PROSES PERCABANGAN PADA DISTRIBUSI POISSON

Ukuran: px
Mulai penontonan dengan halaman:

Download "PROSES PERCABANGAN PADA DISTRIBUSI POISSON"

Transkripsi

1 PROSES PERCABANGAN PADA DISTRIBUSI POISSON Nur Alfiani Santoso, Respatiwulan, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu proses stokastik dimana setiap individu bereproduksi secara random dan tidak terkait dengan interaksi antar individu yang lain. Pada proses percabangan hanya terdapat satu individu sebagai induk pada waktu ke-0 dengan banyaknya individu baru yang lahir sebagai variabel random. Banyaknya individu baru yang lahir dapat memenuhi karakteristik suatu distribusi tertentu, salah satunya distribusi Poisson yang merupakan pengembangan dari distribusi binomial dengan probabilitas sukses p kecil dan banyak populasi N besar. Proses percabangan dapat menggunakan fungsi pembangkit salah satunya fungsi pembangkit probabilitas (p.g.f) dari distribusi tertentu. Tujuan penelitian ini adalah menurunkan ulang dan menerapkan proses percabangan menggunakan fungsi pembangkit probabilitas pada distribusi Poisson. Pada proses percabangan menggunakan fungsi pembangkit dapat ditentukan nilai rata-rata dan nilai variansi untuk mengetahui bagaimana pola pemusatan dan pola penyebaran dari banyaknya individu baru yang lahir. Nilai rata-rata dan variansi terbagi menjadi dua kategori yaitu untuk setiap individu dan untuk setiap genarasi. Dari penerapan diperoleh nilai banyaknya individu baru yang meningkat setiap kenaikan waktu sehingga kesuksesan penyebaran penyakit influenza tinggi. Kata kunci : proses percabangan, distribusi Poisson, rata-rata, variansi 1. PENDAHULUAN Kesehatan manusia dapat terganggu apabila terinfeksi penyakit. Penyakit terbagi menjadi penyakit menular dan penyakit tidak menular. Pada penyebaran penyakit menular proses penyebarannya perlu diketahui oleh masyarakat agar dapat dilakukan pencegahan. Matematika dapat digunakan sebagai sarana mengetahui bagaimana pola penyebaran penyakit menular menggunakan proses percabangan. Proses percabangan adalah suatu proses stokastik dimana setiap individu bereproduksi secara random dan tidak terikat dengan interaksi antar individu yang lain. Feller [3] menyatakan bahwa salah satu contoh proses percabangan adalah mutasi genetik. Dalam setiap gen yang dibawa oleh makhluk hidup terdapat kemungkingan untuk muncul kembali pada keturunannya, melalui beberapa tahap penghapusan dan penambahan yang terjadi dalam selang waktu tertentu. Setiap individu keturunan dalam proses mutasi genetik memiliki dua kemungkinan sifat genetik yaitu mengalami mutasi genetik dan tidak mengalami 1

2 mutasi genetik. Menurut Walpole [7] distribusi probabilitas dengan dua kemungkinan hasil dari n percobaan dinamakan distribusi binomial. Pada kejadian binomial dengan percobaan n besar dan probabilias sukses p kecil kondisi mulai mengikuti karakteristik distribusi Poisson. Salah satu karakteristik distribusi Poisson yaitu banyaknya hasil percobaan terjadi pada interval waktu tertentu dan tidak saling bergantung, dengan probabilitas sukses p kecil memungkinkan nilainya mendekati 0. Hal ini diperjelas oleh Bain dan Engelhardt [2] yang menyatakan bahwa distribusi Poisson merupakan pengembangan dari distribusi binomial dengan jumlah percobaan n besar dan nilai probabilitas sukses p kecil, oleh karena itu distribusi Poisson digunakan untuk menghitung nilai probabilitas suatu kejadian dalam selang waktu tertentu. Dalam suatu distribusi dapat ditentukan beberapa fungsi pembangkit. Menurut Reluga [5], fungsi pembangkit memiliki peran yang penting karena secara tidak langsung merangkum dasar-dasar pengurutan dan operasi pencarian untuk menyederhanakan bahasa matematika. Dalam mempelajari proses percabangan digunakan fungsi pembangkit probabilitas (p.g.f) selanjutnya dicari nilai rata-rata dan variansi dari p.g.f untuk mengetahui bagaimana pola pemusatan dan pola penyebaran data. Untuk mempermudah pengamatan, proses percabangan dengan fungsi pembangkit probabilitas pada distribusi Poisson diterapkan pada penyakit influenza. 2. PROSES PERCABANGAN Menurut Taylor dan Karlin [6], untuk mempertahankan keturunannya suatu makhluk hidup memproduksi keturunan dengan jumlah yang random, misal banyaknya keturunan berupa variabel random ξ dengan distribusi probabilitas P r{ξ = k} = p k untuk k = 0, 1, 2,..., dengan nilai p k 0 dan p k=1. Diasumsikan setiap individu lahir tidak bergantung antar individu yang lain dan memiliki waktu hidup yang sama. Banyaknya keturunan pada generasi ke-n disebut dengan X n. Pada proses menentukan banyaknya keturunan pada generasi ke-n menggunakan konsep percabangan. Asumsi penting yang digunakan dalam proses percabangan menurut Allen [1] adalah (1) probabilitas individu memiliki keturunan (p) bernilai sama untuk setiap individu, (2) setiap individu menghasilkan keturunan secara independen, (3) proses dimulai dengan individu tunggal pada waktu ke 0. Nur Alfiani Santoso

3 Proses percabangan merupakan suatu karakteristik rantai Markov sehingga karakteristik tersebut dapat diterapkan untuk mengetahui jumlah keturunan pada generasi ke-n + 1 yaitu X n+1 = ξ (n) 1 + ξ (n) ξ (n) X n. Misalkan Z(t) merupakan banyaknya seluruh keturunan pada waktu t dengan proses kelahiran berasal dari satu induk sehingga asumsi proses percabangan saat t=0 terpenuhi. Individu yang berperan sebagai induk memiliki rentang hidup yang diasumsikan sebagai variabel random τ dan jumlah keturunan yang lahir pada generasi ke-n adalah X n. Selanjutnya, banyaknya keturunan yang lahir pada waktu t adalah jumlahan dari individu yang berada pada proses selanjutnya t τ. Untuk setiap keturunan lahir pada waktu t dituliskan { Xn i=1 Z(t) = X(i) n τ 1, n < τ. 3. PROSES PERCABANGAN PADA DISTRIBUSI POISSON Proses percabangan dimulai dengan individu tunggal pada waktu ke-0 yang kemudian disebut induk. Variabel random yang digunakan adalah banyaknya keturunan dari induk, banyaknya seluruh keturunan pada waktu ke-t dinotasikan dengan Z(t), nilainya dapat diperoleh dari akumulasi nilai X n dimana X n adalah banyaknya keturunan pada generasi ke-n, nilai X n merupakan akumulasi dari nilai ξ (n) X n dengan ξ (n) X n adalah banyaknya keturunan dari satu individu pada generasi ke-n. Jika pola banyaknya keturunan dari induk mengikuti karakteristik suatu distribusi maka proses percabangan dapat menggunakan fungsi pembangkit probabilitas. Menurut Allen [1] fungsi pembangkit probabilitas (p.g.f) dari suatu variabel random ξ adalah fungsi gabungan himpunan bilangan real dengan notasi P ξ yang didefinisikan dengan P ξ (t) = E(t ξ ) = p k t k, (3.1) untuk nilai t R. Distribusi Poisson merupakan salah satu distribusi bersifat diskret pengembangan dari distribusi binomial dengan fungsi distribusi probabilitas (p.d.f.) dari distribusi Poisson adalah f(x) = λx e λ x!, x = 0, 1, 2,..., (3.2) Nur Alfiani Santoso

4 dengan λ=rata-rata distribusi. Nilai p.g.f dari distribusi Poisson dapat ditentukan dengan mensubstitusikan persamaan (3.2) ke dalam persamaan (3.1). Nilai p.g.f dapat digunakan untuk menentukan nilai rata-rata dan variansi dari banyaknya hasil proses percabangan, jika p k = 1. Nilai rata-rata dan variansi ξ n yang memenuhi adalah µ ξ = E(ξ) = kp k, (3.3) dan σ 2 ξ = E[(ξ µξ) 2 ] = k 2 p k µ 2 ξ. (3.4) Pada generasi ke-n nilai rata-rata dan variansi dari ξ n didefinisikan sebagai µ n = E(ξ Xn ) = µ n untuk n = 0, 1, 2,..., (3.5) dan σ 2 n = { σ 2 µ n 1 (µ n 1), µ 1 µ 1 nσ 2, µ = HASIL DAN PEMBAHASAN (3.6) 4.1. Proses Percabangan pada Distribusi Poisson. Proses percabangan adalah suatu proses stokastik dimana setiap individu bereproduksi secara random dan tidak terkait dengan interaksi antar individu yang lain. Menurut Taylor dan Karlin [6], seluruh makhluk hidup perlu mempertahankan keturunan dengan cara bereproduksi, misal banyaknya keturunan yang lahir merupakan variabel random ξ. Diasumsikan setiap individu lahir tidak bergantung antar individu yang lain dan memiliki waktu hidup yang sama. Banyaknya keturunan pada generasi ken disebut X n. Karakteristik proses stokastik dapat terlihat dengan jelas pada variabel random banyaknya keturunan yang lahir ξ yang bergantung pada waktu, sehingga karakteristik rantai markov dapat diterapkan untuk mengetahui jumalah keturunan yang lahir pada generasi ke-n + 1 di tampilkan dalam persamaan X n+1 = ξ (n) 1 + ξ (n) ξ (n) X n, (4.1) dengan ξ (n) 1 adalah banyaknya keturunan yang lahir dari individu 1 pada generasi ke-n. Jumlah keturunan yang lahir pada generasi ke-n + 1 merupakan jumlahan dari banyaknya keturunan yang lahir dari individu ke-1 sampai individu ke-x n pada generasi ke-n. Jumlah seluruh keturunan yang lahir sampai generasi ke-n dinyatakan dengan Z n dan ditampilkan pada persamaan { Xn i=1 Z(t) = X(i) n τ (4.2) 1, n < τ. Nur Alfiani Santoso

5 Feller [3] menjelaskan beberapa contoh penerapan proses percabangan yang dapat diterapkan dalam kehidupan, dari beberapa contoh yang dijelaskan dapat diketahui bahwa banyaknya keturunan yang lahir tiap satuan waktu dapat mendekati karakteristik suatu distribusi tertentu, salah satu distribusi yang banyak ditemukan dalam kehidupan adalah distribusi Poisson. Distribusi Poisson adalah distribusi bersifat diskret yang merupakan pengembangan dari distribusi binomial. Fungsi densitas probabilitas (p.d.f) dari distribusi Poisson ditunjukkan pada persamaan (3.2). Untuk mengetahui pola pemusatan dan pola penyebaran banyaknya individu lahir dapat digunakan p.g.f distribusi Poisson. Nilai p.g.f diperoleh dengan subtitusi persamaan (3.2) dalam persamaan (3.1) sehingga diperoleh P ξ (t) = E[t ξ ] = p k t k = e λ(1 t). Nilai rata-rata dan variansi dapat ditentukan menggunakan nilai p.g.f, menggunakan persamaan (3.3) untuk rata-rata dan persamaan (3.4) untuk variansi. Nilai rata-rata nilai Variansi µ ξ = E(ξ) = kp k = λ, σ 2 ξ = E[ξ 2 ] E[ξ] 2 = λ. Selain mengetahui nilai p.g.f, rata-rata dan variansi dari ξ dapat pula dicari nilai p.g.f, rata-rata dan variansi dari X n yang merupakan jumlahan dari banyaknya keturunan baru yang lahir dari setiap individu pertama sampai individu ke-n 1 menggunkan nilai p.g.f, rata-rata dan variansi dari ξ. Nilai p.g.f P n (t) = P [P [ [P (t)] ]] = e λ+λp n 1, rata-rata pada generasi ke-n dicari menggunakan persamaan (3.5) µ n = E(ξ Xn ) = µ n = λ n, (4.3) Nur Alfiani Santoso

6 variansi pada generasi ke-n dicari menggunakan persamaan (3.6) σ 2 n = { λ 2n λ n, λ 1 λ 1 nλ, λ = 1. (4.4) 4.2. Penerapan. Pada penerapan ini data penyebaran penyakit influenza yang digunakan mengacu pada Longini et.al [4] dengan banyaknya populasi N = 2000 individu yang berada pada kawasan tertentu dan memiliki kemungkinan tertular influenza dengan nilai rata-rata penularan λ = 1.9. Waktu yang dibutuhkan untuk penyebaran virus influenza t = 4 hari. Data penyebaran penyakit influenza berkarakteristik distribusi Poisson dengan p adalah probabilitas seorang individu tertular penyakit influenza sebesar 0.5. Pada penelitian ini dicari banyaknya individu baru yang tertular penyakit influenza, ukuran populasi yang diwakili oleh rata-rata dan variansi, diambil sampel sampai generasi ke-10. Dengan bantuan software Mathematica 8.0 diperoleh banyaknya individu baru yang terbentuk dari satu individu induk untuk data berdistribusi Poisson, diambil sampel gambar pada pada generasi ke-1, 5, dan 10 yang disajikan dalam Gambar 1. Gambar 1. Banyaknya individu pada (a) generasi ke-1, (b) generasi ke-5 dan, (c) generasi ke-10 dari proses percabangan penyebaran penyakit influenza Nur Alfiani Santoso

7 Dari Gambar 1 (a) banyaknya individu baru yang tertular penyakit influenza dalam kurun waktu 4 hari sebanyak satu individu. Pada Gambar 1 (b) banyaknya individu baru yang tertular penyakit influenza pada generasi ke-5 dari satu induk dengan waktu setiap generasi 4 hari atau 20 hari kemudian sebanyak 8 individu. Pada Gambar 1 (c) banyaknya individu baru yang tertular penyakit influenza pada generasi ke-10 dari satu individu induk dengan waktu setiap generasi 4 hari atau 40 hari kemudian sebanyak 165 individu. Dari Gambar 1 dapat dilihat bahwa banyaknya individu baru yang tertular di setiap generasi mengalami peningkatan. Ukuran populasi dari data penyebaran penyakit influenza yang diterapkan dalam proses percabangan perlu diketahui agar dapat dilakukan analisis. Ukuran populasi dapat diwakili dengan rata-rata dan variansi dari data. Nilai ratarata dan variansi dapat dicari menggunakan p.g.f dari distribusi Poisson sesuai persamaan 4.3 dan 4.4. Data banyaknya individu baru yang tertular penyakit influenza, rata-rata dan variansi sampai generasi ke-10 ditampilkan pada Tabel 1. Tabel 1. Data banyaknya individu baru yang tertular penyakit influenza, rata-rata dan variansi Generasi ke- Banyaknya Individu Rata-Rata Variansi Dari Tabel 1 dapat dilihat banyaknya individu baru yang tertular penyakit influenza serta perubahan rata-rata dan variansi di setiap generasi. Banyaknya individu yang tertular influenza dari generasi ke generasi mengalami peningkatan. 5. KESIMPULAN Dari pembahasan yang telah dilakukan, dapat diambil kesimpulan. Nur Alfiani Santoso

8 (1) Proses percabangan untuk mengetahui banyaknya individu pada generasi tertentu dituliskan pada persamaan (4.1) dan jumlah seluruh individu baru sampai generasi tertentu dituliskan pada persamaan (4.2). (2) Penerapan dengan nilai parameter yang mengacu pada Longini [4] mengenai penyebaran penyakit influenza merupakan proses percabangan menggunakan fungsi pembangit probabilitas pada distribusi Poisson dengan banyaknya individu baru yang tertular penyakit influenza mengalami peningkatan dalam setiap peningkatan generasi artinya kesuksesan penyebaran penyakit influenza cukup besar. Daftar Pustaka [1] Allen, L. J. S., An Introduction to Stochastic Processes with Applications to Biology, Prentice Hall, Upper Saddla River, N.J., [2] Bain, L. J. and M. Engelhardt., Introduction to Probability and Mathematical statistics, Duxbury, [3] Feller, W., An Introduction to Probability Theory and Its Applications, Eugene Higgins Professor of Mathematics, Princenton University, [4] Longini, I. M.,M. E. Halloran, A. Nizam and Y. Yang, Containing Pandemic Influenza with Antiviral Agents, American Journal of Epidemilogy 159 (2004), [5] Reluga, T. C., Branching Process and Noncommuting Random Variables in Population Biology, Canadian Applied Mathematics Quarterly 17 (2009), [6] Taylor, Howard. M. and S. Karlin, An Introduction to Stochastic Modelling : revised edition, United States of America, [7] Walpole, R. E., R. H. Myers, S. L. Myers, and K. Ye, Probability Statistics for Engineers Scientist, Pearson, Nur Alfiani Santoso

PROSES PERCABANGAN PADA PEMBELAHAN SEL

PROSES PERCABANGAN PADA PEMBELAHAN SEL PROSES PERCABANGAN PADA PEMBELAHAN SEL Nisfiatul Laili, Respatiwulan, dan Sutrima Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu rantai Markov, dimana setiap individu menghasilkan

Lebih terperinci

PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK

PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK Arantika Desmawati, Respatiwulan, dan Dewi Retno Sari S Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Seelas Maret Astrak.

Lebih terperinci

PENENTUAN PROBABILITAS ABSORPSI DAN EKSPEKTASI DURASI PADA MASALAH KEBANGKRUTAN PENJUDI

PENENTUAN PROBABILITAS ABSORPSI DAN EKSPEKTASI DURASI PADA MASALAH KEBANGKRUTAN PENJUDI PENENTUAN PROBABILITAS ABSORPSI DAN EKSPEKTASI DURASI PADA MASALAH KEBANGKRUTAN PENJUDI Aditya Candra Laksmana, Respatiwulan, dan Ririn Setiyowati Program Studi Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

Penentuan Probabilitas Absorpsi dan Ekspektasi Durasi pada Masalah Kebangkrutan Penjudi

Penentuan Probabilitas Absorpsi dan Ekspektasi Durasi pada Masalah Kebangkrutan Penjudi Penentuan Probabilitas Absorpsi dan Ekspektasi Durasi pada Masalah Kebangkrutan Penjudi Aditya Candra Laksmana 1*, Respatiwulan 2, dan Ririn Setiyowati 3 1, 3 Program Studi Matematika Fakultas MIPA, Universitas

Lebih terperinci

MODEL EPIDEMI RANTAI MARKOV WAKTU DISKRIT SUSCEPTIBLE INFECTED RECOVERED DENGAN DUA PENYAKIT

MODEL EPIDEMI RANTAI MARKOV WAKTU DISKRIT SUSCEPTIBLE INFECTED RECOVERED DENGAN DUA PENYAKIT MODEL EPIDEMI RANTAI MARKOV WAKTU DISKRIT SUSCEPTIBLE INFECTED RECOVERED DENGAN DUA PENYAKIT Wisnu Wardana, Respatiwulan, dan Hasih Pratiwi Program Studi Matematika FMIPA UNS ABSTRAK. Pola penyebaran penyakit

Lebih terperinci

Penggabungan dan Pemecahan. Proses Poisson Independen

Penggabungan dan Pemecahan. Proses Poisson Independen Penggabungan dan Pemecahan Proses Poisson Independen Hanna Cahyaningtyas 1, Respatiwulan 2, Pangadi 3 1 Mahasiswa Program Studi Matematika/FMIPA, Universitas Sebelas Maret 2 Dosen Program Studi Statistika/FMIPA,

Lebih terperinci

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK Ririn Dwi Utami, Respatiwulan, dan Siswanto Program Studi Matematika FMIPA UNS Abstrak.

Lebih terperinci

SIMULASI PADA MASALAH KEBANGKRUTAN PENJUDI

SIMULASI PADA MASALAH KEBANGKRUTAN PENJUDI SIMULASI PADA MASALAH KEBANGKRUTAN PENJUDI Dwi Ardian Syah, Respatiwulan, dan Vika Yugi Kurniawan Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret ABSTRAK.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

POISSON PROSES NON-HOMOGEN. Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS

POISSON PROSES NON-HOMOGEN. Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS POISSON PROSES NON-HOMOGEN Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS ABSTRAK. Proses Poisson merupakan proses stokastik sederhana dan dapat digunakan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR BAB IV PEMBAHASAN 4.1 Proses Pencabangan model DTMC SIR Proses pencabangan suatu individu terinfeksi berbentuk seperti diagram pohon dan diasumsikan bahwa semua individu terinfeksi adalah saling independent

Lebih terperinci

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL Jainal, Nur Salam, Dewi Sri Susanti Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION

SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION Novita Eka Chandra 1, Supriyanto 2, dan Renny 3 1 Universitas Islam Darul Ulum Lamongan, novitaekachandra@gmail.com 2 Universitas Jenderal Soedirman, supriyanto

Lebih terperinci

T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR)

T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR) T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR) Felin Yunita 1, Purnami Widyaningsih 2, Respatiwulan 3 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari 3 bagian. Pada bagian pertama diberikan tinjauan pustaka dari penelitian-penelitian sebelumnya. Pada bagian kedua diberikan teori penunjang untuk mencapai tujuan

Lebih terperinci

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION Oleh: Desi Nur Faizah 1209 1000 17 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

PEMODELAN KELAHIRAN MURNI DAN KEMATIAN MURNI DENGAN DUA JENIS KELAMIN DENGAN PROSES STOKASTIK

PEMODELAN KELAHIRAN MURNI DAN KEMATIAN MURNI DENGAN DUA JENIS KELAMIN DENGAN PROSES STOKASTIK Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 72 79 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN KELAHIRAN MURNI DAN KEMATIAN MURNI DENGAN DUA JENIS KELAMIN DENGAN PROSES STOKASTIK FEBI OKTORA

Lebih terperinci

BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI

BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI 5.1. Pendahuluan Untuk mendeteksi bagaimana konfigurasi titik dalam ruang apakah bersifat acak atau random, regular, ataupun cluster (kelompok); pertama-tama

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK Adri Arisena 1, Anna Chadidjah 2, Achmad Zanbar Soleh 3 Departemen Statistika Universitas Padjadjaran 1 Departemen Statistika

Lebih terperinci

Oleh: Isna Kamalia Al Hamzany Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Dra. Nur Asiyah, M.Si

Oleh: Isna Kamalia Al Hamzany Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Dra. Nur Asiyah, M.Si Oleh: Isna Kamalia Al Hamzany 1207 100 055 Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Dra. Nur Asiyah, M.Si Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

PROSES POISSON MAJEMUK. 1. Pendahuluan

PROSES POISSON MAJEMUK. 1. Pendahuluan PROSES POISSON MAJEMUK Chris Risen, Respatiwulan, Pangadi Program Studi Matematika FMIPA UNS Abstrak. Proses Poisson merupakan proses menghitung {; t 0} yang digunakan untuk menentukan jumlah kejadian

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

KONVOLUSI DARI PEUBAH ACAK BINOMIAL NEGATIF

KONVOLUSI DARI PEUBAH ACAK BINOMIAL NEGATIF Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 22 27 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KONVOLUSI DARI PEUBAH ACAK BINOMIAL NEGATIF NUR ADE YANI Program Studi Magister Matematika, Fakultas Matematika

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai

Lebih terperinci

STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling

STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA DISTRIBUSI SAMPLING PENGANTAR Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui

Lebih terperinci

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi

Lebih terperinci

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON Haposan Sirait 1 dan Rustam Efendi 2 1,2 Dosen Program Studi Matematika FMIPA Universitas Riau. Abstrak: Makalah ini menyajikan tentang

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN Sudarno Jurusan Matematika FMIPA UNDIP Abstrak Dalam proses stokhastik yang mana kejadian dapat muncul kembali membentuk proses pembahauruan. Proses pembaharuan

Lebih terperinci

PENERAPAN REGRESI POISSON DAN BINOMIAL NEGATIF DALAM MEMODELKAN JUMLAH KASUS PENDERITA AIDS DI INDONESIA BERDASARKAN FAKTOR SOSIODEMOGRAFI

PENERAPAN REGRESI POISSON DAN BINOMIAL NEGATIF DALAM MEMODELKAN JUMLAH KASUS PENDERITA AIDS DI INDONESIA BERDASARKAN FAKTOR SOSIODEMOGRAFI Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 58 65 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN REGRESI POISSON DAN BINOMIAL NEGATIF DALAM MEMODELKAN JUMLAH KASUS PENDERITA AIDS DI INDONESIA

Lebih terperinci

ESTIMASI PARAMETER MODEL REGRESI ZERO-INFLATED POISSON (ZIP) MENGGUNAKAN METODE BAYESIAN

ESTIMASI PARAMETER MODEL REGRESI ZERO-INFLATED POISSON (ZIP) MENGGUNAKAN METODE BAYESIAN ESTIMASI PARAMETER MODEL REGRESI ZERO-INFLATED POISSON (ZIP) MENGGUNAKAN METODE BAYESIAN Karima Puspita Sari, Respatiwulan, dan Bowo Winarno Program Studi Matematika FMIPA UNS Abstrak. Model regresi zero-inflated

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL Ro fah Nur Rachmawati Jurusan Matematika, Fakultas Sains dan Teknologi, Binus University Jl.

Lebih terperinci

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY Joko Sungkono* Abstrak : Tujuan yang ingin dicapai pada tulisan ini adalah mengetahui kekuatan konvergensi dalam probabilitas dan konvergensi

Lebih terperinci

BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI

BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI 7.1. Pendahuluan BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI Pada bab sebelumnya, penyebaran spatial (konfigurasi spasial) dimana ditunjukan sebagai ragam sampel quadran. Bab ini

Lebih terperinci

KAJIAN ANTRIAN TIPE M/M/ DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT

KAJIAN ANTRIAN TIPE M/M/ DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT KAJIAN ANTRIAN TIPE M/M/ DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT QUEUES ANALYSIS M/M/ TYPE WITH SLOW AND FAST PHASE SERVICE SYSTEM Oleh: Erida Fahma Nurrahmi NRP. 1208 100 009 Dosen Pembimbing:

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

INDEKS KEMAMPUAN PROSES BERDASARKAN PROPORSI PERSESUAIAN UNTUK DISTRIBUSI NON NORMAL

INDEKS KEMAMPUAN PROSES BERDASARKAN PROPORSI PERSESUAIAN UNTUK DISTRIBUSI NON NORMAL J. Math. and Its Appl. ISSN: 1829-605X Vol. 7, No. 2, November 2010, 47 55 INDEKS KEMAMPUAN PROSES BERDASARKAN PROPORSI PERSESUAIAN UNTUK DISTRIBUSI NON NORMAL Laksmi P Wardhani 1, Resty Z Fahrida, Nur

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2014) 2337-3520 (2301-928X Print) 1 ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION Desi Nur Faizah, Laksmi Prita Wardhani. Jurusan Matematika, Fakultas

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

ANALISIS ANTRIAN TIPE M/M/c DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT. Oleh : Budi Setiawan

ANALISIS ANTRIAN TIPE M/M/c DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT. Oleh : Budi Setiawan ANALISIS ANTRIAN TIPE M/M/c DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT Oleh : Budi Setiawan 1206 100 034 Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Drs. Sulistiyo, MT. ABSTRAK Penggunaan teori

Lebih terperinci

PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL

PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 139 146 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL

Lebih terperinci

Riska Sismetha, Marisi Aritonang, Mariatul Kiftiah INTISARI

Riska Sismetha, Marisi Aritonang, Mariatul Kiftiah INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6, No. 01 (2017), hal 51-60. ANALISIS MODEL DISTRIBUSI JUMLAH KEDATANGAN DAN WAKTU PELAYANAN PASIEN INSTALASI RAWAT JALAN RUMAH SAKIT IBU DAN

Lebih terperinci

KAJIAN SIFAT DISTRIBUSI NORMAL BIVARIAT

KAJIAN SIFAT DISTRIBUSI NORMAL BIVARIAT Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 127 132. KAJIAN SIFAT DISTRIBUSI NORMAL BIVARIAT Turyadi, Muhlasah Novitasari Mara, Dadan Kusnandar INTISARI Distribusi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Metode statistika adalah prosedur-prosedur yang digunakan dalam pengumpulan, penyajian, analisis, dan penafsiran data. Metode statistika dibagi ke dalam dua kelompok

Lebih terperinci

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

MODEL EPIDEMI CONTINUOUS TIME MARKOV CHAIN (CTMC) SUSCEPTIBLE INFECTED RECOVERED (SIR)

MODEL EPIDEMI CONTINUOUS TIME MARKOV CHAIN (CTMC) SUSCEPTIBLE INFECTED RECOVERED (SIR) MODEL EPIDEMI COTIUOUS TIME MARKOV CHAI (CTMC) SUSCEPTIBLE IFECTED RECOVERED (SIR) oleh DETA URVITASARI M1836 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains

Lebih terperinci

Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson

Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson Vol. 6, No.1, 44-48, Juli 2009 Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson Georgina M. Tinungki Abstrak Terdapat beberapa metode untuk membangun uji statistik yang baik, diantaranya

Lebih terperinci

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal)

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal) Percobaan Bernoulli 5 Percobaan terdiri dari 1 usaha Sukses Usaha Gagal Peluang sukses p Peluang gagal 1-p Misalkan 1, jika terjadi sukses X 0, jika terjadi tidak sukses (gagal) Distribusi Bernoulli 6

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya

Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya ANALISIS KESTABILAN DAN MEAN DISTRIBUSI MODEL EPIDEMIK SIR PADA WAKTU DISKRIT Arisma Yuni Hardiningsih 1206 100 050 Dosen Pembimbing : Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Institut Teknologi

Lebih terperinci

Sarimah. ABSTRACT

Sarimah. ABSTRACT PENDETEKSIAN OUTLIER PADA REGRESI LOGISTIK DENGAN MENGGUNAKAN TEKNIK TRIMMED MEANS Sarimah Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

CADANGAN ASURANSI PENDIDIKAN MENGGUNAKAN DISTRIBUSI PARETO DENGAN TINGKAT BUNGA VASICEK. Reinhard Sianipar 1, Hasriati 2 ABSTRACT

CADANGAN ASURANSI PENDIDIKAN MENGGUNAKAN DISTRIBUSI PARETO DENGAN TINGKAT BUNGA VASICEK. Reinhard Sianipar 1, Hasriati 2 ABSTRACT CADANGAN ASURANSI PENDIDIKAN MENGGUNAKAN DISTRIBUSI PARETO DENGAN TINGKAT BUNGA VASICEK Reinhard Sianipar, Hasriati 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Jurusan Matematika

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji t Uji Proportional Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 2001. Walpole, R.E.,

Lebih terperinci

PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL

PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL Vania Mutiarani 1, Adi Setiawan, Hanna Arini Parhusip 3 1 Mahasiswa Program Studi Matematika FSM UKSW, 3 Dosen

Lebih terperinci

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA Jurnal Matematika UNAND Vol. No. 4 Hal. 9 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA MARNISYAH ANAS Program Studi Magister Matematika, Fakultas

Lebih terperinci

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN Tbk

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN Tbk PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN Tbk oleh RIRIN DWI UTAMI M0113041 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

HARGA OPSI SAHAM TIPE AMERIKA DENGAN MODEL BINOMIAL

HARGA OPSI SAHAM TIPE AMERIKA DENGAN MODEL BINOMIAL HARGA OPSI SAHAM TIPE AMERIKA DENGAN MODEL BINOMIAL MIA MUCHIA DESDA Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang, Kampus UNAND Limau Manis Padang,

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 5: Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Waktu Antar Kedatangan Waktu Antar Kedatangan Misalkan T 1 menyatakan waktu dari kejadian/kedatangan pertama. Misalkan

Lebih terperinci

ESTIMASI PARAMETER MODEL REGRESI MULTIVARIAT BAYESIAN DENGAN DISTRIBUSI PRIOR INFORMATIF 1. PENDAHULUAN

ESTIMASI PARAMETER MODEL REGRESI MULTIVARIAT BAYESIAN DENGAN DISTRIBUSI PRIOR INFORMATIF 1. PENDAHULUAN ESTIMASI PARAMETER MODEL REGRESI MULTIVARIAT BAYESIAN DENGAN DISTRIBUSI PRIOR INFORMATIF Dina Ariek Prasdika, Dewi Retno Sari Saputro, Purnami Widyaningsih Program Studi Matematika Fakultas Matematika

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON ABSTRACT

MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON ABSTRACT JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 229-240 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON Tina

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability

Lebih terperinci

MODEL EPIDEMI SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN PROSES POISSON. oleh LUCIANA ELYSABET M

MODEL EPIDEMI SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN PROSES POISSON. oleh LUCIANA ELYSABET M MODEL EPIDEMI SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN PROSES POISSON oleh LUCIANA ELYSABET M0111051 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Topik/ Pokok Bahasan 1 : Penjelasan silabus dan prosedur Kompetensi : Mahasiswa memiliki pengetahuan konseptual tentang silabus dan prosedur 1 Pengantar mengenai silabus dan prosedur

Lebih terperinci

PROSES POISSON MAJEMUK

PROSES POISSON MAJEMUK PROSES POISSON MAJEMUK oleh CHRIS RISEN M0113010 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi

Lebih terperinci

Kata Kunci: Bagan kendali nonparametrik, estimasi fungsi kepekatan kernel

Kata Kunci: Bagan kendali nonparametrik, estimasi fungsi kepekatan kernel Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 1 10 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BAGAN KENDALI NONPARAMETRIK DENGAN ESTIMASI FUNGSI KEPEKATAN KERNEL (STUDI KASUS: INDEKS PRESTASI MAHASISWA

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA Erpan Gusnawan 1, Arisman Adnan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

MODEL STOKASTIK PENYEBARAN PENYAKIT DEMAM BERDARAH DI KOTA DEPOK PENDAHULUAN

MODEL STOKASTIK PENYEBARAN PENYAKIT DEMAM BERDARAH DI KOTA DEPOK PENDAHULUAN MODEL STOKASTIK PENYEBARAN PENYAKIT DEMAM BERDARAH DI KOTA DEPOK H. SUMARNO 1, P. SIANTURI 1, A. KUSNANTO 1, SISWADI 1 Abstrak Kajian penyebaran penyakit dengan pendekatan deterministik telah banyak dilakukan.

Lebih terperinci

SATUAN ACARA PERKULIAHAN PROGRAM STUDI MAGISTER TEKNIK ELEKTRO PROGRAM PASCASARJANA

SATUAN ACARA PERKULIAHAN PROGRAM STUDI MAGISTER TEKNIK ELEKTRO PROGRAM PASCASARJANA Mata Kuliah/Sks/Smt : Matematika Terapan/ / Tujuan Umum Mata Kuliah :. Mahasiswa memahami konsep-konsep statistika 2. Mahasiswa mampu menerapkan konsep dan alat bantu statistika pada masalah telekomunikasi

Lebih terperinci

REKAYASA TRAFIK ARRIVAL PROCESS.

REKAYASA TRAFIK ARRIVAL PROCESS. REKAYASA TRAFIK ARRIVAL PROCESS ekofajarcahyadi@st3telkom.ac.id OVERVIEW Point Process Fungsi Distribusi Point Process Karakteristik Point Process Teorema Little Distribusi Point Process PREVIEW Proses

Lebih terperinci

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG Anita Andriani Universitas Hasyim Asy ari Tebuireng, Jombang anita.unhasy@gmail.com Abstrak Asuransi kendaraan bermotor

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik : Dasar-dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Diskusi 1. Misalkan sebuah koin yang mempunyai peluang muncul muka sebesar.7, dilantunkan tiga kali. Misalkan X menyatakan banyaknya

Lebih terperinci

ANALISA SISTEM ANTRIAN M/M/1/N DENGAN RETENSI PELANGGAN YANG MEMBATALKAN ANTRIAN

ANALISA SISTEM ANTRIAN M/M/1/N DENGAN RETENSI PELANGGAN YANG MEMBATALKAN ANTRIAN Analisa Sistem Antrian (Ayi Umar Nawawi) 11 ANALISA SISTEM ANTRIAN M/M/1/N DENGAN RETENSI PELANGGAN YANG MEMBATALKAN ANTRIAN ANALYSIS OF M/M/1/N QUEUEUING SYSTEM WITH RETENTION OF RENEGED CUSTOMERS Oleh:

Lebih terperinci

PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS)

PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) oleh IQROK HENING WICAKSANI M0109038 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

MODEL REGRESI POISSON YANG DIPERUMUM UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON

MODEL REGRESI POISSON YANG DIPERUMUM UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON MODEL REGRESI POISSON YANG DIPERUMUM UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON Ade Susanti, Dewi Retno Sari Saputro, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar. DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret

Lebih terperinci