K13 Revisi Antiremed Kelas 11 Matematika

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "K13 Revisi Antiremed Kelas 11 Matematika"

Transkripsi

1 K13 Revisi Atiremed Kelas 11 Matematika Persiaa Peilaia Akhir Semester Pas Gajil Doc. Name: RK13AR11MATWJB01PAS Versio : halama Negasi dari eryataa Semua siswa hormat keada guru adalah... (A) Semua yag buka siswa hormat keada guru (B) Ada siswa yag tidak hormat keada guru (C) Semua siswa tidak hormat keada guru (D) Ada buka siswa hormat keada guru (E) Ada siswa hormat keada guru 02. Negasi dari eryataa Jika ulaga tidak jadi, maka ada murid tidak bersukaria... (A) Ulaga tidak jadi da semua murid tidak bersukaria (B) Ulaga tidak jadi da semua murid bersukaria (C) Ulaga tidak jadi atau semua murid tidak bersukaria (D) Ulaga tidak jadi atau semua murid bersukaria (E) Ulaga jadi da semua murid tidak bersukaria 03. Kotraosisi dari imlikasi ekuivale dega... (A) (B) (C) (D) (E) q q q q q q

2 Doc. Name: RK13AR11MATWJB01PAS Versio : halama Kovers dari imlikasi q adalah... (A) q (B) q (C) q (D) q (E) q 05. Ivers dari imlikasi q ekuivale dega... (A) q (B) q (C) q (D) q (E) q 06. Guaka iduksi matematika utuk membuktika ersamaa berikut ii: i1 i 2 ( 1)(2 1) Guaka iduksi matematika utuk membuktika ersamaa berikut ii: i1 (2 i) 2 2 ( 1)(2 1) Guaka iduksi matematika utuk membuktika ersamaa berikut ii: i1 2i i

3 Doc. Name: RK13AR11MATWJB01PAS Versio : halama Buktika bahwa utuk setia bilaga asli, maka berlaku Buktika bahwa utuk setia bilaga asli, maka berlaku :! Daerah yag memeuhi eyelesaia sistem ertidaksamaa berikut ii adalah y x y6 2x3 y 6 II 2y x6 (A) I (B) II (C) III (D) IV (E) V III IV 3 2 I V 6 x 12. Daerah yag memeuhi ertidaksamaa y 1 x,33 y x, da y 2x 2 terletak ada kuadra... (A) I da II (B) II da III (C) III da IV (D) I, II da III (E) I, II, III, da IV

4 Doc. Name: RK13AR11MATWJB01PAS Versio : halama Himua eyelesaia sistem ertidaksamaa 2x y 40, x 2y 40, x 0, y 0 terletak ada daerah yag berbetuk... (A) Segitiga (B) Segi emat (C) Persegi Pajag (D) Segi lima (E) Traesium 14. Seorag emborog melakuka emasaga istalasi listrik ada suatu erumaha. Utuk tie A, dierluka 60 m kabel da 5 lamu. Utuk tie B, dierluka 150 m kabel da 10 lamu. Jika tersedia 5 km kabel da 150 lamu, model matematika yag teat utuk ermasalaha di atas adalah... Guaka variabel x da y masig-masig utuk bayakya tie rumah A da tie rumah B! (A) 6x 15y 500, x y 30, x, y (B) 6x y 500, x y 30, x, y (C) 6x 15y 500, 2x y 30, x, y (D) 6x 15y 500, x 2y 30, x, y (E) 6x 15y 500, x 2y 30, x, y 15. Utuk membuat barag A dierluka 6 jam mesi I da 4 jam ada mesi II. Sedagka utuk membuat barag B dierluka 2 jam ada mesi I da 8 jam ada mesi II. Kedua mesi tersebut setia hariya masig-masig bekerja tidak lebih dari 18 jam. Jika setia hari dibuat x buah barag A da y buah barag B, maka model matematika dari uraia di atas adalah... (A) 2x 3y 9,4x y 9, x, y (B) 3x 2y 9, 2x 4y 9, x, y (C) 3x y 9,2x 4y 9, x, y (D) 3x y 9,4x 2y 9, x, y (E) 4x 3y 9, x 2y 9, x, y

5 Doc. Name: RK13AR11MATWJB01PAS Versio : halama Pesawat eumag memuyai temat duduk 48 kursi. Setia eumag kelas utama boleh membawa bagasi 60 kg sedag kelas ekoomi 20 kg. Pesawat haya daat membawa bagasi 1440 kg. Harga tiket kelas utama R da kelas ekoomi R Suaya edaata dari ejuala tiket ada saat esawat euh mecaai maksimum, jumlah temat duduk utama haruslah. (A) 12 (B) 20 (C) 24 (D) 26 (E) 30 (Umt 2000 Ry A) 17. Temat arkir seluas 600 m 2 haya mamu meamug 58 bus da mobil. Tia mobil membutuhka temat 6 m 2 da tia bus 24 m 2. Biaya arkir tia mobil R.500,- da bus R.750,-. Jika temat arkir itu euh hasil dari biaya arkir maksimum adalah. (A) R ,- (B) R ,- (C) R ,- (D) R ,- (E) R ,- 18. Rokok A yag harga beliya R.1000 dijual dega harga R.1100 erbugkus, sedagka rokok B yag harga beliya R.1500 dijual dega harga R.1700 erbugkus. Seorag edagag rokok yag memuyai modal R da kiosya daat meamug alig bayak 250 bugkus rokok aka medaat keutuga maksimum jika ia membeli. (A) 150 bugkus rokok A da 100 bugkus rokok B (B) 100 bugkus rokok A da 150 bugkus rokok B (C) 250 bugkus rokok A da 200 bugkus rokok B (D) 250 bugkus rokok A saja (E) 200 bugkus rokok B saja (Umt 2000 Ry B)

6 Doc. Name: RK13AR11MATWJB01PAS Versio : halama Utuk membuat satu cetak roti A dierguaka 50 gram metega da 60 gram teug; da satu cetak roti B dierluka 100 gram metega da 20 gram teug. Jika tersedia 3,5 kg metega da 2,2 kg teug, maka jumlah kedua macam roti yag daat dibuat alig bayak adalah. (A) 40 cetak (B) 45 cetak (C) 50 cetak (D) 60 cetak (E) 55 cetak (Umt 91 Ry C) 20. Luas daerah arkir 176 m 2, luas rata-rata utuk mobil seda 4 m 2 da bis 20 m 2. Daya muat maksimum 20 kedaraa, biaya arkir utuk seda R.100/jam da utuk bis R.200/jam. Jika dalam satu jam tidak ada kedaraa yag ergi da datag, maka hasil maksimum temat arkir itu. (A) 2000 (B) 3400 (C) 4400 (D) 2600 (E) 3000 (Umt 91 Ry A)

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

UJIAN MASUK BERSAMA PERGURUAN TINGGI (UMB - PT) Mata Pelajara : Matematika Dasa Taggal : 06 Jui 009 Kode Soal : 0 0 www.olieschools.ame. Produksi beras propisi P tahu 990 adalah 00 ribu to da sampai tahu

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika

K13 Revisi Antiremed Kelas 11 Matematika K13 Revisi Antiremed Kelas 11 Matematika Persiapan UTS Semester Ganjil Doc. Name: RK13AR11MATWJB01UTS doc. Version : 2016-09 halaman 1 01. Negasi dari pernyataan Semua siswa hormat kepada guru adalah.

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bambag Irawato Jurusa Matematika FMIPA UNDIP Abstact I this aer, it was leared of the ecessary ad sufficiet

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: KARMATWJB0UTS Version: 04-0 halaman 0. Nilai maksimum dari 0 + 8 untuk dan y yang memenuhi + y 0, + y 48, 0 0 dan 0 y 48 adalah. (A) 408 (B) 456 (C)

Lebih terperinci

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm.

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA Soal Diberika data egukura sebagai berikut: 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. Tetukalah: a) Modus b) Media c) Kuartil bawah Urutka data

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci

Perilaku Distribusi Bernoulli. Definisi: Bernoulli. Contoh Binomial. Contoh Binomial

Perilaku Distribusi Bernoulli. Definisi: Bernoulli. Contoh Binomial. Contoh Binomial Defiisi: Beroulli ercobaa Beroulli: Haya terdaat satu kali ercobaa dega eluag sukses da eluag gagal - eluag Sukse: eluag Gagal: ( = ) = ( = 0 ( = 0) = ( 0 0 = erilaku Distribusi Beroulli E() = Var () =

Lebih terperinci

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A. . Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH BAB ENDAHULUAN. LATAR BELAKANG MASALAH Dalam kehidua yata, sejumlah feomea daat diikirka sebagai ercobaa yag mecaku sederata egamata yag berturut-turut da buka satu kali egamata. Umumya, tia egamata dalam

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SBMPTN - SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b = 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB

Lebih terperinci

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA

KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA KARAKTERISTIK GRUP YANG DIBANGUN OLEH MATRIKS N X N DENGAN ENTRI BILANGAN BULAT MODULO P, P PRIMA Ibu Hadi Program Studi Matematika, Uiversitas Negeri Jakarta, Idoesia ibu_hadi@uj.ac.id, ibu_uj@yahoo.co.id

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011 III. METODE PENELITIAN A. Latar Peelitia Peelitia ii merupaka peelitia yag megguaka total sampel yaitu seluruh siswa kelas VIII semester gajil SMP Sejahtera I Badar Lampug tahu pelajara 2010/2011 dega

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

MATEMATIKA EKONOMI (Deret)

MATEMATIKA EKONOMI (Deret) LOGO MATEMATIKA EKONOMI (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com MATEMATIKA EKONOMI Matematika Ekoomi memberika pemahama ilmu megeai kosep matematika dalam bidag bisis da ekoomi.

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

E-learning matematika, GRATIS 1

E-learning matematika, GRATIS 1 E-learig matematika, GRATIS Peyusu Editor : Teag Idriyai, S.P ; Taufiq Rahma, S.P : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si.. Pegertia Barisa da Deret Barisa bilaga adalah

Lebih terperinci

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n)

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n) BAB IV ERSAMAAN TINGKAT SATU DERAJAT TI NGGI 1- Stadar Kometesi Setelah memelajari okok bahasa ii diharaka mahasiswa daat memahami ara-ara meetuka selesaia umum ersamaa dieresial tigkat satu derajat tiggi.

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2... SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.

Lebih terperinci

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

Pelabelan E-cordial pada Graf Hasil Cartesian Product

Pelabelan E-cordial pada Graf Hasil Cartesian Product Pelabela E-cordial pada Gra Hasil Cartesia Product Kholis Widyasmedi, R. Heri Soelistyo Program Studi Matematika Jurusa Matematika Fakultas Sais da Matematika Uiversitas Dipoegoro Email: widyasmedi@gmail.com

Lebih terperinci

Praktikum Perancangan Percobaan 9

Praktikum Perancangan Percobaan 9 Praktikum Peracaga Percobaa 9 PRAKTIKUM RANCANGAN ACAK LENGKAP A. Tujua Istruksioal Khusus Mahasiswa diharaka mamu: a. Megguaka kalkulator utuk meyelesaika aalisis ragam RAL b. Megguaka kalkulator ada

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1 JRA TEKIK OITS Vol. o. -6 Aalisis eta Kedali megguaka Kualitas Fuzzy ada ergesera ilai Rata-Rata da iasi dari Suatu roses Rollita utri Karei I G Rai sadha aksmi rita Wardhai Jurusa atematika Fakultas IA

Lebih terperinci

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013 http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pegayaa Matematika Edisi 11 Maret Peka Ke-, 2007 Nomor Soal: 101-110 101. Bilaga desimal 0,7777 diyataka dalam hasil bagi bilaga rasioal sebagai a b, dega a da b relatif prima. Nilai dari ab A.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu

Lebih terperinci

Abstract

Abstract Domiatig Set ada Hasil Oerasi Graf Khusus Hedry Dwi Sautro 1,2, Ika Hesti A. 1,2, Dafik 1,3 1 CGANT- Uiversity of Jember 2 Deartmet of Mathematics Educatio - Uiversity of Jember 3 Deartmet of Iformatio

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembila) Mata Pelajara : Matematika Semester : II (dua) BILANGAN Stadar : 5. Memahami sifat-sifat da betuk akar serta pegguaaya dalam pemecaha masalah sederhaa

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 10

MODUL MATEMATIKA SMA IPA Kelas 10 SMA IPA Kelas 0 A. BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- (U ) U a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a U ) atau S (a ( ) b) Dega

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

UN SMK PSP 2015 Matematika

UN SMK PSP 2015 Matematika UN SMK PSP 201 Matematika Soal Doc. Name: UNSMKPSP201MAT999 Doc. Version : 2016-0 halaman 1 01. Sebuah mobil menghabiskan 8 liter bensin untuk menempuh jarak 20 km, apabila mobil tersebut menghabiskan

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak.

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak. BAB III METODOLOGI 3.. ALUR PROGRAM (FLOW CHART) Seerti telah dijelaska sebelumya, bahwa tujua dari eelitia ii adalah utuk megaalisis suatu kasus stabilitas lereg. Aalisis stabilitas lereg tergatug ada

Lebih terperinci

Abstract

Abstract Ideedet Domiatio Number Pada Graf Oerasi Siti Amiatus Solehah 1,, Ika Hesti Agusti 1,, Dafik 1,3 1 CGANT- Uiversity of Jember Deartmet of Mathematics Educatio - Uiversity of Jember 3 Deartmet of Iformatio

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa Soal-soal Latiha:. Misalka kita aka meyusu kata-kata yag dibetuk dari huru-huru dalam kata SIMALAKAMA, jika a. huru S mucul setelah huru K (misalya, ALAMAKSIM). b. huru A mucul berdekata. c. tidak memuat

Lebih terperinci

ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN Erie Sadewo

ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN Erie Sadewo ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN 2010 Erie Sadewo Kodisi Makro Ekoomi Kepulaua Riau Pola perekoomia suatu wilayah secara umum dapat diyataka meurut sisi peyediaa (supply), permitaa

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

Bab6 PENAKSIRAN PARAMETER

Bab6 PENAKSIRAN PARAMETER Bab6 PENAKSIRAN PARAMETER MENAKSIR RATARATA μ Mialka kita memuyai ebuah oulai berukura N dega ratarata µ da imaga baku σ Dari oulai ii arameter ratarata µ aka ditakir Utuk keerlua ii,ambil ebuah amel acak

Lebih terperinci

PENGUJIAN HIPOTESA BAB 7

PENGUJIAN HIPOTESA BAB 7 PENGUJIAN IPOTESA BAB 7 Pedahulua ipotesis ( upo : lemah, Thesis : peryataa ) Diartika :. Peryataa yag masih lemah kebearaya da perlu dibuktika. Dugaa yag sifatya masih semetara ipotesis ii perlu utuk

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: ARMAT0UTS Doc. Version : 04-0 halaman 0. Integral substitusi dasar serie A (A) x 4 dx 5 cos x dx = 0. (A) 5x dx sin x d x 0. 7 x x x dx 04. dx 5x 05.

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015 SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 4/5 3. Hasil dari 3 : adalah... 4 4 A. B. C. 7 D. 5 3 3 3 5 3 : = : 4 4 4 4 3 4 5 = 4 3 5 = 6 55 = 8 = 5 = 3. Dalam try

Lebih terperinci

TEORI ANTRIAN. Gambar 1 Proses antrian pada suatu sistem antrian

TEORI ANTRIAN. Gambar 1 Proses antrian pada suatu sistem antrian TEORI ANTRIAN Teori atria merupaka studi matematis megeai atria atau waitig lies yag di dalamya disediaka beberapa alteratif model matematika yag dapat diguaka utuk meetuka beberapa karakteristik da optimasi

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

Statistik (statistics)

Statistik (statistics) Matematika-Fisika-Kimia Jadi Mudah & Meyeagka R Statistik (statistics) Modul Pelatiha Guru soal-soal yag dijelaska. Rataa ilai ulaga dari 4 orag murid sama dega 6. Jika ilai dari dua orag murid tidak disertaka

Lebih terperinci

Pembangkitan bilangan random (RN)

Pembangkitan bilangan random (RN) Pembagkita bilaga radom (RN) Pembagkita bilaga radom dega megguaka oftware Exel. Bilaga radom yag dibakitka dikalika dega 7 agar bia mauk rage 7. Hail embagkita ebagai berikut : No RN RN x 7.7463.8753

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan Bab Sumber: www.medeciepharmacie.uiv-fcomte.fr Pola Bilaga, Barisa, da Deret Pola bilaga, barisa, da deret merupaka materi baru yag aka kamu pelajari pada bab ii. Terdapat beberapa masalah yag peyelesaiaya

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

MATERI III BAHAN SEMIKONDUKTOR

MATERI III BAHAN SEMIKONDUKTOR MATERI III BAHAN SEMIKONDUKTOR A. Tujua 1. Tujua Umum Mahasiswa memahami baha semikoduktor. Tujua khusus a. Mahasiswa daat mejelaska egertia baha semikoduktor b. Mahasiswa daat meghitug kosetrasi elektro

Lebih terperinci

JFET (Junction Field Effect Transistor)

JFET (Junction Field Effect Transistor) JFET (Juctio Field Effect Trasistor) truktur JFET rai () rai () - ate () ate () V ource () V ource () JFET Kaal JFET Kaal Perhatika (uutk kaal ) bahwa terdaat struktur juctio atara ate () dega ource(),

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A BAB 7 PENGUJIAN HIPOTESA Meguji Rata-rata µ Umpamakalah kita mempuyai sebuah populasi berdistribusi ormal dega rata-rata µ da simpaga baku σ. Aka diuji megeai parameter rata-rata µ Utuk pasaga hipotesa

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat BAB IV HASIL DAN PEMBAHASAN 4.1 Kebutuha Sistem Sebelum melakuka deteksi da trackig obyek dibutuhka peragkat luak yag dapat meujag peelitia. Peragkat keras da luak yag diguaka dapat dilihat pada Tabel

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

BAB IV PENGUMPULAN DAN PERHITUNGAN DATA

BAB IV PENGUMPULAN DAN PERHITUNGAN DATA BAB IV PENGUMPULAN DAN PERHITUNGAN DATA 4.1 Meetuka udara masuk (efisiesi volumetrik) da efisiesi pegirima pada hasil uji 4.1.1 Rumus udara masuk (efisiesi volumetrik) da efisiesi pegirima Jumlah volume

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama Solusi Soal OSN Matematika SMA/MA Hari Pertama Soal 1. Buktika bahwa utuk sebarag bilaga asli a da b, bilaga adalah bilaga bulat geap tak egatif. = F P B (a, b) + KP K (a, b) a b Solusi. Pertama aka dibuktika

Lebih terperinci

BAB 1 PENDAHULUAN. Bagi Negara yang mempunyai wilayah terdiri dari pulau-pulau yang dikelilingi lautan,

BAB 1 PENDAHULUAN. Bagi Negara yang mempunyai wilayah terdiri dari pulau-pulau yang dikelilingi lautan, BAB 1 PENDAHULUAN 1.1 Latar Belakag Bagi Negara yag mempuyai wilayah terdiri dari pulau-pulau yag dikeliligi lauta, laut merupaka saraa trasportasi yag dimia, sehigga laut memiliki peraa yag petig bagi

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

BAB 2 TINJAUAN TEORI

BAB 2 TINJAUAN TEORI BAB 2 TINJAUAN TEORI 2.1 ISTILAH KEENDUDUKAN 2.1.1 eduduk eduduk ialah orag atatu idividu yag tiggal atau meetap pada suatu daerah tertetu dalam jagka waktu yag lama. 2.1.2 ertumbuha eduduk ertumbuha peduduk

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI LNDSN TEORI. robabilitas robabilitas adalah suatu ilai utuk megukur tigkat kemugkia terjadiya suatu eristiwa evet aka terjadi di masa medatag yag hasilya tidak asti ucertai evet. robabilitas diyataka atara

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

SOAL-SOAL HOTS. Fungsi, komposisi fungsi, fungsi invers, dan grafik fungsi.

SOAL-SOAL HOTS. Fungsi, komposisi fungsi, fungsi invers, dan grafik fungsi. SOL-SOL HOTS. LJBR Pagkat Bulat Positif, Betuk kar, da Logaritma 1. Jumlah bakteri pada saat mula-mula adalah M 0. Karea suatu hal, setiap selag satu hari jumlah bakteri aka leyap r%. Jika M0 1.0 da r

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci