Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang"

Transkripsi

1

2 Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang berbeda. Bilangan kromatik dari G adalah jumlah warna minimum yang diperlukan untuk mewarnai graph G, dilambangkan dgn χ(g) (chi G)

3 Algoritma Welch-Powell adalah sebuah cara efisien untuk mewarnai sebuah graph G Langkah Algoritma Welch-Powell: Urutkan simpul-simpul G dalam derajat yang menurun. Urutan ini mungkin tidak unik karena beberapa simpul mempunyai derajat sama Gunakan satu warna untuk mewarnai simpul pertama (yang mempunyai derajat tertinggi) dan simpul-simpul lain (dalam urutan yang berurut) yang tidak bertetangga dengan simpul pertama. Mulai lagi dengan dengan daftar paling tinggi dan ulangi proses pewarnaan simpul yang tidak berwarna sebelumnya dengan menggunakan warna kedua. Terus ulangi dengan penambahan warna sampai semua simpul telah diwarnai

4 Tentukan warna setiap simpul graf berikut dengan menggunakan Algoritma Welch- Powell!

5 Tentukan derajat masing-masing simpul d(a) = 2 ; d(b) = 3 ; d(c) = 4 ; d (D) = 3; d(e) = 5 ; d(f) = 3 ; d(g) = 2 ; d (H) = 2 Simpul E C B D F A G H Derajat

6 Simpul E C B D F A G H Derajat χ( G) = 3 Warna m b h b h m m b

7 Tentukan warna setiap simpul graf berikut dengan menggunakan Algoritma Welch- Powell! V1 V2 V3 V4 V5 V6 V7

8 V1 V2 V3 V4 V5 V6 V7 Simpul V1 V4 V5 V6 V2 V3 V7 Derajat Warna

9 1. Tentukan banyaknya bilangan kromatik dari graf berikut! V1 V1 V2 V3 V4 V5 V2 V3 V6 G V4 V6 H V5

10 2. Tentukan banyaknya bilangan kromatik dari graf berikut! V1 A H V2 V3 B G V4 V5 C F V6 D E G H

11 3. Berapajumlahminimum warnayang dibutuhkan\ bilangan khromatis X(G) dari Graf berikut.

12 4. Gunakan algoritma Welch-Powell untuk mewarnai graf G yang ditunjukkan pada gambar 2 dan tentukan bilangan kromatiknya.

13 5. Gunakan algoritma Welch-Powell untuk mewarnai graf dibawah ini:

14 6. Gunakan algoritma Welch-Powell untuk mewarnai graf dibawah ini:

15 Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon

16 Adalahpohonn-arydengann= 2. Pohon yang paling penting karena banyak aplikasinya. Setiap simpul di dalam pohon biner mempunyai paling banyak 2 buah anak. Dibedakan antara anak kiri(left child) dan anak kanan(right child)

17 PohonEkspresi Pohon ekspresi ialah pohon biner dengan daun menyatakan operand dan simpul dalam(termasuk akar) meyatakan operator a * + / Pohon ekspresi dari (a + b)*(c/(d + e)) b c d + e

18 Pohon Keputusan a > b a : b b > a a : c b : c a > c c > a b > c c > b b > c b : c c > a > b a : c c > b > b c > b a > c c > a a > b > c a > c > b b > a > c b > c > a Pohon keputusan untuk mengurutkan 3 buah elemen

19 Kode Awalan Kode awalan adalah himpunan kode(misalnya kode biner) sedemikian sehingga tidak ada anggota kumpulan yang merupakan awalan dari anggota lainnya Contoh: { 000, 001, 01, 10, 11} : himpunankodeawalan { 1, 00, 01, 000, 0001 } : bukanhimpunankodeawalan

20 Kodeawalanmempunyaipohonbineryang bersesuaian Sisidiberi0 atau1 Semuasisikiridiberilabel 0 saja(atau1 saja) Semuasisikanandiberilabel 1 ( atau0 saja) Barisan sisi-sisi yang dilalui oleh lintasan dari akar ke daun menyatakan kode awalan

21 Kode Huffman rangkaian bit untuk string ABACCDA : atau 7 8 = 56 bit (7 byte). Simbol Kode ASCII A B C D

22 Kode Huffman rangkaian bit untuk ABACCDA : hanya 13 bit! Simbol Kekerapan Peluang Kode Huffman A 3 3/7 0 B 1 1/7 110 C 2 2/7 10 D 1 1/7 111

23 Hitung kekerapan kemunculan setiap simbol dalam teks Untuk yang kekerapannya lebih tinggi diberi nilai 1 Untuk yang kekerapannya sama jika: Keduanya adalah karater tunggal: urutanalafabet(a-z) yang lebihduludisebutmakadiberinilai0, lainnya1 Salahsatunyaadalahkaraktertunggalsedangkanyang lain karaktergabungan karaktertunggaldiberinilai0, yang lainnya 1 Kedua-duanya karakter gabungan jumlah urutan alphabet (gabungan) yang lebihrendahdiberinilai0, yang lainnya 1

24 Bentuk pohon biner(pohon Huffman) dengan langkahlangkah berikut: a. Pilih dua simbol dengan peluang paling kecil b. Kombinasikan kedua simbol tersebut sehingga diperoleh karakter baru c. Pilih simbol lain kemudian kombinasikan dengan karakter baru yg dihasilkan pada point b d. Iterasi poin c sehingga seluruh simbol telah dipilih

25 Tentukan Kode Huffman untuk TELKOMSEL Solusi Kekerapan Huruf Kekerapan K 1/9 M 1/9 O 1/9 S 1/9 T 1/9 E 2/9 L 2/9

26 LETSOKM Huruf Kekerapan K 1/9 L ETSOKM M 1/9 O 1/9 S 1/9 E TSOKM T 1/9 E 2/9 Huruf Kode Huffman T SOKM L 2/9 K M O S OKM S 1110 T 110 E 10 O KM L 0 K M

27 Tentukan Kode Huffman untuk: 1. MATEMATIKA 2. BASISDATA

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014 Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 POHON DAN PEWARNAAN GRAF Tujuan Mahasiswa

Lebih terperinci

DEFINISI. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 2

DEFINISI. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 2 1 POHON DEFINISI Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan

Lebih terperinci

Definisi. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon

Definisi. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan pohon

Lebih terperinci

Termilogi Pada Pohon Berakar 10 Pohon Berakar Terurut

Termilogi Pada Pohon Berakar 10 Pohon Berakar Terurut KATA PENGANTAR Puji syukur penyusun panjatkan ke hadirat Allah Subhanahu wata?ala, karena berkat rahmat-nya kami bisa menyelesaikan makalah yang berjudul Catatan Seorang Kuli Panggul. Makalah ini diajukan

Lebih terperinci

BAB 2. LANDASAN TEORI 2.1. Algoritma Huffman Algortima Huffman adalah algoritma yang dikembangkan oleh David A. Huffman pada jurnal yang ditulisnya sebagai prasyarat kelulusannya di MIT. Konsep dasar dari

Lebih terperinci

Pohon. Bahan Kuliah IF2120 Matematika Diskrit. Program Studi Teknik Informatika ITB. Rinaldi M/IF2120 Matdis 1

Pohon. Bahan Kuliah IF2120 Matematika Diskrit. Program Studi Teknik Informatika ITB. Rinaldi M/IF2120 Matdis 1 Pohon Bahan Kuliah IF2120 Matematika Diskrit Program Studi Teknik Informatika ITB Rinaldi M/IF2120 Matdis 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a

Lebih terperinci

Penggunaan Pohon Huffman Sebagai Sarana Kompresi Lossless Data

Penggunaan Pohon Huffman Sebagai Sarana Kompresi Lossless Data Penggunaan Pohon Huffman Sebagai Sarana Kompresi Lossless Data Aditya Rizkiadi Chernadi - 13506049 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

Pohon (TREE) Matematika Deskrit. Hasanuddin Sirait, MT 1

Pohon (TREE) Matematika Deskrit. Hasanuddin Sirait, MT 1 Pohon (TREE) Matematika Deskrit By @Ir. Hasanuddin Sirait, MT 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon

Lebih terperinci

Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon

Lebih terperinci

Definisi. Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk terhubung)

Definisi. Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk terhubung) POHON (TREE) Pohon Definisi Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk

Lebih terperinci

TERAPAN POHON BINER 1

TERAPAN POHON BINER 1 TERAPAN POHON BINER 1 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2 Pohon Ekspresi

Lebih terperinci

TUGAS MAKALAH INDIVIDUAL. Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM :

TUGAS MAKALAH INDIVIDUAL. Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM : TUGAS MAKALAH INDIVIDUAL Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM : 13505013 Institut Teknologi Bandung Desember 2006 Penggunaan Struktur Pohon dalam Informatika Dwitiyo Abhirama

Lebih terperinci

Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana

Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana Muhammad Fiqri Muthohar NIM : 13506084 1) 1) Jurusan Teknik Informatika ITB, Bandung, email: fiqri@arc.itb.ac.id Abstrak makalah

Lebih terperinci

Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku

Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku Mahdan Ahmad Fauzi Al-Hasan - 13510104 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

BAB VI PEWARNAAN GRAF.. Gambar 1 memperlihatkan sebuah graf, dengan χ ( G) = 3.

BAB VI PEWARNAAN GRAF.. Gambar 1 memperlihatkan sebuah graf, dengan χ ( G) = 3. 112 BAB VI PEWARNAAN GRAF 6.1. Pendahuluan Ada tiga macam pewarnaan graf, yaitu pewarnaan simpul, pewarnaan sisi, dan pewarnaan wilayah (region). Yang akan kita bahas adalah pewarnaan simpul dan pewarnaan

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER

METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER Muqtafi Akhmad (13508059) Teknik Informatika ITB Bandung e-mail: if18059@students.if.itb.ac.id ABSTRAK Dalam makalah ini akan dibahas tentang

Lebih terperinci

Kode Huffman dan Penggunaannya dalam Kompresi SMS

Kode Huffman dan Penggunaannya dalam Kompresi SMS Kode Huffman dan Penggunaannya dalam Kompresi SMS A. Thoriq Abrowi Bastari (13508025) Teknik Informatika Institut Teknologi Bandung email: if18025@students.itb.ac.id ABSTRAK Dalam makalah ini, akan dibahas

Lebih terperinci

Brigida Arie Minartiningtyas, M.Kom

Brigida Arie Minartiningtyas, M.Kom Brigida Arie Minartiningtyas, M.Kom Struktur Data Struktur dan Data Struktur suatu susunan, bentuk, pola atau bangunan Data suatu fakta, segala sesuatu yang dapat dikodekan atau disimbolkan dengan kode-kode

Lebih terperinci

JURNAL IT STMIK HANDAYANI

JURNAL IT STMIK HANDAYANI VOLUME 5, DESEMBER 04 Sitti Zuhriyah Sistem Komputer, STMIK Handayani Makassar zuhriyahsompa@yahoo.com Abstrak Di dalam dunia komputer, semua informasi, baik berupa tulisan, gambar ataupun suara semuanya

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada

Lebih terperinci

Aplikasi Pewarnaan Graf pada Pemecahan Masalah Penyusunan Jadwal

Aplikasi Pewarnaan Graf pada Pemecahan Masalah Penyusunan Jadwal Aplikasi Pewarnaan Graf pada Pemecahan Masalah Penyusunan Jadwal abila As ad 1) 135 07 006 2) 1) Jurusan Teknik Informatika ITB, Bandung 40135, email: nabilaasad@students.itb.ac.id Abstract Dalam kehidupan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Jurusan Ilmu Komputer Fakultas Matematika dan

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Jurusan Ilmu Komputer Fakultas Matematika dan BAB III METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakukan di Jurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. Waktu penelitian dilakukan

Lebih terperinci

Teknik Pembangkitan Kode Huffman

Teknik Pembangkitan Kode Huffman Teknik Pembangkitan Kode Huffman Muhammad Riza Putra Program Studi Teknik Informatika ITB, Bandung 012, email: zha@students.itb.ac.id Abstrak Makalah ini membahas suatu teknik dalam pembangkitan kode Huffman

Lebih terperinci

Graf untuk soal nomor 7

Graf untuk soal nomor 7 Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM : Institut Teknologi Bandung T.tangan: Solusi Kuis ke-4 IF2120 Matematika Diskrit (3 SKS) Graf, Pohon, dan Kompleksitas

Lebih terperinci

MateMatika Diskrit Aplikasi TI. Sirait, MT 1

MateMatika Diskrit Aplikasi TI. Sirait, MT 1 MateMatika Diskrit Aplikasi TI By @Ir.Hasanuddin Sirait, MT 1 Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson

Lebih terperinci

Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas

Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas Andreas Dwi Nugroho (13511051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Soal dan Jawaban Materi Graf, Pohon, dan Kompleksitas Algoritma

Soal dan Jawaban Materi Graf, Pohon, dan Kompleksitas Algoritma Soal dan Jawaban Materi Graf, Pohon, dan Kompleksitas Algoritma POHON 1. Ubahlah graf berikut ini dengan menggunakan algoritma prim agar menjadi pohon merentang minimum dan tentukan bobot nya! 2. Diberikan

Lebih terperinci

PEMAMPATAN DATA DENGAN KODE HUFFMAN (APLIKASI POHON BINER)

PEMAMPATAN DATA DENGAN KODE HUFFMAN (APLIKASI POHON BINER) PEAPATAN DATA DENGAN KODE HUFFAN (APLIKASI POHON BINER) Winda Winanti (350507) Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 0, Bandung E-mail : if507@students.if.itb.ac.id Abstraksi

Lebih terperinci

Penyandian (Encoding) dan Penguraian Sandi (Decoding) Menggunakan Huffman Coding

Penyandian (Encoding) dan Penguraian Sandi (Decoding) Menggunakan Huffman Coding Penyandian (Encoding) dan Penguraian Sandi (Decoding) Menggunakan Huffman Coding Nama : Irwan Kurniawan NIM : 135 06 090 1) Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10,

Lebih terperinci

Penerapan Pengkodean Huffman dalam Pemampatan Data

Penerapan Pengkodean Huffman dalam Pemampatan Data Penerapan Pengkodean Huffman dalam Pemampatan Data Patrick Lumban Tobing NIM 13510013 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

Aplikasi Penggambar Pohon Biner Huffman Untuk Data Teks

Aplikasi Penggambar Pohon Biner Huffman Untuk Data Teks Aplikasi Penggambar Pohon Biner Huffman Untuk Data Teks Fandi Susanto STMIK MDP Palembang fandi@stmik-mdp.net Abstrak: Di dalam dunia komputer, semua informasi, baik berupa tulisan, gambar ataupun suara

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat III. BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.00). Konsep ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. Pewarnaan

Lebih terperinci

Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial

Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial Stephen (35225) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION. Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode

BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION. Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION 3.1 Kompresi Data Definisi 3.1 Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode untuk menghemat kebutuhan tempat

Lebih terperinci

KOMPRESI FILE MENGGUNAKAN ALGORITMA HUFFMAN KANONIK

KOMPRESI FILE MENGGUNAKAN ALGORITMA HUFFMAN KANONIK KOMPRESI FILE MENGGUNAKAN ALGORITMA HUFFMAN KANONIK Asrianda Dosen Teknik Informatika Universitas Malikussaleh ABSTRAK Algoritma Huffman adalah salah satu algoritma kompresi. Algoritma huffman merupakan

Lebih terperinci

Algoritma Greedy (lanjutan)

Algoritma Greedy (lanjutan) Algoritma Greedy (lanjutan) 5. Penjadwalan Job dengan Tenggat Waktu (Job Schedulling with Deadlines) Persoalan: -Adan buah job yang akan dikerjakan oleh sebuah mesin; -tiapjob diproses oleh mesin selama

Lebih terperinci

Algoritma Huffman dan Kompresi Data

Algoritma Huffman dan Kompresi Data Algoritma Huffman dan Kompresi Data David Soendoro ~ NIM 13507086 Jurusan Teknik Informatika ITB, Bandung, email: if17086@students.if.itb.ac.id Abstract Algoritma Huffman merupakan salah satu algoritma

Lebih terperinci

Type Data terdiri dari : - Data Tunggal : Integer, Real, Boolean dan Karakter. - Data Majemuk : String

Type Data terdiri dari : - Data Tunggal : Integer, Real, Boolean dan Karakter. - Data Majemuk : String Struktur dapat diartikan sebagai suatu susunan, bentuk, pola atau bangunan. Data dapat diartikan sebagai suatu fakta, segala sesuatu yang dapat dikodekan atau disimbolkan dengan kode-kode atau lambang-lambang

Lebih terperinci

Matematika Diskret (Graf II) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Graf II) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Graf II) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Beberapa Aplikasi Graf Lintasan terpendek (shortest path) Persoalan pedagang keliling (travelling salesperson problem) Persoalan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Kompresi Data Kompresi adalah mengecilkan/ memampatkan ukuran. Kompresi Data adalah teknik untuk mengecilkan data sehingga dapat diperoleh file dengan ukuran yang lebih kecil

Lebih terperinci

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V).

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V). GRAF GRAF Suatu Graph mengandung 2 himpunan, yaitu : 1. Himpunan V yang elemennya disebut simpul (Vertex atau Point atau Node atau Titik) 2. Himpunan E yang merupakan pasangan tak urut dari simpul. Anggotanya

Lebih terperinci

Graf. Bekerjasama dengan. Rinaldi Munir

Graf. Bekerjasama dengan. Rinaldi Munir Graf Bekerjasama dengan Rinaldi Munir Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson problem) Persoalan

Lebih terperinci

SISTEM SANDI (KODE) Suatu rangkaian pengubah pesan bermakna (misal desimal) menjadi sandi tertentu (misal biner) disebut enkoder (penyandi).

SISTEM SANDI (KODE) Suatu rangkaian pengubah pesan bermakna (misal desimal) menjadi sandi tertentu (misal biner) disebut enkoder (penyandi). SISTEM SANDI (KODE) Pada mesin digital, baik instruksi (perintah) maupun informasi (data) diolah dalam bentuk biner. Karena mesin digital hanya dapat memahami data dalam bentuk biner. Suatu rangkaian pengubah

Lebih terperinci

PENGANTAR KOMPUTER & SOFTWARE I REPRESENTASI DATA

PENGANTAR KOMPUTER & SOFTWARE I REPRESENTASI DATA PENGANTAR KOMPUTER & SOFTWARE I REPRESENTASI DATA Tim Pengajar KU1102 - Institut Teknologi Sumatera Data Data adalah sesuatu yang belum mempunyai arti bagi penerimanya dan masih memerlukan adanya suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan penelitian yang dilakukan. 2.1. Konsep Dasar Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 71 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 FAIZAH, NARWEN Program Studi Matematika, Fakultas

Lebih terperinci

Teori Dasar Graf (Lanjutan)

Teori Dasar Graf (Lanjutan) Teori Dasar Graf (Lanjutan) MATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. Matriks-matriks yang dapat menyajikan

Lebih terperinci

I. PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus

I. PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus 1 I. PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus mengalami kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini mengalami perkembangan

Lebih terperinci

PENGANTAR KOMPUTER & SOFTWARE I REPRESENTASI DATA

PENGANTAR KOMPUTER & SOFTWARE I REPRESENTASI DATA PENGANTAR KOMPUTER & SOFTWARE I REPRESENTASI DATA Tim Pengajar KU1102 - Institut Teknologi Sumatera Data Data adalah sesuatu yang belum mempunyai arti bagi penerimanya dan masih memerlukan adanya suatu

Lebih terperinci

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya.

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pertemuan 1 STRUKTUR DATA Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pemakaian Struktur Data yang

Lebih terperinci

Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013

Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013 Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013 Pohon (Tree) Pohon (Tree) didefinisikan sebagai graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung, maka pohon selalu

Lebih terperinci

I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA-31 Dosen Pengasuh : Ir. Bahder Djohan, MSc

I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA-31 Dosen Pengasuh : Ir. Bahder Djohan, MSc I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA- Dosen Pengasuh : Ir. Bahder Djohan, MSc Tugas ke Pertemuan TIK Soal-soal Tugas. Mendefinisikan Proposisi Membedakan

Lebih terperinci

Pemampatan Citra. Esther Wibowo Erick Kurniawan

Pemampatan Citra. Esther Wibowo Erick Kurniawan Pemampatan Citra Esther Wibowo esther.visual@gmail.com Erick Kurniawan erick.kurniawan@gmail.com Mengapa? MEMORI Citra memerlukan memori besar. Mis. Citra 512x512 pixel 256 warna perlu 32 KB (1 pixel =

Lebih terperinci

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya.

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pertemuan 1 STRUKTUR DATA Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pemakaian Struktur Data yang

Lebih terperinci

Minggu Ke XI Pewarnaan Peta

Minggu Ke XI Pewarnaan Peta Minggu Ke X. Pewarnaan Peta Pada ontoh 8.4 telah dikemukakan bahwa masalah pewarnaan peta dapat dimodelkan menjadi masalah pewarnaan simpul-simpul graf. alam hal ini persoalannya ialah menentukan minimum

Lebih terperinci

PEMBANGUNAN SISTEM PENJADWALAN KULIAH MENGGUNAKAN ALGORITMA PEWARNAAN GRAF

PEMBANGUNAN SISTEM PENJADWALAN KULIAH MENGGUNAKAN ALGORITMA PEWARNAAN GRAF PEMBANGUNAN SISTEM PENJADWALAN KULIAH MENGGUNAKAN ALGORITMA PEWARNAAN GRAF Rusmala1, Heliawaty Hamrul2 Dosen Universitas Cokroaminoto Palopo Email : rusmalaoddang@yahoo.com Abstrak Penjadwalan kuliah merupakan

Lebih terperinci

Aplikasi Pewarnaan Graf pada Tempat Penitipan Anak

Aplikasi Pewarnaan Graf pada Tempat Penitipan Anak plikasi Pewarnaan Graf pada Tempat Penitipan nak Susanti Gojali - 13512057 1 Program Studi Teknik nformatika Sekolah Teknik lektro dan nformatika nstitut Teknologi andung, Jl. Ganesha 10 andung 40132,

Lebih terperinci

Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian

Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian Rita Wijaya/13509098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Struktur dan Organisasi Data 2 G R A P H

Struktur dan Organisasi Data 2 G R A P H G R A P H Graf adalah : Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak urut dari simpul, anggotanya disebut ruas (rusuk

Lebih terperinci

Pemampatan dengan Menggunakan Algoritma Huffman Dinamik : Algoritma FGK dan Algoritma Vitter

Pemampatan dengan Menggunakan Algoritma Huffman Dinamik : Algoritma FGK dan Algoritma Vitter Pemampatan dengan Menggunakan Algoritma Huffman Dinamik : Algoritma FGK dan Algoritma Vitter Chandra Sutikno Oemaryadi Jurusan Teknik Informatika ITB, Bandung 40116, email: if16075@students.if.itb.ac.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer

Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer Vivi Lieyanda - 13509073 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, tidak lepas dari peran ilmu matematika, yaitu ilmu yang menjadi solusi secara konseptual dalam menyelesaikan

Lebih terperinci

Perbandingan Kompresi Data Dengan Algoritma Huffman Statik dan Adaptif

Perbandingan Kompresi Data Dengan Algoritma Huffman Statik dan Adaptif Perbandingan Kompresi Data Dengan Algoritma Huffman Statik dan Adaptif Timotius Triputra Safei (13509017) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu? Logika... 1

Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu? Logika... 1 Daftar Isi Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu?... iii v xi 1. Logika... 1 1.1 Proposisi... 2 1.2 Mengkombinasikan Proposisi... 4 1.3 Tabel kebenaran... 6 1.4 Disjungsi Eksklusif...

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK GRAF POHON n-ary LENGKAP

BILANGAN KROMATIK LOKASI UNTUK GRAF POHON n-ary LENGKAP Jurnal Matematika UNAND Vol. VI No. 1 Hal. 90 96 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF POHON n-ary LENGKAP AFIFAH DWI PUTRI, NARWEN Program Studi Matematika,

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari

Lebih terperinci

MATEMATIKA DISKRIT II ( 2 SKS)

MATEMATIKA DISKRIT II ( 2 SKS) MATEMATIKA DISKRIT II ( 2 SKS) Rabu, 18.50 20.20 Ruang Hard Disk PERTEMUAN XI, XII RELASI Dosen Lie Jasa 1 Matematika Diskrit Graf (lanjutan) 2 Lintasan dan Sirkuit Euler Lintasan Euler ialah lintasan

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini. 6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan

Lebih terperinci

Pemampatan Data Sebagai Bagian Dari Kriptografi

Pemampatan Data Sebagai Bagian Dari Kriptografi Pemampatan Data Sebagai Bagian Dari Kriptografi Muhammad Ismail Faruqi, Adriansyah Ekaputra, Widya Saseno Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung

Lebih terperinci

POHON CARI BINER (Binary Search Tree)

POHON CARI BINER (Binary Search Tree) POHON CARI BINER (Binary Search Tree) 50 24 70 10 41 61 90 3 12 35 47 55 67 80 99 POHON CARI BINER (Binary Search Tree) Definisi : bila N adalah simpul dari pohon maka nilai semua simpul pada subpohon

Lebih terperinci

Teori Dasar Graf (Lanjutan)

Teori Dasar Graf (Lanjutan) Teori Dasar Graf (Lanjutan) ATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. atriks-matriks yang dapat menyajikan

Lebih terperinci

BAB IV HASIL DAN UJI COBA

BAB IV HASIL DAN UJI COBA 50 BAB IV HASIL DAN UJI COBA IV.1. Jalannya Uji Coba Uji coba dilakukan terhadap beberapa file dengan ektensi dan ukuran berbeda untuk melihat hasil kompresi dari aplikasi yang telah selesai dirancang.

Lebih terperinci

Lecturer: Abdusy Syarif. Undergraduate Course Informatics Engineering Dept. Universitas Mercu Buana. Tipe Data

Lecturer: Abdusy Syarif. Undergraduate Course Informatics Engineering Dept. Universitas Mercu Buana. Tipe Data Lecturer: Abdusy Syarif Undergraduate Course Informatics Engineering Dept. Universitas Mercu Buana Tipe Data REVIEW Slide - 2 A program is not an algorithm! Sebuah algoritma dapat diimplementasikan dengan

Lebih terperinci

2.3 Algoritma Tidak Berhubungan dengan Bahasa Pemrograman Tertentu

2.3 Algoritma Tidak Berhubungan dengan Bahasa Pemrograman Tertentu DAFTAR ISI BAB 1 Pengantar Sistem Komputer Dan Pemrograman 1.1 Sistem Komputer 1.2 Program, Aplikasi, Pemrogram, dan Pemrograman 1.3 Kompiler dan Interpreter 1.4 Kesalahan Program BAB 2 Pengantar Algoritma

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Pemampatan data (data compression) merupakan salah satu kajian di dalam ilmu komputer yang bertujuan untuk mengurangi ukuran file sebelum menyimpan atau memindahkan

Lebih terperinci

Penerapan Teori Graf Pada Algoritma Routing

Penerapan Teori Graf Pada Algoritma Routing Penerapan Teori Graf Pada Algoritma Routing Indra Siregar 13508605 Program Studi Teknik Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10, Bandung

Lebih terperinci

KOMPRESI DATA MENGGUNAKAN METODE HUFFMAN Ari Wibowo Jurusan Teknik Informatika, Politeknik Negeri Batam

KOMPRESI DATA MENGGUNAKAN METODE HUFFMAN Ari Wibowo Jurusan Teknik Informatika, Politeknik Negeri Batam KOMPRESI DATA MENGGUNAKAN METODE HUFFMAN Ari Wibowo Jurusan Teknik Informatika, Politeknik Negeri Batam wibowo@polibatam.ac.id Abstrak Kompresi data (pemampatan data) merupakan suatu teknik untuk memperkecil

Lebih terperinci

KOMPRESI CITRA. Pertemuan 12 Mata Pengolahan Citra

KOMPRESI CITRA. Pertemuan 12 Mata Pengolahan Citra KOMPRESI CITRA Pertemuan 12 Mata Pengolahan Citra PEMAMPATAN CITRA Semakin besar ukuran citra semakin besar memori yang dibutuhkan. Namun kebanyakan citra mengandung duplikasi data, yaitu : Suatu piksel

Lebih terperinci

Tipe Data dan Operator. Ekohariadi FT Unesa

Tipe Data dan Operator. Ekohariadi FT Unesa Tipe Data dan Operator Ekohariadi FT Unesa Tipe Data Tipe data variabel adalah penting sebab ia menentukan operasi yang diijinkan dan rentang nilai yang disimpan. C++ menentukan beberapa tipe data, dan

Lebih terperinci

Penerapan Algoritma Backtracking pada Pewarnaan Graf

Penerapan Algoritma Backtracking pada Pewarnaan Graf Penerapan Algoritma Backtracking pada Pewarnaan Graf Deasy Ramadiyan Sari 1, Wulan Widyasari 2, Eunice Sherta Ria 3 Laboratorium Ilmu Rekayasa dan Komputasi Departemen Teknik Informatika, Fakultas Teknologi

Lebih terperinci

Algoritma Welch-Powell untuk Pengendalian Lampu Lalu Lintas

Algoritma Welch-Powell untuk Pengendalian Lampu Lalu Lintas Algoritma Welch-Powell untuk Pengendalian Lampu Lalu Lintas 1 Detty Purnamasari, 2 Muhammad Zidni Ilman, 3 Dessy Wulandari A.P. 1, 2 Jurusan Sistem Informasi, Fakultas Ilmu Komputer & Teknologi Informasi

Lebih terperinci

BAB II. Konsep Dasar

BAB II. Konsep Dasar BAB II Konsep Dasar 2. Definisi Graf Graf G = (V G,E G ) terdiri dari himpunan tidak kosong V G, disebut himpunan titik, dan himpunan E G, disebut himpunan sisi, yang beranggotakan pasangan tak terurut

Lebih terperinci

Algoritma Pemrograman I KONSEP DASAR

Algoritma Pemrograman I KONSEP DASAR Algoritma Pemrograman I KONSEP DASAR Apakah Algoritma itu? Masalah adalah pertanyaan atau tugas yang kita cari jawabannya. Untuk masalah yang kecil, dapat ditemukan solusi dengan mudah dan cepat. Jika

Lebih terperinci

Implementasi Metode HUFFMAN Sebagai Teknik Kompresi Citra

Implementasi Metode HUFFMAN Sebagai Teknik Kompresi Citra Jurnal Elektro ELEK Vol. 2, No. 2, Oktober 2011 ISSN: 2086-8944 Implementasi Metode HUFFMAN Sebagai eknik Kompresi Citra Irmalia Suryani Faradisa dan Bara Firmana Budiono Jurusan eknik Elektro, Institut

Lebih terperinci

[TTG4J3] KODING DAN KOMPRESI. Oleh : Ledya Novamizanti Astri Novianty. Prodi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom

[TTG4J3] KODING DAN KOMPRESI. Oleh : Ledya Novamizanti Astri Novianty. Prodi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom [TTG4J3] KODING DAN KOMPRESI Oleh : Ledya Novamizanti Astri Novianty Prodi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom Optimal code pertama yang dikembangkan oleh David Huffman

Lebih terperinci

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Muhamad Irfan Maulana - 13515037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKRO TELKOM UNIVERSITY

RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKRO TELKOM UNIVERSITY RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKRO TELKOM UNIVERSITY MATA KULIAH KODE RUMPUN MK BOBOT (SKS) SEMESTER DIREVISI Matematika Diskrit FEH2J3 3 sks 3 atau 4 22

Lebih terperinci

P o h o n. Definisi. Oleh: Panca Mudji Rahardjo. Pohon. Adalah graf tak berarah terhubung yang tidak mengandung sirkuit.

P o h o n. Definisi. Oleh: Panca Mudji Rahardjo. Pohon. Adalah graf tak berarah terhubung yang tidak mengandung sirkuit. P o h o n Oleh: Panca Mudji Rahardjo Definisi Pohon Adalah graf tak berarah terhubung yang tidak mengandung sirkuit. Contoh: G 1 dan G 2 pohon, G 3 dan G 4 bukan pohon. 1 Definisi Hutan (forest) Adalah

Lebih terperinci

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices

Lebih terperinci

[TTG4J3] KODING DAN KOMPRESI. Oleh : Ledya Novamizanti Astri Novianty. Prodi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom

[TTG4J3] KODING DAN KOMPRESI. Oleh : Ledya Novamizanti Astri Novianty. Prodi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom [TTG4J3] KODING DAN KOMPRESI Oleh : Ledya Novamizanti Astri Novianty Prodi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom Shannon Fano coding, dikembangkan oleh Claude Shannon di Bell

Lebih terperinci

Implementasi Metode Pewarnaan Graf Menggunakan Algoritma Welch Powell Untuk Simulasi Penerapan Frekuensi Radio Di Jawa Timur

Implementasi Metode Pewarnaan Graf Menggunakan Algoritma Welch Powell Untuk Simulasi Penerapan Frekuensi Radio Di Jawa Timur JURNAL SAINS DAN SENI POMITS Vol. 6, No.2, (2017) 2337-3520 (2301-928X Print) A 73 Implementasi Metode Pewarnaan Graf Menggunakan Algoritma Welch Powell Untuk Simulasi Penerapan Frekuensi Radio Di Jawa

Lebih terperinci

Kombinatorial. Matematika Diskrit Pertemuan ke - 4

Kombinatorial. Matematika Diskrit Pertemuan ke - 4 Kombinatorial Matematika Diskrit Pertemuan ke - 4 Pengertian Cabang matematika yang mempelajari pengaturan objek-objek Solusi yang diperoleh : jumlah cara pengaturan objek-objek tertentu dalam himpunan

Lebih terperinci

Menghitung Ketinggian Rata-Rata Pohon Terurut

Menghitung Ketinggian Rata-Rata Pohon Terurut Menghitung Ketinggian Rata-Rata Pohon Terurut Archie Anugrah - 13508001 Jurusan Teknik Informatika Institut Teknologi Bandung Jalan Ganesha nomor 10, Bandung e-mail: if18001@students.if.itb.ac.id ABSTRAK

Lebih terperinci

Aplikasi Pohon dan Graf dalam Kaderisasi

Aplikasi Pohon dan Graf dalam Kaderisasi Aplikasi Pohon dan Graf dalam Kaderisasi Jonathan - 13512031 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

Graf. Matematika Diskrit. Materi ke-5

Graf. Matematika Diskrit. Materi ke-5 Graf Materi ke-5 Graf Isomorfik Diketahui matriks ketetanggaan (adjacency matrices) dari sebuah graf tidak berarah. Gambarkan dua buah graf yang yang bersesuaian dengan matriks tersebut. 2 0 0 0 0 0 0

Lebih terperinci

Struktur dan Organisasi Data 2 STRUKTUR DATA

Struktur dan Organisasi Data 2 STRUKTUR DATA STRUKTUR DATA PENDAHULUAN Struktur data adalah suatu koleksi atau kelompok data yang dapat dikarakterisasikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Algorithma : barisan langkah-langkah

Lebih terperinci

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan 4 II. LANDASAN TEORI Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan Konisberg yang kemudian menghasilkan konsep graf Eulerian merupakan awal dari lahirnya teori graf. Euler mengilustrasikan

Lebih terperinci

Representasi Data. M. Subchan M

Representasi Data. M. Subchan M Representasi Data M. Subchan M DATA Fakta berupa angka, karakter, symbol, gambar, suara yang mepresentasikan keadaan sebenarnya yg selanjutnya dijadikan sbg masukan suatu sistem informasi Segala sesuatu

Lebih terperinci