaan Belanda,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pembelajaran matematika merupakan suatu proses pemberian pengalaman

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pembelajaran matematika merupakan suatu proses pemberian pengalaman BAB I PENDAHULUAN 1.1 Latar Belakang Pembelajaran matematika merupakan suatu proses pemberian pengalaman belajar kepada siswa melalui serangkaian kegiatan yang terencana sehingga siswa memperoleh kompetensi

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Kajian Teori 2.1.1 Pengertian Belajar Dalam Kamus Besar Bahasa Indonesia, secara etimologis belajar memiliki arti berusaha memperoleh kepandaian atau ilmu definisi ini memiliki

Lebih terperinci

Oktavia et al., Analisis Penyajian Pembelajaran...

Oktavia et al., Analisis Penyajian Pembelajaran... 31 Analisis Penyajian Pembelajaran Materi Geometri pada Buku Sekolah Elektronik (BSE) SD Berdasarkan Teori van Hiele (Analysis of Presentation Learning Materials of Geometry in Elementary School Electronic

Lebih terperinci

E-LAERNING TEORI BELAJAR VAN HIELE VS BARUDA

E-LAERNING TEORI BELAJAR VAN HIELE VS BARUDA E-LAERNING TEORI BELAJAR VAN HIELE VS BARUDA PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU KEPENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 TEORI BELAJAR SOSIAL ALBERT BANDURA Pada

Lebih terperinci

Kisi kisi Soal Tes. Bentuk Nomor. Uraian 1

Kisi kisi Soal Tes. Bentuk Nomor. Uraian 1 44 Lampiran 1 : Kisi-kisi So_al Tes Kisi kisi Soal Tes No Materi Uraian Materi 1 Bangun Segi datar empat adalah bangu n datar yang dibatas i oleh empat sisi Indikator Soal Siswa dapat mengenal jenis jenis

Lebih terperinci

PENGEMBANGAN PEMBELAJARAN MATEMATIKA SD

PENGEMBANGAN PEMBELAJARAN MATEMATIKA SD PENGEMBANGAN PEMBELAJARAN MATEMATIKA SD Sufyani Prabawanto Sufyani_prabawanto@yahoo.com 6/3/2010 1 Belajar dan Pembelajaran Belajar? Upaya memperoleh kepandaian, memperoleh perubahan tingkah laku, memberi

Lebih terperinci

Analisis Kemampuan Menyelesaikan Soal Cerita Matematika Tentang Bangun Datar Ditinjau Dari Teori Van Hiele ABSTRAK

Analisis Kemampuan Menyelesaikan Soal Cerita Matematika Tentang Bangun Datar Ditinjau Dari Teori Van Hiele ABSTRAK Analisis Kemampuan Menyelesaikan Soal Cerita Matematika Tentang Bangun Datar Ditinjau Dari Teori Van Hiele 1 Wahyudi, 2 Sutra Asoka Dewi 1 yudhisalatiga@gmail.com 2 sutrasoka@gmail.com ABSTRAK Penelitian

Lebih terperinci

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam MAKALAH GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam 1 BAB I PENDAHULUAN A. Latar Belakang Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah. Salah satu tujuan Standar Kompetensi Kelompok Mata Pelajaran yang

BAB I PENDAHULUAN. A. Latar Belakang Masalah. Salah satu tujuan Standar Kompetensi Kelompok Mata Pelajaran yang BAB I PENDAHULUAN A. Latar Belakang Masalah Salah satu tujuan Standar Kompetensi Kelompok Mata Pelajaran yang terdapat dalam KTSP 2007 tingkat pendidikan dasar adalah mengembangkan logika, kemampuan berpikir

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Clement dan Sarama (CPRE, 2011, hlm. 23) menyatakan bahwa learning trajectory adalah deskripsi pemikiran anak-anak ketika belajar dalam domain matematika tertentu,

Lebih terperinci

ANALISIS KEMAMPUAN MENYELESAIKAN SOAL CERITA MATEMATIKA SISWA KELAS VIII SMP NEGERI 03 TUNTANG TENTANG BANGUN DATAR DITINJAU DARI TEORI VAN HIELE

ANALISIS KEMAMPUAN MENYELESAIKAN SOAL CERITA MATEMATIKA SISWA KELAS VIII SMP NEGERI 03 TUNTANG TENTANG BANGUN DATAR DITINJAU DARI TEORI VAN HIELE ANALISIS KEMAMPUAN MENYELESAIKAN SOAL CERITA MATEMATIKA SISWA KELAS VIII SMP NEGERI 03 TUNTANG TENTANG BANGUN DATAR DITINJAU DARI TEORI VAN HIELE JURNAL Disusun untuk memenuhi syarat guna mencapai Gelar

Lebih terperinci

TINGKAT BERPIKIR GEOMETRI SISWA KELAS VII SMP BERDASARKAN TEORI VAN HIELE

TINGKAT BERPIKIR GEOMETRI SISWA KELAS VII SMP BERDASARKAN TEORI VAN HIELE TINGKAT BERPIKIR GEOMETRI SISWA KELAS VII SMP BERDASARKAN TEORI VAN HIELE Jackson Pasini Mairing Pendidikan Matematika FKIP Universitas Palangka Raya Email: jacksonmairing@gmail.com Abstrak: Tingkat berpikir

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Pengertian Konsep, Konsepsi dan Prakonsepsi Konsep adalah satuan arti yang mewakili sejumlah objek, misalnya benda-benda atau kejadian-kejadian yang mewakili kesamaan ciri khas

Lebih terperinci

BAB II KAJIAN PUSTAKA. Efektivitas berasal dari bahasa Inggris yaitu effective yang berarti berhasil,

BAB II KAJIAN PUSTAKA. Efektivitas berasal dari bahasa Inggris yaitu effective yang berarti berhasil, 7 BAB II KAJIAN PUSTAKA 2.1 Kajian Teori 2.1.1 Efektivitas Efektivitas berasal dari bahasa Inggris yaitu effective yang berarti berhasil, tepat atau manjur. Dalam kamus besar Bahasa Indonesia (2005: 284)

Lebih terperinci

2015 DESAIN DIDAKTIS SIFAT-SIFAT SEGIEMPAT UNTUK MENCAPAI LEVEL BERPIKIR GEOMETRI PENGELOMPOKKAN PADA SISWA SMP

2015 DESAIN DIDAKTIS SIFAT-SIFAT SEGIEMPAT UNTUK MENCAPAI LEVEL BERPIKIR GEOMETRI PENGELOMPOKKAN PADA SISWA SMP BAB I PENDAHALUAN A. Latar Belakang Masalah Menurut Suherman dkk (2001, 8), belajar adalah proses perubahan tingkah laku individu yang relatif tetap sebagai hasil dari pengalaman. Tidak dapat dipungkiri

Lebih terperinci

DESKRIPSI KEMAMPUAN GEOMETRI SISWA SMP BERDASARKAN TEORI VAN HIELE

DESKRIPSI KEMAMPUAN GEOMETRI SISWA SMP BERDASARKAN TEORI VAN HIELE Pedagogy Volume 2 Nomor 1 ISSN 2502-3802 DESKRIPSI KEMAMPUAN GEOMETRI SISWA SMP BERDASARKAN TEORI VAN HIELE Zet Petrus 1, Karmila 2, Achmad Riady Program Studi Pendidikan Matematika 1,2,3, Fakultas Keguruan

Lebih terperinci

ANALISIS KETERAMPILAN GEOMETRI SISWA DALAM MENYELESAIKAN SOAL GEOMETRI SEGIEMPAT BERDASARKAN TINGKAT BERPIKIR VAN HIELE

ANALISIS KETERAMPILAN GEOMETRI SISWA DALAM MENYELESAIKAN SOAL GEOMETRI SEGIEMPAT BERDASARKAN TINGKAT BERPIKIR VAN HIELE ANALISIS KETERAMPILAN GEOMETRI SISWA DALAM MENYELESAIKAN SOAL GEOMETRI SEGIEMPAT BERDASARKAN TINGKAT BERPIKIR VAN HIELE Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Pendidikan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pendidikan adalah usaha sadar, terencana dan diupayakan untuk memungkinkan peserta didik secara aktif mengembangkan potensi diri baik fisik maupun nirfisik;

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 6 BAB II KAJIAN PUSTAKA 2.1 Kajian Teori 2.1.1 Geometri Geometri menempati posisi khusus dalam kurikulum matematika menengah, karena banyaknya konsep-konsep yang termuat di dalamnya.dari sudut pandang

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Penelitian

BAB I PENDAHULUAN A. Latar Belakang Penelitian BAB I PENDAHULUAN A. Latar Belakang Penelitian Dalam pembelajaran matematika di sekolah matematika dibagi atas beberapa sub pelajaran, diantaranya sub mata pelajaran geometri. Peranan geometri dalam pelajaran

Lebih terperinci

BAB I PENDAHULUAN. Sebab pendidikan tidak pernah terpisah dengan kehidupan manusia. Anak-anak

BAB I PENDAHULUAN. Sebab pendidikan tidak pernah terpisah dengan kehidupan manusia. Anak-anak BAB I PENDAHULUAN A. LATAR BELAKANG MASALAH Hampir semua orang dikenai pendidikan dan melaksanakan pendidikan. Sebab pendidikan tidak pernah terpisah dengan kehidupan manusia. Anak-anak menerima pendidikan

Lebih terperinci

PENERAPAN TEORI VAN HIELE DALAM MENINGKATKAN KEMAMPUAN BERPIKIR SISWA SEKOLAH MENENGAH PERTAMA PADA MATERI BANGUN RUANG LIMAS

PENERAPAN TEORI VAN HIELE DALAM MENINGKATKAN KEMAMPUAN BERPIKIR SISWA SEKOLAH MENENGAH PERTAMA PADA MATERI BANGUN RUANG LIMAS PENERAPAN TEORI VAN HIELE DALAM MENINGKATKAN KEMAMPUAN BERPIKIR SISWA SEKOLAH MENENGAH PERTAMA PADA MATERI BANGUN RUANG LIMAS Fitriati 1) dan Lisa Sopiana 2) 1 Fitriati, Dosen Prodi Pendidikan Matematika,

Lebih terperinci

DESKRIPSI LEVEL BERPIKIR GEOMETRI DATAR SISWA SD KELAS V BERDASARKAN TEORI VAN HIELE. Muhamad Choeri Shodiqin, Tri Nova Hasti Yunianta, Wahyudi

DESKRIPSI LEVEL BERPIKIR GEOMETRI DATAR SISWA SD KELAS V BERDASARKAN TEORI VAN HIELE. Muhamad Choeri Shodiqin, Tri Nova Hasti Yunianta, Wahyudi DESKRIPSI LEVEL BERPIKIR GEOMETRI DATAR SISWA SD KELAS V BERDASARKAN TEORI VAN HIELE Muhamad Choeri Shodiqin, Tri Nova Hasti Yunianta, Wahyudi Program Studi Pendidikan Matematika, Fakultas Keguruan dan

Lebih terperinci

BAB I PENDAHULUAN. sistematis dalam menyelesaikan persoalan kehidupan sehari-hari atau dalam

BAB I PENDAHULUAN. sistematis dalam menyelesaikan persoalan kehidupan sehari-hari atau dalam 1 BAB I PENDAHULUAN A. Latar Belakang Matematika sebagai bagian dari kurikulum, memegang peranan yang sangat penting dalam upaya meningkatkan kualitas lulusan yang mampu bertindak atas dasar pemikiran

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Geometri merupakan salah satu bagian dari ilmu matematika yang mempelajari titik, garis, bangun, hubungan antara garis, panjang, luas, volume, dan lain-lain

Lebih terperinci

MAKALAH DASAR-DASAR DAN PROSES PEMBELAJARAN

MAKALAH DASAR-DASAR DAN PROSES PEMBELAJARAN MAKALAH DASAR-DASAR DAN PROSES PEMBELAJARAN TEORI BELAJAR DAN PEMBELAJARAN MATEMATIKA OLEH : KELOMPOK I 1. CHATRA YUDHA 2. HARDIANTI IBRAHIM 3. DEBY SURYANI M 4. ELVIANA WAHYUNI 5. DESI MUSDALIFA RAHMA

Lebih terperinci

MENINGKATKAN HASIL BELAJAR GEOMETRI DENGAN TEORI VAN HIELE

MENINGKATKAN HASIL BELAJAR GEOMETRI DENGAN TEORI VAN HIELE MENINGKATKAN HASIL BELAJAR GEOMETRI DENGAN TEORI VAN HIELE Husnul Khotimah Pendidikan Matematika, Universitas Negeri Yogyakarata Abstrak Matematika memiliki berbagai cabang ilmu, salah satunya adalah Geometri.

Lebih terperinci

Teori Belajar dalam Pembelajaran Matematika

Teori Belajar dalam Pembelajaran Matematika Teori Belajar dalam Pembelajaran Matematika I. Aliran Psikologi Tingkah Laku Teori Thorndike Teori Skinner Teori Ausubel Teori Gagne Teori Pavlov Teori baruda Teori Thorndike Teori belajar stimulus-respon

Lebih terperinci

Teori Belajar Kognitif David Ausubel Belajar Bermakna, Zoltan P Dienes Belajar Permainan, Van Heille Pengajaran Geometri

Teori Belajar Kognitif David Ausubel Belajar Bermakna, Zoltan P Dienes Belajar Permainan, Van Heille Pengajaran Geometri Teori Belajar Kognitif David Ausubel Belajar Bermakna, Zoltan P Dienes Belajar Permainan, Van Heille Pengajaran Geometri Joko Sulianto sulianto.jo@gmail.com Dosen PGSD IKIP PGRI Semarang ABSTRAK Menurut

Lebih terperinci

TEORI VAN HIELE :TINGKAT BERPIKIR SISWA SMP BERGAYA KOGNITIF REFLEKSIF DAN IMPULSIF PADA MATERI SEGIEMPAT

TEORI VAN HIELE :TINGKAT BERPIKIR SISWA SMP BERGAYA KOGNITIF REFLEKSIF DAN IMPULSIF PADA MATERI SEGIEMPAT TEORI VAN HIELE :TINGKAT BERPIKIR SISWA SMP BERGAYA KOGNITIF REFLEKSIF DAN IMPULSIF PADA MATERI SEGIEMPAT Suci Apriyanti 1), Harina Fitriyani 2) 1 Fakultas Keguruan dan Ilmu Pendidikan, Universitas Ahmad

Lebih terperinci

BAB I PENDAHULUAN. Menengah Pertama Melalui Pembelajaran dengan Pendekatan Metaphorical Thinking. (repository.upi.edu, 2013), 3.

BAB I PENDAHULUAN. Menengah Pertama Melalui Pembelajaran dengan Pendekatan Metaphorical Thinking. (repository.upi.edu, 2013), 3. BAB I PENDAHULUAN A. Latar Belakang Peraturan Menteri Pendidikan dan Kebudayaan No. 54 Tahun 2013 tentang standart lulusan dalam Dimensi Pengetahuan menyebutkan bahwa siswa harus memiliki pengetahuan faktual,

Lebih terperinci

Pilihlah satu jawaban yang paling tepat

Pilihlah satu jawaban yang paling tepat DEPARTEMEN PENDIDIKAN NASIONAL Direktorat Jenderal Pendidikan Tinggi Jalan Jenderal Sudirman, Senayan Jakarta Email : dikti@dikti.org homepage: www.dikti.org Naskah Soal Ujian Petunjuk: Naskah soal terdiri

Lebih terperinci

BAB I PENDAHULUAN. atau hanya gambaran pikiran. Makna dari penjelasan tersebut adalah sesuatu

BAB I PENDAHULUAN. atau hanya gambaran pikiran. Makna dari penjelasan tersebut adalah sesuatu 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika adalah sebuah ilmu dengan objek kajian yang bersifat abstrak. Dalam Bahasa Indonesia, abstrak diartikan sebagai sesuatu yang tak berujud atau hanya

Lebih terperinci

Inisiasi 2 Geometri dan Pengukuran

Inisiasi 2 Geometri dan Pengukuran Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Proses melahirkan ide untuk menyelesaikan suatu persoalaan dengan cara berpikir disebut dengan proses berpikir. Proses berpikir melibatkan kerja otak yang dimulai

Lebih terperinci

Pertemuan Ke-4. Oleh: M. Jainuri, S.Pd., M.Pd. Pendidikan Matematika. STKIP YPM Bangko. Teori Belajar Kognitif_M. Jainuri, S.Pd., M.

Pertemuan Ke-4. Oleh: M. Jainuri, S.Pd., M.Pd. Pendidikan Matematika. STKIP YPM Bangko. Teori Belajar Kognitif_M. Jainuri, S.Pd., M. Pertemuan Ke-4 Oleh: M. Jainuri, S.Pd., M.Pd Pendidikan Matematika Teori Belajar Kognitif_M. Jainuri, S.Pd., M.Pd STKIP YPM Bangko 1 Teori Belajar Kognitif Secara umum kognitif diartikan potensi intelektual

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Memasuki zaman modern seperti sekarang ini, manusia dihadapkan pada berbagai tantangan yang ditandai oleh pesatnya perkembangan ilmu pengetahuan dan teknologi.

Lebih terperinci

datar berdasarkan kemampuan berpikir geometris Van Hiele sebagai berikut:

datar berdasarkan kemampuan berpikir geometris Van Hiele sebagai berikut: BAB V PENUTUP A. Simpulan Berdasarkan data hasil penelitian dan pembahasan maka dapat disimpulkan bahwa kemampuan komunikasi matematis peserta didik kelas VIII-F SMP Negeri 39 Semarang pada materi bangun

Lebih terperinci

DESAIN DIDAKTIS KONSEP LUAS DAERAH LAYANG-LAYANG PADA PEMBELAJARAN MATEMATIKA KELAS V SEKOLAH DASAR

DESAIN DIDAKTIS KONSEP LUAS DAERAH LAYANG-LAYANG PADA PEMBELAJARAN MATEMATIKA KELAS V SEKOLAH DASAR DESAIN DIDAKTIS KONSEP LUAS DAERAH LAYANG-LAYANG PADA PEMBELAJARAN MATEMATIKA KELAS V SEKOLAH DASAR Aji Setiaji Hj. Epon Nur aeni L Rosarina Giyartini UPI Kampus Tasikmalaya Abstrak Penelitian ini dilatarbelakangi

Lebih terperinci

INSTRUMEN PERANGKAT PEMBELAJARAN

INSTRUMEN PERANGKAT PEMBELAJARAN INSTRUMEN PERANGKAT PEMBELAJARAN Lampiran 1 : RPP Siklus I Pertemuan 1 dan 2 RENCANA PELAKSANAAN PEMBELAJARAN Sekolah Mata Pelajaran Kelas/Semester Alokasi Waktu : SDN Pekunden : Matematika : II (dua)

Lebih terperinci

PROFIL PEMAHAMAN KONSEP SEGITIGA PADA SISWA SEKOLAH DASAR (SD) BERDASARKAN TEORI VAN HEILE

PROFIL PEMAHAMAN KONSEP SEGITIGA PADA SISWA SEKOLAH DASAR (SD) BERDASARKAN TEORI VAN HEILE PROFIL PEMAHAMAN KONSEP SEGITIGA PADA SISWA SEKOLAH DASAR (SD) BERDASARKAN TEORI VAN HEILE 1 Yayuk Purnamawati, 2 Sardulo Gembong, 3 Ervina Maret S. 1 Mahasiswa Prodi Matematika IKIP PGRI Madiun 2 Dosen

Lebih terperinci

ANALISIS KETERAMPILAN GEOMETRI SISWA DALAM MEMECAHKAN MASALAH GEOMETRI BERDASARKAN TINGKAT BERPIKIR VAN HIELE

ANALISIS KETERAMPILAN GEOMETRI SISWA DALAM MEMECAHKAN MASALAH GEOMETRI BERDASARKAN TINGKAT BERPIKIR VAN HIELE ANALISIS KETERAMPILAN GEOMETRI SISWA DALAM MEMECAHKAN MASALAH GEOMETRI BERDASARKAN TINGKAT BERPIKIR VAN HIELE (Studi Kasus pada Siswa Kelas VIII SMP Negeri 16 Surakarta Tahun Ajaran 2013/2014) Nur aini

Lebih terperinci

BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. A. Pembahasan Dari data hasil tes soal dapat diketahui siswa yang memiliki keterampilan

BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. A. Pembahasan Dari data hasil tes soal dapat diketahui siswa yang memiliki keterampilan 113 BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN A. Pembahasan Dari data hasil tes soal dapat diketahui siswa yang memiliki keterampilan dasar geometri pada materi bangun datar segiempat adalah sebagai

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1. Kajian Teori 2.1.1. Belajar Dari http://wikipedia.com, belajar didefinisikan sebagai perubahan yang relatif permanen dalam perilaku atau potensi perilaku sebagai hasil dari pengalaman

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Geometri ruang merupakan suatu bentuk geometri yang tidak terletak pada bidang datar atau suatu benda ruang yang berbentuk tiga dimensi. Geometri ruang memiliki panjang,

Lebih terperinci

ANALISIS TINGKAT BERPIKIR SISWA SMP BERDASARKAN TEORI VAN HIELE DITINJAU DARI GENDER

ANALISIS TINGKAT BERPIKIR SISWA SMP BERDASARKAN TEORI VAN HIELE DITINJAU DARI GENDER ANALISIS TINGKAT BERPIKIR SISWA SMP BERDASARKAN TEORI VAN HIELE DITINJAU DARI GENDER Isnaeni Maryam Program Studi Pendidikan Matematika Universitas Muhammadiyah Purworejo E-mail: ice_ajah17@yahoo.com Abstrak

Lebih terperinci

LEVEL BERPIKIR SISWA SMP BERGAYA KOGNITIF REFLEKSIF DAN IMPULSIFMENURUT TEORI VAN HIELE PADA MATERI SEGITIGA

LEVEL BERPIKIR SISWA SMP BERGAYA KOGNITIF REFLEKSIF DAN IMPULSIFMENURUT TEORI VAN HIELE PADA MATERI SEGITIGA LEVEL BERPIKIR SISWA SMP BERGAYA KOGNITIF REFLEKSIF DAN IMPULSIFMENURUT TEORI VAN HIELE PADA MATERI SEGITIGA Hazmin Sholiha Amimah 1), Harina Fitriyani 2) 1 FKIP, Universitas Ahmad Dahlan email: mimahazmin@gmail.com

Lebih terperinci

Kegiatan Belajar 1 HAKIKAT MATEMATIKA

Kegiatan Belajar 1 HAKIKAT MATEMATIKA Kegiatan Belajar 1 HAKIKAT MATEMATIKA A. Pengantar Matematika merupakan salah satu bidang studi yang dijarkan di SD. Seorang guru SD yang akan mengajarkan matematika kepada siswanya, hendaklah mengetahui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Kajian Pustaka 1. Model Pembelajaran Van Hiele a. Pengertian Model pembelajaran van hiele adalah model pembelajaran yang melibatkan lima fase (langkah), yaitu : informasi (information),

Lebih terperinci

BAB I PENDAHULUAN. 1 Sarbaini, Identifikasi Tingkat Berpikir Siswa Berdasarkan Teori Van

BAB I PENDAHULUAN. 1 Sarbaini, Identifikasi Tingkat Berpikir Siswa Berdasarkan Teori Van BAB I PENDAHULUAN A. Latar Belakang Salah satu ilmu dasar yang mendukung kemajuan dan perkembangan Ilmu Pengetahuan dan Teknologi (IPTEK) adalah matematika. Sebagaimana yang dikemukakan oleh Soedjadi dalam

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Pendidikan merupakan salah satu bagian terpenting dalam kehidupan manusia. Dengan pendidikan manusia mendapatkan pengetahuan, pemahaman dan keterampilan. Pendidikan

Lebih terperinci

IDENTIFIKASI TAHAP BERPIKIR GEOMETRI SISWA SMP NEGERI 2 AMBARAWA BERDASARKAN TEORI VAN HIELE

IDENTIFIKASI TAHAP BERPIKIR GEOMETRI SISWA SMP NEGERI 2 AMBARAWA BERDASARKAN TEORI VAN HIELE IDENTIFIKASI TAHAP BERPIKIR GEOMETRI SISWA SMP NEGERI 2 AMBARAWA BERDASARKAN TEORI VAN HIELE SKRIPSI Diajukan untuk Memenuhi Syarat Guna Mencapai Gelar Sarjana Pendidikan Program Studi S1 Pendidikan Matematika

Lebih terperinci

BAB II KAJIAN PUSTAKA. dari matematika adalah mempunyai obyek dasar yang abstrak. Objek-objek

BAB II KAJIAN PUSTAKA. dari matematika adalah mempunyai obyek dasar yang abstrak. Objek-objek 9 BAB II KAJIAN PUSTAKA A. Objek Matematika Soedjadi menyatakan bahwa salah satu karakteristik atau ciri-ciri khusus dari matematika adalah mempunyai obyek dasar yang abstrak. Objek-objek tersebut merupakan

Lebih terperinci

SCAFFOLDING UNTUK MEMPERBAIKI TINGKAT BERPIKIR GEOMETRI

SCAFFOLDING UNTUK MEMPERBAIKI TINGKAT BERPIKIR GEOMETRI SCAFFOLDING UNTUK MEMPERBAIKI TINGKAT BERPIKIR GEOMETRI Abstrak: Tidak semua siswa mampu berpikir tentang ide-ide geometri. Oleh karena itu scaffolding mejadi krusial. Scaffolding merupakan pemberian bantuan

Lebih terperinci

PENGEMBANGAN KEMAMPUAN KOMUNIKASI GEOMETRIS SISWA SEKOLAH DASAR MELALUI PEMBELAJARAN BERBASIS TEORI VAN HIELE

PENGEMBANGAN KEMAMPUAN KOMUNIKASI GEOMETRIS SISWA SEKOLAH DASAR MELALUI PEMBELAJARAN BERBASIS TEORI VAN HIELE Hj Epon Nur aeni PENGEMBANGAN KEMAMPUAN KOMUNIKASI GEOMETRIS SISWA SEKOLAH DASAR MELALUI PEMBELAJARAN BERBASIS TEORI VAN HIELE Oleh: Oleh: Hj Epon Nur aeni ABSTRAK Salahsatu kemampuan yang dapat membantu

Lebih terperinci

IDENTIFIKASI TAHAP BERPIKIR GEOMETRI SISWA SMP NEGERI 2 AMBARAWA BERDASARKAN TEORI VAN HIELE

IDENTIFIKASI TAHAP BERPIKIR GEOMETRI SISWA SMP NEGERI 2 AMBARAWA BERDASARKAN TEORI VAN HIELE Satya Widya, Vol. 30, No.2. Desember 2014: 96-103 IDENTIFIKASI TAHAP BERPIKIR GEOMETRI SISWA SMP NEGERI 2 AMBARAWA BERDASARKAN TEORI VAN HIELE Susi Lestariyani Alumni Program Studi Pendidikan Matematika

Lebih terperinci

BAB II KAJIAN PUSTAKA. Menurut Saputro (2012), soal matematika adalah soal yang berkaitan

BAB II KAJIAN PUSTAKA. Menurut Saputro (2012), soal matematika adalah soal yang berkaitan BAB II KAJIAN PUSTAKA A. Soal Matematika Menurut Saputro (2012), soal matematika adalah soal yang berkaitan dengan matematika. Soal tersebut dapat berupa soal pilihan ganda ataupun soal uraian. Setiap

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) dimensi tiga. : 6.1. Menentukan kedudukan titik, garis dan bidang dalam. ruang dimensi tiga.

RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) dimensi tiga. : 6.1. Menentukan kedudukan titik, garis dan bidang dalam. ruang dimensi tiga. RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) Nama Sekolah Mata Pelajaran Kelas / Semester : SMA Negeri 1 Wundulako : Matematika : X / 2 (dua) Standar Kompetensi : 6. Menentukan kedudukan, jarak dan

Lebih terperinci

BAB II KAJIAN TEORI. berupa masalah ataupun soal-soal untuk diselesaikan. sintesis dan evaluasi (Gokhale,1995:23). Menurut Halpen (dalam Achmad,

BAB II KAJIAN TEORI. berupa masalah ataupun soal-soal untuk diselesaikan. sintesis dan evaluasi (Gokhale,1995:23). Menurut Halpen (dalam Achmad, 6 BAB II KAJIAN TEORI A. Berpikir Kritis Berpikir merupakan kegiatan penggabungan antara persepsi dan unsurunsur yang ada dalam pikiran untuk menghasilkan pengetahuan. Berpikir dapat terjadi pada seseorang

Lebih terperinci

ANALISIS KEMAMPUAN SISWA DALAM MEMAHAMI KONSEP BANGUN DATAR SEGIEMPAT BERDASARKAN TINGKAT BERFIKIR VAN HIELE DI KELAS VII SMPN 3 PADANG

ANALISIS KEMAMPUAN SISWA DALAM MEMAHAMI KONSEP BANGUN DATAR SEGIEMPAT BERDASARKAN TINGKAT BERFIKIR VAN HIELE DI KELAS VII SMPN 3 PADANG ANALISIS KEMAMPUAN SISWA DALAM MEMAHAMI KONSEP BANGUN DATAR SEGIEMPAT BERDASARKAN TINGKAT BERFIKIR VAN HIELE DI KELAS VII SMPN 3 PADANG Yulida Mirna 1, Mukhni 1, Zulfa Amrina 1 1 Pendidikan Matematika,

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Kajian Teori 1. Prakonsep Menurut Soedjadi (1995) pra konsep adalah konsep awal yang dimiliki seseorang tentang suatu objek. Didalam proses pembelajaran setiap siswa sudah mempunyai

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Sumberdaya manusia sangat diperlukan Indonesia dalam jumlah dan mutu yang memadai sebagai pendukung utama dalam pembangunan. Untuk memenuhi kebutuhan akan sumberdaya

Lebih terperinci

BAB II KAJIAN PUSTAKA. Menurut kamus besar bahasa Indonesia, arti kata tingkat adalah tinggi

BAB II KAJIAN PUSTAKA. Menurut kamus besar bahasa Indonesia, arti kata tingkat adalah tinggi BAB II KAJIAN PUSTAKA 2.1 Pengertian Tingkat Berpikir Menurut kamus besar bahasa Indonesia, arti kata tingkat adalah tinggi rendah martabat (kedudukan, jabatan, kemajuan, peradaban, dsb) : derajat, taraf,

Lebih terperinci

BAB II KAJIAN TEORI. 1. Kemampuan Penalaran Induktif Matematis. yaitu reasoning, dalam Cambridge Learner s Dictionary berarti the

BAB II KAJIAN TEORI. 1. Kemampuan Penalaran Induktif Matematis. yaitu reasoning, dalam Cambridge Learner s Dictionary berarti the 39 BAB II KAJIAN TEORI A. Deskripsi Konseptual 1. Kemampuan Penalaran Induktif Matematis Dalam Kamus Besar Bahasa Indonesia (Depdiknas, 2007) penalaran berasal dari kata nalar yang berarti pertimbangan

Lebih terperinci

BAB I PENDAHULUAN. Pendidikan matematika sangat berperan penting dalam upaya menciptakan

BAB I PENDAHULUAN. Pendidikan matematika sangat berperan penting dalam upaya menciptakan 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Pendidikan matematika sangat berperan penting dalam upaya menciptakan sumber daya manusia yang berkualitas. Matematika bukan pelajaran yang hanya memberikan

Lebih terperinci

PEMBELAJARAN DISCOVERY LEARNING MENGGUNAKAN TANGRAM GEOGEBRA UNTUK MENEMUKAN LUAS PERSEGI

PEMBELAJARAN DISCOVERY LEARNING MENGGUNAKAN TANGRAM GEOGEBRA UNTUK MENEMUKAN LUAS PERSEGI PEMBELAJARAN DISCOVERY LEARNING MENGGUNAKAN TANGRAM GEOGEBRA UNTUK MENEMUKAN LUAS PERSEGI Farida Nursyahidah, Bagus Ardi Saputro Program Studi Pendidikan Matematika FPMIPATI Universitas PGRI Semarang Jl.

Lebih terperinci

DESKRIPSI KEMAMPUAN KOMUNIKASI MATEMATIKA SISWA PADA MATERI KUBUS DAN BALOK DI KELAS VIII SMP NEGERI 1 TIBAWA

DESKRIPSI KEMAMPUAN KOMUNIKASI MATEMATIKA SISWA PADA MATERI KUBUS DAN BALOK DI KELAS VIII SMP NEGERI 1 TIBAWA 1 DESKRIPSI KEMAMPUAN KOMUNIKASI MATEMATIKA SISWA PADA MATERI KUBUS DAN BALOK DI KELAS VIII SMP NEGERI 1 TIBAWA Ingko Humonggio, Nurhayati Abbas, Yamin Ismail Jurusan Matematika, Program Studi S1. Pend.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. A. Kajian Teori

BAB II TINJAUAN PUSTAKA. A. Kajian Teori BAB II TINJAUAN PUSTAKA A. Kajian Teori 1. Prestasi Belajar Matematika a. Pengertian Prestasi Pengertian prestasi yang disampaikan oleh para ahli sangatlah bermacammacam dan bervariasi. Hal ini dikarenakan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah. Matematika merupakan salah satu bidang studi yang menduduki peranan

BAB I PENDAHULUAN Latar Belakang Masalah. Matematika merupakan salah satu bidang studi yang menduduki peranan BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu bidang studi yang menduduki peranan penting dalam pendidikan. Hal ini dapat dilihat dari waktu jam pelajaran sekolah lebih

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Tujuan penyelenggaraan program sarjana bertujuan untuk menciptakan lulusan yang memiliki kemampuan penguasaan konsep dan menerapkan keahlian tertentu. Oleh karena itu,

Lebih terperinci

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T.

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T. Geometri Bangun Datar Suprih Widodo, S.Si., M.T. Geometri Adalah pengukuran tentang bumi Merupakan cabang matematika yang mempelajari hubungan dalam ruang Mesir kuno & Yunani Euclid Geometri Aksioma /postulat

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN KERANGKA BERPIKIR

BAB II KAJIAN PUSTAKA DAN KERANGKA BERPIKIR BAB II KAJIAN PUSTAKA DAN KERANGKA BERPIKIR A. Kajian Pustaka 1. Belajar dan Hasil Belajar Belajar merupakan suatu proses internal yang tidak dapat dilihat dengan nyata. Proses tersebut terjadi dalam diri

Lebih terperinci

KI dan KD Matematika SMP/MTs

KI dan KD Matematika SMP/MTs KI dan KD Matematika SMP/MTs Kelas VIII Kompetensi Inti 1. Menghargai dan menghayati ajaran agama yang dianutnya 2. Menghargai dan menghayati perilaku jujur, disiplin, tanggungjawab, peduli (toleransi,

Lebih terperinci

BAB I PENDAHULUAN. Pentingnya belajar matematika tidak terlepas dari peranannya dalam

BAB I PENDAHULUAN. Pentingnya belajar matematika tidak terlepas dari peranannya dalam 1 BAB I PENDAHULUAN A. Latar Belakang Pentingnya belajar matematika tidak terlepas dari peranannya dalam berbagai kehidupan, misalnya berbagai informasi dan gagasan banyak dikomunikasikan atau disampaikan

Lebih terperinci

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs)

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) 41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai

Lebih terperinci

DESKRIPSI BUTIR INSTRUMEN 1 PENILAIAN BUKU TEKS PELAJARAN MATEMATIKA SEKOLAH MENENGAH ATAS/MADRASAH ALIYAH

DESKRIPSI BUTIR INSTRUMEN 1 PENILAIAN BUKU TEKS PELAJARAN MATEMATIKA SEKOLAH MENENGAH ATAS/MADRASAH ALIYAH DESKRIPSI BUTIR INSTRUMEN 1 PENILAIAN BUKU TEKS PELAJARAN MATEMATIKA SEKOLAH MENENGAH ATAS/MADRASAH ALIYAH I. KELAYAKAN ISI A. DIMENSI SPIRITUAL (KI-1) Butir 1 Terdapat kalimat yang mengandung unsur spiritual

Lebih terperinci

BAB I PENDAHULUAN A. LATAR BELAKANG Deslyn Everina Simatupang, 2014

BAB I PENDAHULUAN A. LATAR BELAKANG Deslyn Everina Simatupang, 2014 BAB I PENDAHULUAN A. LATAR BELAKANG Geometri merupakan salah satu cabang matematika yang sangat bermanfaat dalam kehidupan, karena itu, geometri perlu diajarkan di sekolah. Adapun tujuan pembelajaran geometri,

Lebih terperinci

BAB I PENDAHULUAN. Anak usia dini berada pada masa Golden Age (keemasan), sesuai dengan

BAB I PENDAHULUAN. Anak usia dini berada pada masa Golden Age (keemasan), sesuai dengan 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Anak usia dini berada pada masa Golden Age (keemasan), sesuai dengan pendapat Froebel (M. Solehuddin, 2000:33) bahwa Masa anak-anak merupakan fase yang sangat

Lebih terperinci

2015 PERBANDINGAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIS ANTARA SISWA YANG MENDAPATKAN MODEL DISCOVERY LEARNING DENGAN MODEL PROBLEM BASED LEARNING

2015 PERBANDINGAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIS ANTARA SISWA YANG MENDAPATKAN MODEL DISCOVERY LEARNING DENGAN MODEL PROBLEM BASED LEARNING BAB I PENDAHULUAN A. Latar Belakang Masalah Bappenas (2006) mengemukakan bahwa majunya suatu bangsa dipengaruhi oleh mutu pendidikan dari bangsa itu sendiri, karena pendidikan yang berkualitas dapat menghasilkan

Lebih terperinci

BAB II KAJIAN PUSTAKA. Menurut Benyamin S. Bloom (dalam Siti, 2008 : 9) siswa dikatakan memahami

BAB II KAJIAN PUSTAKA. Menurut Benyamin S. Bloom (dalam Siti, 2008 : 9) siswa dikatakan memahami 7 BAB II KAJIAN PUSTAKA A. Pemahaman Konsep Menurut Benyamin S. Bloom (dalam Siti, 2008 : 9) siswa dikatakan memahami sesuatu apabila siswa tersebut mengerti tentang sesuatu itu tetapi tahap mengertinya

Lebih terperinci

BAB 3 PENALARAN DALAM GEOMETRI

BAB 3 PENALARAN DALAM GEOMETRI BAB 3 PENALARAN DALAM GEOMETRI A. Kompetensi dan Indikator A.1 Kompetensi Memahami penalaran dalam geometri A.2 Indikator 1. Menjelaskan penalaran induksi 2. Menjelaskan contoh sangkalan 3. Menjelaskan

Lebih terperinci

Pendahuluan. Mika Wahyuning Utami et al., Tingkat Berpikir Siswa...

Pendahuluan. Mika Wahyuning Utami et al., Tingkat Berpikir Siswa... 43 Tingkat Berpikir Geometri Siswa Kelas VII-B SMP Negeri 1 Jember Materi Segiempat Berdasarkan Teori van Hiele ditinjau dari Hasil Belajar Matematika (The Level of Geometry s Thinking in VII-B SMP Negeri

Lebih terperinci

ANALISIS KESALAHAN PEMAHAMAN DALAM MATERI SEGIEMPAT MENURUT TINGKAT BERPIKIR VAN HIELE PADA SISWA SMP NEGERI 1 SUPPA KABUPATEN PINRANG.

ANALISIS KESALAHAN PEMAHAMAN DALAM MATERI SEGIEMPAT MENURUT TINGKAT BERPIKIR VAN HIELE PADA SISWA SMP NEGERI 1 SUPPA KABUPATEN PINRANG. Jurnal Pepatuzdu, Vol. 8, No. 1 November 2014 14 ANALISIS KESALAHAN PEMAHAMAN DALAM MATERI SEGIEMPAT MENURUT TINGKAT BERPIKIR VAN HIELE PADA SISWA SMP NEGERI 1 SUPPA KABUPATEN PINRANG Ashari Nadjib* ABSTRACT

Lebih terperinci

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2 KTSP Perangkat Pembelajaran SMP/MTs, PERANGKAT PEMBELAJARAN STANDAR KOMPETENSI DAN KOMPETENSI DASAR Mata Pelajaran Satuan Pendidikan Kelas/Semester : Matematika. : SMP/MTs. : VII s/d IX /1-2 Nama Guru

Lebih terperinci

BAB II KAJIAN TEORITIS DAN HIPOTESIS. lambang yang formal, sebab matematika bersangkut paut dengan sifat-sifat struktural

BAB II KAJIAN TEORITIS DAN HIPOTESIS. lambang yang formal, sebab matematika bersangkut paut dengan sifat-sifat struktural 7 BAB II KAJIAN TEORITIS DAN HIPOTESIS 2.1 Kajian Teoritis 2.1.1 Penguasaan Matematika Menurut Mazhab (dalam Uno, 2011 : 126) matematika adalah sebagai sistem lambang yang formal, sebab matematika bersangkut

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN Pendahuluan ini berisi gambaran pelaksanaan penelitian dan penulisan skripsi. Bab ini terdiri atas latar belakang masalah, mengapa masalah ini diangkat menjadi bahasan penelitian, rumusan

Lebih terperinci

BAB II KAJIAN TEORETIS. matematika, para siswa dibiasakan untuk memperoleh pemahaman melalui

BAB II KAJIAN TEORETIS. matematika, para siswa dibiasakan untuk memperoleh pemahaman melalui BAB II KAJIAN TEORETIS A. Kajian Teori 1. Pembelajaran Matematika Pembelajaran matematika bagi para siswa merupakan pembentukan pola pikir dalam pemahaman suatu pengertian maupun dalam penalaran suatu

Lebih terperinci

Siti Nurul Azimi, Edy Bambang Irawan Universitas Negeri Malang

Siti Nurul Azimi, Edy Bambang Irawan Universitas Negeri Malang Upaya Meningktakan Tahap Berpikir Siswa pada Materi Garis Singgung Persekutuan Dua Lingkaran Melalui Pembelajaran Geometri van-hiele Kelas VIII di MTs NW Lepak Siti Nurul Azimi, Edy Bambang Irawan Universitas

Lebih terperinci