4. HASIL DAN PEMBAHASAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "4. HASIL DAN PEMBAHASAN"

Transkripsi

1 4. HASIL DAN PEMBAHASAN 4.1. Sedimen Dasar Perairan Berdasarkan pengamatan langsung terhadap sampling sedimen dasar perairan di tiap-tiap stasiun pengamatan tipe substrat dikelompokkan menjadi 2, yaitu: substrat pasir berlumpur dan pasir. Sampling sedimen tersebut berdasarkan analisis tekstur dapat dipisahkan menjadi 3 tipe sedimen yaitu: pasir, lanau dan liat. Pengambilan sampel sedimen yang terdapat pada 9 stasiun, yaitu : P. Pramuka terdiri dari 1 stasiun (Stasiun 1), P. Karya terdiri dari 2 stasiun (Stasiun 2, dan 3), P. Panggang terdiri dari 3 stasiun (Stasiun 4, 7, dan 9), dan P. Semak Daun terdiri dari 3 stasiun (Stasiun 5, 6, dan 8). Pada lokasi pengambilan sedimen, stasiun 1 sampai 6 adalah stasiun pasir berlumpur, sedangkan stasiun 1 sampai 9 adalah stasiun pasir. Lokasi pengambilan sedimen dapat dilihat pada Gambar

2 Gambar 17. Peta Stasiun Sebaran Sedimen 31

3 32 Berdasarkan hasil analisis tekstur sedimen, sedimen permukaan dasar laut di lokasi penelitian dapat dipisahkan menjadi 3 tipe sedimen yaitu: pasir, lanau, dan liat. Fraksi pasir terdapat 5 ukuran mata ayakan μm, μm, μm, μm, dan μm), lanau (3 fraksi, ukuran μm, μm, dan 2 10 μm) dan liat (1 fraksi, ukuran 0 2 μm). Hasil analisis menunjukkan bahwa dari 9 stasiun lokasi pengamatan secara keseluruhan didominasi oleh fraksi pasir yang memiliki persentase rata-rata sebesar 80,85%. Fraksi lanau dan liat secara berturut-turut memiliki nilai persentase rata-rata sebesar 18,32% dan 0,83% (Gambar 18). Rendahnya tingkat persentase lanau dan liat di lokasi penelitian ini salah satunya disebabkan karena tidak adanya daratan utama yang menjadi sumber masukan fraksi lanau dan liat yang dapat disebabkan oleh proses sedimentasi yang terjadi di daratan yang terbawa oleh aliran sungai yang bermuara di lautan. Gambar 18. Persentase Sedimen di Lokasi Penelitian Fraksi pasir (sand) yang memiliki kenampakan makroskopis akan lebih cepat mengendap dibandingkan dengan fraksi lanau atau lumpur (silt) dan liat (clay) pada daerah yang mengalami proses turbulensi yang tinggi karena fraksi lanau

4 33 dan liat berukuran sangat kecil (mikroskopis) sehingga masih dapat dibawa oleh arus ke tempat lain. Sedimen fraksi lanau umumnya mudah terbawa oleh arus dan mudah teraduk bila terjadi proses turbulensi atau upwelling. Pengendapan fraksi lanau sangat lambat, sehingga posisi lumpur selalu di atas dari lapisan permukaan dasar laut. Sedimen fraksi liat merupakan sedimen yang ukurannya paling kecil sehingga butuh waktu yang lebih lama dari pada lanau untuk mengalami proses pengendapan di dasar perairan. Istilah lumpur (silt) biasanya dalam konteks laut diganti dengan istilah yang lebih umum, yakni lanau agar tidak membingungkan dengan pengertian mud. Menurut Wibisono (2005) jenis-jenis partikel tersebut sangat menentukan jenis hewan benthos yang mendiami sedimen tersebut sebagai habitatnya, seperti untuk jenis sedimen pebbles dan granules setidaknya akan ditemui hewan-hewan Gastropoda, sedangkan untuk jenis sedimen pasir mungkin kita akan mendapati hewan kerangkerangan (Bivalva) dan untuk jenis sedimen lanau biasanya dapat ditemukan hewan cacing. Persentase komposisi fraksi pasir terbesar terdapat pada Stasiun 8 sebesar 90,26% yang berada pada posisi 5 43,833 LS dan ,363 BT pada kedalaman 5,01 meter dan terendah pada Stasiun 2 sebesar 72,37% pada posisi 5 44,275 LS dan ,538 BT yang berada pada kedalaman 4,07 meter. Persentase komposisi fraksi lanau terbesar terdapat pada Stasiun 2 sebesar 26,81% dan terendah pada Stasiun 8 sebesar 9,01%, sedangkan untuk fraksi liat tertinggi terdapat pada Stasiun 6 dengan persentase sebesar 1,28%, dimana stasiun ini terletak pada posisi 5 43,703 LS dan ,379 BT dengan kedalaman 5,60 meter dan terendah pada Stasiun 7 sebesar 0,24% (Tabel 4).

5 34 Tabel 4. Komposisi Fraksi Sedimen pada setiap Stasiun Posisi koordinat Persentasi fraksi (%) St. Lintang Bujur Pasir Lanau Liat Tipe substrat , ,819 77,18 21,92 0,90 Pasir berlumpur , ,538 72,37 26,81 0,82 Pasir berlumpur , ,587 82,36 16,49 1,15 Pasir berlumpur , ,052 78,36 20,75 0,89 Pasir berlumpur , ,337 82,40 16,52 1,08 Pasir berlumpur , ,379 72,86 25,86 1,28 Pasir berlumpur , ,953 86,98 12,78 0,24 Pasir , ,363 90,26 9,01 0,73 Pasir , ,185 84,89 14,73 0,38 Pasir 4.2. Komputasi Acoustic Backscattering Dasar Perairan Hasil ekstrak data menggunakan program Echoview 4,0 dongle version dan readeyraw Matlab menghasilkan tampilan echogram yang merupakan hasil penjabaran dari setiap ping dari nilai volume backscattering strength (SV), dengan unit decibel (db). Komputasi nilai backscattering (SV dan SS) dari beberapa tipe substrat dasar perairan diperoleh melalui komputasi echo dasar perairan yang terekam dalam echogram (Manik, 2011). Echogram adalah hasil perekaman sinyal atau gambar hasil deteksi dengan menggunakan alat akustik. Echogram juga dapat memberikan informasi kedalaman perairan, profil dasar perairan dan mengenai individu ataupun kelompok ikan. Semakin besar nilai backscattering yang diberikan oleh dasar perairan maka diduga semakin kasar dan keras pula jenis dasar perairan tersebut. Hal ini disebabkan karena perbedaan material dasar laut. Adapun nilai komputasi SV, SS, dan EL dapat dilihat pada Tabel. 5.

6 35 Tabel 5. Nilai SV, SS, dan EL (db) Dasar Perairan St. Tipe Substrat SV (db) Depth SS EL E1 E2 (m) (db) (db) (roughness) (hardness) 1. Pasir berlumpur 6,51-23,24-48,66-33,32 2. Pasir berlumpur 4,13-21,53-51,64-31,60 155,20 3. Pasir berlumpur 4,24-25,42-58,17-35,49 4. Pasir berlumpur 4,83-21,75-55,99-31,83 175,03 5. Pasir berlumpur 2,15-20,32-51,50-30,38 6. Pasir berlumpur 5,59-16,58-49,80-26,64 7. Pasir 2,79-10,62-36,15-20,70 163,32 8. Pasir 5,15-18,51-52,23-28,58 9. Pasir 2,25-16,74-52,03-26,80 180, Volume Backscattering Strength (SV) Dasar Perairan Hasil kuantifikasi SV echo dasar perairan menunjukkan bahwa dari 2 tipe substrat yang ditemukan di lokasi penelitian, substrat pasir memiliki nilai SV (roughness) yang berkisar antara -10,62 sampai -18,51 db dan substrat pasir berlumpur memiliki nilai SV yang berkisar antara -16,58 sampai -25,42 db. Nilai SV rata-rata untuk substrat pasir adalah sebesar -13,91 db dan substrat pasir berlumpur sebesar -20,57 db. Nilai SV tertinggi untuk substrat pasir terdapat pada Stasiun 7 sebesar -10,62 db dan terendah pada Stasiun 8 sebesar -18,51 db, sedangkan nilai SV tertinggi untuk substrat pasir berlumpur terdapat pada Stasiun 6 sebesar -16,58 db dan terendah pada Stasiun 3 sebesar -25,42 db (Tabel 5). Echogram merupakan rekaman dari rangkaian gema. Visualisasi echogram pada Gambar 19 memperlihatkan tampilan echogram tipe substrat pasir berlumpur yang mewakili stasiun pengamatan di lokasi penelitian. Substrat pasir berlumpur cenderung memiliki kandungan fraksi lanau yang lebih banyak jika dibandingkan dengan lanau yang terdapat pada substrat pasir. Visualisasi echogram menggunakan program Rick Towler pada Matlab (Purnawan, 2009).

7 36 Substrat pasir berlumpur pada stasiun 3 dan 4 terdapat tumbuhan lamun, dan adanya turbulensi, sedangkan untuk substrat pasir pada stasiun 8 dan 9 terdapat lapisan sedimen yang berwarna merah dan ikan. Visualisasi echogram pada stasiun 1 dan 7 terdapat lapisan sedimen yang berwarna merah di 2 kedalaman yang relatif berdeda. Adanya fenomena pada saat perekaman data tersebut merupakan hal yang mungkin dapat mempengaruhi komputasi nilai backscattering (SV dan SS) yang dapat dilihat pada visualisasi echogram tiap-tiap stasiun (Lampiran hal 61). (a) (b) Gambar 19. Echogram Tipe Substrat Pasir Berlumpur (a) Stasiun 3, (b) Stasiun 4 Gambar 20 memperlihatkan tampilan echogram tipe substrat pasir yang mewakili stasiun pengamatan di lokasi penelitian. Substrat pasir yang cenderung memiliki kenampakan makroskopis memiliki kelebihan untuk memantulkan kembali sinyal akustik yang ditembakkan ke dasar perairan. Hal ini yang mengakibatkan second echo yang dihasilkan dari substrat pasir tentunya akan cenderung lebih kuat jika dibandingkan dengan substrat pasir berlumpur.

8 37 (a) (b) Gambar 20. Echogram Tipe Substrat Pasir (a) Stasiun 8, (b) Stasiun 9 Adanya perbedaan nilai SV pada tiap jenis dasar perairan salah satunya disebabkan karakteristik fisik sedimen tersebut, dimana sedimen yg memiliki kenampakan makroskopis tentunya akan memberikan nilai backscattering yang lebih besar. Selain itu, adanya pori-pori atau ruang yang terdapat antar sedimen dapat menjadi faktor lainnya yang mempengaruhi jenis sedimen tersebut dalam memberikan respon terhadap nilai akustik Surface Backscattering Strength (SS) dan Echo Level (EL) Dasar Perairan Hasil yang diperoleh dari hasil komputasi nilai SV untuk memperoleh nilai SS didapatkan bahwa nilai SS untuk substrat pasir berkisar antara -20,70 sampai -28,58 db dengan nilai rata-rata sebesar -23,98 db. Substrat pasir berlumpur memiliki nilai SS yang berkisar pada -26,64 sampai -35,49 db dengan rata-rata nilai SS sebesar -30,64 db. Nilai SS pasir tertinggi terletak pada Stasiun 7 sebesar -20,70 db dan terendah pada Stasiun 8 sebesar -28,58 db. Substrat pasir berlumpur, nilai SS tertinggi terdapat pada Stasiun 6 sebesar -26,64 db dan terendah pada Stasiun 3 sebesar -35,49 db (Tabel 5).

9 38 Nilai SS diperoleh dari puncak nilai Sv echo permukaan. Hasil pengolahan SS dengan menggunakan Matlab terlihat bahwa nilai maksimum dan minimum SS bervariasi untuk beberapa tipe substrat (pasir dan pasir berlumpur). Hal ini diduga bahwa nilai SS dipengaruhi oleh impedansi akustik dan kekasaran (roughness) dari permukaan lapisan dasar perairan. Berdasarkan hasil yang diperoleh maka dapat disimpulkan bahwa hal ini sesuai dengan hasil Siwabessy (2001) yang menjelaskan bahwa nilai backscattering dari dasar yang keras (hard) akan lebih besar dibandingkan nilai backsacttering dari dasar perairan yang lunak (soft). Pola perambatan pulsa akustik (SV dan SS) dasar perairan pada Gambar 21 dan Gambar 22 menunjukkan contoh stasiun yang menunjukkan pola perambatan pulsa akustik yang diukur dalam SV dan SS dari dasar perairan pada kedua tipe substrat yang di plot berdasarkan hubungan antara kedalaman dan nilai intensitas acoustic backscattering strength. Pada pola perambatan pulsa akustik yang diukur, puncak nilai SV atau SS dapat diduga sebagai echo dasar (dasar perairan). Puncak yang tertinggi merupakan echo pertama dari dasar perairan sedangkan peak yang selanjutnya (puncak yang lebih rendah) merupakan echo kedua dari dasar perairan dan seterusnya (Lampiran hal 62). Nilai terbesar SS tidak jauh berbeda dengan nilai SV dasar perairan yang didominasi oleh tipe substrat pasir dan pasir berlumpur. Hal ini sejalan dengan pernyataan Manik et al. (2006) yang menjelaskan bahwa dengan menggunakan nilai SS, nilai backscattering strength substrat pasir lebih besar dari pada nilai SS pada tipe substrat pasir berlumpur. Nilai terkecil SS didominasi oleh tipe substrat pasir berlumpur. Menurut Manik et al. (2006), nilai SS meningkat dengan

10 39 bertambahnya kenaikan diameter partikel dasar laut dan menurun dengan kenaikan frekuensi akustik yang digunakan yang bermanfaat untuk klasifikasi tipe dasar laut. (a) (b) Gambar 21. Pola SS dan SV Tipe Substrat Pasir Berlumpur (a) Stasiun 3, (b) Stasiun 4 (a) (b) Gambar 22. Pola SS dan SV Tipe Substrat Pasir (a) Stasiun 8, (b) Stasiun 9 Penelitian terdahulu mengenai nilai backscattering strength dasar perairan pada beberapa perairan di Indonesia telah dilakukan. Beberapa diantaranya telah dilakukan oleh Purnawan (2009), Allo (2008), Pujiyati (2008) dan Manik et al. (2006) dengan menggunakan instrumen scientific echosounder split beam dengan frekuensi 120 khz (Tabel 6).

11 40 Tabel 6. Beberapa Penelitian tentang Nilai Acoustic Backscattering Strength Dasar Perairan Instrumen/ Peneliti Lokasi Nilai BS (db) Software Manik et al. (2006) Pujiyati (2008) Allo (2008) Purnawan (2009) Penelitian ini (2011) Quantitative Echo Sounder/Matlab SIMRAD EK 500/EP 500 SIMRAD EY 60/Echoview SIMRAD EY 60/Matlab SIMRAD EY 60/Echoview dan Matlab Samudera Hindia Perairan Bangka (Belitung dan Laut Jawa) Perairan Sumur (Pandeglang, Banten) P. Pari (Kepulauan Seribu) P. Pramuka, P. Panggang, P. Karya, P. Semak Daun (Kepulauan Seribu) Pasir: -18,30 Lumpur berpasir: -23,40 Lumpur: -29,00 Pasir: -20,00 Lumpur: -35,91 Pasir: -18,05 Pasir berlumpur: -21,09 Lumpur berpasir: -27,04 Lumpur: -30,02 Pasir: -16,35 Pasir: -13,91 Pasir berlumpur: -20,57 Berdasarkan Gambar 23 dapat melihat bahwa penelitian ini memiliki nilai yang lebih tinggi dibandingkan dengan penelitian-penelitian sebelumnya namun nilai tersebut merupakan nilai SV tertinggi. Jika dimasukkan nilai ratarata, substrat pasir memiliki nilai SV yang berkisar antara -10,62 db sampai -18,51 db dan substrat pasir berlumpur memiliki nilai SV yang berkisar antara -16,58 db sampai -25,42 db. Hal ini menunjukkan bahwa penelitian ini berada pada kisaran yang sama dengan penelitian sebelumnya.

12 41 Lumpur Lumpur Berpasir Pasir Berlumpur Pasir Gambar 23. Perbandingan Nilai Volume Backscattering Strength berbagai Tipe Substrat Pasir, Pasir Berlumpur, Lumpur Berpasir dan Lumpur. Penelitian ini Purnawan Allo Pujiyati Manik et al. Kondisi perairan yang berbeda akan mempengaruhi intensitas nilai backscattering karena secara tidak langsung berhubungan dengan kecepatan rambat gelombang suara di perairan yang berkaitan erat dengan kondisi suhu, salinitas, tekanan dan kedalaman. Selain cepat rambat gelombang suara, panjang pulsa juga mempengaruhi intensitas nilai backscattering dan ini berkaitan erat dengan spesifikasi instrumen akustik yang digunakan dalam penelitian Normalisasi Energi Echo Dasar Perairan Visualisasi Gambar 24 menunjukkan hasil normalisasi echo dasar perairan yang diperoleh dari data echogram untuk melihat tingkat intensitas energi substrat dasar perairan (pasir dan pasir berlumpur) di 9 stasiun lokasi penelitian.

13 42 Hasil perhitungan nilai echo level, maka pada penelitian ini didapatkan bahwa nilai echo level untuk substrat pasir memiliki nilai rata-rata sebesar 177,23 ± 8,99 db dan untuk pasir berlumpur memiliki nilai rata-rata echo level sebesar 168,08 ± 6,78 db dengan nilai source level (SL) sebesar 214 db, dengan nilai µ ± s berkisar antara ± 8.99 db. Gambar 24. Echo Envelope di 9 Stasiun Lokasi Penelitian Kurva energi substrat pasir berlumpur diwakili oleh stasiun 1 6 memiliki nilai rata-rata echo level sebesar 168,08 ± 6,78 db, dengan nilai µ ± s berkisar antara ± db. Sedangkan kurva energi substrat pasir diwakili oleh stasiun 7 9 memiliki nilai rata-rata echo level sebesar 177,23 ± 8,99 db, dengan nilai µ ± s berkisar antara ± db (Lampiran hal 63). Dasar perairan cenderung memiliki karakteristik memantulkan dan menghamburkan kembali gelombang suara dari sinyal akustik seperti halnya

14 43 permukaan perairan laut. Efek yang dihasilkan lebih kompleks karena sifat dasar laut yang tersusun atas beragam unsur mulai dari bebatuan yang keras hingga lempung yang halus serta lapisan-lapisan yang memiliki komposisi yang berbeda (Urick, 1983). Menurut Manik (2011), selain dipengaruhi oleh ukuran partikel, diduga ada faktor lain yang mempengaruhi nilai backscattering seperti porositas, kandungan zat organik dan biota yang berada dalam substrat. Tingkat energi dasar perairan dapat digambarkan berdasarkan hubungan antara intensitas echo dasar perairan terhadap kedalaman dalam memberikan respon terhadap sinyal akustik yang mengenai dasar perairan. Hal ini ditandai dengan adanya anggapan bahwa dasar perairan yang keras akan menghasilkan intensitas echo yang tajam berupa nilai amplitudo yang tinggi, sementara bagian dasar perairan yang lunak akan menghasilkan echo yang lemah yang ditandai dengan rendahnya nilai respon amplitudo yang dihasilkan. Echo envelope dari intensitas energi ini merupakan interpretasi dari dasar perairan dalam meresponi sinyal akustik yang memperlihatkan sinyal echo yang berasal dari first bottom atau E1 dan second bottom atau E2. Echo dasar perairan ini merupakan nilai backscattering volume (SV) yang merupakan nilai yang menggambarkan nilai SV tertinggi untuk masing-masing peak echo, dimana peak pertama diindikasikan sebagai echo yang berasal dari noise permukaan yang disebabkan proses transmisi sinyal akustik dan gangguan lainnya seperti angin ataupun gelembung. Peak kedua merupakan gema yang berasal dari dasar perairan yang langsung diterima transduser, sedangkan peak kedua dan seterusnya merupakan gema yang berasal dari dasar perairan kemudian

15 44 tidak langsung kembali ke transduser tetapi dipantulkan oleh permukaan perairan atau kapal dan kembali ke dasar perairan dan kemudian kembali ke transduser. Visualisasi Gambar 25 dan Gambar 26 menunjukkan hasil normalisasi echo dasar perairan yang diperoleh dari data echogram untuk melihat tingkat intensitas energi dari beberapa tipe substrat dasar perairan (pasir dan pasir berlumpur) di lokasi penelitian. Intensitas energi yang mengindikasikan dari tipe substrat pasir berlumpur diwakili stasiun 3 dan 4 dengan nilai µ ± s sebesar ± 2.57 db, dan ± 2.80 db. Sedangkan untuk tipe substrat pasir diwakili stasiun 8 dan 9 dengan nilai µ ± s sebesar ± 3.49 db, dan ± 3.61dB. (a) (b) Gambar 25. Echo Envelope yang mengindikasikan Tingkat Intensitas Energi Tipe Substrat Pasir Berlumpur (a) Stasiun 3, (b) Stasiun 4

16 45 (a) (b) Gambar 26. Echo Envelope yang mengindikasikan Tingkat Intensitas Energi Tipe Substrat Pasir (a) Stasiun 8, (b) Stasiun 9 Kurva energi substrat pasir cenderung memberikan respon backscattering yang lebih kuat dibandingkan dengan substrat pasir berlumpur yang ditandai dengan nilai amplitudo yang tinggi yang terdapat pada substrat pasir. Rendahnya intensitas energi echo pada substrat pasir berlumpur dikarenakan substrat yang memiliki kandungan lanau cenderung untuk menyerap gelombang suara yang ditransmisikan ke dasar perairan sehingga echo yang kembali dari dasar akan mengalami pelemahan. Hal ini berbeda dengan pasir, karena pasir akan memantulkan gelombang suara lebih kuat. Hal ini menjelaskan bahwa nilai hambur balik dipengaruhi oleh ukuran partikel. Selain ukuran partikel, nilai hambur balik dasar atau substrat kemungkinan juga dipengaruhi oleh faktor lain seperti porositas ataupun kandungan zat organik dan biota yang berada di dalam substrat. Namun dalam penelitian ini porositas, zat organik dan biota yang ada di dalam substrat tidak dibahas.

17 Principal Component Analysis (PCA) Hubungan antara parameter fisika sedimen dengan nilai akustik dianalisis dengan menggunakan Principal Component Analysis (PCA), untuk melihat seberapa besar keterkaitan antara satu parameter dengan parameter yang lain. Parameter fisik sedimen yang digunakan dalam analisis ini meliputi komposisi sedimen (pasir, lanau, dan liat), sedangkan untuk parameter akustik meliputi nilai SV (E1 dan E2), SS dan EL (Echo Level). Analisis komponen utama yang dilakukan terhadap data pengamatan di perairan Kepulauan Seribu dapat menjelaskan keragaman data sampai 82,12% sehingga interpretasi analisis komponen dianggap mewakili keadaan yang terjadi tanpa mengurangi informasi yang banyak dari data (Gambar 27). Sumbu faktor 1 (F1) dan faktor 2 (F2) dipilih untuk menggambarkan peubahpeubah baru yang akan menjelaskan komponen utama karena kontribusi hasil penjumlahan antara keduanya lebih besar bila dibandingkan dengan penjumlahan antara F1 dan F3 atau F2 dan F3. Perlu diketahui bahwa besarnya sudut yang terbentuk dari dua variabel dalam satu sumbu faktor mengindikasikan besarnya perbedaan antara kedua variabel tersebut. Hasil analisis komponen utama (parameter fisik sedimen dan nilai hidroakustik) terhadap komposisi substrat dan nilai hambur balik dasar perairan memperlihatkan bahwa kontribusi terhadap sumbu utama (F1, F2) sebesar 86,70%. Sebagian besar informasi terpusat pada sumbu 1 (F1) yang menjelaskan 64,63% dari ragam total. Sumbu 2 (F2) menjelaskan 22,07% dari ragam total. Komponen yang memberikan kontribusi pada sumbu 1 negatif meliputi: partikel pasir, hambur balik pertama (E1), hambur balik ke dua (E2), SS dan EL,

18 47 sedangkan sumbu 1 positif meliputi partikel lanau, dan liat. Komponen yang memberikan kontribusi pada sumbu 2 negatif partikel liat, lanau, hambur balik pertama (E1), hambur balik ke dua (E2), SS dan EL, sedangkan sumbu 2 positif meliputi partikel pasir. Analisis komponen utama tipe substrat yang meliputi, PCA untuk keterkaitan parameter (fisik sedimen dan nilai hidroakustik) dan penyebaran stasiun pengamatan pada sumbu F1 dan F2 dapat dilihat pada Gambar 27 dan 28. Gambar 27. PCA untuk Parameter Fisik Sedimen dan Nilai Hidroakustik

19 48 3,0 Projection of the cases on the factor-plane ( 1 x 2) 2,5 2,0 8 1,5 Kelompok IV 3 Factor 2: 22,07% 1,0 0,5 0,0-0,5-1,0-1,5-2,0-2,5 7 Kelompok III 9 5 Kelompok II Kelompok I -3,0-3, Factor 1: 64,63% Active Gambar 28. Penyebaran Stasiun Pengamatan pada Sumbu F1 dan F2 Berdasarkan hasil yang diperoleh seperti yang terlihat pada Gambar 28 maka dapat disimpulkan bahwa, terdapat empat tipe substrat, seperti pada Tabel 7.

20 49 Tabel 7. Hubungan antara Parameter Fisika Sedimen dan Nilai Akustik dianalisis dengan menggunakan Principal Component Analysis (PCA) Klasifikasi Penyebaran Stasiun pada Sumbu F1 dan F2 Keterangan Kelompok 1 Stasiun 1, 2, dan 6 Stasiun substrat pasir berlumpur dengan komposisi fraksi pasir yang lebih besar dari kelompok 2, ditandai dengan nilai SV, SS tertinggi, dan memiliki nilai echo level yang besar dari kelompok 2 Kelompok 2 Stasiun 3, 4 dan 5 Kelompok 3 Stasiun 7 Kelompok 4 Stasiun 8 dan 9 Stasiun substrat pasir berlumpur dengan komposisi fraksi pasir yang lebih besar dari kelompok 1, ditandai dengan nilai SV, SS yang lebih rendah dari kelompok 1, dan memiliki nilai echo level tinggi Stasiun substrat pasir dengan komposisi fraksi pasir yang lebih besar dari kelompok 4 dan liat terkecil ditandai dengan nilai SV, SS dan echo level tertinggi diantara stasiun lainnya Stasiun substrat pasir dengan komposisi fraksi pasir terbesar diantara stasiun lainnya, ditandai dengan nilai SV, SS, dan echo level yang lebih kecil dari kelompok 3.

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori 4. HASIL DAN PEMBAHASAN 4.1 Profil Peta Batimetri Laut Arafura Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori perairan dangkal dimana kedalaman mencapai 100 meter. Berdasarkan data

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 4 HASIL DAN PEMBAHASAN 4.1 Identifikasi Lifeform Karang Secara Visual Karang memiliki variasi bentuk pertumbuhan koloni yang berkaitan dengan kondisi lingkungan perairan. Berdasarkan hasil identifikasi

Lebih terperinci

1. PENDAHULUAN 1.1. Latar belakang

1. PENDAHULUAN 1.1. Latar belakang 1. PENDAHULUAN 1.1. Latar belakang Dasar perairan memiliki peranan yang sangat penting yaitu sebagai habitat bagi bermacam-macam makhluk hidup yang kehidupannya berasosiasi dengan lingkungan perairan.

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 3 METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan dari bulan Desember 2010 Juli 2011 yang meliputi tahapan persiapan, pengukuran data lapangan, pengolahan dan analisis

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, diperoleh data yang diuraikan pada Tabel 4. Lokasi penelitian berada

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1. Waktu dan Lokasi Penelitian Pengambilan data akustik dilakukan pada tanggal 29 Januari sampai 3 Februari 2011 di perairan Kepulauan Seribu. Wilayah penelitian mencakup di

Lebih terperinci

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan 4. HASIL PEMBAHASAN 4.1 Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, ditemukan 3 jenis spesies lamun yakni Enhalus acoroides, Cymodocea

Lebih terperinci

Gambar 8. Lokasi penelitian

Gambar 8. Lokasi penelitian 3. METODOLOGI PENELITIAN 3.1 Waktu dan lokasi penelitian Penelitian ini dilaksanakan pada tanggal 30 Januari-3 Februari 2011 yang di perairan Pulau Gosong, Pulau Semak Daun dan Pulau Panggang, Kabupaten

Lebih terperinci

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan.

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan. METODE PENELITIAN Waktu dan Lokasi Penelitian Pengambilan data lapang dilakukan pada tanggal 16-18 Mei 2008 di perairan gugusan pulau Pari, Kepulauan Seribu, Jakarta (Gambar 11). Lokasi ditentukan berdasarkan

Lebih terperinci

2. TINJAUAN PUSTAKA. Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses

2. TINJAUAN PUSTAKA. Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses 2. TINJAUAN PUSTAKA 2.1. Sedimen Dasar Laut Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses hidrologi dari suatu tempat ke tempat yang lain, baik secara vertikal maupun secara

Lebih terperinci

3. METODE PENELITIAN. Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º º BT

3. METODE PENELITIAN. Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º º BT 3. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º - 138 º BT (Gambar 2), pada bulan November 2006 di Perairan Laut Arafura, dengan kedalaman

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Kajian dasar perairan dapat digunakan secara luas, dimana para ahli sumberdaya kelautan membutuhkannya sebagai kajian terhadap habitat bagi hewan bentik (Friedlander et

Lebih terperinci

2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut

2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut 2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut Sedimen yang merupakan partikel lepas (unconsolidated) yang terhampar di daratan, di pesisir dan di laut itu berasal dari batuan atau material yang mengalami

Lebih terperinci

PENGUKURAN HAMBUR BALIK AKUSTIK DASAR LAUT DI SEKITAR KEPULAUAN SERIBU MENGGUNAKAN SPLIT BEAM ECHOSOUNDER

PENGUKURAN HAMBUR BALIK AKUSTIK DASAR LAUT DI SEKITAR KEPULAUAN SERIBU MENGGUNAKAN SPLIT BEAM ECHOSOUNDER PENGUKURAN HAMBUR BALIK AKUSTIK DASAR LAUT DI SEKITAR KEPULAUAN SERIBU MENGGUNAKAN SPLIT BEAM ECHOSOUNDER KORSUES LUMBAN GAOL SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Hasil Pengambilan Contoh Dasar Gambar 16 merupakan hasil dari plot bottom sampling dari beberapa titik yang dilakukan secara acak untuk mengetahui dimana posisi target yang

Lebih terperinci

2. TINJAUAN PUSTAKA. Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji

2. TINJAUAN PUSTAKA. Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji 2. TINJAUAN PUSTAKA 2.1 Keadaan Umum Lokasi Penelitian Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji (1987), paparan Arafura (diberi nama oleh Krummel, 1897) ini terdiri dari tiga

Lebih terperinci

PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY-60 DI PERAIRAN KEPULAUAN PARI

PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY-60 DI PERAIRAN KEPULAUAN PARI PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY-60 DI PERAIRAN KEPULAUAN PARI SANTI OKTAVIA SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

1. PENDAHULUAN 1.1 Latar Belakang

1. PENDAHULUAN 1.1 Latar Belakang 1. PENDAHULUAN 1.1 Latar Belakang Substrat dasar perairan memiliki peranan yang sangat penting yaitu sebagai habitat bagi bermacam-macam biota baik itu mikrofauna maupun makrofauna. Mikrofauna berperan

Lebih terperinci

HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011

HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 Jurnal Teknologi Perikanan dan Kelautan. Vol. 4. No. 1 Mei 2013: 31-39 ISSNN 2087-4871 HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 (THE RELATION

Lebih terperinci

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian 3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini merupakan bagian dari Ekspedisi Selat Makassar 2003 yang diperuntukkan bagi Program Census of Marine Life (CoML) yang dilaksanakan oleh

Lebih terperinci

KELOMPOK 2 JUWITA AMELIA MILYAN U. LATUE DICKY STELLA L. TOBING

KELOMPOK 2 JUWITA AMELIA MILYAN U. LATUE DICKY STELLA L. TOBING SISTEM SONAR KELOMPOK 2 JUWITA AMELIA 2012-64-0 MILYAN U. LATUE 2013-64-0 DICKY 2013-64-0 STELLA L. TOBING 2013-64-047 KARAKTERISASI PANTULAN AKUSTIK KARANG MENGGUNAKAN ECHOSOUNDER SINGLE BEAM Baigo Hamuna,

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 17 3. METODOLOGI PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian ini dilakukan pada bulan Februari sampai Juni 211, sedangkan survei data dilakukan oleh pihak Balai Riset Perikanan Laut (BRPL) Departemen

Lebih terperinci

EFEK UKURAN BUTIRAN, KEKASARAN, DAN KEKERASAN DASAR PERAIRAN TERHADAP NILAI HAMBUR BALIK HASIL DETEKSI HYDROAKUSTIK ABSTRACT

EFEK UKURAN BUTIRAN, KEKASARAN, DAN KEKERASAN DASAR PERAIRAN TERHADAP NILAI HAMBUR BALIK HASIL DETEKSI HYDROAKUSTIK ABSTRACT P P Staf P P Peneliti E-Jurnal Ilmu dan Teknologi Kelautan Tropis, Vol. 2, No. 1, Hal. 59-67, Juni 2010 EFEK UKURAN BUTIRAN, KEKASARAN, DAN KEKERASAN DASAR PERAIRAN TERHADAP NILAI HAMBUR BALIK HASIL DETEKSI

Lebih terperinci

Lampiran 1. Alat dan Bahan yang digunakan di Lapangan. Scientific Echosounder Simrad EY 60

Lampiran 1. Alat dan Bahan yang digunakan di Lapangan. Scientific Echosounder Simrad EY 60 56 Lampiran 1. Alat dan Bahan yang digunakan di Lapangan Scientific Echosounder Simrad EY 60 Kapal Survei Pipa Paralon berdiameter 7,6 cm (3 inch) dan Sekop Dongle Echoview 57 Lampiran 2. Foto Tipe Substrat

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 39 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Profil Kecepatan Suara Profil kecepatan suara (SVP) di lokasi penelitian diukur secara detail untuk mengurangi pengaruh kesalahan terhadap data multibeam pada

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Batimetri Selat Sunda Peta batimetri adalah peta yang menggambarkan bentuk konfigurasi dasar laut dinyatakan dengan angka-angka suatu kedalaman dan garis-garis yang mewakili

Lebih terperinci

3. METODOLOGI. Gambar 10. Lokasi penelitian

3. METODOLOGI. Gambar 10. Lokasi penelitian 3. METODOLOGI 3.1. Waktu dan lokasi penelitian Penelitian ini dilaksanakan pada tanggal 29 Januari 2 Februari 2011 yang berlokasi di sekitar perairan Pulau Pramuka, Pulau Panggang, Pulau Karya dan Pulau

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 3 METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Waktu penelitian dimulai pada tanggal 20 Januari 2011 dan menggunakan data hasil survei Balai Riset Perikanan Laut (BRPL). Survei ini dilakukan mulai

Lebih terperinci

2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Bentuk Pertumbuhan Karang

2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Bentuk Pertumbuhan Karang 2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Terumbu karang merupakan satu kesatuan dari berbagai jenis karang. Terumbu karang adalah endapan-endapan masif yang penting dari kalsium karbonat yang terutama dihasilkan

Lebih terperinci

PENGUKURAN DAN ANALISIS NILAI HAMBUR BALIK AKUSTIK UNTUK KLASIFIKASI DASAR PERAIRAN DELTA MAHAKAM

PENGUKURAN DAN ANALISIS NILAI HAMBUR BALIK AKUSTIK UNTUK KLASIFIKASI DASAR PERAIRAN DELTA MAHAKAM Pengukuran dan Analisis Nilai Hambur. Klasifikasi Dasar Perairan Delta Mahakam (Ningsih E.N., et al) PENGUKURAN DAN ANALISIS NILAI HAMBUR BALIK AKUSTIK UNTUK KLASIFIKASI DASAR PERAIRAN DELTA MAHAKAM ACOUSTIC

Lebih terperinci

NILAI KEKUATAN HAMBUR BALIK (BACKSCATTERING STRENGTH VALUE) SUBSTRAT BERPASIR STEVEN SOLIKIN

NILAI KEKUATAN HAMBUR BALIK (BACKSCATTERING STRENGTH VALUE) SUBSTRAT BERPASIR STEVEN SOLIKIN NILAI KEKUATAN HAMBUR BALIK (BACKSCATTERING STRENGTH VALUE) SUBSTRAT BERPASIR STEVEN SOLIKIN DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR BOGOR 2015

Lebih terperinci

Scientific Echosounders

Scientific Echosounders Scientific Echosounders Namun secara secara elektronik didesain dengan amplitudo pancaran gelombang yang stabil, perhitungan waktu yang lebih akuran dan berbagai menu dan software tambahan. Contoh scientific

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN 4.1 Pengaruh Gangguan Pada Audio Generator Terhadap Amplitudo Gelombang Audio Yang Dipancarkan Pengukuran amplitudo gelombang audio yang dipancarkan pada berbagai tingkat audio generator

Lebih terperinci

KUANTIFIKASI DAN KARAKTERISASI ACOUSTIC BACKSCATTERING DASAR PERAIRAN DI KEPULAUAN SERIBU JAKARTA OBED AGTAPURA TARUK ALLO

KUANTIFIKASI DAN KARAKTERISASI ACOUSTIC BACKSCATTERING DASAR PERAIRAN DI KEPULAUAN SERIBU JAKARTA OBED AGTAPURA TARUK ALLO KUANTIFIKASI DAN KARAKTERISASI ACOUSTIC BACKSCATTERING DASAR PERAIRAN DI KEPULAUAN SERIBU JAKARTA OBED AGTAPURA TARUK ALLO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS

Lebih terperinci

ANALISIS MODEL JACKSON PADA SEDIMEN BERPASIR MENGGUNAKAN METODE HIDROAKUSTIK DI GUGUSAN PULAU PARI, KEPULAUAN SERIBU SYAHRUL PURNAWAN

ANALISIS MODEL JACKSON PADA SEDIMEN BERPASIR MENGGUNAKAN METODE HIDROAKUSTIK DI GUGUSAN PULAU PARI, KEPULAUAN SERIBU SYAHRUL PURNAWAN ANALISIS MODEL JACKSON PADA SEDIMEN BERPASIR MENGGUNAKAN METODE HIDROAKUSTIK DI GUGUSAN PULAU PARI, KEPULAUAN SERIBU SYAHRUL PURNAWAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN

Lebih terperinci

Lampiran 2. Alat pengambilan sampel sedimen

Lampiran 2. Alat pengambilan sampel sedimen Lampiran 1. Scientific echosounder Simrad EY 60 Kabel Transducer Transducer GPT Laptop GPS Lampiran 2. Alat pengambilan sampel sedimen Lampiran 3. Kapal survei Lampiran 4. Echoview 4,00 dan dongle Lampiran

Lebih terperinci

6. PEMBAHASAN 6.1 Kondisi Umum Daerah Penelitian Batimetri

6. PEMBAHASAN 6.1 Kondisi Umum Daerah Penelitian Batimetri 6. PEMBAHASAN 6.1 Kondisi Umum Daerah Penelitian 6.1.1 Batimetri Hasil pemetaan batimetri dari data echogram maupun data topex di seluruh perairan Laut Jawa (termasuk perairan Belitung) menunjukkan bahwa

Lebih terperinci

PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN SELAT GASPAR DAN SEKITARNYA MENGGUNAKAN INSTRUMEN SIMRAD EK60

PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN SELAT GASPAR DAN SEKITARNYA MENGGUNAKAN INSTRUMEN SIMRAD EK60 PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN SELAT GASPAR DAN SEKITARNYA MENGGUNAKAN INSTRUMEN SIMRAD EK60 ROSHYANA WAHYU NOOR JAYANTIE SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS

Lebih terperinci

Sumber : Mckenzie (2009) Gambar 2. Morfologi Lamun

Sumber : Mckenzie (2009) Gambar 2. Morfologi Lamun 2. TINJAUAN PUSTAKA 2.1 Deskripsi Lamun Lamun merupakan tumbuhan laut yang hidup di perairan jernih pada kedalaman berkisar antara 2 12 m dengan sirkulasi air yang baik. Hampir semua tipe substrat dapat

Lebih terperinci

UJI BEDA KETEBALAN INTEGRASI PADA PANTULAN PERTAMA DAN KEDUA HASIL DETEKSI AKUSTIK MULYANI

UJI BEDA KETEBALAN INTEGRASI PADA PANTULAN PERTAMA DAN KEDUA HASIL DETEKSI AKUSTIK MULYANI UJI BEDA KETEBALAN INTEGRASI PADA PANTULAN PERTAMA DAN KEDUA HASIL DETEKSI AKUSTIK MULYANI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR 2014 PERNYATAAN

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Hasil Analisis Nilai Target Strength (TS) Pada Ikan Mas (Cyprinus carpio) Nilai target strength (TS) merupakan parameter utama pada aplikasi metode akustik dalam menduga kelimpahan

Lebih terperinci

Oleh Satria Yudha Asmara Perdana Pembimbing Eko Minarto, M.Si Drs. Helfinalis M.Sc

Oleh Satria Yudha Asmara Perdana Pembimbing Eko Minarto, M.Si Drs. Helfinalis M.Sc Oleh Satria Yudha Asmara Perdana 1105 100 047 Pembimbing Eko Minarto, M.Si Drs. Helfinalis M.Sc PENDAHULUAN Latar Belakang Pulau Bawean memiliki atraksi pariwisata pantai yang cukup menawan, dan sumber

Lebih terperinci

HUBUNGAN TIPE DASAR PERAIRAN TERHADAP DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011

HUBUNGAN TIPE DASAR PERAIRAN TERHADAP DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 HUBUNGAN TIPE DASAR PERAIRAN TERHADAP DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 HIDAYANTO AKBAR SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut

2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut 6 2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut Seluruh permukaan dasar laut ditutupi oleh partikel-partikel sedimen yang telah diendapkan secara perlahan-lahan dalam jangka waktu berjuta-juta tahun. Sedimen

Lebih terperinci

3. METODOLOGI. Pengambilan data dengan menggunakan side scan sonar dilakukan selama

3. METODOLOGI. Pengambilan data dengan menggunakan side scan sonar dilakukan selama 3. METODOLOGI 3.1 Waktu dan Lokasi Penelitian Pengambilan data dengan menggunakan side scan sonar dilakukan selama dua hari, yaitu pada 19-20 November 2008 di perairan Aceh, Lhokseumawe (Gambar 3). Sesuai

Lebih terperinci

PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY-60 DI PERAIRAN KEPULAUAN PARI

PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY-60 DI PERAIRAN KEPULAUAN PARI PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY60 DI PERAIRAN KEPULAUAN PARI SANTI OKTAVIA SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

INTERPRETASI SEB NILAI TARGET STRENGTH (TS) DAN DENSITAS DEmRSAL DENGAN BlETODE AIE)ROAKUSTIK DI TELUK PELABUWAN RATU

INTERPRETASI SEB NILAI TARGET STRENGTH (TS) DAN DENSITAS DEmRSAL DENGAN BlETODE AIE)ROAKUSTIK DI TELUK PELABUWAN RATU INTERPRETASI SEB NILAI TARGET STRENGTH (TS) DAN DENSITAS DEmRSAL DENGAN BlETODE AIE)ROAKUSTIK DI TELUK PELABUWAN RATU Oleh: Munawir C64102020 PR AN TEKNOLOGI KELAUTAN AN DAN I Lm KELAUTAN INSTITUT PERTANLAN

Lebih terperinci

Model integrasi echo dasar laut Blok diagram scientific echosounder ditampilkan pada Gambar I. echo pada pre-amplifier, ERB :

Model integrasi echo dasar laut Blok diagram scientific echosounder ditampilkan pada Gambar I. echo pada pre-amplifier, ERB : N AWSTIK SCATTERINGSTRENGTH DASAR LAUT DAN IDENTIFIKASI WABIcrAT I DENGAN ECHOSOUNDER (Measurement of Acoustic ScatGering Strength of Sea Bottom and Identification of Fish Habitat Using Echosounder) Oleh:

Lebih terperinci

3,15 Very Fine Sand 1,24 Poorlysorted -0,21 Coarse-Skewed. 4,97 Coarse Silt 1,66 Poorlysorted -1,89 Very Coarse-Skewed

3,15 Very Fine Sand 1,24 Poorlysorted -0,21 Coarse-Skewed. 4,97 Coarse Silt 1,66 Poorlysorted -1,89 Very Coarse-Skewed BAB 5. HASIL DAN PEMBAHASAN 5.1. Hasil 5.1.1. Sedimen dasar permukaan Hasil analisis sedimen permukaan dari 30 stasiun diringkas dalam parameter statistika sedimen yaitu Mean Size (Mz Ø), Skewness (Sk

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Tipe Estuari dan Debit Sungai. Tipe estuari biasanya dipengaruhi oleh kondisi pasang surut. Pada saat pasang, salinitas perairan akan didominasi oleh salinitas air laut karena

Lebih terperinci

DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR

DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR 1) Soetjie Poernama Sari 2) Henry M. Manik 1) Alumni Departemen Ilmu dan Teknologi Kelautan FPIK IPB 2) Dosen Bagian

Lebih terperinci

2. TINJAUAN PUSTAKA. Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat

2. TINJAUAN PUSTAKA. Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat 2. TINJAUAN PUSTAKA 2.1. Side Scan Sonar Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat memancarkan beam pada kedua sisi bagiannya secara horizontal. Side scan sonar memancarkan pulsa

Lebih terperinci

III METODE PENELITIAN

III METODE PENELITIAN III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian ini dilakukan di Waduk Ir. H. Djuanda dan Laboratorium Akustik Fakultas Perikanan dan Ilmu Kelautan IPB Bogor. Kegiatan penelitian ini terbagi

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Hidroakustik 4.1.1. Profil Batimetri Laut Selatan Jawa Pada Gambar 10. terlihat profil batimetri Laut Selatan Jawa yang diperoleh dari hasil pemetaan batimetri, dimana dari

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 3. METODE PENELITIAN 3.1. Lokasi dan Waktu Penelitian Penelitian ini merupakan lanjutan yang dilakukan dari bulan Juli sampai bulan Agustus menggunakan data hasil olahan dalam bentuk format *raw.dg yang

Lebih terperinci

KOMPOSISI BUTIRAN PASIR SEDIMEN PERMUKAAN SELAT BENGKALIS PROPINSI RIAU

KOMPOSISI BUTIRAN PASIR SEDIMEN PERMUKAAN SELAT BENGKALIS PROPINSI RIAU KOMPOSISI BUTIRAN PASIR SEDIMEN PERMUKAAN SELAT BENGKALIS PROPINSI RIAU 1) oleh: Devy Yolanda Putri 1), Rifardi 2) Alumni Fakultas Perikanan & Ilmu Kelautan Universitas Riau, Pekanbaru 2) Dosen Fakultas

Lebih terperinci

SOUND PROPAGATION (Perambatan Suara)

SOUND PROPAGATION (Perambatan Suara) SOUND PROPAGATION (Perambatan Suara) SOUND PROPAGATION (Perambatan Suara) Reflection and Refraction Ketika gelombang suara merambat dalam medium, terjadi sebuah pertemuan antara kedua medium dengan kepadatan

Lebih terperinci

PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN DENGAN INSTRUMEN SINGLE DAN MULTI BEAM ECHO SOUNDER BAMBANG SUPARTONO

PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN DENGAN INSTRUMEN SINGLE DAN MULTI BEAM ECHO SOUNDER BAMBANG SUPARTONO PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN DENGAN INSTRUMEN SINGLE DAN MULTI BEAM ECHO SOUNDER BAMBANG SUPARTONO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2013 PENGUKURAN ACOUSTIC

Lebih terperinci

Tekstur Sedimen, Kelimpahan dan Keanekaragaman Foraminifera Bentik di Perairan Teluk Jakarta

Tekstur Sedimen, Kelimpahan dan Keanekaragaman Foraminifera Bentik di Perairan Teluk Jakarta Tekstur Sedimen, Kelimpahan dan Keanekaragaman Foraminifera Bentik di Perairan Teluk Jakarta Isnaniawardhani, V 1, Nurruhwati, I 2, dan Bengen, D.G 3 1 Fakultas Teknik Geologi, Universitas Padjadjaran,

Lebih terperinci

3 METODE PENELITIAN. Gambar 8 Peta lokasi penelitian.

3 METODE PENELITIAN. Gambar 8 Peta lokasi penelitian. 30 3 METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian ini menggunakan data hasil survei akustik yang dilaksanakan oleh Balai Riset Perikanan Laut (BRPL), Dirjen Perikanan Tangkap, KKP RI pada bulan Juni

Lebih terperinci

5. HASIL PENELITIAN 5.1 Kondisi Umum Daerah Penelitian Batimetri Perairan

5. HASIL PENELITIAN 5.1 Kondisi Umum Daerah Penelitian Batimetri Perairan 5. HASIL PENELITIAN 5.1 Kondisi Umum Daerah Penelitian 5.1.1 Batimetri Perairan Hasil pemetaan batimetri dari data echogram di seluruh perairan Laut Jawa khususnya pada Laut Jawa bagian timur dan utara

Lebih terperinci

Pendahuluan. Peralatan. Sari. Abstract. Subarsyah dan M. Yusuf

Pendahuluan. Peralatan. Sari. Abstract. Subarsyah dan M. Yusuf PENGARUH FREKUENSI GELOMBANG TERHADAP RESOLUSI DAN DELINEASI PERLAPISAN SEDIMEN BAWAH PERMUKAAN DARI DUA INSTRUMEN AKUSTIK YANG BERBEDA DI SUNGAI SAGULING Subarsyah dan M. Yusuf Pusat Penelitian dan Pengembangan

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 3. METODE PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian ini menggunakan data side scan sonar yang berasal dari survei lapang untuk kegiatan pemasangan kabel PLN yang telah dilakukan oleh Pusat

Lebih terperinci

Karakterisasi Pantulan Akustik Karang Menggunakan Echosounder Single Beam

Karakterisasi Pantulan Akustik Karang Menggunakan Echosounder Single Beam Karakterisasi Pantulan Akustik Karang Menggunakan Echosounder Single Beam Characterization of Coral Acoustics Backscattering Using Single Beam Echosounder Baigo Hamuna 1, Sri Pujiyati 2, Totok Hestirianoto

Lebih terperinci

IDENTIFIKASI DAN KLASIFIKASI LIFEFORM KARANG MENGGUNAKAN METODE HIDROAKUSTIK JEFRY BEMBA

IDENTIFIKASI DAN KLASIFIKASI LIFEFORM KARANG MENGGUNAKAN METODE HIDROAKUSTIK JEFRY BEMBA IDENTIFIKASI DAN KLASIFIKASI LIFEFORM KARANG MENGGUNAKAN METODE HIDROAKUSTIK JEFRY BEMBA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini

Lebih terperinci

Bab 3. Pengumpulan dan Pengolahan Data. Bab 3 Pengumpulan dan Pengolahan Data. 3.1 Pengumpulan Data

Bab 3. Pengumpulan dan Pengolahan Data. Bab 3 Pengumpulan dan Pengolahan Data. 3.1 Pengumpulan Data Bab 3 Pengumpulan dan Pengolahan Data 3.1 Pengumpulan Data Pemodelan propagasi akustik bawah air di Samudera Hindia memerlukan data-data sebagai berikut: 1. Kecepatan suara. 2. Temperatur. 3. Salinitas.

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.1. Lintasan Dan Hasil Penelitian Penelitian yang dilakukan dalam cakupan peta 1212 terdiri dari 44 lintasan yang terbentang sepanjang 2290 km, seperti yang terlihat pada peta

Lebih terperinci

STUDI SEBARAN SEDIMEN SECARA VERTIKAL DI PERAIRAN SELAT MADURA KABUPATEN BANGKALAN

STUDI SEBARAN SEDIMEN SECARA VERTIKAL DI PERAIRAN SELAT MADURA KABUPATEN BANGKALAN STUDI SEBARAN SEDIMEN SECARA VERTIKAL DI PERAIRAN SELAT MADURA KABUPATEN BANGKALAN Vivieta Rima Radhista 1, Aries Dwi Siswanto 1, Eva Ari Wahyuni 2 1 Jurusan Ilmu Kelautan, Fakultas Pertanian, Universitas

Lebih terperinci

KUANTIFIKASI DAN KLASIFIKASI KARANG BERDASARKAN KUAT HAMBUR BALIK MENGGUNAKAN METODE AKUSTIK SINGLE BEAM BAIGO HAMUNA

KUANTIFIKASI DAN KLASIFIKASI KARANG BERDASARKAN KUAT HAMBUR BALIK MENGGUNAKAN METODE AKUSTIK SINGLE BEAM BAIGO HAMUNA 15 KUANTIFIKASI DAN KLASIFIKASI KARANG BERDASARKAN KUAT HAMBUR BALIK MENGGUNAKAN METODE AKUSTIK SINGLE BEAM BAIGO HAMUNA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2013 16 PERNYATAAN MENGENAI

Lebih terperinci

PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG

PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG Pendugaan Kelimpahan dan Sebaran Ikan... Metode Akustik di Perairan Belitung (Fahmi, Z.) PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG ABSTRAK Zulkarnaen

Lebih terperinci

ANALISIS HAMBUR BALIK AKUSTIK UNTUK IDENTIFIKASI SPESIES LAMUN LA OLE

ANALISIS HAMBUR BALIK AKUSTIK UNTUK IDENTIFIKASI SPESIES LAMUN LA OLE ANALISIS HAMBUR BALIK AKUSTIK UNTUK IDENTIFIKASI SPESIES LAMUN LA OLE SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

II BAHAN DAN METODE. II.1 Faktor yang Mengontrol Pergerakan Sedimen

II BAHAN DAN METODE. II.1 Faktor yang Mengontrol Pergerakan Sedimen II BAHAN DAN METODE Sedimen merupakan fragmentasi material yang berasal dari pemecahan batuan akibat proses fisis dan kimiawi (van Rijn, 1993). Di kawasan pesisir, pasokan sedimen terutama berasal dari

Lebih terperinci

PERTEMUAN IV SURVEI HIDROGRAFI. Survei dan Pemetaan Universitas IGM Palembang

PERTEMUAN IV SURVEI HIDROGRAFI. Survei dan Pemetaan Universitas IGM Palembang PERTEMUAN IV SURVEI HIDROGRAFI Survei dan Pemetaan Universitas IGM Palembang Konfigurasi Survei Hidrografi 1. Penentuan posisi (1) dan penggunaan sistem referensi (7) 2. Pengukuran kedalaman (pemeruman)

Lebih terperinci

3. DISTRIBUSI IKAN DI LAUT CINA SELATAN

3. DISTRIBUSI IKAN DI LAUT CINA SELATAN 3. DISTRIBUSI IKAN DI LAUT CINA SELATAN Pendahuluan Keberadaan sumberdaya ikan, baik ikan pelagis maupun demersal dapat diduga dengan menggunakan metode hidroakustik (Mitson 1983). Beberapa keuntungan

Lebih terperinci

PENGUKURAN KARAKTERISTIK AKUSTIK SUMBER DAYA PERIKANAN DI LAGUNA GUGUSAN PULAU PARI KEPULAUAN SERIBU

PENGUKURAN KARAKTERISTIK AKUSTIK SUMBER DAYA PERIKANAN DI LAGUNA GUGUSAN PULAU PARI KEPULAUAN SERIBU PENGUKURAN KARAKTERISTIK AKUSTIK SUMBER DAYA PERIKANAN DI LAGUNA GUGUSAN PULAU PARI KEPULAUAN SERIBU Oleh: Arief Wijaksana C64102055 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Pasang Surut Pasang surut merupakan suatu fenomena pergerakan naik turunnya permukaan air laut secara berkala yang diakibatkan oleh kombinasi gaya gravitasi dan gaya tarik

Lebih terperinci

PENGUKURAN DAN ANALISIS NILAI HAMBUR BALIK AKUSTIK UNTUK KLASIFIKASI DASAR PERAIRAN DAN HUBUNGANNYA DENGAN MAKROZOOBENTOS DI DELTA MAHAKAM

PENGUKURAN DAN ANALISIS NILAI HAMBUR BALIK AKUSTIK UNTUK KLASIFIKASI DASAR PERAIRAN DAN HUBUNGANNYA DENGAN MAKROZOOBENTOS DI DELTA MAHAKAM PENGUKURAN DAN ANALISIS NILAI HAMBUR BALIK AKUSTIK UNTUK KLASIFIKASI DASAR PERAIRAN DAN HUBUNGANNYA DENGAN MAKROZOOBENTOS DI DELTA MAHAKAM ELLIS NURJULIASTI NINGSIH SEKOLAH PASCASARJANA INSTITUT PERTANIAN

Lebih terperinci

4. HASIL DAN PEMBAHASAN. (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis

4. HASIL DAN PEMBAHASAN. (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis 4. HASIL DAN PEMBAHASAN 4.1. Koreksi Suhu Koreksi suhu udara antara data MOTIWALI dengan suhu udara sebenarnya (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis tersebut dihasilkan

Lebih terperinci

KAITAN AKTIVITAS VULKANIK DENGAN DISTRIBUSI SEDIMEN DAN KANDUNGAN SUSPENSI DI PERAIRAN SELAT SUNDA

KAITAN AKTIVITAS VULKANIK DENGAN DISTRIBUSI SEDIMEN DAN KANDUNGAN SUSPENSI DI PERAIRAN SELAT SUNDA KAITAN AKTIVITAS VULKANIK DENGAN DISTRIBUSI SEDIMEN DAN KANDUNGAN SUSPENSI DI PERAIRAN SELAT SUNDA Oleh : Eko Minarto* 1) Heron Surbakti 2) Elizabeth Vorandra 3) Tjiong Giok Pin 4) Muzilman Musli 5) Eka

Lebih terperinci

DI DWERAN INTERTlDAk PBNTAI KAMAL

DI DWERAN INTERTlDAk PBNTAI KAMAL KWRAKTERlSTIK #OMUNITAS FAUNA BENTHOS DI DWERAN INTERTlDAk PBNTAI KAMAL KECAMWTWN PEHJARINGAH, JAKARTA UFARA C/"&lsp/ 'Oh,! L>;2nzt KARYA ILMIAH Oleh IMSTITUT PERTANlAN BOGOR FAKULTAS PERIMAMAN 1989 YENNI,

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Total Data Sebaran Klorofil-a citra SeaWiFS Total data sebaran klorofil-a pada lokasi pertama, kedua, dan ketiga hasil perekaman citra SeaWiFS selama 46 minggu. Jumlah data

Lebih terperinci

DETEKSI SEBARAN IKAN PADA KOLOM PERAIRAN DENGAN MENGGUNAKAN METODE HIDROAKUSTIK INTEGRASI KUMULATIF DI KECAMATAN SUMUR, PANDEGLANG BANTEN

DETEKSI SEBARAN IKAN PADA KOLOM PERAIRAN DENGAN MENGGUNAKAN METODE HIDROAKUSTIK INTEGRASI KUMULATIF DI KECAMATAN SUMUR, PANDEGLANG BANTEN DETEKSI SEBARAN IKAN PADA KOLOM PERAIRAN DENGAN MENGGUNAKAN METODE HIDROAKUSTIK INTEGRASI KUMULATIF DI KECAMATAN SUMUR, PANDEGLANG BANTEN Oleh : Ahmad Parwis Nasution PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN

Lebih terperinci

AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH

AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH P. Ika Wahyuningrum AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH Suatu teknologi pendeteksian obyek dibawah air dengan menggunakan instrumen akustik yang memanfaatkan suara dengan gelombang tertentu Secara

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Variabilitas Kesuburan Perairan dan Oseanografi Fisika 4.1.1. Sebaran Ruang (Spasial) Suhu Permukaan Laut (SPL) Sebaran Suhu Permukaan Laut (SPL) di perairan Selat Lombok dipengaruhi

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilakukan pada bulan Maret September 2011 dengan menggunakan data berupa data echogram dimana pengambilan data secara in situ dilakukan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Hasil 4.1.1 Sound Velocity Profile (SVP) Pengukuran nilai Sound Velocity Profile (SVP) dilakukan dengan menggunkan sebuah instrumen CTD SBE 19. Instrumen ini memiliki tingkat

Lebih terperinci

Oleh : PAHMI PARHANI C SKRIPSI Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana pada Fakultas Perikanan dan Ilmu Kelautan

Oleh : PAHMI PARHANI C SKRIPSI Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana pada Fakultas Perikanan dan Ilmu Kelautan STUDI TENTANG ARAH DAN KECEPATAN RENANG IKAN PELAGIS DENGAN MENGGUNAKAN SISTEM AKUSTIK BIM TEmAGI (SPLIT-BEAM ACOUSTIC SYSTEM ) DI PERAIRAN TELUK TOMINI PADA BULAN JULI-AGUSTUS 2003 Oleh : PAHMI PARHANI

Lebih terperinci

III HASIL DAN DISKUSI

III HASIL DAN DISKUSI III HASIL DAN DISKUSI Sistem hidrolika estuari didominasi oleh aliran sungai, pasut dan gelombang (McDowell et al., 1977). Pernyataan tersebut mendeskripsikan kondisi perairan estuari daerah studi dengan

Lebih terperinci

HUBUNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERUHAN PADA PERAIRAN TELUK AMBON DALAM

HUBUNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERUHAN PADA PERAIRAN TELUK AMBON DALAM HBNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERHAN PADA PERAIRAN TELK AMBON DALAM PENDAHLAN Perkembangan pembangunan yang semakin pesat mengakibatkan kondisi Teluk Ambon, khususnya Teluk Ambon Dalam (TAD)

Lebih terperinci

PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER. Septian Nanda dan Aprillina Idha Geomatics Engineering

PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER. Septian Nanda dan Aprillina Idha Geomatics Engineering PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER Septian Nanda - 3311401055 dan Aprillina Idha - 3311401056 Geomatics Engineering Marine Acoustic, Batam State Politechnic Email : prillyaprillina@gmail.com ABSTRAK

Lebih terperinci

4. HASIL DAN PEMBAHASAN. dimana besar nilainya bisa sama panjang dengan panjang keseluruhan atau

4. HASIL DAN PEMBAHASAN. dimana besar nilainya bisa sama panjang dengan panjang keseluruhan atau 4. HASIL DAN PEMBAHASAN 4.1 Tabel Ukuran Tubuh Ikan Acoustical length adalah panjang target dalam akustik pada sebuah target, dimana besar nilainya bisa sama panjang dengan panjang keseluruhan atau panjang

Lebih terperinci

BAB 5 PEMBAHASAN. 39 Universitas Indonesia

BAB 5 PEMBAHASAN. 39 Universitas Indonesia BAB 5 PEMBAHASAN Dua metode penelitian yaitu simulasi dan eksperimen telah dilakukan sebagaimana telah diuraikan pada dua bab sebelumnya. Pada bab ini akan diuraikan mengenai analisa dan hasil yang diperoleh

Lebih terperinci

BAB III METODOLOGI. Gambar 1. Peta Lokasi penelitian

BAB III METODOLOGI. Gambar 1. Peta Lokasi penelitian BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian ini dilaksanakan di perairan Pulau Bintan Timur, Kepulauan Riau dengan tiga titik stasiun pengamatan pada bulan Januari-Mei 2013. Pengolahan data dilakukan

Lebih terperinci

BAB IV GAMBARAN WILAYAH STUDI

BAB IV GAMBARAN WILAYAH STUDI BAB IV GAMBARAN WILAYAH STUDI IV.1 Gambaran Umum Kepulauan Seribu terletak di sebelah utara Jakarta dan secara administrasi Pulau Pramuka termasuk ke dalam Kabupaten Administrasi Kepulauan Seribu, Provinsi

Lebih terperinci

KARAKTERISTIKA ALIRAN DAN BUTIR SEDIMEN

KARAKTERISTIKA ALIRAN DAN BUTIR SEDIMEN KARAKTERISTIKA ALIRAN DAN BUTIR SEDIMEN May 14 Transpor Sedimen Karakteristika Aliran 2 Karakteristika fluida air yang berpengaruh terhadap transpor sedimen Rapat massa, ρ Viskositas, ν Variabel aliran

Lebih terperinci

SEBARAN TOTAL SUSPENDED SOLID (TSS) DI PERAIRAN SEPANJANG JEMBATAN SURAMADU KABUPATEN BANGKALAN

SEBARAN TOTAL SUSPENDED SOLID (TSS) DI PERAIRAN SEPANJANG JEMBATAN SURAMADU KABUPATEN BANGKALAN Jurnal KELAUTAN,Volume 4, No.2 Oktober 2011 ISSN : 1907-9931 SEBARAN TOTAL SUSPENDED SOLID (TSS) DI PERAIRAN SEPANJANG JEMBATAN SURAMADU KABUPATEN BANGKALAN Kurratul Ainy 1, Aries Dwi Siswanto 2, dan Wahyu

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Pembuatan algoritma empiris klorofil-a Tabel 8, Tabel 9, dan Tabel 10 dibawah ini adalah percobaan pembuatan algoritma empiris dibuat dari data stasiun nomor ganjil, sedangkan

Lebih terperinci

PEMETAAN DAN KLASIFIKASI SEDIMEN DENGAN INSTRUMEN SIDE SCAN SONAR DI PERAIRAN BALONGAN, INDRAMAYU-JAWA BARAT

PEMETAAN DAN KLASIFIKASI SEDIMEN DENGAN INSTRUMEN SIDE SCAN SONAR DI PERAIRAN BALONGAN, INDRAMAYU-JAWA BARAT PEMETAAN DAN KLASIFIKASI SEDIMEN DENGAN INSTRUMEN SIDE SCAN SONAR DI PERAIRAN BALONGAN, INDRAMAYU-JAWA BARAT (Mapping and Sediment Classification using Side Scan Sonar Instrument at Balongan, Indramayu

Lebih terperinci

Sebaran Fraksi Sedimen Dasar Permukaan di Perairan Pantai Pulau Topang Provinsi Riau

Sebaran Fraksi Sedimen Dasar Permukaan di Perairan Pantai Pulau Topang Provinsi Riau Sebaran Fraksi Sedimen Dasar Permukaan di Perairan Pantai Pulau Topang Provinsi Riau Hade Mulyadi 1, Mubarak 2, Dessy Yoswaty 2 1 Mahasiswa Jurusan Ilmu Kelautan, Fakultas Perikanan dan Ilmu Kelautan,

Lebih terperinci

4. BAHAN DAN METODA. 4.1 Lokasi dan Waktu Penelitian

4. BAHAN DAN METODA. 4.1 Lokasi dan Waktu Penelitian 41 4. BAHAN DAN METODA 4.1 Lokasi dan Waktu Penelitian Penelitian ini menggunakan dua data yaitu (1) data primer yang diperoleh saat penulis mengikuti riset pada tahun 2002, yang merupakan bagian dari

Lebih terperinci