Teknologi Sepeda Motor

Ukuran: px
Mulai penontonan dengan halaman:

Download "Teknologi Sepeda Motor"

Transkripsi

1 Jalius Jama TEKNOLOGI SEPEDA MOTOR untuk SMK Jalius Jama Teknologi Sepeda Motor untuk Sekolah Menengah Kejuruan Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional

2 Jalius Jama Wagino Teknologi Sepeda Motor SMK Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Direktorat Pembinaan Sekolah Menengah Kejuruan Departemen Pendidikan Nasional

3 Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Teknologi Sepeda Motor Untuk SMK Penulis : Jalius Jama Wagino JAM JAMA, Jalius Teknologi Sepeda Motor: SMK Jakarta : Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Direktorat Pembinaan Sekolah Menengah Kejuruan, Departemen Pendidikan Nasional, xxi. 453 hlm Daftar Pustaka : Diterbitkan oleh Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Direktorat Pembinaan Sekolah Menengah Kejuruan Departemen Pendidikan Nasional Tahun 2008

4 KATA SAMBUTAN Puji syukur kami panjatkan kehadirat Allah SWT, berkat rahmat dan karunia Nya, Pemerintah, dalam hal ini, Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional, pada tahun 2008, telah melaksanakan penulisan pembelian hak cipta buku teks pelajaran ini dari penulis untuk disebarluaskan kepada masyarakat melalui website bagi siswa SMK. Buku teks pelajaran ini telah melalui proses penilaian oleh Badan Standar Nasional Pendidikan sebagai buku teks pelajaran untuk SMK yang memenuhi syarat kelayakan untuk digunakan dalam proses pembelajaran melalui Peraturan Menteri Pendidikan Nasional Nomor 12 tahun Kami menyampaikan penghargaan yang setinggi-tingginya kepada seluruh penulis yang telah berkenan mengalihkan hak cipta karyanya kepada Departemen Pendidikan Nasional untuk digunakan secara luas oleh para pendidik dan peserta didik SMK di seluruh Indonesia. Buku teks pelajaran yang telah dialihkan hak ciptanya kepada Departemen Pendidikan Nasional tersebut, dapat diunduh (download), digandakan, dicetak, dialihmediakan, atau difotokopi oleh masyarakat. Namun untuk penggandaan yang bersifat komersial harga penjualannya harus memenuhi ketentuan yang ditetapkan oleh Pemerintah. Dengan ditayangkannya soft copy ini akan lebih memudahkan bagi masyarakat untuk mengaksesnya sehingga peserta didik dan pendidik di seluruh Indonesia maupun sekolah Indonesia yang berada di luar negeri dapat memanfaatkan sumber belajar ini. Kami berharap, semua pihak dapat mendukung kebijakan ini. Selanjutnya, kepada para peserta didik kami ucapkan selamat belajar dan semoga dapat memanfaatkan buku ini sebaik-baiknya. Kami menyadari bahwa buku ini masih perlu ditingkatkan mutunya. Oleh karena itu, saran dan kritik sangat kami harapkan. Jakarta, Direktur Pembinaan SMK

5 Daftar Isi KATA PENGANTAR Dengan telah diundangkannya kurikulum Sekolah Menengah Kejuruan (SMK) 2004, maka berarti pendidikan kejuruan di Indonesia memasuki paradigma baru. Perbedaan yang prinsipil dengan kurikulum yang lama ialah; kalau kurikulum yang lama pelajaran praktek diberikan untuk menunjang teori, maka pada kurikulum yang baru pelajaran teori menunjang praktek sehingga para lulusan mampu menguasai kompetensi yang relevan dengan dunia kerja. Kolaborasi yang saling menguntungkan antara sekolah kejuruan dan dunia kerja bidang otomotif mutlak diperlukan. Salah satu masalah yang sejak dulu belum terpecahkan adalah kurangnya buku-buku pelajaran yang secara langsung dapat dipergunakan oleh para siswa. Buku ini disusun sesuai dengan kebutuhan kurikulum SMK Tahun 2004, Kurikulum Berbasis Kompetensi (KBK) dan serta KTSP, dalam bidang Teknologi Sepeda Motor pada jurusan Otomotif. Sesuai dengan prinsip KBK, maka tidak perlu dihindari bahwa substansi isi pelajaran tidak lepas dari kenyataan dunia teknologi sepeda motor di Indonesia yang didmonasi oleh Honda, Yamaha, Suzuki dan Kawasaki, di samping beberapa merek lain seperti Vespa dan lainlainnya. Isi buku ini terutama dimaksudkan untuk membantu para siswa dalam mempelajari dasar-dasar konstruksi dan proses motor bakar. Uraian sudah diupayakan sesederhana mungkin sehingga mudah untuk dipahami. Sebelum memulai bekerja atau melakukan praktek motor, maka seseorang haruslah terlebih dahulu mengenal dan memahami keselamatan keja, fungsi serta bagaimana cara bekerja dengan peralatan dan komponen sepeda motor. Oleh karena itu, maka buku ini juga dapat dipakai pada kursus-kursus dan bahkan para peminat sepeda motor sebagai acuanl untuk hobi atau dapat menjadi teknisi yang profesional. Dalam buku yang sederhana ini tentu saja tidak dapat memenuhi seluruh konsepdanprinsip berbagai merek sepeda motor yang sangat bervariasi, model dan tipe. Prinsip kerja dan teknologinya umumnya tidak banyak berbeda. Untuk keperluan khusus, para peminat dianjurkan merujuk pada buku petunjuk yang dikeluarkan oleh masing-masing merek, seperti Honda, Yamaha, Suzuki, Kawasaki dan lainnya. Kemajuan teknologi yang sangat cepat menyebabkan perubahan dan inovasi yang terus menerus terutama pada sistem kelistrikan elektronika dan dan sistem pembakaran. Untuk mewujudkan buku ini, penulis mengucapkan terima kasih kepada banyak pihak, Direktorat Pembinaan SMK, para staf proyek penerbitan buku, Rektor UNP, Dekan FT UNP dan Ketua Jurusan Teknik Otomotif atas dukungan moral dan finansial demi terbitnya karya ini. Selanjutnya, Rahmadani, ST (Penyunting) dan Eko Indrawan, ST yang telah menyediakan waktu dan tenaga dan melakukan editing bahasa dan i

6 Daftar Isi kelayakan isi. Semoga segala bentuk bantuan dan jerih payah yang diberikan merupakan amal dan ibadah yang mendapat balasan yang layak dari Allah swt. Penulis mengucapkan penghargaan dan terima kasih kepada otoritas pemegang merek Honda, Yamaha, Suzuki dan Kawasaki dan sumber lainnya, atas izin pengambilan bahan, baik berupa gambar maupun teknologinya. Semuanya kita lakukan demi kemajuan pendidikan dan mempersiapkan generasi penerus untuk pembangunan nasional dalam bidang teknologi. Dengan demikian, para lulusan SMK tidak mengalami kesulitan dalam penyesuaian antara apa yang dipelajari di sekolah dengan apa yang ditemukan di dunia kerja. Akhirnya tidak ada gading yang tak retak, maka kritik dan saran terutama dari rekan-rekan guru, instruktur dan pembaca, kami tunggu dengan segala senang hati. Jakarta, Desember 2007 Tim Penulis, ii

7 Daftar Isi PENGHARGAAN (Acknowledgement) Buku ini merupakan kumpulan pengetahuan para penulis sebagai dosen teknologi otomotif yang dilengkapi dengan informasi serta gambar dari pemegang merek sepeda motor yang dipakai di Indonesia. Teknologi yang digunakan dan disebarkan melalui pendidikan kepada siswa Sekolah Menengah Teknologi dimaksudkan untuk mempersiapkan siswa agar pada waktu selesai pendidikan memiliki kemampuan untuk memasuki dunia kerja, sesuai dengan prinsip pendidikan kejuruan. Pengutipan gambar serta keterangannya semata-mata dimaksudkan untuk menjembatani antara siswa dan dunia kerja. Dengan demikian sekolah sesungguhnya ikut memperkenalkan teknologi yang digunakan agar kelak dapat memberikan pelayanan kepada masyarakat pengguna sepeda motor yang digunakan di Indonesia. Buku ini dipersiapkan bukan untuk maksud komersial, tetapi akan digunakan sepenuhnya untuk keperluan pendidikan, yang sekaligus berarti mempersiapkan generasi penerus bangsa ini agar mampu berkarir, dan menjadi wara negara yang mandiri, punya pekerjaan dan karir pada bidang otomotif. Penulis, atas nama Direktorat Pembina Sekolah Menengah Kejuruan mengucapkan terima kasih atas izin dan kesediaan pengutipan langsung maupun tidak langsung baik gambar maupun penjelasan konsep teknologi yang digunakan dari buku-buku yang diterbitkan oleh pemegang merek: HONDA; YAMAHA; SUZUKI; KAWASAKI dan pemegang merek lainnya. Semoga buku ini juga dapat membantu penyebaran teknologi masing-masing kepada para calon teknisi yang siap memberikan pelayanan purna jual sepeda motor di tanah air di samping bangsa ini mengharapkan adanya alih teknologi kepada generasi masa depan bangsa ini. Jakarta, Desember 2007 Atas nama Direktorat Pembinaan SMK iii

8 Daftar Isi DAFTAR ISI KATA PENGANTAR... PENGHARGAAN (Acknowledgement)... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR DIAGRAM... DAFTAR TABEL... DAFTAR RUMUS... i iii iv x xix xx xxi BAB I PENDAHULUAN... 1 A. KESELAMATAN KERJA Petunjuk Umum bagi Pekerja Meja Kerja dan Kelengkapan Bahan Bakar dan Minyak Pelumas Karbon Monoksida Peralatan Mesin Tangan (Portable Machines) Alat Angkat dan Pengangkatan Pengangkat Sepeda Motor ( Bike Lift) Petunjuk Khusus bagi Pekerja Sepeda Motor... 7 B. SILABUS DAN URAIAN ISI BUKU Silabus Uraian Isi Buku Strategi Pembelajaran Prosedur Kerja Pelayanan Sepeda Motor Daftar Unit-unit Kompetensi (MAPPING) C. KOMPONEN UTAMA SEPEDA MOTOR D. APLIKASI ILMU FISIKA DALAM MEMPELAJARI SEPEDA MOTOR SOAL-SOAL LATIHAN BAB I BAB II MESIN DAN KOMPONEN UTAMA A. PENDAHULUAN B. KOMPONEN UTAMA PADA MESIN SEPEDA MOTOR Kepala Silinder (Cylinder Head) Blok Silinder Mesin Bak engkol mesin (crankcase) C. PROSES DI MESIN Cara Kerja Mesin Dua Langkah Cara Kerja Mesin Empat Langkah D. PROSES TERJADINYA PEMBAKARAN iv

9 Daftar Isi E. INNOVASI DARI DESAIN MESIN Innovasi Desain Mesin Dua Langkah Innovasi Desain Mesin Empat langkah F. SUSUNAN MESIN G. SPESIFIKASI MESIN SOAL-SOAL LATIHAN BAB II BAB III KELISTRIKAN A. KONSEP KELISTRIKAN Pendahuluan Arus Listrik, Tegangan dan Tahanan Hukum Ohm (Ohm s Law) Rangkaian Kelistrikan Diode Zener diode Transistor B. KAPASITOR/KONDENSOR C. SISTEM STARTER Prinsip Kerja Motor Starter Persyaratan yang harus Dipenuhi Sistem Starter Komponen Motor Starter Cara Kerja Sistem Starter Inovasi Sistem Starter D. SISTEM PENGISIAN (CHARGING SYSTEM) Prinsip Kerja Generator Persyaratan yang harus Dipenuhi Sistem Pengisian Tipe Generator E. SISTEM PENGAPIAN (IGNITION SYSTEM) F. SISTEM PENERANGAN (LIGHTING SYSTEM) Lampu Kepala/Besar (Headlight) Lampu Belakang dan Rem (Tail light dan Brake light) Sistem Lampu Sein/Tanda Belok (Turn Signals System) Klakson (Horn) Sistem Instrumentasi dan Tanda Peringatan (Instrumentation and Warning System) Sumber Listrik Sistem Penerangan Peraturan Tentang Sistem Penerangan G. PEMERIKSAAN DAN PERBAIKAN SISTEM KELISTRIKAN SOAL-SOAL LATIHAN BAB III v

10 Daftar Isi BAB IV SISTEM PENGAPIAN (IGNITION SYSTEM) A. PENDAHULUAN B. SYARAT-SYARAT SISTEM PENGAPIAN Percikan Bunga Api Harus Kuat Saat Pengapian Harus Tepat Sistem Pengapian Harus Kuat dan Tahan C. SUMBER TEGANGAN TINGGI PADA SEPEDA MOTOR Pengapian Langsung Pengapian Baterai D. KUNCI KONTAK E. IGNITION COIL (KOIL PENGAPIAN) Tipe Koil Pengapian F. CONTACT BREAKER (PLATINA) Tahanan kontak platina Celah Tumit Ebonit Sudut Dwell G. KONDENSOR H. BUSI Konstruksi Busi Tingkat Panas Busi Tipe-Tipe Busi Analisis Busi I. TIPE SISTEM PENGAPIAN PADA SEPEDA MOTOR Sistem Pengapian Dengan Magnet (Flywheel Generator/ Magneto Ignition System) Sistem Pengapian Konvensional dengan Baterai (Battery And Coil Ignition System) Sistem Pengapian Elektronik (Electronic Ignition System) BAB V PEMERIKSAAN DAN PERBAIKAN SISTEM KELISTRIKAN Hal-hal yang Perlu Diperhatikan Berkaitan dengan Pemeriksaan dan Perbaikan Sistem Kelistrikan Jadwal Perawatan Berkala Sistem Kelistrikan Sumber-Sumber kerusakan Sistem Kelistrikan Mencari dan Mengatasi Kerusakan Baterai Pemeriksaan dan Perbaikan Baterai Pemeriksaan dan Perbaikan Sistem Starter Pemeriksaan dan Perbaikan Sistem Pengisian Pemeriksaan dan Perbaikan Sistem Pengapian Pemeriksaan dan Perbaikan Sistem Penerangan SOAL-SOAL LATIHAN BAB V vi

11 Daftar Isi BAB VI SISTEM BAHAN BAKAR (FUEL SYSTEM) A. PENDAHULUAN B. BAHAN BAKAR C. PERBANDINGAN CAMPURAN UDARA DAN BAHAN BAKAR (AIR FUEL RATIO) D. SISTEM BAHAN BAKAR KONVENSIONAL (KARBURATOR) Tangki bahan bakar Karburator E. SISTEM BAHAN BAKAR INJEKSI (EFI) Prinsip Kerja Sistem EFI Konstruksi Dasar Sistem EFI Cara Kerja Sistem EFI F. PEMERIKSAAN DAN PERBAIKAN SISTEM BAHAN BAKAR KONVENSIONAL (KARBURATOR) Jadwal Perawatan Berkala Sistem Bahan Bakar Konvensional Sumber-Sumber Kerusakan Sistem Bahan Bakar Konvensional Pemeriksaan Saringan Bahan Bakar Pemeriksaan dan Perawatan Saringan Udara Knalpot Pemeriksaan Jet (Pengabut) Karburator Pemeriksaan Jarum Pelampung Pemeriksaan Tinggi Pelampung Pemeriksaan Penyetelan Putaran Stasioner/ Langsam Pemeriksaan Cara Kerja Gas Tangan G. PEMERIKSAAN DAN PERBAIKAN SISTEM BAHAN BAKAR TIPE INJEKSI (EFI) Beberapa Hal Umum yang Perlu Diperhatikan Berkaitan dengan Service Sistem EFI atau PGM- FI Jadwal Perawatan Berkala Sistem Bahan Bakar Tipe Injeksi (EFI) Sumber-Sumber Kerusakan Sistem Bahan Bakar Tipe Injeksi (EFI) Informasi Pendiagnosaan Sendiri Sistem EFI atau PGM-FI Prosedur Me-Reset Pendiagnosaan Sendiri SOAL-SOAL LATIHAN BAB VI BAB VII SISTEM PEMINDAH TENAGA (POWER TRANS- MISSION) vii

12 Daftar Isi A. PRINSIP PEMINDAHAN TENAGA B. KOMPONEN SISTEM PEMINDAH TENAGA Kopling (Clutch) Transmisi (Gear box) Final Drive (Penggerak Akhir) C. PEMERIKSAAN DAN PERBAIKAN SISTEM PEMINDAH TENAGA Jadwal Perawatan Berkala Sistem Pemindah Tenaga Sumber-Sumber kerusakan Sistem Pemindah Tenaga Pemeriksaan Kopling Otomatis SOAL-SOAL LATIHAN BAB VII BAB VIII SISTEM REM DAN RODA (BRAKE SYSTEM AND WHEEL) A. PENDAHULUAN B. REM TROMOL (DRUM BRAKE) Tipe Single Leading Shoe Tipe Two Leading Shoe C. REM CAKRAM (DISC BRAKE) D. RODA DAN BAN (WHEEL AND TYRE) Roda (Wheel) Ban (Tyre) E. PEMERIKSAAN DAN PERBAIKAN SISTEM REM DAN RODA Jadwal Perawatan Berkala Sistem Rem dan Roda Sumber-Sumber Kerusakan Sistem Rem dan Roda SOAL-SOAL LATIHAN BAB VIII BAB IX SISTEM PELUMASAN DAN PENDINGINAN A. PELUMASAN B. PELUMASAN PADA SEPEDA MOTOR EMPAT LANGKAH C. SISTIM PELUMASAN SEPEDA MOTOR EMPAT LANGKAH D. SISTEM PELUMASAN SEPEDA MOTOR DUA LANGKAH E. JENIS PELUMAS F. VISKOSITAS MINYAK PELUMAS G. SISTEM PENDINGINAN viii

13 Daftar Isi SOAL SOAL LATIHAN BAB VIII BAB X KEMUDI, SUSPENSI DAN RANGKA A. SYSTEM KEMUDI (STEERING SYSTEM) Suspensi Bagian Depan (Front Suspension) Suspensi Bagian Belakang (Rear suspension) B. RANGKA (FRAME) SOAL SOAL LATIHAN BAB X BAB XI PERALATAN BENGKEL Peralatan untuk Keselamatan Kerja Alat Bantu Pekerjaan Kunci-kunci Perawatan dan Pemeliharaan Peralatan Perbengkelan SOAL-SOAL LATIHAN BAB XI BAB XII DAFTAR ISTILAH DAN SINGKATAN DAFTAR PUSTAKA LAMPIRAN CURRICULUM VITAE ix

14 Daftar Isi DAFTAR GAMBAR 1.1 Pemasangan perkakas yang lengkap pada sepeda motor Diagram kemampuan mesin Diagram karakter mesin Diagram performa mesin saat berjalan Diagram tahanan mesin pada saat berjalan Diagram dari daya dorong roda belakang Sepeda motor yang melaju di landasan pacu (lap) Mesin sepeda motor empat dan dua langkah Kepala silinder dan kelengkapannya Blok Silinder Mengukur diameter boring Piston Macam-macam bentuk kepala piston Rangkaian piston Komponen dari mesin empat langkah Langkah piston dan diameter piston Katup dan komponen lain yang menyertainya waktu dipasang Penempatan katup disamping Penempatan katup overhead Penempatan dari SOHC Penempatan katup DOHC Celah katup yang terlalu kecil dan celah katup terlalu besar Camshaft Rantai camshaft Bak engkol Crankshaft dan piston Poros Engkol tipe Built Up Poros Engkol tipe One Piece Pemampatan dan pengapian di ruang pembakaran Mesin dua langkah dalam bentuk yang sederhana Diagram port timing Irisan penampang mesin sepeda Motor empat langkah Digram valve Timing Reed valve KIPS Susunan silinder mesin 4 langkah dan mesin 2 langkah Ilustrasi karakteristik antara air dengan listrik Arus listrik AC Arus listrik DC Resistor dan simbolnya Aplikasi resistor tetap (R) pada sepeda motor Aplikasi variable resistor pada sepeda motor Rangkaian untuk menjelaskan prinsip dari Hukum Ohm x

15 Daftar Isi 3.8 Rangkaian seri Rangkaian paralel Rangkaian kombinasi (seri paralel) Aplikasi jenis-jenis rangkaian pada sepeda motor Dioda dan simbolnya Contoh aplikasi penggunaan dioda Contoh aplikasi penggunaan diode pada sepeda motor Zener diode dan simbolnya Contoh aplikasi penggunaan zener diode pada sepeda motor Transistor dan simbolnya (E = emitor, B = basis/gate, C = kolektor) Contoh aplikasi penggunaan transistor pada sepeda motor Kapasitor Simbol kapasitor Contoh aplikasi penggunaan kapasitor pada sepeda motor Posisi komponen sistem starter pada salah satu contoh sepeda motor Prinsip kaidah tangan kiri Fleming Prinsip dasar Motor starter Motor starter tipe magnet permanen Armature Komponen motor starter tipe dua brush (sikat) Relay starter sederhana dan rangkaiannya Gambar potongan pre-engaged starter Rangkaian sistem starter dengan starter relay sederhana Rangkaian sistem starter jenis pre-engaged starter Rangkaian sistem starter jenis pre-engaged starter saat kunci kontak dihubungkan Rangkaian sistem starter jenis pre-engaged starter saat pinion berkaiatan penuh Rangkaian sistem starter scooter Rangkaian sistem starter yang dilengkapi pengaman Aliran arus listrik menuju motor starter saat gigi transmisi netral Aliran arus listrik menuju motor starter saat kopling ditekan Prinsip terjadinya Induksi listrik Posisi kawat penghantar pada 0 o sehingga belum ada garis gaya magnet yang terbentuk dalam grafik Posisi kawat penghantar pada 90 o sehingga garis gaya magnet yang terbentuk dalam grafik berada pada posisi terkuat Posisi kawat penghantar pada 180 o sehingga garis gaya magnet yang terbentuk dalam grafik berada pada nol kembali Rangkaian sistem pengisian dengan tipe generator DC xi

16 Daftar Isi (dinamo starter) Contoh konstruksi flywheel generator Rangkaian sistem pengisian dengan generator AC yang dilengkapi rectifier dan voltage Regulator Rangkaian sistem pengisian yang dilengkapi voltage regulator dan rectifier Gelombang arus yang keluar dari alternator Sebuah dioda (A) dan empat buah dioda (B) Contoh tipe alternator 1 phase Alternator 3 phase tipe magnet permanen Alternator 3 phase tipe elekromagnetik Penempatan sistem penerangan pada salah satu sepeda motor Konstruksi bola lampu tungsten Konstruksi bola lampu halogen Konstruksi bola lampu tipe sealed beam Posisi bola lampu belakang dan rem Rangkaian sistem tanda belok dengan flasher tipe kapasitor Cara kerja rangkaian sistem tanda belok dengan flasher tipe kapasitor (1) Cara kerja rangkaian sistem tanda belok dengan flasher tipe kapasitor (2) Konstruksi bimetal Rangkaian sistem tanda belok dengan tipe bimetal Cara kerja rangkaian sistem tanda belok dengan tipe bimetal Rangkaian sistem tanda belok dengan tipe transistor Konstruksi klakson listrik Rangkaian klakson listrik Contoh rangkaian speedometer elektronik Rangkaian neutral, clutch, dan sidestand switch Saklar rem belakang (A = saklar rem belakang tipe plunger, B = pegas, dan C = pedal rem Rangkaian sistem lampu rem Rangkaian sistem penerangan dengan sumber listrik AC dengan pengontrolan pada main switch Rangkaian sistem penerangan dengan sumber listrik AC dengan pengontrolan pada main switch Rangkaian sistem penerangan dengan sumber listrik AC yang dikontrol regulator Rangkaian sistem penerangan model Amerika/Kanada (tidak dilengkapi saklar lampu) Rangkaian sistem penerangan model Eropa dan sebagian Asia (dilengkapi dengan saklar lampu) Batas TMA dan TMB piston Posisi saat pengapian xii

17 Daftar Isi 4.3 Kontruksi Flywheel magneto dan Alternator Konstruksi baterai Konstruksi baterai kering Kunci kontak Rangkaian primer ketika platina tertutup Rangkaian primer ketika platina terbuka Hubungan Kumparan primer dan kumparan sekunder Terjadinya Tegangan pada umparan sekunder Diagram hubungan antara kumparan primer dan sekunder Koil pengapian tipe Canister Koil pengapian tipe Moulded Tipe koil pengapian yang menyatu dengan tutup busi Konstruksi platina Cara membersihkan celah platina Posisi atau kedudukan kontak platina Tumit ebonit Perbedaan sudut pengapian dengan sudut dwell Kondensor Busi Konstruksi busi Ilustrasi urutan terjadinya pre-ignition Grafik batas suhu operasional busi yang baik antara 450 o C sampai 800 o C Pengaruh suhu operasional busi Tingkat panas busi (a) busi dingin, (b) busi sedang, dan (c) busi panas Bentuk ujung Insulator busi panas dan busi dingin Busi standar Busi tipe resistor Tipe busi dengan elektroda yang menonjol Tipe busi semi-surface disharge Busi platinum Contoh kerusakan busi 1 dan Contoh kerusakan busi 3 dan Contoh kerusakan busi 5 dan Contoh kerusakan busi 7 dan Contoh kerusakan busi 9 dan Contoh kerusakan busi 11 dan Rangkaian sistem pengapian magnet (1) Rangkaian sistem pengapian magnet (2) ATU dengan dua buah platina Cara kerja ATU saat kecepatan rendah Cara kerja ATU saat kecepatan tinggi Sistem pengapian baterai (1) Sistem pengapian baterai (2) Rangkaian sistem pengapian semi transistor xiii

18 Daftar Isi 4.47 Sistem pengapian full transistor Komponen-komponen CDI AC berikut rangkaiannya Cara kerja CDI AC (1) Diagram rangkaian dasar Unit CDI Cara kerja CDI AC (2) Cara kerja CDI AC (3) Prinsip dasar CDI Sirkuit sistem pengapian CDI dengan arus DC Sekering Multi meter digital Pemasangan gelang kabel Pemasangan penjepit kabel Peletakan kabel-kabel (1) Peletakan kabel-kabel (2) Peletakan kabel-kabel (3) Peletakan kabel-kabel (4) Pembacaan berat jenis elektrolit menggunakan hydrometer Pengukuran tegangan baterai Pengukuran panjang sikat Pemeriksaan komutator dan armature Posisi relay starter pada salah satu sepeda motor Pemeriksaan kontinuitas relay starter Pemeriksaan tegangan relay starter Pengukuran tegangan pengisian Pengukuran kebocoran arus Pengukuran koil pengisian Pengukuran regulator/rectifier Pemeriksaan koil pengapian dengan electro tester Pemeriksaan tahanan kumparan sekunder Pemeriksaan tahanan kumparan sekunder Pemeriksaan tahanan unit CDI Tanda saat pengapian pada bak mesin sebelah kiri Celah (gap) busi Peta sambungan saklar kanan stang stir/kemudi Peta sambungan saklar kiri stang stir/kemudi Peta sambungan saklar kunci kontak Konektor lampu depan Pemeriksaan klakson Pengukur tinggi permukaan bensin Contoh struktur tangki sepeda motor Kran bensin tipe standar Kran bensin tipe vakum Cara Kerja Venturi Karburator dengan venturi tetap Karburator dengan venturi berubah-ubah (variable venturi) Karburator dengan kecepatan konstan; (1) diapragma, xiv

19 Daftar Isi (2) lubang udara masuk ke ruang vakum, (3) Katup gas/throttle valve, dan (4) pegas pengembali Variable venturi dan venturi tetap Pilot air jet (1) pada karburator tipe variable venturi Komponen-komponen karburator tipe venturi tetap Contoh komponen-komponen kaburator tipe venturi tetap Sistem pelampung menjaga level/ketinggian bensin selalu tetap dalam ruang bensin dalam sistem pelampung Sistem kecepatan rendah pada karburator tipe variable venturi (slide carburettor) Sistem kecepatan rendah pada karburator tipe kecepatan Konstan Aliran bahan bakar dan udara kecepatan rendah pada karburator tipe kecepatan konstan Sistem kecepatan utama pada karburator tipe variable venturi; (1) main air jet (saluran udara utama), (2) Jet needle (jarum pengabut), (3) venturi, (4) saluaran udara, (5) Throttle vslide, (6) needle jet, (7) air bleed pipe (pipa saluran udara), dan (8) main jet (pengabut/spuyer utama) Posisi Jet needle (jarum) pada needle jet Aliran bahan bakar dan udara utama pada karburator tipe kecepatan konstan Posisi power jet untuk sistem tenaga pada karburator tipe variable venturi Konstruksi sistem cuk otomatis Konstruksi sistem percepatan Skema rangkaian sistem EFI Yamaha GTS Komponen sistem EFI pada sepeda mesin Honda Supra X Contoh komponen sistem bahan bakar pada sistem EFI Honda Supra X Konstruksi fuel pump module Konstruksi injektor Contoh penempatan injector pada throttle body Skema aliran sistem bahan bakar EFI Rangkaian sistem kontrol elektronik pada Honda Supra X Contoh posisi penempatan sensor yang menyatu (built in) dengan throttle body Bank angle sensor dan posisi sudut kemiringan sepeda motor Informasi bank angle sensor kepada ECU untuk meng-offkan injektor, koil pengapian, dan pompa bahan bakar saat terdeteksi sudut kemiringan yang telah ditentukan Posisi bank angle sensor saat sepeda motor menikung dan Terjatuh xv

20 Daftar Isi 6.34 Konstruksi throttle body Sensor air pendingin (9) pada mesin Yamaha GTS Engine oil temperature sensor dan Intake air temperature sensor (dalam sensor unit) pada mesin Honda Supra X Lubang/saluran masuk (air inlet idle adjusting screw) untuk putaran stasioner saat katup trotel masih menutup pada motor Honda Supra X Posisi skrup penyetel putaran stasioner (idle adjusting screw) pad throttle body Contoh penyemprotan injector pada saat putaran 2000 rpm Contoh penyemprotan injector pada saat putaran 4000 rpm Elemen saringan udara Urutan pencucian elemen saringan udara Bagian-Bagian Knalpot Gambar Ekspansi pada sistem pembuangan dari mesin dua langkah Gambar bagian sistem pembuangan jenis mesin empat langkah Kondisi jarum yang bagus Dengan yang tidak bagus Contoh pengukuran tinggi pelampung pada Honda Astrea Posisi sekrup udara dan penahan skep (throttle piston) pada karburator yang terdapat pada salah satu merk sepeda motor Jarak main bebas gas tangan Penyetelan jarak main bebas gas tangan Posisi MIL Posisi DLC Pemasangan konektor DLC ke DLC MIL menyala ketika kunci kontak ON Contoh pemeriksaan tahanan pada EOT sensor Contoh pemeriksaan tegangan pada EOT sensor Prosedur melepas dan menghubungkan kembali konektor DLC dari DLC Pola keberhasilan saat me-reset pendiagnosaan sendiri Pola kegagalan saat me-reset pendiagnosaan sendiri Rangkaian pemindahan tenaga dari mesin sampai roda Konstruksi kopling plat banyak dengan penggerak tipe coil spring (pegas keong) Putaran mesin tidak diteruskan ke transmisi saat handel kopling ditekan Putaran mesin mulai diteruskan ke Transmisi saat handel kopling mulai dilepas Putaran mesin diteruskan dengan sempurna ke transmisi saat handel kopling dilepas Pembebas kopling dengan outer push type Pembebas kopling dengan inner push type Pembebas kopling dengan rack and pinion type xvi

21 Daftar Isi 7.9 Pembebas kopling dengan sistem hidrolik Konstruksi kopling otomatis tipe centripugal, (A) centripugal tipe kanvas/sepatu, (B) centripugal tipe plat Kopling piringan dengan penggerak tipe diaphragm spring Kopling tipe "V belt Konstruksi plat kopling ganda Komponen tipe plat kopling banyak Posisi kopling tipe hubungan langsung Contoh konstruksi kopling manual Konstruksi transmisi otomatis tipe CVT Posisi dan cara kerja puli Final drive jenis rantai dan sproket Final drive jenis shaft drive Final drive jenis sabuk dan puli (belt and pulley) Konstruksi rem tromol Rem tromol dan kelengkapannya Brake pedal (pedal rem), (2) Operating rod (batang penghubung), (3) Brake lever (tuas rem), (4) Brake shoe (sepatu rem), dan (5) Drum (tromol) Rem tromol tipe single leading shoe ` Rem tromol tipe two leading shoe Jangka pelengkung sebagai alat pelengkap untuk cabang meluncurkan cakram dan cakram siap keatas Cara kerja rem cakram hydraulic Pengambangan konstruksi cakram Cara kerja rem cakram Kekhasan master silinder pada rem depan Kekhasan komponen master silinder rem belakang Roda tipe jari-jari Potongan dan tinjauan setempat dari kekhasan Hub Roda tipe plat press Tipe roda dari besi tuang Membelah susunan pelek roda Ban tipe radial Ciri-ciri umum sidewall dari ban (bentuk samping dari ban) Pendinginan dan pelumasan pada mesin sepeda motor Jenis pelumasan: Film, Thick Film dan Hydrodynamic Resirkulasi system pelumasan (Kawasaki ZX-6R) Sistem dry-sump Sistem dry-sump dengan penggunananya pada rangka Pelumasan sistem basah (wet sump) dari mesin 4 silinder Pelumasan sistem basah dari mesin satu silinder Spin-on type filter Pompa oli tipe plunger Tipe-tipe pompa oli Lokasi yang membutuhkan pelumasan pada mesin dua langkah xvii

22 Daftar Isi 9.12 Pelumasan dengan sistem campur pada mesin dua langkah Sistem pelumasan auto lube Sistem injeksi dengan menyuplai oli ke bermacam-macam pipa Pemeriksaan jumlah oli pada bak engkol (karter) bisa dilihat dengan batang pengukurnya (1). Jumlah oli harus ada di antara batas atas (2) dan batas bawah (3) Pendinginan pada mesin sepeda motor Kepala silinder yang memiliki sirip-sirip untuk pendinginan udara Sistem pendinginan udara tekan Radiator Sistem pendingin cair pada mesin dua langkah Sistem pendingin cairan pada mesin empat langkah Tipe susunan steering head Contoh kontruksi batang kemudi Salah satu jenis dari susunan fork telescopic Caster, trail dan offset dari tipe susunan steering head Suspensi depan jenis bottom link dan telescopic Disain suspensi belakang tipe swing arm dari paduan Aluminium Bagian dari komponen shock absorber Susunan dasar dari swingarm dan shock absorber Suspensi jenis unit swing dan swing arm Tipe-tipe rangka sepeda motor xviii

23 Daftar Isi DAFTAR DIAGRAM Diagram Hal 1 Tahapan mencari dan mengatasi kerusakan baterai xix

24 Daftar Isi DAFTAR TABEL 1 Kelompok Kompetensi Umum Kompetensi Kelompok Engine Kompetensi Kelompok Elektrikal Kompetensi Kelompok Chasis dan Suspensi Perbedaan kontruksi kepala silinder dan blok silinder dari mesin dua langkah dan empat langkah Cara Kerja Mesin Dua Langkah Cara kerja mesin empat langkah Contoh Spesifikasi Mesin dari Suzuki Smash Simbol-simbol komponen kelistrikan Jadwal perawatan berkala (teratur) sistem kelistrikan Sumber-sumber kerusakan sistem kelistrikan Contoh spesifikasi tahanan dan tegangan (voltage) regulator/rectifier sepeda motor Honda Tiger Perkiraan Perbandingan Campuran dengan Keadaan Operasional Mesin Jadwal Perawatan Berkala (Teratur) Sistem Bahan bakar Konvensional Sumber-sumber kerusakan sistem bahan bakar konvensional (karburator) Jadwal perawatan berkala (teratur) sistem bahan bakar tipe injeksi (EFI) Sumber-Sumber Kerusakan Sistem Bahan Bakar Tipe Injeksi (EFI) Jadwal Perawatan Berkala (Teratur) Sistem Pemindah Tenaga Sumber-Sumber kerusakan Sistem Pemindah Tenaga Jadwal perawatan berkala (teratur) sistem rem dan roda Sumber-sumber kerusakan sistem rem dan roda xx

25 Daftar Isi DAFTAR RUMUS Hal Volume langkah Volume silinder Perbandingan kompresi Kecepatan piston rata-rata Torsi Tenaga Kecepatan motor Gaya torsi Hambatan alir Hukum ohm Rumus arus listrik, tahanan dan tegaga pada rangakain seri Rumus arus listrik, tahanan dan tegaga pada rangakain paralel Rumus tahanan pengganti Rumus tahanan total Rumus besar arus yang mengalir melalui rangkaian Rumus perbandingan udara yang masuk ke selinder mesin dengan Jumlah udara Rumus debit aliran (prinsip kerja karburator) Rumus flatness (keratan ban) xxi

26 Pendahuluan 1 BAB I PENDAHULUAN A. KESELAMATAN KERJA 1. Petunjuk Umum bagi Pekerja Keselamatan kerja adalah upaya yang dilakukan untuk mengurangi terjadinya kecelakaan, kerusakan dan segala bentuk kerugian baik terhadap manusia, maupun yang berhubungan dengan peralatan, obyek kerja, bengkel tempat bekerja, dan lingkungan kerja, secara langsung dan tidak langsung. Sejalan dengan kemajuan teknologi, maka permasalahan keselamatan kerja menjadi salah satu aspek yang sangat penting, mengingat resiko bahaya dalam penerapan teknologi juga semakin kompleks. Keselamatan kerja merupakan tanggungjawab semua orang baik yang terlibat langsung dalam pekerjaan dan juga masyarakat produsen dan konsumen pemakai teknologi pada umumnya. Kenyataan menunjukkan bahwa masyarakat kita, termasuk pekerja sepeda motor, kurang memperhatikan keselamatan kerja. Kemungkinan penyebabnya pertama, mereka mungkin tidak memiliki pengetahuan tentang keselamatan kerja. Kedua, mereka sudah tahu, tetapi mengabaikan karena punya kebiasaan buruk. Kebiasaan tidak mematuhi aturan keselamatan kerja untuk pekerja Teknologi Sepeda Motor tidak dapat ditolerir. Untuk menjadi pekerja profesional, setiap orang wajib terlebih dahulu mempelajari keselamatan kerja. Semuanya ada aturan, dan aturan keselamatan kerja harus dilaksanakan dengan kesadaran yang tinggi. Sikap dan kebiasaan kerja yang profesional dibentuk melalui disiplin yang kuat. Bahkan, sikap dan kebiasaan kerja merupakan kunci sukses seorang teknisi yang sukses. Secara umum, tujuan keselamatan kerja bagi pekerja profesional teknologi sepeda motor dapat dijelaskan sebagai berikut: 1. Sebelum mulai bekerja, setiap siswa memahami semua peraturan dan tata tertib bengkel. Aturan dan tata tertib bengkel disediakan secara tertulis dan pada awal semester siswa menandatangani surat pernyataan kesediaan mengikuti aturan dan tata tertib bengkel. Setiap siswa diharuskan memakai pakaian kerja khusus dan memakai sepatu khusus untuk bengkel sepeda motor. 2. Melindungi tenaga kerja atas keselamatan fisik dan mental dalam melaksanakan pekerjaan. Kecelakaan dan bahaya kerja dapat terjadi secara langsung maupun tidak langsung. Bekerja dengan

27 Pendahuluan 2 memakai zat kimia yang terkandung dalam oli dan bahan bakar, cat dan bahan lainnya dapat merusak kulit. Bengkel harus menyediakan zat pelindung kulit yang harus dipakai sebelum bekerja dengan bahan-bahan dimaksud. Dan sebaliknya, pekerja harus memakai sesuai dengan aturan bengkel, setiap kali sebelum memulai bekerja. Bila dikerjakan dengan teratur, maka akan menjadi kebiasaan. 3. Menjamin keselamatan setiap orang yang berada di tempat kerja. Sebelum bekerja, bengkel harus bersih terutama dari kotoran minyak oli dan bahan bakar. Pekerja merupakan bagian dari bengkel dan oleh karena itu, setiap pekerja bertanggung-jawab membersihkan tempat kerjanya. Semua peralatan yang dibutuhkan berada pada tempat yang mudah dijangkau. Pada bengkel sekolah, peralatan dipinjam pada teknisi peralatan dengan memakai tanda terima. Peralatan yang diterima siswa harus diperiksa kondisinya. Pada waktu kerja berakhir, semua peralatan dikembalikan dalam keadaan bersih dan baik. Setiap kerusakan alat harus dilaporkan kepada pengawas atau instruktur. 4. Obyek kerja diserahkan kepada siswa dari instruktur. Siswa harus sudah memahami prosedur dan permasalahan yang akan dikerjakan. Sebelum masuk bekerja praktek, siswa bertanggungjawab mempersiapkan dirinya tentang prosedur, alat yamng sesuai dan bahan yang dibutuhkan. Bila ada kesulitan harus menanyakan kepada instruktur. Dengan demikian dapat disimpulkan bahwa keselamatan kerja dapat dinyatakan sebagai sesuatu yang menjamin keadaan, keutuhan, kesempurnaan, baik jasmani maupun rohani manusia, serta hasil karya dan budayanya tertuju pada keselamatan masyarakat pada umumnya dan pekerja. Bekerja dengan memperhatikan keselamatan kerja sangat penting artinya, karena bagaimanapun, siswa sebagai manusia pasti tak ada yang menginginkan terjadinya kecelakaan terhadap diri sendiri, apalagi sampai berakibat fatal. Mencegah terjadinya kecelakaan tidak hanya berarti mencegah terjadinya bahaya, tetapi juga ikut melakukan penghematan dari segi biaya, tenaga dan waktu dan sekaligus berarti belajar melakukan sesuatu secara efektif dan efisien. Melihat pada kerugian yang akan timbul akibat adanya kecelakaan kerja bila keselamatan kerja tidak diperhatikan, maka secara garis besarnya ada tiga kelompok yang akan merugi, yaitu: 1. Kerugian bagi bengkel dan sekolah, antara lain: a. Biaya dan waktu pengangkutan korban kecelakaan. b. Hilangnya waktu kerja instruktur dan siswa yang menolong sehingga menghambat kelancaran program; c. Mencari pengganti waktu praktek d. Mengganti dan memperbaiki alat dan obyek kerja yang rusak

28 Pendahuluan 3 2. Kerugian bagi korban, antara lain: a. Berbagai akibat yang akan diderita seperti cacat fisik, b. Rasa trauma yang berkelanjutan dan kerugian paling fatal adalah bila korban meninggal dunia. Peraturan keselamatan kerja harus diberlakukan di mana saja oleh setiap orang yang bekerja, maupun oleh instansi yang memberikan pekerjaan. Antara lain dari hal yang harus dilakukan seseorang untuk melaksanakan keselamatan kerja: a. Bersikap mawas diri terhadap kemungkinan terkjadinya kecelakaan; b. Bekerja dengan sungguh-sungguh, cepat, teliti, dan tekun; c. Menghindari sikap melamun dalam bekerja; d. Usahakan untuk tidak ceroboh dalam bekerja; e. Istirahatlah bila sudah lelah dan bosan; f. Menghindari sikap bercanda dalam bekerja; g. Memahami prosedur kerja dan tidak mencoba-coba; h. Waspada dalam bekerja; i. Menggunakan alat pengaman dalam bekerja dan tindakan lainnya yang menunjang untuk selamat dalam bekerja. Sebelum seseorang bekerja pada workshop (bengkel kerja), diharuskan terlebih dahulu memahami tentang petunjuk dan peraturanperaturan tentang keselamatan kerja. Walaupun setiap pekerjaan selalu ada resiko, akan tetapi dengan memahami terlebih dahulu sebab-sebab terjadinya kecelakaan dan mengikuti petunjuk-petunjuk kerja, maka jumlah kecelakaan pasti akan berkurang. Menurut perkiraan 70% dari kecelakaan yang terjadi di workshop disebabkan oleh ketidaktelitian atau kelalaian kerja. Kecelakaan akibat kerja dapat dicegah dengan: a. Disiplin terhadap peraturan perundangan; b. Standarisasi prosedur kerja; c. Pengawasan; d. Penelitian bersifat teknis; e. Riset medis; f. Penelitian psikologis; g. Penelitian secara statistik; h. Pendidikan dan latihan keselamatan i. Petunjuk keselamatan kerja yang jelas dan tertulis Workshop yang bersih dan tersusun rapi, sangat membantu dalam mengurangi jumlah kecelakaan. Alat-alat dan benda kerja jangan sampai ditinggalkan pada tempat di mana seseorang dapat terjatuh. Gang dan jalan yang dilalui oleh pekerja harus bersih. Oleh karena itu, bangku kerja, alat-alat dan benda kerja harus tersusun secara rapi dan sistematis.

29 Pendahuluan 4 Khusus untuk workshop Otomotif, minyak, minyak pelumas dan gemuk yang berserakan dilantai, sebelum menimbulkan kecelakaan harus ditutup dengan pasir atau serbuk gergaji. Dibawah ini dikemukakan beberapa petunjuk dan bahaya yang terjadi pada workshop Otomotif: 2. Meja Kerja dan Kelengkapan Bangku kerja ialah meja tempat bekerja yang biasanya dilengkapi dengan ragum. Sebelum mulai bekerja periksalah terlebih dahulu apakah semua peralatan seperti ragum, mesin boring dan mesin potong masih terpasang kuat terhadap meja. Tinggi meja disesuaikan dengan kenyamanan pekerja yakni 78 sampai 80 centimeter. Bahan meja terbuat dari papan yang kuat dengan ketebalan 5 centimeter. Meja kerja sering digunakan untuk pekerjaan pukulan ringan dengan menggunakan palu. Pada waktu akan mempergunakan palu periksalah apakah kepala palu terpasang kuat pada tangkainya. Harus diperhatikan pula berat palu yang dipakai untuk benda kerja yang akan dipukul. Bagi penggunaan yang khusus, kepala palu terbuat dari plastik yang keras atau karet. Pekerjaan mengikir dan menggosok permukaan benda kerja juga dilakukakan di atas meja kerja. Kikir harus diberi tangkai yang kuat sehingga dapat dipegang dengan kuat. Kikir yang tidak bertangkai tidak boleh dipakai. Tangkai kikir, obeng dan pahat harus terpasang dengan kuat, sehingga tidak akan terlepas pada waktu dipakai. Jika mempergunakan kunci pas, kunci ring, dan kunci sock, pergunakanlah ukuran, tipe dan panjang yang tepat. Ukuran yang tidak tepat sering menyebabkan kunci tersebut tergelincir (slip) pada mur atau kepala baut. Selain dari kunci pas dan mur akan menjadi rusak, dapat terjadi kecelakaan pada pekerja. 3. Bahan Bakar dan Minyak Pelumas Di dalam workshop Otomotif biasa terdapat bahan bakar dan minyak pelumas seperti bensin atau premium, solar dan adakalanya minyak tanah, oli dan gemuk. Bahan ini dipergunakan untuk percobaan menghidupkan mesin maupun sebagai bahan pencuci. Penyimpanan bahan baker haruslah di tempat yang tertutup, dan jauh dari nyala api maupun cahaya yang keras. Bahan bakar mempunyai sifat yang mudah sekali menguap. Uap bensin mempunyai berat jenis yang lebih ringan dari udara. Karena itu bahan baker yang menyebar di lantai harus segera dibersihkan. Bila dibiarkan, uap bensin dengan udara sangat mudah menyambar percikan api dan menimbulkan kebakaran dan ledakan. Bila ada bahan bakar yang tumpah di lantai, janganlah mengerjakan penyambungan kabel, ataupun alat yang berarus listrik,

30 Pendahuluan 5 karena pekerjaan demikian dapat menimbulkan bunga api. Namun, jika terjadi kebakaran terhadap bahan bakar jangan sekali-kali menyiramnya dengan air, karena bahan bakar tersebut akan mengapung di atas air dan kebakaran akan menyebar. Pergunakanlah gas racun api (extinguisher) atau pasir dan karung goni yang basah untuk memadamkan api. Gemuk dipergunakan untuk melindungi komponen yang selesai dibersihkan atau untuk membantu pemasangan komponen. Pemakaian yang berlebihan akan menyebabkan benda kerja malah jadi kotor atau hinggap pada bagian-bagian lain atau di lantai. Bila terjadi demikian, harus segera dibersihkan. Tidak perlu ditunggu dan dicari siapa yang ceroboh melakukannya. 4. Karbon Monoksida Gas sisa pembakaran yang keluar dari knalpot (silencer) mengandung karbon monoksida (CO). Pembakaran yang sempurna menyisakan gas karbon monoksida yang tidak berwarna, namun tetap berbahaya. Bila pembakaran tidak sempurna, maka asap hitam akan mengepul. Bila ini terjadi maka dianjurkan untuk mematikan mesin segera, karena mesti ada sesuatu yang tidak benar terutama dalam penyetelan pembakaran. Gas buang melalui knalpot dapat dijadikan indikasi kondisi mesin sebagai ukuran apakah pembakaran sempurna atau kurang sempurna. Gas ini adalah racun, masuk ke dalam paru-paru melalui pernafasan yang dapat mematikan manusia. Karena itu jika ada motor yang dihidupkan maka pintu-pintu harus dibuka semua. Sebuah workshop Otomotif harus mempunyai ventilasi yang baik. Tempatkanlah mesin-mesin percobaan pada ruang terbuka dengan sirkulasi udara yang cukup. Dianjurkan untuk tidak menghidupkan mesin percobaan terlalu lama. Bila harus melakukan pemanasan mesin, lakukanlah di luar ruangan. 5. Peralatan Mesin Tangan (Portable Machines) Bagian-bagian mesin yang berputar seperti ban, roda, puli, batang poros, roda gigi dan rantai yang ada di workshop otomotif haruslah mempunyai pelindung. Alat-alat pelindung yang sudah rusak dan alat pengaman lainnya yang sudah tidak berfungsi lagi, harus segera dilaporkan pada pengawas untuk diganti. Mesin kompresor bekerja dengan ban pemindah putaran. Ban tidak boleh dibiarkan dalam keadaan terbuka. Tutup pelindung ban harus selalu terpasang. Mesin lain yang paling sering digunakan adalah bor tangan, mesin gerinda dan pemutar baut. Mata bor dan batu gerinda harus terpasang dan dikunci secara kuat.

31 Pendahuluan 6 Mesin bor tangan (portable) merupakan peralatan yang perlu diperhatikan pemakaiannya. Kerusakan yang sering terjadi adalah mata bor sering tumpul atau patah. Mata bor yang tersedia di pasaran mulai dari yang kualitas rendah sampai kualitas tinggi. Tentunya disarankan agar menggunakan alat dan bahan yang kualitas tinggi. Perhatian yang lain adalah posisi kerja yang nyaman (ergonomic). 6. Alat Angkat dan Pengangkatan Pekerjaan mengangkat banyak dilakukan di workshop Otomotif. Dalam batas-batas berat tertentu dapat dipergunakan tenaga manusia. Hal yang perlu dipikirkan adalah bagaimana posisi badan yang tepat waktu mengangkat benda yang cukup berat, di samping pegangan tangan yang harus mantap, sehingga benda yang diangkat tidak akan terjatuh Untuk mengangkat benda-benda yang lebih berat seperti blok motor ataupun kendaraan itu sendiri harus dipergunakan Pesawat Angkat seperti dongkrak atau kran yang jenis dan kapasitas pengangkatannya bermacam-macam. Pikirkanlah alat mana yang tepat. Tapi harus pula diketahui bahwa semua jenis pesawat angkat adalah alat yang dapat saja selip tanpa ada tanda-tanda terlebih dahulu. Karena itu jangan terlalu percaya. Kalau akan bekerja di bawah alat yang sedang diangkat pergunakanlah alat-alat pengaman berupa kayu penopang. Jangan sekali-kali mempergunakan batu bata. Balok-balok penopang hendaknya selalu tersedia dalam kedaaan bersih dan kuat yang sewaktu-waktu dapat segera dipergunakan Beberapa hal yang dikemukankan di atas hanyalah merupakan beberapa contoh saja. Makin lama seseorang bekerja di workshop, maka ia akan leibih akrab dengan situasi dan alat yang ada. Berusahalah bersikap dan berkerja sesuai dengan aturan-aturan yang ada. Tapi sebaliknya kebiasaan yang kurang baik dan tidak menurut aturan, lama kelamaan akan lebih sukar memperbaikinya dan akan menimbulkan malapetaka tidak hanya pada orang yang lalai tapi juga teman sekerja. 7. Pengangkat Sepeda Motor ( Bike Lift) Bengkel sepeda motor yang standar dilengkapi dengan peralatan khusus pengangkatan sepeda motor. Gunanya adalah untuk kenyamanan dan kesehatan para pekerja. Hampir semua pekerjaan pada sepeda motor berada pada posisi rendah, kecuali pekerjaan pada bagian stang yang terdiri dari lampu, speedometer, lampu-lampu dan kunci kontak (Ignition Key). Dengan menggunakan alat angkat bike lift pekerja tidak perlu jongkok dalam bekerja. Pekerjaan yang membutuhkan waktu yang lama, seperti pembongkaran mesin atau transmisi, pekerja akan

32 Pendahuluan 7 cepat lelah dan mengalami kesulitan menjangkau obyek kerja. Oleh karena itu, sepeda motor ditempatkan di atas bike lift dan dikunci agar tidak jatuh. Kemudian bike lift dinaikkan sehingga ketinggian obyek kerja sesuai dengan kebutuhan pekerja. 8. Petunjuk Khusus bagi Pekerja Sepeda Motor Beberapa peringatan yang sangat penting untuk diperhatikan bagi pekerja profesional sepeda motor adalah: 1. Berpikirlah dulu sebelum melakukan sesuatu pekerjaan. Adakalanya dengan sedikit saja berpikir sebelum bekerja, suatu bahaya dapat terhindar. 2. Pada waktu bekerja, pikiran harus konsentrasi terhadap apa yang sedang dikerjakan. Jika pikiran sedang terganggu oleh hal-hal yang memang tidak dapat dilupakan janganlah berkerja. Lebih baik laporkan secara terus terang kepada pengawas atau instruktur. 3. Di dalam workshop tidak diizinkan untuk berkelakar atau bermainmain. Kelakar atau lelucon tentu saja akan menimbulkan tertawa dan sangat menyenangkan, tapi kelakar di dalam workshop mudah sekali berakhir dengan suatu malapetaka, yang bahkan seseorang akan mendapat cacat seumur hidup. 4. Yakinlah bahwa anda betul-betul mengerti mempergunakan alatalat yang akan dipakat terutama alat yang dapat menimbulkan kecelakaan seperti alat angkat, alat pengukur (tester) termasuk juga las listrik dan las karbid. Kalau masih ragu-ragu pelajarilah kembali. 5. Alat-alat dan benda kerja hendaknya selalu dalam keadaan bersih dari serbuk besi, debu ataupun minyak-minyak. 6. Pada waktu bekerja dengan sistem bahan bakar dan alat-alat listrik, putuskan kontak dengan battery. 7. Pelajarilah cara mempergunakan alat pemadam kebakaran (extinguisher) dan pastikan di mana tempat menyimpannya. Jika terjadi kebakaran harus tahu kepada siapa dan di mana harus melaporkan. Termasuk juga jika ada bahaya-bahaya lainnya. 8. Pelajaran tentang Pertolongan Pertama Pada Kecelakaan (PPPK) hendaknya dipelajari secara teori dan praktek. 9. Pekerja bengkel sepeda motor melanggar undang-undang, bila melepas, mengganti dengan komponen yang bukan ditentukan pabrik pembuatnya, atau tidak dapat bekerjanya setiap peralatan untuk tujuan pengaturan kebisingan, seperti melepas atau melubangi knalpot, melepas saringan peredam suara sehingga terjadi kebisingan dan polusi udara yang akan berakibat membahayakan kesehatan masyarakat.

33 Pendahuluan Pekerja seharusnya memanfaatkan buku spesifikasi teknis kendaraan dalam melakukan penyetelan jarak, waktu (timing), minyak pelumas batas kekuatan puntir (torque) memutar baut dan mur sesuai dengan spesifikasi yang ditetapkan pabrik pembuat sepeda motor. Setiap merek mengeluarkan spesifikasi sendiri. Contoh spesifikasi teknis sepeda motor Honda dapat dilihat pada Lampiran buku ini. B. SILABUS DAN URAIAN ISI BUKU 1. Silabus Buku ini disusun sejalan dengan kebijakan pendidikan nasional yaitu Pendidikan Berbasis Kompetensi (PBK). Ada tiga kerangka acuan uang merupakan bagian yang tidak dapat dipisahkan dalam melaksanakan PBK yakni Kurikulum Berbasis Kompetensi (KBK), Pembelajaran Tuntas (Mastery Learning), dan Uji Kompetensi (Minimum Competency Testing). Pendidikan dan pelatihan teknisi sepeda motor mengacu pada kurikulum berbasis kompetensi, dengan pembelajaran tuntas, dan diakhiri dengan uji kompetensi. Gagasan pendidikan berbasis kompetensi memang lahir dan sangat sesuai dengan pendidikan kejuruan atau pendidikan yang mempersiapkan siswa untuk mampu memasuki dunia kerja. Oleh karena itu, kurikulum dan silabus mata pelajaran Teknologi Sepeda Motor ini disusun berdasarkan teknologi dan kebutuhan dunia kerja pada bidang sepeda motor. Diharapkan, sesudah mengikuti pendidikan dan pelatihan di SMK, para lulusan mampu memasuki dunia kerja pada bidang otomotif, khususnya menjadi Teknisi Sepeda Motor. Teknologi Sepeda Motor merupakan bagian dari Teknologi Otomotif. Para siswa mempelajari Teknologi Sepeda Motor sesudah mereka mempelajari Teknologi Otomotif. Sesuai dengan kenyataan pada dunia otomotif, maka dunia teknologi otomotif merupakan teknologi yang paling banyak digunakan. Pertumbuhan yang spektakuler dari penggunaan mobil dan sepeda motor menjadikan dunia otomotif menjadi pasar yang menjanjikan. Di Indonesia, sejak lima tahun terakhir rata-rata hampir lima juta sepeda motor dari berbagai merek berhasil dipasarkan. Untuk melayani pabrik dan pelayanan purna jual, masyarakat Indonesia memerlukan ratusan ribu teknisi yang andal dan profesional. Peran SMK Jurusan Otomotif menjadi semakin penting dan merupakan profesi yang sangat menjanjikan baik dari segi penopang kemajuan teknologi maupun secara ekonomis. Sebagai salah satu cabang ilmu teknologi, maka kurikulum jurusan teknologi otomotif disusun meliputi kemampuan dasar

34 Pendahuluan 9 Matematika, Fisika dan Ilmu Kimia. Ketiganya diberikan sesuai dengan kebutuhan teknologi otomotif. Perkembangan teknologi yang amat pesat menyebabkan para teknisi otomotif harus selalu belajar dan mengikuti perkembangan teknologi. Teknologi elektronika, komputer dan digital merambah dunia otomotif sehingga suka atau tidak suka, para teknisi otomotif harus mampu menggunakannya untuk mampu memberikan pelayanan profesional kepada para pengguna teknologi otomotif. 2. Uraian Isi Buku Buku ini disusun sesuai dengan kurikulum nasional SMK jurusan Teknologi Otomotif, khususnya untuk keahlian Teknologi Sepeda Motor. Pada Bab I point A diuraikan tentang pentingnya pemahaman tentang Keselamatan Kerja bagi teknisi otomotif, pada point B berisikan silabus dan uraian isi buku, ini penting karena buku ini akan dipakai untuk pembelajaran di SMK, sehingga peta dari apa yang akan dipelajari dan tujuan yang akan dicapai dari proses memahami buku ini oleh pelajar ataupun pemakai lainnya jelas adanya, point C berbicara tentang komponen utama sepeda motor, bagian ini dimasukkan ke Bab I dikarenakan penulis menganggap pengenalan tentang materi yang akan dibahas mengenai sepeda motor hendaknya didahului oleh pengetahuan awal tentang komponen utama dari sepeda motor tersebut dan Bab 1 ini akhirnya ditutup dengan point D mengenai Aplikasi ilmu Fisika dalam mempelajari teknologi otomotif sepeda motor. Point D diletakkan pada Bab 1 (pendahuluan) sebagai landasan bagi pelajar untuk berfikir secara ilmiah dalam mempelajari cakupan materi-materi yang dijabarkan didalam buku ini. Point A menguraikan tentang betapa pentingnya peran para teknisi dan pekerja melindungi manusia, termasuk diri sendiri, sejawat pekerja dan konsumen. Perlindungan ini meliputi juga keselamatan peralatan, sepeda motor (obyek kerja) dan bengkel kerja secara umum. Intinya yang terpenting adalah sikap dan kebiasaan kerja yang berorientasi pada sikap profesional, efektif dan efisien. Pada bagian ini dijelaskan tentang berbagai sumber gangguan keselamatan manusia seperti bahaya zat-zat kimia pada bahan bakar dan oli dan karbon monoksida. Juga dijelaskan tentang pentingnya mematuhi peraturan keselamatan kerja untuk meningkatkan efektivitas dan efisiensi penggunaan peralatan. Pada Bab II diuraikan tentang Mesin dan komponen Utama. Komponen utama mesin sepeda motor tidak banyak berbeda dengan komponen motor pada umumnya. Perbedaan yang umum adalah pada ukurannya yang lebih kecil dan jumlah dari silinder. Dengan mempelajari terlebih dahulu teknologi otomotif, maka dasar-dasar teknologi otomotif tidak diuraikan lagi secara lengkap. Bab II juga memberikan transfer ilmu berupa proses yang terjadi di mesin, proses terjadinya pembakaran, innovasi dari desain mesin, susunan mesin dan spesifikasi mesin yang

35 Pendahuluan 10 merupakan himpunan dari kerterpakaian teori yang dipelajari pada bab II ini. Bab III dari buku ini menjelaskan tentang kelistrikan sepeda motor. Uraian meliputi konsep dasar kelistrikan, kapasitor dan kondensor, sistem starter, sistem pengisian, sistem pengapian disini tidak dibahas hanya dicantumkan sebagai bagian dari sistem kelistrikan dari sepeda motor, ini dilakukan karena materi tentang sistem pengapian sangat banyak, sehingga penulis putuskan, ia butuh bab khusus untuk pembahasan dan penjabarannya dan penulis letakkan pembahasan ini pada bab IV, selain alasan tersebut juga untuk memudahkan pelajar memahami materi ini secara fokus dan jelas. Selanjutnya bab III ini berisikan sistem penerangan (lampu), sementara itu pemeriksaan dan perbaikan untuk sistem kelistrikan ini juga diletakkan pada bab tersendiri dikarenakan materi yang sangat banyak tadi juga untuk memudahkan pelajar memakai buku ini. Pada Bab IV dijelaskan tentang sistem pengapian (Ignition System). Bagian ini memuat konsep dan prosedur tentang persyaratan sistem pengapian, listrik tegangan tinggi, kunci kontak, koil pengapian, platina, kondensor, busi, saat pengapian dan berbagai tipe pengapian. Bab V berisikan perawatan dan pemeliharaan dari materi bab III dan bab IV, diletakkan pada bab terpisah karena banyaknya cakupan materi dari kedua bab tersebut. Bab VI menjelaskan Sistem Bahan Bakar, meliputi uraian tentang bahan bakar, campuran udara bahan bakar, sistem bahan bakar konvensional dan sistem injeksi (EFI) disertai dengan pemeriksaan dan perbaikan sistem bahan bakar dari kedua sistem. Pada Bab VII diuraikan tentang Sistem Pemindahan Tenaga (Transmission). Uraian meliputi prinsip pemindahan tenaga dan komponen-komponen pemindah tenaga dan pemeriksaan serta perbaikan untuk sistem pemindah tenaga. Pada Bab VIII dijelaskan tentang Sistem Rem dan Roda. Uraian pada Bab ini meliputi jenis rem tromol, rem cakram, roda dan ban dilanjutkan dengan pemeriksaan dan perbaikan sistem rem dan roda. Pada Bab IX dijelaskan tentang Sistem Pelumasan dan Pendinginan. Penjelasan meliputi sistem pelumasan dan viskositas serta jenis-jenis minyak pelumas yang digunakan untuk sepeda motor. Bagian ini dilengkapi dengan sistem pendinginan. Pada Bab X diuraikan tentang Kemudi, Suspensi dan Rangka. Bab XI berisikan materi tentang peralatan bengkel, walaupun hal ini pada bagian awal yaitu dibab I telah disinggung secara umum, penulis merasa setelah mempelajari semua materi secara cermat dan disiplin, maka pantas kiranya para pelajar diberikan kepercayaan bahwa mereka akan sanggup menjadi lulusan yang siap kerja atau malah mampu menciptakan pekerjaan sendiri melalui materi ini, sehingga merekapun sudah semestinya diberikan pengetahuan dan pemahaman yang lebih

36 Pendahuluan 11 terstruktur tentang peralatan dan kunci-kunci yang selayaknya ada pada suatu bengkel sepeda motor. Dan pada bagian akhir Bab XII dimuat sejumlah istilah dan pengertiannya untuk membantu siswa dalam mempelajari nama dan istilah yang sering digunakan oleh para teknisi sepeda motor. 3. STRATEGI PEMBELAJARAN Strategi pembelajaran Teknologi Sepeda Motor bertujuan membantu siswa untuk mencapai tujuan pembelajaran sesuai dengan tuntutan kurikulum. Target pencapaian kurikulum Teknologi Sepeda Motor meliputi tiga ranah seperti yang dianjurkan oleh Benjamin S. Bloom (1964) yakni pencapaian penguasaan kognitif (teoretis), penguasaan ketrampilan melakukan pekerjaan (psikomotorik) dan yang sangat penting adalah terbentuknya sikap dan kebiasaan kerja (afektif). Pembelajaran untuk penguasaan teknologi otomotif dilandasi oleh penguasaan ilmu dasar (sains) seperti Matematika, Fisika, Elektronika dan Ilmu Kimia yang relevan dengan tujuan pembelajaran kejuruan teknologi otomotif. Strategi pembelajaran berpusat pada siswa (student centered learning). Pembelajaran Berbasis Kompetensi menganut keyakinan bahwa ilmu dan ketrampilan teknologi hanya bisa dicapai bila siswa sendiri belajar dan melatih dirinya. Ilmu, ketrampilan dan sikap menghargai pekerjaan tidak bisa ditransfer dari guru atau instruktur kepada siswa. Ketiganya harus dikonstruksi (dibangun) oleh siswa sendiri. Dan oleh karena itu, siswa bertanggungjawab membelajarkan dirinya sendiri. Keyakinan ini tidak sama dengan apa yang dianut pada kurikulum yang lama, dimana guru sebagai pemilik ilmu dan ketrampilan yang harus dibagi-bagikan kepada siswanya. Oleh karena itu, strategi pembelajaran dapat diuraikan sebagai berikut: a. Pembelajaran teori dimulai dengan Metode Tugas Membaca dan Menyimpulkan. Siswa diwajibkan membaca topik yang akan dipelajari dan membuat kesimpulan atau ringkasan. Pada pertemuan di kelas guru mendiskusikan, menjawab dan menjelaskan substansi materi pelajaran bila ada yang belum jelas. b. Pelajaran praktek disarankan dengan menggunakan modul atau setidaknya lembaran kerja (jobsheet). Dengan menganut sistem belajar tuntas, maka setiap siswa perlu diberi kesempatan untuk menyelesaikan tugas praktek sesuai dengan kecepatan masingmasing. Dalam hal ini, diperlukan manajemen bengkel praktek, apalagi bila jumlah siswa yang banyak, peralatan dan obyek kerja (sepeda motor) yang sering kurang serta tempat praktek yang terbatas. Ada siswa yang memerlukan waktu yang lebih lama untuk menyelesaikan pekerjaan, namun perlu diberi waktu tambahan sampai dapat menyelesaikan tugasnya.

37 Pendahuluan 12 c. Setiap siswa yang menyelesaikan tugasnya harus langsung dinilai dengan skema penilaian yang sudah disiapkan oleh guru. Kompetensi pencapaian minimal perlu dipakai sebagai acuan untuk memutuskan apakah siswa sudah mencapai ketuntasan belajar sesuai dengan pendekatan pembelajaran berbasis kompetensi. Hanya siswa yang sudah mencapai ketuntasan belajar dapat diizinkan untuk mengambil tugas selanjutnya. d. Berdasarkan prinsip perbedaan individu (individual differences) maka dapat dimaklumi bahwa ada siswa yang bekerja lebih lambat. Siswa yang lambat perlu diberi tambahan waktu untuk menyelesaikan pekerjaannya. 4. Prosedur Kerja Pelayanan Sepeda Motor Pekerjaan pelayanan (service) sepeda motor bervariasi mulai dari yang sangat sederhana sampai kepada yang rumit. Namun pelayanan sepeda motor yang rumit sekalipun tidak akan melebihi enam langkah yakni: mengukur (measuring), membongkar (disassembling), perbaikan (machining), memasang kembali yang baru atau hasil perbaikan (reassembling), dan penyetelan. Enam langkah ini dapat diuraikan seperti di bawah ini. a. Pengukuran (measuring) biasanya dilakukan dengan alat ukur seperti feeler gauge, caliper, micrometer, depth and small hole gauges dan dial indicators. Namun dalam praktek, mata, telinga dan penciuman merupakan indera manusia yang digunakan untuk mengukur. Bila asap gas buang terlihat hitam tebal bisa disimpulkan bahwa pembakaran tidak sempurna. Gas buang yang mengeluar-kan bau yang tajam dan tidak sedap merupakan ukuran sensori bahwa sudah terjadi sesuatu misalnya dinding silinder sudah aus, atau ring oli sudah aus. Batery yang sudah lemah diketahui dari ampermeter, voltmeter atau battery liquid tester. Telinga juga dapat digunakan untuk mendengarkan kebisingan atau suara yang tidak normal. Pada sepeda motor, tekanan kompresi diukur dengan compression tester. Hasil dari pengukuran akan menjadi petunjuk bagian mana yang harus dikerjakan, dan ini merupakan langkah pertama bagi teknisi untuk mengambil langkah-langkah selanjutnya. b. Membongkar (disassembly) atau membuka bagian yang akan diperbaiki. Ada kalanya bagian yang dicurigai memerlukan perbaikan tidak dapat langsung dibuka, tetapi harus dibuka bagian lain untuk sampai pada bagian yang akan diperbaiki. Misalnya, bila anda curiga bahwa katup tidak bekerja dengan baik, maka lebih dulu dibuka adalah kepala silinder. Pekerjaan membuka harus dikerjakan hati-hati dan bagian yang dibuka ditempat pada tempat tersendiri atau panci. Pada waktu membuka ingat posisi

38 Pendahuluan 13 dan tempatnya. Bila perlu diberi tanda untuk diingat pada waktu pemasangan kembali. c. Langkah perbaikan (machining) yaitu melakukan pembersihan, penyetelan dan perbaikan. Bila tidak bisa diperbaiki atau akan lebih baik diganti baru, maka pekerjaan selanjutnya adalah mempersiapkan pemasangan kembali. d. Pemasangan kembali (reassembly) dikerjakan dengan urutan terbalik dari membongkar. Posisi bagian yang dibongkar dikembalikan secara benar. Bila pada pembongkaran ada seal atau perapat atau baut yang lecet pada waktu dibuka maka pada pemasangan kembali bagian tersebut sebaiknya diganti baru. Bila ada baut yang dikencangkan, jarak platina, kelonggaran katup, dan jarak elektroda busi haruslah mengacu pada standar spesifikasi kendaraan. e. Pekerjaan kelima adalah memastikan bahwa semua sudah terpasang dengan benar dan siap untuk distel dan diuji coba. Sebelum mesin dihidupkan, maka semua bagian yang bergerak harus digerakkan atau diputar dulu dengan tangan. Sesudah dirasakan semua bergerak dengan lancar barulah mesin dihidupkan secara stasioner. f. Langkah terakhir adalah uji coba jalan (running test). Teknisi harus mampu menentukan apakah pekerjaan sudah dapat diselesaikan dengan baik. Semua bagian haruslah disesuaikan dengan standar baku, sesuai dengan spesifikasi yang dikeluarkan pabrik pembuat kendaraan. 5. Daftar Unit-unit Kompetensi (MAPPING) a. Kelompok Kompetensi Umum Daftar unit-unit kompetensi yang tercakup dalam Standar Kompetensi Bidang Keahlian Otomotif Sepeda Motor, adalah sebagai berikut:

39 Pendahuluan 14 Kode OPSM -10 Tabel 1. Kelompok kompetensi umum UNIT-UNIT KOMPETENSI KELOMPOK GENERAL YUNI OR SENI OR Ma s ter SIFAT 001A Mengikuti prosedur keselamatan, kesehatan kerja dan lingkungan V UMUM 002A Membaca dan memahami gambar teknik V UMUM Menggunakan dan memelihara 003A peralatan dan perlengkapan di tempat kerja V UMUM 004A Memberikan kontribusi komunikasi di tempat kerja V UMUM 005A Melakukan operasi penanganan manual V UMUM 006A Menggunakan dan memelihara alat ukur V UMUM 007A Melakukan teknik pematrian V UMUM Memelihara komponenkomponen 008A operasi dan perbaikan V UMUM 009A Memasang sistem hidrolik V UMUM 010A Memelihara sistem hidrolik V UMUM 011A Mengeset, mengoperasikan dan mengontrol mesin-mesin khusus V UMUM Memelihara dan memperbaiki 012A kompresor udara berikut komponen-komponennya V UMUM 013A Melakukan prosedur diagnosis V UMUM 014A Memeriksa keamanan/kelayakan kendaraan V UMUM 015A Melakukan diagnosis pada sistem yang rumit V UMUM 016A Melatih kelompok kecil V UMUM 017A Merencanakan penilaian terhadap kompetensi pegawai V UMUM 018A Melakukan penilaian terhadap kompetensi pegawai V UMUM 019A Mengkaji ulang penilaian terhadap kompetensi pegawai V UMUM

40 Pendahuluan 15 b. Kompetensi Kelompok Engine Tabel 2. Kompetensi kelompok engine Kode OPSM A 002A 003A 004A 005A 006A 007A 008A 009A 010A 011A 012A 013A 014A 015A UNIT-UNIT KOMPETENSI YUNIOR SENIOR KELOMPOK ENGINE Memelihara engine berikut komponen-komponennya V Memelihara dan memperbaiki sistem kontrol V emisi Melepas kepala silinder, menilai komponenkomponennya serta merakit V kepala silinder Memelihara sistem pendingin berikut V komponen-komponennya Memperbaiki dan melakukan overhaul sistem pendingin berikut V komponen-komponennya Memelihara sistem bahan bakar bensin V Memperbaiki dan melakukan overhaul komponen sistem bahan V bakar bensin Melakukan overhaul engine dan menilai komponenkomponennya, memeriksa toleransi serta melakukan V prosedur pengujian yang sesuai Memperbaiki engine berikut komponen-komponennya V Memelihara unit kopling manual dan otomatis V Melakukan overhaul kopling manual dan otomatis berikut komponen-komponen V sistem pengoperasiannya Memelihara sistem transmisi manual V Melakukan overhaul sistem transmisi manual berikut komponenkomponen V sistem pengoperasiannya Memelihara sistem transmisi otomatis V Melakukan overhaul sistem transmisi otomatis V MAS TER SIFAT INTI INTI INTI INTI INTI INTI INTI INTI INTI INTI INTI INTI INTI PILIHA N PILIHA N

41 Pendahuluan 16 c. Kompetensi Kelompok Elektrikal Tabel 3. Kompetensi kelompok elektrikal Kode OPSM A 002A 003A 004A 005A 006A 007A 008A 009A 010A 011A UNIT-UNIT KOMPETENSI KELOMPOK YUNI OR SENI OR ELEKTRICAL Menguji, memelihara dan mengganti baterai V Melakukan perbaikan ringan pada rangkaian/sistem V kelistrikan Memperbaiki sistem kelistrikan V Memperbaiki instrumen dan sistem peringatan V Memperbaiki sistem starter V Memperbaiki sistem pengisian V Memasang, menguji dan memperbaiki sistem penerangan dan wiring Memperbaiki sistem pengapian V Memasang, menguji dan memperbaiki sistem pengaman kelistrikan V berikut komponennya Memelihara dan memperbaiki sistem manajemen engine Memelihara dan memperbaiki Sistem penggerak kontrol elektronik MAS TER V V V SIFAT INTI INTI INTI INTI INTI INTI INTI INTI INTI PILIH AN PILIH AN

42 Pendahuluan 17 d. Kompetensi Kelompok Chasis Dan Suspensi Tabel 4. Kompetensi kelompok chasis dan suspensi UNIT-UNIT KOMPETENSI YUNI SENI Kode MAS KELOMPOK CHASIS & OR OR OPSM-30 TER SUSPENSION SIFAT 001A Memelihara sistem rem V INTI Merakit dan memasang 002A sistem rem berikut komponenkomponennya V INTI 003A Memperbaiki sistem rem V INTI 004A Memeriksa sistem kemudi V INTI 005A Memperbaiki sistem kemudi V INTI 006A Memeriksa sistem suspensi V INTI 007A Memperbaiki sistem suspensi V INTI 008A Memelihara sistem suspensi V INTI 009A Melepas, memasang, dan menyetel roda V INTI 010A Membongkar, memperbaiki dan memasang ban dalam dan ban luar V INTI 011A Memperbaiki dan mengganti rangka sepeda motor V PILIH AN 012A Memelihara rantai/chain V INTI 013A Mengganti rantai/chain V INTI C. KOMPONEN UTAMA SEPEDA MOTOR Sepeda motor terdiri dari beberapa komponen dasar. Bagaikan kita manusia, kita terdiri atas beberapa bagian, antara lain bagian rangka, pencernaan, pengatur siskulasi darah, panca indera dan lain sebagainya. Maka sepeda motorpun juga seperti itu, ada bagian-bagian yang

43 Pendahuluan 18 membangunnya sehingga ia menjadi sebuah sepeda motor. Secara kelompok besar maka komponen dasar sepeda motor terbagi atas: 1. Sistem mesin 2. Sistem kelistrikan 3. Rangka/chassis Masing-masing komponen dasar tersebut terbagi lagi menjadi beberapa bagian pengelompokkan kearah penggunaan, perawatan dan pemeliharaan yang lebih khusus yaitu: Sistem Mesin Terdiri atas : a. Sistem tenaga mesin Sebagai sumber tenaga penggerak untuk berkendaraan, terdiri dari bagian: - Mesin/engine - Sistem bahan bakar - Sistem pelumasan - Sistem pembuangan - Sistem pendinginan Fuel injector Fuel rail Air injector Cylinder head Oil pump Fuel pump Air pump Magnetic pick up Air pump cam Gambar 1.1 Pemasangan perkakas yang lengkap pada sepeda motor

44 Pendahuluan 19 b. sistem transmisi penggerak merupakan rangkaian transmisi dan tenaga mesin ke roda belakang, berupa: - Mekanisme kopling - Mekanisme gear - Transmisi - Mekanisme starter Sistem Kelistrikan Mekanisme kelistrikan dipakai untuk menghasilkan daya pembakaran untuk proses kerja mesin dan sinyal untuk menunjang keamanan berkendaraan. Jadi semua komponen yang berhubungan langsung dengan energi listrik dikelompokkan menjadi bagian kelistrikan. Bagian kelistrikan terbagi menjadi: - Kelompok pengapian - Kelompok pengisian - Kelompok beban Rangka/Chassis Terdiri dari beberapa komponen untuk menunjang agar sepeda motor dapat berjalan dan berbelok. Komponennya adalah: - Rangka - Kelompok kemudi - Kelompok suspensi - Kelompok roda - Kelompok rem - Tangki bahan bakar - Tempat duduk - Fender D. APLIKASI ILMU FISIKA DALAM MEMPELAJARI SEPEDA MOTOR Mempelajari sepeda motor juga memerlukan perhitungan fisika, beberapa besaran ukuran dipakai di bidang ini. Perhitungan fisika diperlukan untuk mengetahui; kapasitas mesin, volume silinder, perbandingan kompresi, kecepatan piston, torsi, tenaga, korelasi antara mesin dan kecepatan motor pada tiap posisi gigi dan daya dorong roda belakang dari sepeda motor, dll.

45 Pendahuluan 20 Kapasitas Mesin Kapasitas mesin ditunjukkan oleh volume yang terbentuk pada saat piston bergerak keatas dari TMB ke TMA, disebut juga sebagai volume langkah. Volume langkah dihitung dalam satuan cc (cm 3 ). Rumus untuk menghitungnya adalah: Volume langkah = luas lingkaran silinder x panjang langkah = π r 2 x S = π ( 2 1 D) 2 x S = 4 π.d 2.S cc Keterangan: V langkah = Volume langkah (cc) π = Pi = 7 22 = 3,14 D = diameter silinder (mm) S = langkah piston (mm) Contoh soal: Brosur motor Suzuki Smash memuat data diameter silindernya 53,5 mm dengan langkah piston 48,8 mm, tentukan volume langkahnya. Penyelesaian: Diketahui : D = 53,5 mm S = 48,8 mm π = 3,14 Ditanya Volume langkah adalah...? Jawab: π V langkah =. D 2. S 4 V langkah = 0,785x(53,5mm) 2 x48,8mm = ,9619mm 3 = 109,7cm 3 = 110 cc Jadi volume langkah dari motor Suzuki Smash tersebut adalah 109, 7 cc dibulatkan menjadi 110 cc.

46 Pendahuluan 21 Volume Ruang Bakar Volume ruang bakar adalah volume dari ruangan yang terbentuk antara kepala silinder dan kepala piston yang mencapai TMA. Dilambangkan dengan V c (Volume compressi) Volume Silinder Volume silinder adalah jumlah total dari pertambahan antara volume langkah dengan volume ruang bakar. Rumusnya: V s = V l + V c Keterangan: V s = Volume silinder (cc) V l = Volume langkah (cc) V c = Volume ruang bakar (cc) Perbandingan Kompresi Perbandingan kompresi adalah perbandingan volume silinder dengan volume kompresinya. Perbandingan kompresi berkaitan dengan volume langkah. Bila dinyatakan dalam suatu rumus maka: Vs + Vc E= Vc dimana: E = perbandingan kompresi Vs = volume silinder Vc = Volume ruang bakar Besarnya perbandingan kompresi untuk sepeda motor jenis touring berkisar antara 8 : 1 dan 9 : 1. ini artinya selama lankgah kompresi muatan yang ada di atas piston dimampatkan 8 kali lipat dari volume terakhirnya. Makin tinggi perbandingan kompresi, maka makin tinggi tekanan dan temperatur akhir kompresi.

47 Pendahuluan 22 Efisiensi Bahan Bakar dan Efisiensi Panas Nilai kalor (panas) bahan bakar perlu kita ketahui, agar neraca kalor dari motor dapat dibuat. Efisiensi atau tidak kerjanya suatu motor, ditinjau atas dasar nilai kalor bahan bakarnya. Nilai kalor mempunyai hubungan dengan berat jenis. Pada umumnya makin tinggi berat jenis maka makin rendah nilai kalornya. Pembakaran dapat berlangsung dengan sempurna, tetapi juga dapat tidak sempurna. Pembakaran yang kurang sempurna dapat berakibat: 1. Kerugian panas dalam motor menjadi besar, sehingga efisiensi motor menjadi turun, usaha dari motor menjadi turun pula pada penggunaan bahan bakar yang tetap. 2. Sisa pembakaran dapat menyebabkan pegas-pegas piston melekat pada alurnya, sehingga ia tidak berfungsi lagi sebagai pegas torak. 3. Sisa pembakaran dapat pula melekat pada lubang pembuangan antara katup dan dudukannya, terutama pada katup buang, sehingga katup tidak dapat menutup dengan rapat. 4. Sisa pembakaran yang telah menjadi keras yang melekat antara piston dan dinding silinder, menghalangi pelumasan, sehingga piston dan silinder mudah aus. Efisiensi bahan bakar dan efisiensi panas sangat menentukan bagi efisiensi motor itu sendiri. Masing-masing motor mempunyai efisiensi yang berbeda. Kecepatan Piston Sewaktu mesin berputar, kecepatan Piston di TMA dan TMB adalah nol dan pada bagian tengah lebih cepat, oleh karenanya kecepatan piston diambil rata - rata. Dengan rumus sbb : 2LN LN V= = V = Kecepatan Piston rata-rata L = Langkah (m). N = Putaran mesin (rpm).

48 Pendahuluan 23 Dari TMB, piston akan bergerak kembali keatas karena putaran poros engkol, dengan demikian pada 2x gerakan piston, akan menghasilkan 1 putaran poros engkol, jika poros engkol membuat N putaran, maka piston bergerak 2LN. Karena dinyatakan dalam detik maka dibagi 60. Torsi Gaya tekan putar pada bagian yang berputar disebut Torsi, sepeda motor digerakan oleh torsi dari crankshaft Torsi = gaya x jarak Makin banyak jumlah gigi pada roda gigi, makin besar torsi yang terjadi. Sehingga kecepatan direduksi menjadi separuhnya. Keadaan Didalam Mesin F Panjang dari pemutaran (r) adalah disamakan dengan jarak dari crakkshaft ke crank pin, ini berarti separuh dari langkah piston. Gaya (F) yang dikerjakan pada pemutar disamakan dengan tekanan kompresi yang dihasilkan oleh gas hasil pembakaran yang akan mendorong piston kebawah, oleh karena itu torsi (T) berubah sesuai dengan besarnya gaya (F) selama r tetap. Besarnya gaya F, berubah sesuai dengan perubahan kecepatan mesin ini berarti dipengaruhi oleh efisiensi pembakaran, demikian juga T juga ikut berubah. Pada kecepatan specifik torsi menjadi maximum. Ini disebut torsi maximum. Tapi kenaikan kecepatan mesin selanjutnya tidak akan menaikan torsi.

49 Pendahuluan 24 Torsi Maksimum Besarnya Torsi maksimum setiap sepeda motor berbeda-beda. Ketika sepeda motor bekerja dengan torsi maximum, gaya gerak roda belakang juga maximum. Semakin besar torsinya, semakin besar tenaga sepeda motor tersebut. Besarnya torsi biasanya dicantumkan dalam data spesifikasi teknik, buku pedoman servis atau dalam brosur pemasaran suatu produk motor. Tenaga (Horse Power) Kerja rata-rata diukur berdasarkan tenaga akhir (Torsi dari crank saft menggerakan sepda motor, tapi ini hanya gaya untuk menggerakan sepeda motor dan kecepatan yang menggerakan sepeda motor tidak diperhitungkan. Tenaga adalah kecepatan yang menimbulkan kerja). ker ja Tenaga = = Kg.m/sec. (kerja perdetik) waktu Satuan tenaga PS (Prerd strarke in Jerman) 1 PS - 75 Kg m/sec adalah tenaga untuk menggerakan obyek seberat 75 Kg sejauh 1 m dalam 1 secon (makin besar tenaga makin besar jurnlah kerja persatuan waktu). Perhitungan tenaga crankshaft Untuk menghitung berapa kali pena engkol berputar bergerak oleh gaya specifik persatuan waktu (detik) Kerja (Q)= Gaya (F) x jarak (r) Torsi (T)= Gaya (F) x jarak (r) Gaya (F)= Torsi (T) : jarak (r) Jarak (r) yang ditempuh oleh perputaran crank pin permenit =2π.rN ker ja Tenaga = = Kg.m/sec. (kerja perdetik) waktu

50 Pendahuluan 25 Q= F.S T = x 2π.rN r = 2π.N T Tenaga (PS) 2π.N T = 60x75 NT = 716 = 0, 0014NT (satuan kerja) Hubungan antara putaran mesin dan horsepower (Tenaga) Tenaga mesin berubah-ubah tergantung dari torsi dan kecepatan putar mesin. Mesin dengan putaran tinggi, biasanya tenaga yang dihasilkan juga besar tapi jika putaran terlalu tinggi tenaga yang dihasilkan akan menurun. Jika pada putaran tertentu tenaga maksimum di hasilkan, maka hal itu disebut "Maksimum power". Keterangan SI (satuan) Isi atau kapasitas mesin 1 L (1,000 cm 3 ) Tekanan 1 kpa (0,01Kg/cm 2 ) Tenaga 1 kw (1.360 PS) Torsi 1 Nm (0,1 Kg.m) Performance Curves (Diagram Kemampuan mesin) Diagram Kemampuan mesin terdiri dari Engine performa diagram dan ring performa. Engine performa diagram, merupakan indikasi tenaga mesin, torsi, dan pemakaian bahan bakar yang dilihat dari putaran mesin. Dengan kata lain pada Run ring performance curva diagram" diperlihatkan hubungan antara posisi Gear putaran mesin, Tenaga roda belakang dan hambatan pada saat berjalan dari saat sepeda motor berjalan. Dengan membaca performance curva, dapat dilihat kemampuan dan kelebihan suatu sepeda motor.

51 Pendahuluan 26 Gambar 1.2 Diagram kemampuan mesin

52 Pendahuluan 27 Karakter Dari Mesin Tenaga mesin dan kurva torsinya menggambarkan karakteristik mesin. Ketika putaran mesin berada dalam range yang powernya maksimum dan kurva torsinya lebar, dan terjadi pada putaran mesin yang rendah, mesin ini bertipe mesin-mesin putaran rendah. dan sangat bertenaga pada putaran menengah, singkatnya mesin ini cocok untuk kendaraan jalan raya. Dan jika puncak kurva torsinya lebih sempit dan terjadi saat putaran yang lebih tinggi, mesin ini bertipe mesin putaran tinggi dan sangat cocok untuk mesin motor sport/balap. Secara umum, jika mesin dengan kurva torsi yang lebih tinggi dan yang lebih rendahnya terjadi pada putaran normal/midle mudah dalam penggunaannya. Sebaliknya, jika ada perbedaan yang cukup besar torsinya dalam putaran mesinnya atau jika torsi max-nya terjadi pada putaran tinggi, akan lebih sulit dalam penggunaannya/pengoperas iannya. Gambar 1.3 Diagram karakter mesin Contoh : dalam kurva torsi diatas, saat YB 50 dan RZ 50 dibandingkan, YB 50 menunjukkanperforma yang lebih baik saat putaran dibawah 6500 rpm dan kurva itu bagus untuk penggunaan umum.

53 Pendahuluan 28 Konsumsi Bahan Bakar Spesifik Konsumsi bahan bakar spesifik dan konsumsi bahan-bakar yang menunjukan berapa banyak kilometer yang dapat ditempuh oleh motor dengan 1 liter bensin. Dalam konsumsi bahan-bakar spesifik yang ditunjukkan adalah berapa gram dari bahan-bakar yang digunakan HP /jam secara umum efisiensi mesin tertinggi (konsumsi bahan-bakar spesifik terendah) terjadi dimana kurva power dan kurva torsinya samasama paling tinggi. Diagram Performa Mesin Saat Berjalan Garis vertikal menunjukan tenaga putaran pada roda belakang, hambatan, beban putaran, putaran mesin (rpm) dan garis horisontal kecepatan motor (km/jam) bersuian juga dengan posisi gigi transmisinya. Dari diagram disebelah ini, dapat dilihat hubungan antara putaran mesin dan kecepatan motor untuk tiap-tiap posisi gigi transmisi, antara putaran mesin dengan daya putaran roda belakang. Daya putaran roda belakang adalah daya yang dibutuhkan untuk menaiki tanjakan/daya tanjakan maksimum dan kecepatan maksimum pada tiap-tiap posisi gigi. Gambar 1.4 Diagram performa mesin saat berjalan Korelasi Antara Mesin dan Kecepatan Motor Pada Tiap Posisi Gigi Korelasi ini bisa dikualifikasikan dengan menyetahui reduksi ratio tiap giginya dan diameter roda belakang (diameter efektif ban/tire effective diameter) V (km/h) = 60xnxDxN 1,000xi D = tire effective diameter (m) N = engine speed (rpm) i = total reduction at each gear

54 Pendahuluan 29 Jika putaran mesin motor sekitar 400 rpm, kecepatan motor akan berkisar 10 km/h pada gigi 1, pada gigi 2 sekitar 17 km/h, pada gigi 3 sekitar 25 km/h dan pada gigi 4 sekitar 30 km/h. Jika putaran mesin ditambahkan 1000 rpm lagi menjadi 5000 rpm, tenaga dan torsi mesin juga meningkat, yang rnemungkinkan motor dapat menanjak/mendaki dan menghasilkan tenaga yang diperlukan. Kecepatan maksimum praktis mesin adalah kecepatan yang dihasilkan ditiap posisi gigi. Pada motor YB 50 putaran mesin maksimum 7000 rpm. Kecepatan motor akan berkurang secara perlahan setelah melewati putaran 7000 rpm yang mengindikasikan putaran maksimumnya. Tetapi, ketika putaran mesin dinaikkan menjadi 8000 hingga 9000 rpm, kecepatan motor juga menunjukkan peningkatan, tetapi daya dorohg roda belakang berkurang bertahap dan sebenarnya kecepatannya tidak meningkat pada keadaan tersebut. Karena itu, pada pengetesan performa akselerasi mesin, putaran mesin dinaikkan pada nilai maksimumnya 7000 rpm pada gigi 4. Menaikkan putaran mesin sampai daya dorong roda belakang berkurang bertahap disebut "over revolution" dan dapat memperpendek umur mesin. Pada tachometer terdapat daerah peringatan untuk overreving ini. Daya Dorong Roda Belakang Dan Tahanan Pada Saat Berjalan Daya dorong roda belakang sama dengan gaya tarik-menarik roda belakang. Motor dapat maju kedepan, dengan adanya gaya tarik ini yang melawan gaya tahanan pada saat berjalan. Tahanan pada Saat Berjalan Tahanan adalah total dari hambatan perputaran (hambatan geseknya pada saat ban berputar pada permukaan jalan), hambatan udara (hambatan angin pada saat motor berjalan) dan hambatan menanjak (pada saat mendaki). Hambatan perputaran dihitung dari hambatan gesekan ban, berat motor. Hambatan angin adalah hambatan dari bagian depan motor, kecepatan motor. Hambatan menanjak adalah jumlah dari perhitungan sudut kemiringan jalan dan berat kotor dari motor. Gambar 1.5 Diagram tahanan mesin pada saat berjalan

55 Pendahuluan 30 Daya Dorong Roda Belakang Daya dorong roda belakang adalah dari torsi mesin yang ditingkatkan dengan reduksi giginya, gearbox dan gigi sproket. Yang menyebabkan motor maju kedepan dan melawan gaya tahanan saat berjalan. Gambar 1.6 Diagram dari daya dorong roda belakang Hubungan antara daya dorong roda belakang dan gaya torsi adalah: F(Kg)(N) = Txixu r dimana: r = effective tire radium (m) u = transmission efficiency Dari kurva diagram kurva tenaga, nilai T dihitung "u" (efficiency transmission) tergantung pada posisi gigi, jenis kopling dan faktor lainnya. Contohnya, pada motor YB 50, besarnya "u" adalah 93 % pada gigi 2, 87% pada gigi 3 dan 85% pada gigi 4. Dari rumus diatas diketahui bahwa daya dorong roda belakang paling besar ketika torsi mesin juga

56 Pendahuluan 31 maksimal. Karena itu motor YB 50 mencapai tenaga maksimum daya dorong. Seperti yang ditunjukkan gambar diatas, daya dorong roda belakang dihitung dari torsi putaran crankshaft ditiap giginya dan seluruh ratio deselerasinya. Pada gambar, batas antara garis miring ditiap perubahan giginya (hubungan antara putaran mesin dan kecepatan motor) sehingga pu taran mesinnya pada saat tersebut membentuk garis vertikal pada kurva daya dorong roda belakang ditiap putarannya. Pada kurva berbentuk puncak seperti pada gambar, terlihat garis hambatan jalannya. Kecepatan yang mungkin pada posisi giginya. Dan yang dibawah kurvanya menunjukkan pengendaranya kurang enak, untuk posisi giginya. Contoh, motor dapat menanjak pada gradien 15% pada gigi 3 tetapi tidak dapat menanjak pada gradien lebih dari 25%. Jika diturunkan pada gigi 2, dapat menanjak dengan mudah karena gradien lebih dari 20% pada gigi 2 untuk garis hambatan jalannya. Daya dorong maksimumnya adalah 70 kg saat putaran mesin 6000 rpm (dimana dihasilkan torsi maksimum) dan kecepatannya 15km/h. Pada saat ini dapat menanjak pada gradien 50% (tan 0,5=26,5) atau disebut juga daya tanjak maksimum tetapi dalam penggunaannya, daya tanjaknya ditentukan juga oleh jaraknya terhadap tanjakkan motor dapat menanjak pada kemiringan yang lebih curam, secara umum nilai gradien digunakan jika motor sudah berada pada kemiringannya. Seperti yang terlihat pada katalog, dimana ditentukan juga dari berat motor, koefisien friksi ban dan koefisien friksi jalan. Pada kasus YB50 nilainya =0,32, yaitu 18. Ketika berjalan pada gigi 4, 30 km/h, daya dorong roda belakangnya 17,4 kg, dengan hambatan jalannya pada jalan rata 3,1 kg, selisih excess marginnya mempunyai daya dorong 14,3 kg. Semakin besar excess marginnya semakin besar kemampuan akselerasi dan kemampuan tanjaknya dan akselerasi sangat dipengaruhi oleh sudut pembukaan gasnya. Perbatasan/pertemuan antara kurva hambatan jalan pada jalan datar dengan kurva daya dorong pada top gear (gigi 4 th pada YB50) adalah kecepatan maksimum dari motor, pada YB50 sekitar 74km/h. Semakin curam bentuk kurva daya dorongnya, karakteristik motor lebih sporty/garang dan jika bentuk kurva daya dorongnya semakin rata/flat, karakteristik motornya lebih mudah digunakan.

57 Pendahuluan 32 SOAL- SOAL LATIHAN BAB I A. Keselamatan Kerja 1. Keselamatan kerja merupakan bagian yang sangat penting dipahami dan dilaksanakan secara sungguh-sungguh. a. Jelaskan lima alasan dengan contoh masing-masing mengapa keselamatan kerja penting untuk mencegah terjadinya kecelakaan pada manusia, pada peralatan, dan pada obyek kerja (sepeda motor). b. Bagaimana upaya mencegah terjadinya kecelakaan kerja. c. Bila terjadi kecelakaan pada pekerja, jelaskan prosedur (langkah-langkah) yang harus anda dilakukan. d. Jika terjadi kerusakan pada obyek kerja atau peralatan yang anda pakai, jelaskan prosedur (langkah-langkah) yang harus dilakukan. 2. Beberapa jenis bahan dan unsur kimia merupakan sumber kecelakaan dan bahaya, tetapi diperlukan keberadaannya di bengkel sepeda motor. Jelaskan bagaimana bahan bakar (bensin); oli dan gemuk; karbon monoksida dan arus listrik dapat menimbulkan bahaya di bengkel sepeda motor. B. Pencapaian Kompetensi 3. Setiap siswa sebelum bekerja praktek di bengkel sepeda motor harus lebih dahulu mempelajari teori, prinsip kerja dan prosedur kerja. Jelaskan tiga alasan mengapa hal ini penting dilakukan? 4. Setiap siswa sesungguhnya dapat merasakan sendiri apakah dia sudah mampu melaksanakan atau mencapai kompetensi yang ditetapkan oleh instruktur, sesuai dengan rancangan pembelajaran. Bila anda merasa belum mencapai kompetensi yang dimaksud, apa yang harus anda lakukan? 5. Apapun kompetensi yang harus dicapai oleh siswa, maka sesungguhnya ada lima tahap pekerjaan yang berlaku umum. Jelaskan lima langkah dimaksud dengan mengambil sebuah contoh pekerjaan. C. Aplikasi Fisika dalam Teknologi Sepeda Motor 6. Teknologi Sepeda Motor pada dasarnya merupakan aplikasi (penerapan) ilmu dasar seperti Fisika dan Kimia. Jelaskan dua contoh, bagaimana peran Fisika dan Kimia dalam Teknologi Sepeda Motor. 7. Apakah yang terjadi bila seorang pekerja sepeda motor buta terhadap ilmu dasar Fisika dan Kimia.

58 Mesin dan Komponen Utama 33 BAB II MESIN DAN KOMPONEN UTAMA A. PENDAHULUAN Sepeda motor, seperti juga mobil dan pesawat tenaga lainnya, memerlukan daya untuk bergerak, melawan hambatan udara, gesekan ban dan hambatan-hambatan lainnya. Untuk memungkinkan sebuah sepeda motor yang kita kendarai bergerak dan melaju di jalan raya, roda sepeda motor tersebut harus mempunyai daya untuk bergerak dan untuk mengendarainya diperlukan mesin. Gambar 2.1 Sepeda motor yang melaju di landasan pacu (lap) Mesin merupakan alat untuk membangkitkan tenaga, ia disebut sebagai penggerak utama. Jadi mesin disini berfungsi merubah energi panas dari ruang pembakaran ke energi mekanis dalam bentuk tenaga putar. Tenaga atau daya untuk menggerakkan kendaraan tersebut diperoleh dari panas hasil pembakaran bahan bakar. Jadi panas yang timbul karena adanya pembakaran itulah yang dipergunakan untuk

59 Mesin dan Komponen Utama 34 menggerakkan kendaraan, dengan kata lain tekanan gas yang terbakar akan menimbulkan gerakan putaran pada sumbu engkol dari mesin. B. KOMPONEN UTAMA PADA MESIN SEPEDA MOTOR Komponen utama pada mesin sepeda motor yaitu: 1. Kepala silinder (cylinder head) 2. Blok silinder mesin (cylinder block) 3. Bak engkol mesin (crankcase) Jadi, tiga bagian utama tersebut merupakan tulang punggung bagi kendaraan bermotor roda dua. Gambar 2.2 Mesin sepeda motor empat dan dua langkah

60 Mesin dan Komponen Utama 35 Pada tahap pertama mempelajari mesin secara teori maupun praktek, terlebih dahulu diperlukan pengetahuan tentang nama-nama, lokasi dan fungsi dari komponen-komponennya. 1. Kepala Silinder (Cylinder Head). Bagian paling atas dari kontruksi mesin sepeda motor adalah kepala silinder. Kepala silinder berfungsi sebagai penutup lubang silinder pada blok silinder dan tempat dudukan busi. Gambar 2.3 Kepala silinder dan kelengkapannya Kepala silinder bertumpu pada bagian atas blok silinder. Titik tumpunya disekat dengan gasket (paking) untuk menjaga agar tidak terjadi kebocoran kompresi, disamping itu agar permukaan metal kepala silinder dan permukaan bagian atas blok silinder tidak rusak. Kepala silinder biasanya dibuat dari bahan Aluminium campuran, supaya tahan karat juga tahan pada suhu tinggi serta ringan. Biasanya bagian luar kontruksi kepala silinder bersirip, ini untuk membantu melepaskan panas pada mesin berpendingin udara. 2. Blok Silinder Mesin Silinder liner dan blok silinder merupakan dua bagian yang melekat satu sama lain. Daya sebuah motor biasanya dinyatakan oleh besarnya isi silinder suatu motor. Silinder liner terpasang erat pada blok, dan bahannya tidak sama. Silinder liner dibuat dari bahan yang tahan terhadap gesekan dan panas, sedangkan blok dibuat dari besi tuang

61 Mesin dan Komponen Utama 36 yang tahan panas. Pada mulanya, ada yang merancang menjadi satu, sekarang sudah jarang ada. Sekarang dibuat terpisah berarti silinder liner dapat diganti bila keausannya sudah berlebihan. Bahannya dibuat dari besi tuang kelabu. Untuk motor-motor yang ringan seperti pada sepeda motor bahan ini dicampur dengan alumunium. Bahan blok dipilih agar memenuhi syarat-syarat pemakaian yaitu: Tahan terhadap suhu yang tinggi, dapat menghantarkan panas dengan baik, dan tahan terhadap gesekan. Gambar 2.4 Blok Silinder Blok silinder merupakan tempat bergerak piston. Tempat piston berada tepat di tengah blok silinder. Silinder liner piston ini dilapisi bahan khusus agar tidak cepat aus akibat gesekan. Meskipun telah mendapat pelumasan yang mencukupi tetapi keausan lubang silinder tetap tak dapat dihindari. Karenanya dalam jangka waktu yang lama keausan tersebut pasti terjadi. Keausan lubang silinder bisa saja terjadi secara tidak merata sehingga dapat berupa keovalan atau ketirusan. Masing-masing kerusakan tersebut harus diketahui untuk menentukan langkah perbaikannya. Cara mengukur keausan silinder: 1. Lepaskan blok silinder 2. Lepaskan piston

62 Mesin dan Komponen Utama Ukur diameter lubang silinder dengan dial indikator bagian yang diukur bagian atas, tengah dan bawah dari lubang silinder. Pengukuran dilakukan dua kali pada posisi menyilang. 4. Hitung besarnya keovalan dan ketirusan. Bandingkan dengan ketentuan pada buku manual servisnya. Jika besarnya keovalan dan ketirusan melebihi batas-batas yang diijinkan lubang silinder harus diover size. Tahapan over size adalah 0,25 mm, 0,50 mm, 0,75 mm dan 1,00 mm. Over size pertama seharusnya 0,25 mm dengan keausan di bawah 0,25 mm dan seterusnya. Jika silinder sudah tidak mungkin di over size maka penyelesaiannya adalah dengan diganti pelapis silindernya. Keovalan adalah: A 1 -A 2 B 1 -B 2 C 1 -C 2 Ketirusan adalah: A 1 -B 1 A 2 -B 2 B 1 -C 1 B 2 -C 2 Mengukur diameter boring 1. Dial indikator D1, D2 = Diameter boring atas D3, D4 = Diameter boring D5, D6 = Diameter boring bawah Gambar 2.5 Mengukur diameter boring

63 Mesin dan Komponen Utama 38 Tabel 1. Perbedaan kontruksi kepala silinder dan blok silinder dari mesin dua langkah dan empat langkah Nama Bagian Komponen Dan Kontruksi Mesin Komponen Dan Kontruksi Mesin dua empat langkah langkah Katup Ruang bakar Poros pengungkit (cam) atau nokn As Dudukan busi Ruang bakar Dudukan busi Lubang masuk (inlet port) Lubang pembuangan (exhaust port) Kepala Silinder Ruang silinder Lubang saluran minyak pelumas Lubang rantai penghubung Lubang silinder Lubang masuk (inlet port) Lubang pembilasan (transfer port) Lubang pembuangan (exhaust port) Baut Blok Silinder Saluran masuk Mur Saluran gas buang Blok silinder mesin 2 langkah Kontruksi luar blok silinder dibuat seperti sirip, ini untuk melepaskan panas akibat kerja mesin. Dengan adanya sirip-sirip tersebut, akan terjadi pendinginan terhadap mesin karena udara bisa mengalir diantara sirip-sirip. Sirip juga memperluas bidang pendinginan, sehingga penyerapan panas lebih besar dan suhu motor tidak terlampau tinggi dan sesuai dengan temperatur kerja. Persyaratan silinder yang baik adalah lobangnya bulat dan licin dari bawah ke atas, setiap dinding-dindingnya tidak terdapat goresan yang biasanya timbul dari pegas ring, pistonnya tidak longgar (tidak melebihi apa yang telah ditentukan), tidak retak ataupun pecah-pecah.

64 Mesin dan Komponen Utama 39 Perbedaan kontruksi dan komponen kepala silinder dan blok silinder mesin empat langkah dan mesin dua langkah ditunjukkan oleh tabel satu (tabel 1) Ket: Lubang silinder adalah ruang tempat piston bergerak. Lubang pengisian (inlet port) adalah saluran bahan bakar dari karburator menuju poros engkol dibawah piston. Lubang pembilasan (transfer port) adalah tempat masuk bahan bakar menuju ruang silinder di atas kepala piston Lubang pembuangan (exhaust port) adalah lubang atau saluran untuk membuang gas sisa atau bekas pembakaran Piston Piston mempunyai bentuk seperti silinder. Bekerja dan bergerak secara translasi (gerak bolak-balik) di dalam silinder. Piston merupakan sumbu geser yang terpasang presisi di dalam sebuah silinder. Dengan tujuan, baik untuk mengubah volume dari tabung, menekan fluida dalam silinder, membuka-tutup jalur aliran atau pun kombinasi semua itu. Piston terdorong sebagai akibat dari ekspansi tekanan sebagai hasil pembakaran. Piston selalu menerima temperatur dan tekanan yang tinggi, bergerak dengan kecepatan tinggi dan terus menerus. Gerakan langkah piston bisa 2400 kali atau lebih setiap menit. Jadi setiap detik piston bergerak 40 kali atau lebih di dalam silindernya. Temperatur yang diterima oleh piston berbeda-beda dan pengaruh panas juga berbeda dari permukaan ke permukaan lainnya. Sesungguhnya yang terjadi adalah pemuaian udara panas sehingga tekanan tersebut mengandung tenaga yang sangat besar. Piston bergerak dari TMA ke TMB sebagai gerak lurus. Selanjutnya, piston kembali ke TMA membuang gas bekas. Gerakan turun naik piston ini berlangsung sangat cepat melayani proses motor yang terdiri dari langkah pengisian, kompresi, usaha dan pembuangan gas bekas. Gambar 2.6 Piston

65 Mesin dan Komponen Utama 40 Bagian atas piston pada mulanya dibuat rata. Namun, untuk meningkatkan efisiensi motor, terutama pada mesin dua langkah, permukaan piston dibuat cembung simetris dan cembung tetapi tidak simetris. Bentuk permukaan yang cembung gunanya untuk menyempurnakan pembilasan campuran udara bahan bakar. Sekaligus, permukaan atas piston juga dirancang untuk melancarkan pembuangan gas sisa pembakaran. Gambar 2.7 Macam-macam bentuk kepala piston Piston dibuat dari campuran aluminium karena bahan ini dianggap ringan tetapi cukup memenuhi syarat-syarat : 1. Tahan terhadap temperatur tinggi. 2. Sanggup menahan tekanan yang bekerja padanya. 3. Mudah menghantarkan panas pada bagian sekitarnya 4. Ringan dan kuat. Piston terdiri dari piston, ring piston dan batang piston. Setiap piston dilengkapi lebih dari satu buah ring piston. Ring tersebut terpasang longgar pada alur ring. ring piston dibedakan atas dua macam yaitu: 1. Ring Kompresi, jumlahnya satu, atau dua dan untuk motor-motor yang lebih besar lebih dari dua. Fungsinya untuk merapatkan antara piston dengan dinding silinder sehingga tidak terjadi kebocoran pada waktu kompresi. 2. Ring oli, dipasang pada deretan bagian bawah dan bentuknya sedemikian rupa sehingga dengan mudah membawa minyak pelumas untuk melumasi dinding silinder

66 Mesin dan Komponen Utama 41 Ring piston mesin dua langkah sedikit berbeda dangan ring piston mesin empat langkah. Ring piston mesin dua langkah biasanya hanya 2 buah, yang keduanya berfungsi sebagai ring kompresi. Pemasangan ring piston dapat dilakukan tanpa alat bantu tetapi harus hati-hati karena ring piston mudah patah. Kerusakan-kerusakan yang terjadi pada ring piston dua langkah dapat berakibat: 1. Dinding silinder bagian dalam cepat aus 2. Mesin tidak stasioner 3. Suara mesin pincang 4. Tenaga mesin kurang 5. Mesin sulit dihidupkan 6. Kompresi mesin lemah Cincin piston Gambar 2.8 Rangkaian piston

67 Mesin dan Komponen Utama 42 Pada motor dua langkah pemasangan ring piston harus tepat pada spi yang terdapat pada alur ring piston. Spi pada ring piston harus masuk pada lekukan di dalam alur pistonnya. Spi (pen) tersebut berfungsi untuk mengunci ring piston agar tidak mudah bergeser ke kiri atau ke kanan. Berbeda dengan ring piston mesin empat langkah di mana ring tidak dikunci dengan spi. Bergesernya ring piston mesin empat langkah tidak begitu berbahaya tetapi pada mesin dua langkah ring dapat menyangkut di lubang bilas atau lubang buang sehingga ring dapat patah. Sebelum piston dipasang ke dalam silinder, ring piston harus dipasang terlebih dahulu. Pemasangan ring piston yang baik dan benar adalah dengan memperhatikan tanda-tanda yang ada. Ring piston pertama harus dipasang di bagian paling atas. Biasanya pada permukaan ring piston sudah ada nomornya. Tulisan dan angka pada permukaan ring piston harus ada di bagian atas atau dapat dibaca dari atas. Hal lain yang perlu diperhatikan adalah penempatan sambungan ring pistonnya. Sambungan ring piston (celah) tidak boleh segaris, artinya jika ada tiga ring piston maka jarak antar sambungan ring piston harus sama yaitu jika ada dua ring piston jarak antar sambungannya adalah Di samping itu sambungan ring piston tidak boleh segaris dengan pena pistonnya. Kesemua ini untuk mencegah kebocoran kompresi. Untuk pemasangan ring piston sepeda motor dua langkah, spi pada ring piston harus masuk pada lekukan di dalam alur pistonnya. Ring piston dipasang pada piston untuk menyekat gas diatas piston agar proses kompresi dan ekspansi dapat berlangsung dengan sebaik-baiknya, karena saat proses tersebut ruang silinder di atas piston harus betul-betul tertutup rapat, ring piston ini juga membantu mendinginkan piston, dengan cara menyalurkan sejumlah panas dari piston ke dinding silinder. Fungsi ring piston adalah untuk mempertahankan kerapatan antara piston dengan dinding silinder agar tidak ada kebocoran gas dari ruang bakar ke dalam bak mesin. Oleh karena itu, ring piston harus mempunyai kepegasan yang yang kuat dalam penekanan ke dinding silinder. Piston bersama-sama dengan ring piston berfungsi sebagai berikut: 1. Mengisap dan mengkompresi muatan segar di dalam silinder 2. Mengubah tenaga gas (selama ekspansi) menjadi usaha mekanis 3. Menyekat hubungan gas di atas dan dan di bawah piston Pada pemasangan piston kita mengenal adanya pena piston. Pena piston berfungsi untuk mengikat piston terhadap batang piston. Selain itu, pena piston juga berfungsi sebagai pemindah tenaga dari piston ke batang piston agar gerak bolak-balik dari piston dapat diubah menjadi gerak berputar pada poros engkol. Walaupun ringan bentuknya

68 Mesin dan Komponen Utama 43 tetapi pena piston dibuat dari bahan baja paduan yang bermutu tinggi agar tahan terhadap beban yang sangat besar. Bagian lain dari piston yaitu batang piston sering juga disebut dengan setang piston, ia berfungsi menghubungkan piston dengan poros engkol. Jadi batang piston meneruskan gerakan piston ke poros engkol. Dimana gerak bolak-balik piston dalam ruang silinder diteruskan oleh batang piston menjadi gerak putaran (rotary) pada poros engkol. Ini berarti jika piston bergerak naik turun, poros engkol akan berputar. Ujung sebelah atas di mana ada pena piston dinamakan ujung kecil batang piston dan ujung bagian bawahnya disebut ujung besar. Di ujung kecil batang piston ada yang dilengkapi dengan memakai bantalan peluru dan dilengkapi lagi dengan logam perunggu atau bush boaring (namanya dalam istilah di toko penjualan komponen kendaraan bermotor). Ujung besarnya dihubungkan dengan penyeimbang poros engkol melalui king pin dan bantalan peluru. Pada umumnya panjang batang penggerak kira-kira sebesar dua kali langkah gerak torak. Batang piston dibuat dari bahan baja atau besi tuang. Piston pada sepeda motor dibedakan menjadi dua macam yaitu piston untuk sepeda motor empat langkah dan piston untuk sepeda motor dua langkah. Secara umum kedua bentuk piston tersebut tidak sama. Piston sepeda motor empat langkah mempunyai alur untuk ring oli sehingga jumlah alurnya tiga buah atau lebih. Pada alur ring piston sepeda motor empat langkah tidak ada Lekukan. Untuk lebih jelasnya kita lihat gambar piston dan komponen lainnya dari mesin empat langkah berikut ini: Gambar 2.9 Komponen dari mesin empat langkah, DOHC piston engine. (E) Exhaust camshaft, (I) Intake camshaft, (S) busi, (V) Valves (katup), (P) Piston, (R) Coneccting rod, (C) Crankshaft, (W) selubung air untuk arus pendingin.

69 Mesin dan Komponen Utama 44 Piston untuk sepeda motor dua langkah biasanya tidak mepunyai alur untuk ring oli sehingga jumlah alur pada piston sepeda motor dua langkah biasanya hanya dua. pada sisi piston di dalam alurnya terdapat lekukan untuk menjamin agar ring piston tidak bergeser memutar setelah dipasang. Piston dua langkah berlubang pada sisinya. Fungsi lubang tersebut untuk mengalirkan gas baru ke dalam ruang engkol. Piston yang digunakan untuk keperluan sepeda motor berbeda dengan yang digunakan untuk kendaraan roda empat. Piston untuk sepeda motor mempunyai ukuran khusus yang sudah ditentukan, ukuran piston disebut STD (standar) merupakan ukuran yang pokok dari pabrik pembuatnya, merupakan ukuran yang masih asli dan belum pernah mengalami perubahan. Jadi dilihat dari ukurannya maka ada dua ukuran piston yaitu ukuran standard dan ukuran piston over size. Piston standar digunakan pada silinder mesin standard sedangkan piston over size digunakan pada silinder yang sudah over size. Yang dimaksud dengan over size adalah perluasan diameter silinder. Diperluasnya diameter silinder tersebut karena keausan dinding silinder. Ukuran-ukuran piston untuk keperluan sepeda motor antara lain adalah: - + STD = Piston yang masih asli/baru - Ukuran + 0,25 mm = Piston over size 25 - Ukuran 0,25 mm - Ukuran 0,50 mm - Ukuran 0,75 mm - Ukuran 1,0 mm Pemasangan piston ke dalam silindernya harus memperhatikan tanda-tanda yang ada. Tanda yang ada biasanya berupa anak panah. Anak panah tersebut harus menghadap ke saluran buang (knalpot), jika pemasangan piston terbalik maka akibatnya sangat fatal yaitu keausan yang terjadi antara dinding silinder dengan sisi pistonnya menjadi sangat besar. Tanda lain yang harus diperhatikan adalah apabila kita hendak mengganti piston, jika pada permukaan kepala piston tertulis angka tertentu, angka tersebut menunjukkan bahwa diameter silinder sepeda motor sudah mengalami over size. Piston pengganti harus sesuai dengan ukuran silindernya atau sama dengan piston yang diganti. Dalam perawatannya piston perlu di servis, tahapan perlakuannnya adalah: 1. Piston dilepaskan dari dudukannya 2. Rendam piston dalam cairan pembersih bersama-sama dengan batang piston, lalu keringkan. 3. Bersihkan kotoran arang pada alur ring piston. 4. Amati alur ring piston kemungkinan aus. Keausan terbesar biasanya terjadi pada alur ring kompresi. 5. Periksa kebebasan alur ring piston dengan feeler gauge. Alur ring piston dapat diperbaiki dengan memotong alur lebih besar dan memasang ring baja di sisi atas.

70 Mesin dan Komponen Utama Periksa apakah terjadi keretakan pada piston. Keretakan piston sekecil apapun harus diganti. 7. Lepas pen piston. Sebelum pen piston dilepas beri tanda sehingga mudah dipasang kembali seperti posisi semula. 8. Bila pen piston tipe apungan, lepas ring pengunci sehingga pen mudah dikeluarkan. Hati-hati waktu melepas ring, jangan sampai rusak. Umumnya mesin saat ini menggunakan pen yang dapat bergerak dalam piston dan dipres pada batang piston. 9. Setelah pemeriksaan terhadap pen piston selesai pasang kembali seperti semula. Karena kebebasan pen terhadap pistonnya sangat kecil yaitu antara 0,005 sampai 0,0127 mm untuk piston dari almunium maka perlu pemasangan dengan teliti. Kebebasan pada batang piston yang menggunakan bantalan sedikit lebar besar yaitu sekitar 0,0127 mm. Gerakan Langkah Piston Untuk menjamin agar mesin tetap beroperasi, piston harus selalu bergerak secara berkesinambungan, gerakan piston akan berhenti di TMA (Titik Mati Atas) atau di TMB (Titik Mati Bawah). Kedua titik ini disebut dead center. Ketika piston bergerak keatas, dari TMB ke TMA, atau bergerak turun dari TMA ke TMB, satu kali gerak tunggal dari piston dinamakan langkah, jarak pergerakan piston ini diukur dengan satuan mm. Untuk menghasilkan tenaga yang lebih, dilakukan penelitian terhadap hubungan antara panjang langkah dengan ukuran diameter piston. Susunan dari panjang langkah dan diameter piston ditunjukkan oleh gambar Mesin langkah pendek dapat membuat kecepatan lari lebih tinggi, dan memungkinkan untuk tenaga lebih tinggi juga. Gambar 2.10 Langkah piston dan diameter piston

71 Mesin dan Komponen Utama 46 Gerakan langkah piston dalam ruang silinder merupakan gerakan lurus atau linear. Untuk memanfaatkan gerakan linear itu, maka gerakan tersebut harus diubah menjadi gerakan berputar (rotary). Perubahan itu dilakukan oleh gerakan poros engkol. Pada mesin siklus empat langkah, satu siklus terdiri dari empat kali langkah piston, dua ke atas dan dua kebawah. Siklus ini terjadi selama dua putaran poros engkol. Sedangkan pada mesin dua langkah, satu siklus terdapat dua langkah piston, satu ke atas dan satu ke bawah. Siklus ini terjadi selama satu putaran poros engkol. Katup (Valve) Katup digerakkan oleh mekanisme katup, yang terdiri atas: - Poros cam - Batang penekan - Pegas penutup - Rol baut penyetel Katup hanya terdapat pada motor empat langkah, sedangkan motor dua langkah umumnya tidak memakai katup. Katup pada motor empat langkah terpasang pada kepala silinder. Tugas katup untuk membuka dan menutup ruang bakar. Setiap silinder dilengkapi dengan dua jenis katup (isap dan buang) Pembukaan dan penutupan kedua katup ini diatur dengan sebuah poros yang disebut poros cam (camshaft). Sehingga silinder motor empat langkah memerlukan dua cam, yaitu cam katup masuk dan cam katup buang. Poros cam diputar oleh poros engkol melalui transmisi roda gigi atau rantai. Poros cam berputar dengan kecepatan setengah putaran poros engkol. Jadi, diameter roda gigi pada poros cam adalah dua kali diameter roda gigi pada poros engkol. Sebab itu lintasan pena engkol setengah kali lintasan poros cam. Katup dibuat dari bahan yang keras dan mudah menghantarkan panas. Katup menerima panas dan tekanan yang tinggi dan selalu bergerak naik dan turun, sehingga memerlukan kekuatan yang tinggi. Selain itu hendaknya katup tahan terhadap panas dan gesekan. Fungsi katup sebenarnya untuk memutuskan dan menghubungkan ruang silinder di atas piston dengan udara luar pada saat yang dibutuhkan. Karena proses pembakaran gas dalam silinder mesin harus berlangsung dalam ruang bakar yang tertutup rapat. Jika sampai terjadi kebocoran gas meski sedikit, maka proses pembakaran akan terganggu. Oleh karenanya katup-katup harus tertutup rapat pada saat pembakaran gas berlangsung. Katup masuk dan katup buang berbentuk cendawan (mushroom) dan di sebut poppet valve. Katup masuk menerima panas pembakaran, dengan demikian katup mengalami pemuaian yang tidak merata yang akan berakibat dapat mengurangi efektivitas kerapatan pada dudukan

72 Mesin dan Komponen Utama 47 katup. Untuk meningkatkan efisiensi biasanya lubang pemasukan dibuat sebesar mungkin. Sementara itu katup buang juga menerima tekanan panas, tekanan panas yang diterima lebih tinggi, hal ini akan mengurangi efektivitas kerapatan juga, sehingga akibatnya pada dudukan katup mudah terjadi keausan. Untuk menghindari hal tersebut, kelonggaran (clearence ) antara stem katup dan kepala stem dibuat lebih besar. Untuk membedakan katup masuk dengan katup buang dapat dilihat pada diameter keduanya, diameter katup masuk umumnya lebih besar dari pada katup buang. Dari berbagai penampang katup yang digambarkan mari kita lihat gambar katup pada gambar 2.11 berikut ini, disana diperlihatkan dimana katup terpasang, dan komponen lain yang menyertainya pada pemasangan. Pegas katup Rongga katup Gambar 2.11 Katup dan komponen lain yang menyertainya waktu dipasang

73 Mesin dan Komponen Utama 48 Sebagaimana terlihat pada gambar bagian lain dari katup adalah kepala katup. Kepala katup mempunyai peranan yang sangat penting, karena ia harus tetap bekerja baik, walaupun temperaturnya berubahubah. Bidang atas kepala katup ini disebut tameng. Bentuknya ada yang cekung dan ada yang cembung. Tameng cekung disebut tameng terompet dan biasanya dipakai sebagai katup masuk. Sedangkan tameng cembung dipakai sebagai katup buang karena kekuatannya yang lebih tinggi. Pada katup juga terpasang pegas-pegas. Pegas-pegas katup ditugaskan untuk menutup katup sesuai dengan gerak tuas ungkit menjauhi ujung batang katup. Inovasi Penempatan Katup Berbagai jenis katup dapat pula dibedakan dari cara penempatannya pada kepala silinder. Inovasi mesin sepeda motor dilakukan untuk mengantisipasi kecepatan tinggi, penambahan tenaga output dan upaya konstruksi seringan mungkin. Ada tiga macam inovasi katup dari segi penempatannya, yaitu Katup Samping (Side-Valve), Overhead-Valve (OHV) dan Single Overhead Camshaft (SOHC). Katup samping (SV) merupakan konstruksi yang paling sederhana dan ringan dan mekanis penggeraknya ditempatkan di samping katup. Model ini dianggap yang paling tua dan kurang mampu melayani putaran tinggi. Oleh karena itu, model ini dimodifikasi menjadi model OHV. Katup jenis ini memiliki batang katup yang lebih panjang karena digerakkan oleh poros cam yang terletak sejajar dengan poros engkol. Gerakan poros cam dipandu oleh pipa yang terpasang kuat pada blok silinder. Jenis yang ketiga (SOHC) dirancang untuk membuat komponen sistem katup lebih ringan. Batang katup digerakkan bukan oleh poros cam, yang dianggap membuat komponen lebih berat, tetapi melalui roda gigi. Bahkan, pada inovasi terbaru ada pula yang digerakkan oleh rantai (cam chain). Inovasi terakhir ini disebut Double Overhead Camshft (DOHC). Berikut gambar dari masing-masing inovasi penempatan katup pada sepeda motor:

74 Mesin dan Komponen Utama 49 Gambar 2.12 Penempatan katup disamping SV (side valve) Pada SV atau klep samping, cam dipasang pada poros engkol dan mendorong keatas dan menggerakkan valve. Valve terpasang disamping piston sehingga ruang pembakaran lebih besar. Hal ini memungkinkan untuk hasilkan perbandingan kompresi lebih besar dan mengurangi tenaga mesin. Tipe ini cocok untuk mesin dengan putaran rendah, biasanya dipakai di mesin industri.

75 Mesin dan Komponen Utama 50 Gambar 2.13 Penempatan katup overhead OHV (overhead valve assembly Pada tipe ini posisi klep berada diantara piston dan digerakkan oleh rocker arm. Tipe ini ruang kompresinya lebih kecil, sehingga dapat menghasilkan perbandingan kompresi yang tinggi dan tenaga mesin menjadi lebih besar. Karena dilengkapi dengan batang penekan yang panjang serta adanya rocker arm menyebabkan gerakan balik lebih besar dan juga jarak klep dan cam yang jauh menyebabkan kurang stabilnya ia pada putaran tinggi

76 Mesin dan Komponen Utama 51 SOHC ( single over head camshaft) Pada tipe ini batang penekan tidak ada, sehingga gerakan balik dapat dinetralisir. Posisi cam barada diatas silinder yaitu ditengahnya, cam digerakkan oleh rantai penggerak yang langsung memutar cam sehingga cam menekan rocker arm. Poros cam berfungsi untuk menggerakkan katup masuk (IN) dan katup buang (EX), agar membuka dan menutup sesuai dengan proses yang terjadi dalam ruang bakar mesin. Tipe ini komponennya sedikit sehingga pada putaran tinggi tetap stabil. Disebut single over head camshaft karena hanya menggunakan satu cam pada desainnya. Atau SOHC adalah system poros tunggal di kepala silinder. Gambar 2.14 Penempatan dari SOHC DOHC ( double over head chamshaft) DOHC adalah sistem poros ganda di kepala silinder. Fungsi DOHC sama dengan SOHC, bedanya terletak pada banyaknya poros cam tersebut. Pada DOHC jumlah poros camnya dua, sedangkan pada SOHC hanya satu. Pada tipe ini ada yang memakai rocker arm ada juga yang tidak ada. Klep masuk dan klep buang dioperasikan tersendiri oleh dua buah cam. Tipe DOHC yang memakai rocker arm alasannya untuk mempermudah penyetelan kelonggaran klep dan merubah langkah buka klep. Tipe ini perawatannya rumit biaya pembuatannya tinggi dan mesin lebih berat. Biasanya dipakai pada mesin-mesin sport kecepatan tinggi

77 Mesin dan Komponen Utama 52 Gambar 2.15 Penempatan katup DOHC Kerenggangan Katup Tekanan kompresi di dalam ruang bakar sangat dipengaruhi oleh penyetelan celah katup. Jika celah katup lebih kecil dari standar berarti katup cepat membuka dan lebih lama menutup, pembukaan yang lebih lama membuat gas lebih banyak masuk. Akibatnya bensin lebih boros dan akibat dari keterlambatan katup menutup adalah tekanan kompresi menjadi bocor karena pada saat terjadi langkah kompresi (saat piston bergerak dari bawah keatas), katup belum menutup padahal seharusnya pada saat itu katup harus menutup rapat hal ini mengakibatkan tenaga mesin berkurang. Mesin tidak bisa stasioner, dan sulit dihidupkan, selain itu akibat celah katup terlalu sempit dapat terjadi ledakan pada karburator. Selanjutnya apabila celah katup lebih besar dari standar berarti katup terlambat membuka dan cepat menutup. Apabila hal ini terjadi pada katup masuk maka pemasukan campuran bahan bakar udara berlangsung cepat sehingga jumlah campuran yang masuk sedikit. Tekanan kompresi menjadi rendah karena jumlah campuran bensin dan udara yang dikompresikan sedikit. Jika tekanan kompresi rendah maka akan berakibat tenaga motor menjadi berkurang. Akibat selanjutnya adalah mesin sulit dihidupkan. Setelah hidup maka suara mesinpun berisik sekali. Karena pemasukan gasnya kurang, mesin akan tersendatsendat pada putaran tinggi. Sementara itu mesin tidak dapat berputar stasioner. Itulah sebabnya celah katup harus disetel dengan tepat. Biasanya besar kerenggangan celah katup masuk dan katup buang sekitar 0,04 0,07 mm.

78 Mesin dan Komponen Utama 53 Celah terlalu kecil Celah terlalu besar Gambar 2.16 Celah katup yang terlalu kecil dan celah katup terlalu besar Pemeriksaan, penyetelan dan perawatan: a. Penyetelan celah katup sepeda motor satu silinder 1. Kunci kontak OFF. Posisi piston pada top kompresi. Untuk memastikan bahwa posisi piston pada top kompresi, perhatikan bahwa pada saat ini tanda T pada rotor magnet tepat dengan tanda garis pada bodi sepeda motor, celah platina membuka dan kedua katup menutup. 2. Jika posisi piston belum tepat pada posisi top kompresi putar poros engkol dengan kunci. Agar memutarnya ringan maka lepas busi dari dudukannya. 3. Setel celah katup dengan feeler sesuai dengan ketentuan. Untuk menyetel celah katup, kendorkan mur dan masukkan feeler dengan ketebalan yang sesuai spesifikasi. Setelah itu putar baut penyetel dan keraskan mur pengunci sedemikian rupa sehingga feeler hanya dapat ditarik dengan sedikit tahanan (agak berat). Setelah dikeraskan mur penguncinya, masukkan sekali lagi foler tersebut sebagai pengecekan apakah penyetelannya sudah tepat. 4. Setelah kedua katup disetel, pasang kembali bagian yang dilepas dan hidupkan motor untuk pengontrolan. Jika ternyata celah katup terlalu longgar maka akan timbul suara berisik dari arah kepala silinder. Jika celah katup terlalu sempit biasanya motor agak sulit dihidupkan.

79 Mesin dan Komponen Utama 54 b. Penyetelan celah katup sepeda motor dua silinder 1. Kunci kontak OFF. Posisi piston silinder pertama pada top kompresi. Untuk memastikan bahwa posisi piston silinder pertama pada top kompresi, perhatikan bahwa pada saat ini tanda T pada rotor magnet tepat segaris dengan tanda garis pada bodi motor, celah platina membuka dan kedua katup silinder pertama menutup. 2. Jika posisi piston belum pada top kompresi, putar poros engkol dengan kunci. Agar memutarnya ringan, lepas terlebih dahulu busi dari dudukannya. 3. Setel kedua katup silinder pertama seperti cara menyetel katup pada sepeda motor satu silinder. Katup silinder yang satunya dapat disetel setelah poros engkol diputar satu kali putaran penuh dari kedudukannya. Perhatikan 1. Jika baut penyetel diputar ke kanan searah putaran jarum jam maka celah katup menjadi sempit. Jika baut penyetel diputar ke kiri, berlawanan dengan arah putar jarun jam, celah katup menjadi longgar. 2. Pada saat mengeraskan mur pengunci baut penyetel harus ditahan agar celah katup tidak berubah. 3. Feeler yang sudah aus sekali atau bengkok sebaiknya tidak digunakan untuk menyetel celah katup. 4. Jangan mengeraskan mur pengunci terlalu keras karena akan menyulitkan untuk mengendorkannya kembali. 5. Untuk memudahkan penyetelan katup, lepas bagian-bagian yang menggangu, seperti tangki bensin untuk jenis sepeda motor tertentu. Chamshaft (Nokn As) Camshaft adalah sebuah alat yang digunakan dalam mesin untuk menjalankan poppet valve. Dia terdiri dari batangan silinder. Cam membuka katup dengan menekannya, atau dengan mekanisme bantuan lainnya, ketika mereka berputar. Hubungan antara perputaran camshaft dengan perputaran poros engkol sangat penting. Karena katup mengontrol aliran masukan bahan bakar dan pengeluarannya, mereka harus dibuka dan ditutup pada saat yang tepat selama langkah piston. Untuk alasan ini, camshaft dihubungkan dengan crankshaft secara langsung (melalui mekanisme gear) atau secara tidak langsung melalui rantai yang disebut rantai waktu.

80 Mesin dan Komponen Utama 55 Gambar 2.17 Camshaft Dalam mesin dua langkah yang menggunakan sebuah camshaft, setiap valve membuka sekali untuk setiap rotasi crankshaft dalam mesin ini, camshaft berputar pada kecepatan yang sama dengan crankshaft. Dalam mesin empat langkah katup-katup akan membuka setengah lebih sedikit, oleh karena itu dua putaran penuh crankshaft terjadi di setiap putaran camshaft. Gesekan luncur antara bagian muka cam dengan follower tergantung kepada besarnya gesekan. Untuk mengurangi aus ini, cam dan follower mempunyai permukaan yang keras, dan minyak pelumas modern mengandung bahan yang secara khusus mengurangi gesekan luncur. Lobe (daun telinga) dari camshaft biasanya meruncing, mengakibatkan follower atau pengangkat katup berputar sedikit dalam setiap tekanan, dan membuat aus komponen. Biasanya bagian muka dari cam dan follower dirancang untuk aus bersamaan, jadi ketika salah satu telah aus maka keduanya harus diganti untuk mencegah aus yang berlebihan. Rantai Cam Dan Peregangannya Katup masuk dan katup buang pada sepeda motor membuka dan menutup sesuai dengan proses yang terjadi pada ruang bakar. Proses yang terjadi pada ruang bakar motor ditentukan oleh langkah piston di mana langkah piston tersebut ditentukan oleh putaran poros engkol. Sebaliknya putaran poros engkol dipengaruhi pula oleh proses yang terjadi dalam ruang bakar. Dengan demikian ada hubungan timbal-balik antara putaran poros engkol dan proses yang terjadi dalam ruang bakar Agar pembukaan katup-katup sesuai dengan proses yang terjadi dalam ruang bakar maka mekanisme pembukaan dan penutupan katup katup tersebut digerakkan oleh putaran poros engkol. Ada tiga macam

81 Mesin dan Komponen Utama 56 mekanisme penggerak katup, yaitu dengan batang pendorong, roda gigi, dan rantai (rantai camshaft). Rantai camshaft sepeda motor harus dipasang dengan tegangan yang cukup. Rantai camshaft yang terlalu tegang akan menimbulkan bunyi mendesing terutama pada putaran tinggi sedangkan rantai camshaft yang terlalu kendor akan menimbulkan suara berisik. Untuk menyetelnya harus diperhatikan terlebih dahulu mekanisme penyetelannya. Cara penyetelan rantai camshaft untuk setiap sepeda motor tidak sama. Jika kekencangan rantai berubah-ubah, akan berpengaruh pada putaran mesin, valve timing atau saat pengapian akan berubah-ubah pula. Untuk menghasilkan setelan rantai yang standar, ada 3 tipe penyetelan rantai: - Tipe penyetelan manual Tipe ini memerlukan penyetelan kekencangan secara berkala. Cara penyetelan dengan menekan batang penekan - Tipe penyetelan otomatis Jika rantai mengalami kekendoran, maka secara otomatis batang penekan akan menekan chain guide (karet), karena adanya per penekan. Karet akan melengkung, dan akan menekan rantai sehingga rantai mengalami ketegangan. Selanjutnya batang penekan yang berbentuk rachet bergerak searah dan tidak dapat kembali - Tipe semi otomatis Ketegangan rantai secara otomatis menyetel sendiri, jika baut pengunci dilepas, sehingga batang penekan akan masuk kedalam karena tekanan per Gambar 2.18 Rantai camshaft

82 Mesin dan Komponen Utama Bak engkol mesin (crankcase) Crankcase (bak engkol) biasanya terbuat dari aluminium die casting dengan sedikit campuran logam. Bak engkol fungsinya sebagai rumah dari komponen yang ada di bagian dalamnya, yaitu komponen: - Generator atau alternator untuk pembangkit daya tenaga listriknya sepeda motor - Pompa oli - Kopling - Poros engkol dan bantalan peluru - Gigi persneling atau gigi transmisi - Sebagai penampung oli pelumas Gambar 2.19 Bak engkol Bak engkol terletak di bawah silinder dan biasanya merupakan bagian yang ditautkan pada rangka sepeda motor. Poros Engkol (crankshaft) Fungsi poros engkol adalah mengubah gerakan piston menjadi gerakan putar (mesin) dan meneruskan gaya kopel (momen gaya) yang dihasilkan motor ke alat pemindah tenaga sampai ke roda.

83 Mesin dan Komponen Utama 58 Beban yang bekerja pada poros engkol adalah: - Beban puntir (torsi) - Beban lengkung (bengkok) - Beban sentrifugal Gambar 2.20 Crankshaft dan piston Poros engkol umumnya ditahan dengan bantalan luncur yang ditetapkan pada ruang engkol. Bantalan poros engkol biasa disebut bantalan utama. Jenis poros engkol yang dipergunakan pada mesin sepeda motor adalah: 1. Jenis built up digunakan pada motor jenis kecil yang mempunyai jumlah silinder satu atau dua Batang penggerak Gambar 2.21 Poros Engkol tipe Built Up

84 Mesin dan Komponen Utama Jenis one piece, digunakan pada motor jenis besar yang mempunyai jumlah silinder banyak. Gambar 2.22 Poros Engkol tipe One Piece Untuk motor satu silinder pada poros engkolnya (biasanya dihadapan pena engkol) ditempatkan bobot kontra sebagai pengimbangan putaran engkol sewaktu piston mendapat tekanan kerja. Tetapi motor yang bersilinder banyak, pena engkolnya dipasang saling mengimbangi. Berat bobot kontra kira-kira sama dengan berat batang piston di tambah dengan berat engkol seluruhnya. Dengan demikian poros engkol itu dapat diseimbangkan, sehingga dapat berputar lebih rata dan getaran-getaran engkol menjadi hilang. Dengan adanya bobot kontra ini menyebabkan tekanan pada bantalan menjadi berkurang dan merata. Poros engkol dan batang penggerak adalah untuk merobah gerak translasi piston menjadi gerak putar. Kedua bagian ini selalu menderita tegangan dan regangan yang sangat besar. Karena itu harus dibuat dari bahan yang khusus dan ukuran yang tepat. Dalam keadaan diam dan berputar poros engkol selalu setimbang (balance). Bagian permukaan bantalan dikeraskan dan harus licin untuk mengurangi keausan.

85 Mesin dan Komponen Utama 60 Poros engkol berputar dengan didukung oleh beberapa buah bantalan utama. Banyaknya bantalan tergantung dari jumlah silinder. Motor empat silinder mempunyai 3 bantalan dan motor enam silinder mempunyai 4 bantalan utama. Bantalan ini dibuat dari baja yang dicampur dengan babbit atau ada juga dengan aluminium. Batang penggerak dan poros engkol dibuat dari besi tuang. Pemasangan batang penggerak pada poros engkol dilapisi dengan memakai bantalan. C. PROSES DI MESIN Fungsi mesin (engine) adalah mengatur proses untuk mengubah energi yang terkandung dalam bahan bakar menjadi tenaga. Semua sepeda motor menggunakan sistem pembakaran di dalam silinder. Artinya, pembakaran bahan bakar terjadi di dalam silinder, dan karena itu, mesin ini dikatakan mesin pembakaran di dalam (internal combustion engine). Energi yang dihasilkan oleh pembakaran bahan bakar, menyebabkan piston terdorong, bergerak dan memutar poros engkol. Pembakaran merupakan proses oksidasi cepat bahan bakar disertai dengan produksi panas, atau energi dan cahaya. Ada tiga faktor pembakaran yaitu temperatur, Oxigen (udara), dan bahan bakar. Tanpa tiga faktor ini maka pembakaran tidak akan sempurna. Syarat terjadinya pembakaran yang baik pada suatu motor adalah: 1. Adanya tekanan kompresi yang cukup 2. Campuran bahan bakar dan udara cukup 3. Suhu yang cukup tinggi untuk pembakaran. Sebagai ilustrasi dari proses pembakaran yang menghasilkan tenaga dalam mesin adalah, jika bahan bakar yang ada di dalam panci diberi api, bahan bakar tersebut akan terbakar, tetapi tidak meledak tapi jika bahan bakar itu terbakar di dalam tabung yang tertutup gas pembakaran ia akan berekspansi dan menekan tutup tabung, maka ia disini menghasilkan tenaga. Pembakaran memerlukan waktu untuk kelangsungannya, dan oleh karena itu pembakaran dimulai sebelum TMA dengan mempercepat pengapian.

86 Mesin dan Komponen Utama 61 Gambar 2.23 Pemampatan dan pengapian di ruang pembakaran Mesin motor merupakan sumber berlangsungnya pembentukan energi bagi kendaraan. Dengan energi yang dihasilkan, memungkinkan kendaraan dapat bergerak. Untuk dapat bekerja dengan baik, mesin memiliki konstruksi yang utuh dan solid sehingga memungkinkan terjadinya suatu proses pembakaran yang menghasilkan tenaga: 1. Mengisi ruang bakar dengan campuran udara bahan bakar yang mudah terbakar 2. Menekan campuran tersebut sampai pada volume dan tekanan tertentu 3. Membakar (ignite) campuran, sehingga mengembang dan menghasilkan tenaga 4. Membuang gas yang telah terbakar dari dalam silinder

87 Mesin dan Komponen Utama 62 Secara umum urutan diatas dinyatakan dengan istilah: 1. Langkah isap (suction) 2. Langkah kompressi (compressi) 3. Langkah usaha (power) 4. Langkah buang (exhaust) Untuk menghasilkan tenaga yang terus-menerus, maka mesin harus mengulangi urutan ini berulang-ulang. Satu rangkaian proses yang lengkap disebut siklus. Kebanyakan mesin atau motor dari sepeda motor bekerja berdasarkan salah satu dari 2 jenis siklus yaitu: 1. Siklus dua langkah 2. Siklus empat langkah 1. Cara Kerja Mesin Dua Langkah Pada bagian awal dijelaskan bahwa mesin dua langkah hanya memerlukan satu kali putaran poros engkol untuk menyelesaikan satu siklus di dalam silinder. Usaha (langkah tenaga) dihasilkan pada setiap putaran poros engkol. Gambar 2.24 Mesin dua langkah dalam bentuk yang sederhana

88 Mesin dan Komponen Utama 63 Pada mesin dua langkah campuran udara-bahan bakar dikompresi dua kali setiap putaran. Kompresi pertama (kompresi pendahuluan di dalam crankcase). Campuran ditarik kedalam crankcase dan dikompresi, selanjutnya masuk ke dalam ruang pembakaran. Kompresi kedua (kompresi di dalam silinder dan ruang pembakaran). Campuran yang dikompresi sangat mudah dinyalakan dan terbakar sehingga menghasilkan tekanan yang tinggi. Campuran yang dikompresikan di dalam crankcase mengalir ke dalam silinder melalui lubang transfer mendorong sisa-sisa gas pembakaran keluar dari silinder dan ini disebut sebagai langkah transfer. Secara jelasnya cara kerja mesin dua langkah di perlihatkan pada tabel 2. berikut ini. Proses Tabel 2. Cara Kerja Mesin Dua Langkah Penjabaran Langkah dan Gambar Di bawah piston Langkah Isap Dan Kompresi Sewaktu piston bergerak keatas menuju TMA ruang engkol akan membesar dan menjadikan ruang tersebut hampa (vakum). Lubang pemasukan terbuka. Dengan perbedaan tekanan ini, maka udara luar dapat mengalir dan bercampur dengan bahan bakar di karburator yang selanjutnya masuk ke ruang engkol (disebut langkah isap atau pengisian ruang engkol. Setengah putaran pertama atau Piston bergerak dari TMB ke TMA

89 Mesin dan Komponen Utama 64 Proses Penjabaran Langkah dan Gambar Di atas piston Disisi lain lubang pemasukan dan lubang buang tertutup oleh piston, sehingga terjadi proses langkah kompresi disini. Dengan gerakan piston yang terus ke atas mendesak gas baru yang sudah masuk sebelumnya, membuat suhu dan tekanan gas meningkat. Beberapa derajat sebelum piston mencapai TMA busi akan melentikkan bunga api dan mulai membakar campuran gas tadi (langkah ini disebut langkah compresi Di atas piston Langkah Usaha Dan Buang Ketika piston mencapai TMA campuran gas segar yang dikompresikan dinyalakan oleh busi. Gas yang terbakar mengakibatkan ledakan yang menghasilkan tenaga sehingga mendorong piston memutar poros engkol melalui connecting rod sewaktu piston bergerak kebawah menuju TMB (langkah usaha). Beberapa derajat setelah piston bergerak ke TMB lubang buang terbuka oleh kepala piston, gas-gas bekas keluar melalui saluran buang (langkah buang) Setelah putaran ke dua atau Piston bergerak dari TMA ke TMB

90 Mesin dan Komponen Utama 65 Proses Penjabaran Langkah dan Gambar Di bawah piston Beberapa derajat selanjutnya setelah saluran buang dibuka, maka saluran bilas (saluran transfer) mulai terbuka oleh tepi piston. Ketika piston membuka lubang transfer segera langkah pembuangan telah dimulai. Gas baru yang berada di bawah piston terdesak, campuran yang dikompresikan tersebut mengalir melalui saluran bilas menuju puncak ruang bakar sambil membantu mendorong gas bekas keluar (proses ini disebut pembilasan) Ringkasan materi tabel: 1. Titik mati atas (TMA) adalah tempat berhentinya piston bergerak pada bagian atas silinder. 2. Titik mati bawah (TMB) adalah tempat berhentinya gerak piston di bagian bawah silinder. 3. Pada ½ putaran poros engkol pertama (180 0 ) dari TMB ke TMB - Di bawah piston : Langkah isap atau pengisian ruang engkol - Di atas piston : Langkah kompresi 4. Pada ½ putaran poros engkol berikutnya (360 0 ) dari TMA ke TMB - Di atas piston : Langkah usaha dan langkah buang - Di bawah piston : Pembilasan - Prinsip pembilasan dinamakan dengan pembilasan berputar yaitu: lubang transfer berada di kanan dan di kiri saluran knalpot. Udara segar masuk bersamaan melalui kedua lubang tersebut yang berada berlawanan didinding cylinder dan membelok keatas. Kemudian aliran berputar kebawah ke lubang pengeluaran mendorong gas sisa pembakaran keluar dari cylinder. Keuntungan Dan Kerugian Mesin Dua Langkah a. Keuntungan : Proses pembakaran terjadi setiap putaran poros engkol, sehingga putaran poros engkol lebih halus untuk itu putaran lebih rata.

91 Mesin dan Komponen Utama 66 Tidak memerlukan klep, komponen part lebih sedikit, perawatan lebih mudah dan relatif murah Momen puntir untuk putaran lanjutan poros lebih kecil sehingga menghasilkan gerakan yang halus Bila dibandingkan dengan mesin empat langkah dalam kapasitas yang sama, tenaga yang dihasilkan lebih besar Proses pembakaran terjadi 2 kali, sehingga tenaga lebih besar b. Kerugian : Langkah masuk dan buang lebih pendek, sehingga terjadi kerugian langkah tekanan kembali gas buang lebih tinggi Karena pada bagian silinder terdapat lubang-lubang, timbul gesekan antara ring piston dan lubang akibatnya ring piston akan lebih cepat aus. Karena lubang buang terdapat pada bagian silinder maka akan mudah timbul panas Putaran rendah sulit diperoleh Konsumsi pelumas lebih banyak. Sepeda motor yang menggunakan mesin dua langkah : - Yamaha - Yamaha RX King - Yamaha RX S - Yamaha Alfa - Suzuki Tornado GS - Vespa Super - Vespa PX - Suzuki Tornado GX Ciri-ciri umum sepeda motor mesin dua langkah: - Sistem pelumasannya dicampurkan kedalam bensin maka gas buang mesin dua langkah bewarna putih - Suara mesin lebih halus karena setiap dua langkah terjadi satu kali pembakaran bensin - Pemakaian bahan bakar lebih boros - Menggunakan dua fungsi pelumasan yaitu untuk melumasi ruang engkol, piston, dan dinding silinder serta untuk melumasi transmisi. - Memiliki dua buah ring piston, yaitu ring kompresi pertama dan ring kompresi kedua.

92 Mesin dan Komponen Utama 67 Gambar 2.25 Diagram port timing Gerak keatas dan kebawah dari piston akan membuka dan menutup lubang pemasukan, pembuangan dan lubang transfer yang berada pada silinder, peristiwa ini diselesaikan diruang pembakaran (diatas piston) dan didalam crankcase (dibawah piston). Terbuka dan tertutupnya lubang tersebut ditentukan oleh posisi dan ukuran lubang itu. Peristiwa terbuka dan tertutupnya lubang-lubang itu diistilahkan dengan port timing. 2. Cara Kerja Mesin Empat Langkah Sebagaimana telah dikemukakan pada pendahuluan, mesin empat langkah memerlukan 2 putaran poros engkol (4 gerakan piston) untuk menyelesaikan 1 siklus di dalam silinder. Beberapa contoh sepeda motor yang menggunakan mesin empat langkah sebagai berikut: - Suzuki Shogun - Honda CG - Honda GL - Honda GL Max - Yamaha Vega

93 Mesin dan Komponen Utama 68 - Suzuki Thunder - Honda Supra XX - Honda Nova Sonic125 RX - Honda New Sonic - Honda Legenda - Honda GL Pro - Honda Tiger Honda Supra X Ciri-ciri umum sepeda motor mesin empat langkah: - Gas buang tidak berwarna (kecuali ada kerusakan) - Bahan bakar lebih irit - Menggunakan satu minyak pelumas untuk melumasi ruang engkol, piston, dinding silinder dan transmisi Keuntungan Dan Kerugian Mesin empat langkah a. Keuntungan mesin empat langkah: Karena proses pemasukan, kompresi, kerja, dan buang prosesnya berdiri sendiri-sendiri sehingga lebih presisi, efisien dan stabil, jarak putaran dari rendah ke tinggi lebih lebar ( rpm). Kerugian langkah karena tekanan balik lebih kecil dibanding mesin dua langkah sehingga pemakaian bahan bakar lebih hemat. Putaran rendah lebih baik dan panas mesin lebih dapat didinginkan oleh sirkulasi oli Langkah pemasukan dan buang lebih panjang sehingga efisiensi pemasukan dan tekanan efektive rata-rata lebih baik Panas mesin lebih rendah dibanding mesin dua langkah b. Kerugian mesin empat langkah: Komponen dan mekanisme gerak klep lebih banyak, sehingga perawatan lebih sulit Suara mekanis lebih gaduh Langkah kerja terjadi dengan 2 putaran poros engkol, sehingga keseimbangan putar tidak stabil, perlu jumlah silinder lebih dari satu dan sebagai peredam getaran.

94 Mesin dan Komponen Utama 69 Gambar 2.26 Irisan penampang mesin sepeda Motor empat langkah Sebagaimana telah dikatakan di pendahuluan, mesin empat langkah memerlukan 2 putaran poros engkol (4 gerakan piston) untuk menyelesaikan 1 siklus didalam cylinder. Untuk lebih jelasnya lihat tabel 3.

95 Mesin dan Komponen Utama 70 Proses Tabe 3. Cara kerja mesin empat langkah Penjabaran Langkah dan Gambar Sewaktu piston bergerak kebawah tekanan diruang pembakaran menjadi hampa (vakum). Perbedaan tekanan udara luar yang tinggi dengan tekanan hampa, mengakibatkan udara akan mengalir dan bercampur dengan gas. Selanjutnya gas tersebut melalui klep pemasukan yang terbuka mengalir masuk dalam ruang cylinder. Langkah isap (suction stroke) Katup masuk terbuka, katup buang tertutup Piston bergerak dari TMA ke TMB

96 Mesin dan Komponen Utama 71 Proses Penjabaran Langkah dan Gambar Setelah melakukan pengisian, piston yang sudah mencapai TMB kembali lagi bergerak menuju TMA, ini memperkecil ruangan diatas piston, sehingga campuran udara-bahan bakar menjadi padat, tekanan dan suhunya naik. Tekanannya naik kira-kira tiga kali lipat. Beberapa derajat sebelum piston mencapai TMA terjadi letikan bunga api listrik dari busi yang membakar campuran udara-bahan bakar. Langkah kompresi (compression stroke) Sewaktu piston bergerak keatas, klep pemasukan tertutup dan pada waktu yang sama klep buang juga tertutup. Campuran diruang pembakaran dicompressi sampai TMA, sehingga dengan demikian mudah dinyalakan dan cepat terbakar. Katup masuk dan katup buang tertutup Piston bergerak dari TMB ke TMA

97 Mesin dan Komponen Utama 72 Proses Penjabaran Langkah dan Gambar Campuran terbakar sangat cepat, proses pembakaran menyebabkan campuran gas akan mengembang dan memuai, dan energi panas yang dihasilkan oleh pembakaran dalam ruang bakar menimbulkan tekanan ke segala arah dan tekanan pembakaran mendorong piston kebawah (TMB), selanjutnya memutar poros engkol melalui connecting rod Langkah kerja (explosion/power) stroke) Katup masuk dan katup buang masih tertutup Piston bergerak dari TMA ke TMB

98 Mesin dan Komponen Utama 73 Proses Penjabaran Langkah dan Gambar Sebelum piston bergerak kebawah ke TMB, klep pengeluaran terbuka dan gas sisa pembakaran mengalir keluar. Sewaktu piston mulai naik dari TMB, piston mendorong gas sisa pembakaran yang masih tertinggal keluar melalui katup buang dan saluran buang ke atmosfir. Setelah piston mulai turun dari TMA klep pengeluaran tertutup dan campuran mulai mengalir kedalam cylinder. Langkah pembuangan (exhaust stroke) Katup masuk tertutup Kaktup buang terbuka Piston bergerak dari TMB ke TMA

99 Mesin dan Komponen Utama 74 Saat membuka dan menutup klep pemasukan dan pengeluaran yang berhubungan dengan posisi piston disebut valve timing Diagram 2.27 Digram valve Timing D. PROSES TERJADINYA PEMBAKARAN Campuran bahan bakar-udara dihisap masuk kedalam silinder. Selanjutnya dimampatkan oleh gerak naik piston. Campuran yang dimampatkan itu, selanjutnya dibakar oleh busi. Terjadilah ledakan/expansi yang akan mendorong piston kebawah, selanjutnya memutar crankshaft melalui connecting rod, gerak naik-turun piston diubah menjadi gerak piston oleh poros engkol dan disalurkan melalui roda gigi. Dengan kata lain: Sewaktu piston berada pada titik mati atas (TMA), katup pemasukan membuka dan campuran bahan bakar segar diisap ke dalam silinder. Pada titik mati bawah (TMB) katup pemasukan menutup dan selama langkah kembali ke TMA gas akan dikompresikan. Pengapian terjadi seketika pada TMA, sehingga menimbulkan peningkatan temperatur dan tekanan gas yang cepat. Kemudian gas diekspansikan selama langkah kerja, hingga padatmb katup pembuangan membuka, dan gas akan ditekan keluar melalui lubang

100 Mesin dan Komponen Utama 75 pembuangan. Dengan langkah yang ke empat (dari TMB ke TMA) semua gas akan dikeluarkan dari silinder. Busi menghasilkan pijaran api diantara elektrodanya untuk membakar campuran udara dan bahan bakar pada saat busi menerima tegangan tinggi dari Coil pengapian. Saat campuran udara-bahan bakar meledak, temperatur naik sekitar C dan tekanan menjadi 50 kg/cm 2 di ruang bakar. Pembakaran dengan injeksi terjadi ketika injektor mengabutkan bahan bakar dengan tekanan tinggi, sehingga bahan bakar terbakar oleh udara panas, dan tekanan dalam ruangan itu akan naik sampai kg/cm 2. Prosesnya diawali ketika piston mengkompresikan udara, pada akhir langkah kompresi tersebutlah terjadi pengabutan bahan bakar. Pada saat temperatur dan tekanan udara sudah sangat tinggi, bahan bakar disemprotkan ke dalam ruang bakar. Pembakaran terjadi tanpa menggunaakan alat penyala api. E. INNOVASI DARI DESAIN MESIN 1. Innovasi Desain Mesin Dua Langkah Sistem Pemasukan Mesin Dua Langkah Pada sepeda motor dua langkah, sistem pemasukan gas tidak menggunakan katup, dalam pengembangannya ada bermacam-macam sistem pemasukan gas yaitu: a. Sistem reed valve b. Sistem rotary valve c. Sistem piston valve d. Sistem crankshaft valve Sistem Reed Valve Sepeda motor dengan sistem reed valve adalah sepeda motor yang pembukaan dan penutupan saluran pemasukan gas barunya diatur oleh suatu alat yang disebut reed valve atau disebut juga klep harmonika. Reed valve sangat peka terhadap pengaruh luar. Reed vave atau katup buluh atau katup harmonika hanya dipergunakan pada mesin dua langkah. Tetapi tidak semua mesin dua langkah menggunakan katup harmonika ini. Klep harmonika berfungsi untuk membuka dan menutup saluran gas bensin dari karburator ke ruang engkol. Reed valve dipasangkan pada saluran masuk sepeda motor. Letaknya adalah setelah karburator bila dilihat dari arah gas baru masuk.

101 Mesin dan Komponen Utama 76 Pada sepeda motor jenis ini karburatornya dipasang di samping silinder. Contoh: Yamaha, Suzuki, dan Kawasaki. Katup ini dapat disetel, tergantung keperluannya. Kesalahan penyetelan terhadap katup harmonika dapat menyebabkan kebocoran gas. Gambar 2.28 Reed valve Reed valve bekerja berdasarkan perubahan tekanan pada ruang engkol. Ini terjadi pada saat piston bergerak ke atas dari TMB ke TMA reed valve membuka karena adanya kevakuman pada ruang engkol. Gas baru masuk ke dalam ruang engkol. Jika piston bergerak turun dari TMA ke TMB reed valve menutup. Dan gas masuk kedalam silinder. Pemeriksaan dan perawatan: 1. Pemeriksaan terhadap reed valve harus dilakukan dengan hatihati karena reed valve sangat presisi. Jangan menyentuh secara langsung dengan tangan dan jauhkan dari garam. Reed valve harus disimpan di tempat yang kering dan bersih serta terhindar dari sinar matahari. 2. Periksalah keadaan platnya dari kemungkinan cacat, kendor atau retak. Jika terdapat kerusakan, perbaikilah. Ukurlah celah valve stopper. Jika celah terlalu besar dari standar maka stopper dapat rusak. Jika celah stopper terlalu kecil maka kemampuan sepeda motor akan turun.

102 Mesin dan Komponen Utama 77 Sistem Rotary Valve Sepeda motor dengan sisitem rotary valve adalah sepeda motor yang pembukaan dan penutupan saluran pemasukan gas barunya diatur oleh suatu alat yang disebut rotary valve atau katup berputar. Pada sepeda motor dengan sistem ini karburatornya ada di dalam bak engkol sehingga tidak kelihatan dari luar. Contoh : Yamaha, Suzuki, dan Kawasaki. Katup rotary digerakkan oleh poros engkol. Pembukaan dan penutupannya sesuai dengan proses yang berlangsung dalam silinder. Jika piston bergerak dari TMB ke TMA katup rotary membuka saluran pemasukan gas baru sehingga gas baru masuk ke ruang engkol. Gas tersebut akan dialirkan ke ruang bakar pada saat piston bergerak dari TMA ke TMB. Sistem Piston Valve Sepeda motor dengan sistem piston valve adalah sepeda motor yang pembukaan dan penutupan saluran pemasukan gas barunya dan saluran gas buangnya diatur oleh piston atau langsung dilakukan oleh piston. Pada sepeda motor ini karburatornya terpasang pada samping silinder. Contoh: Yamaha. Sistem ini paling sederhana dibandingkan dengan sistem-sistem yang lain. Sistem Crankshaft Valve Sepeda motor dengan sistem crankshaft valve adalah sepeda motor yang pembukaan dan penutupan saluran pemasukan gas barunya di atur oleh crankshaft. Karburator sepeda motor sistem ini dipasang di samping bak engkol. Contoh : vespa. Posisi Saluran Buang Salah satu innovasi yang dilakukan untuk desain mesin dua langkah demi menghasilkan sepeda motor yang asyik pakai dan untuk mengurangi polusi udara adalah dengan mengembangkan desain dari saluran buangnya. Masing-masing merk produksi menghasilkan modelmodel yang mereka unggulkan. Antara lain yang kita kenal adalah pada Merk Honda dikenal adanya ATAC. Yamaha dengan YPVS-nya dan Kawasaki dengan KIPS. KIPS (Kawasaki Integrated Powervalve system) Suatu system pemanfaatan katup yang mengatur penutupan dan pembukaan sebagian dari lubang pembuangan, agar pembuangan gas sisa pembakaran pada RPM tinggi dapat berlangsung lebih sempurna (katup membuka), sebaliknya pada RPM rendah menghindarkan terbuangnya campuran bensin-udara yang baru masuk ke ruang bakar

103 Mesin dan Komponen Utama 78 dari karter (katup menutup). Katup ini berfungsi membuka pada RPM diatas 7000 hingga rpm : Katup KIPS tertutup rpm : Katup KIPS terbuka Gambar 2.29 KIPS 2. Innovasi Desain Mesin Empat langkah Katup Desmodromic Pada traditional spring valve system, valve membuka dengan digerakkan oleh camshaft (atau rocker arm yg juga digerakkan oleh camshaft lobe dan posisi piston dibawah, sewaktu piston naik spring / pegas menekan valve sehingga menutup Namun cara ini kelemahannya adalah pegas tidak bisa mengimbangi kalau sudah mencapai RPM tinggi, sehingga ketika valve belum sempat menutup, sudah dihantam oleh piston, ini bisa mengakibatkan kepatahan valve. Untuk mengatasi itu, di kembangkanlah sebuah sistem yaitu pneumatic valve, dengan memakai katup desmodromic, pada pneumatic valve, valve ditutup dengan tekanan gas yang tinggi. Gas yang digunakan adalah Nitrogen, karena tidak begitu sensitif dengan temperatur dibandingkan oksigen. Dan tekanan yang diberikan kurang lebih 100 psi. Karena tekanan nya hampir konstan jadi mengatasi kelemahan per yang cenderung aus. Penerapan pneumatic ini cuma digunakan di circuit dan tidak bisa diterapkan di street bike. Tekanan di masing-masing valve pada tiap cylinder harus sama. Jika tidak, salah satu cylinder valve nya bisa dihantam kembali oleh piston. Dalam pembuatannya sistem katup desmodromic sangat mahal untuk diproduksi secara massal, jadi sistem ini hanya dipakai oleh DUCATI.

104 Mesin dan Komponen Utama 79 F. SUSUNAN MESIN Ada beberapa macam susunan mesin, yaitu: 1. Mesin satu silinder merupakan mesin yang sangat sederhana susunannya 2. Mesin silinder kembar 3. Mesin 3 silinder 4. Mesin 4 silinder 5. Mesin yang silindernya lebih dari 4 silinder Mesin 2 langkah tipe satu silinder Mesin 4 langkah tipe 1 silinder Mesin 4 langkah dengan silinder kembar parallel Mesin 4 langkah dengan silinder kembar parallel 180 0

105 Mesin dan Komponen Utama 80 Mesin 4 langkah dengan silinder kembar -V Mesin 2 langkah dengan silinder kembar-v Mesin 4 langkah dengan silinder kembar horizontal berlawanan Mesin 4 langkah dengan 3 silinder Mesin 2 langkah dengan 3 silinder tipe - V

106 Mesin dan Komponen Utama 81 Mesin 4 silinder Mesin yang lebih dari 4 silinder Gambar 2.30 Susunan silinder mesin 4 langkah dan mesin 2 langkah

107 Mesin dan Komponen Utama 82 G. SPESIFIKASI MESIN Biasanya untuk pemasaran produsen memberikan informasi data tentang mesin (spesifikasi mesin) sepeda motor. Informasi data mengenai spesifikasi mesin sepeda motor yang biasa diberikan produsen dalam memasarkan produk mereka dapat kita lihat pada tabel. 4. Tabel 4. Contoh Spesifikasi Mesin dari Suzuki Smash Spesifikasi mesin Jenis mesin Jumlah silinder 1 Contoh data yang diberikan Empat langkah SOHC Pendingin udara Keterangan Jenis yang lain adalah mesin dua langkah Pilihan lainnya DOHC, OHC, SV, dll Yang lainnya ada berpendingin air Isi silinder 109 cc Volume silinder adalah jumlah total dari volume langkah ditambah dengan volume ruang bakar. Volume ruang bakar adalah volume ruangan yang terbentuk antara kepala silinder dan kepala piston mencapai TMA. Volume langkah adalah volume yang terbentuk pada saat piston bergerak keatas dari TMB ke TMA, dimana volume langkah yaitu volume yang dipindahkan saat piston bergerak tadi. Dihitung dengan suatu rumus dengan satuan cc atau cm 3 atau liter/m 3. Langkah piston 48,8 mm Langkah adalah gerak tunggal piston yang diukur dengan satuan mm Diameter silinder 53,5 mm Diameter silinder adalah diameter bagian dalam dari silinder, diukur dengan satuan mm Perbandingan kompresi 9,6:1 Perbandingan kompresi adalah perbandingan antara volume silinder dengan volume ruang bakar. Batasan-batasannya adalah: - Mesin dua langkah : 6-8 :1 - Mesin empat langkah: 8-10: 1 Daya maksimum 7,7 PS/700 rpm PS (prerd starke in jerman) adalah tenaga untuk menggerakkan obyek seberat 75 Kg sejauh 1m dalam 1 secon (makin besar tenaga makin besar jumlah kerja persatuan waktu) 1 PS = 75 Kg.m/sec Torsi maksimum System bahan bakar Saringan udara System starter System pelumasan O,81 Kg-m/5500 rpm Karburator Elemen kertas Listrik dan engkol Perendaman oli Ketika sepeda motor bekerja dengan torsi maximum, gaya gerak roda belakang juga maximum. Dengan kata lain daya dorong roda belakang paling besar ketika torsi mesin juga maksimal. Daya dorong roda belakang sama dengan gaya tarik-menarik roda belakang motor dapat maju kedepan dengan adanya gaya tarik ini yang melawan gaya tahanan pada saat berjalan

108 Mesin dan Komponen Utama 83 SOAL-SOAL LATIHAN BAB II 1. Sebutkan komponen utama dari mesin sepeda motor! 2. Sebutkan perbedaan kontruksi kepala silinder dan blok silinder dari mesin dua langkah dan mesin empat langkah beserta gambar keduanya? 3. Silinder mempunyai persyaratan tertentu dalam pemakaiannya, sebutkan persyaratan silinder yang baik untuk digunakan! 4. Dari proses pemakaiannya silinder kadang mengalami keausan, sebutkan langkah-langkah untuk mengukur keausan silinder dan sebutkan naman alat yang duigunakan untuk mengukur keausan silinder! 5. Ada istilah keovalan dan ketirusan, jelaskan maksudnya! 6. Sebutkan fungsi piston pada mesin sepeda motor dua langkah, sepeda motor empat langkah, apa beda diantara keduanya! 7. Berikan penjelasan mengenai langkah piston! 8. Innovasi penempatan katup ada beberapa macam, jelaskan masing-masingnya! 9. Apa akibat dari kerengangan katup yang tidak pas? 10. Bagaimana bila rantai camshaft keregangannya tidak pas? Berikan jalan keluar untuk mengatasinya! 11. Sebutkan bagian-bagian yang ditunjukkan oleh gambar di bawah ini!

109 Mesin dan Komponen Utama Berapa macam tipe dari poros engkol, terangkan perbedaan diantara keduanya! 13. Dibawah ini gambar dari cara kerja mesin dua langkah, berikan keterangan bagian yang dinomeri, dan jelaskan proses yang ditunjukkan oleh gambar! Sebutkan keuntungan dan kerugian dari mesin dua langkah! 15. Berikan contoh produk sepeda motor yang merupakan sepeda motor mesin dua langkah! 16. Sebutkan kerugian dankeuntungan mesin empat langkah! 17. Berikan contoh produk sepeda motor yang merupakan sepeda motor mesin empat langkah! 18. Apa beda diagram valve timing dan diagram port timing? 19. Jelaskan mengenai reed valve! 20. Data apa saja yang biasanya dicantumkan produsen sepeda motor dalam brosur tentang sepeda motor yang mereka jual, sehubungan dengan spesifikasi mesin dari produk tersebut!

110 Kelistrikan 85 BAB III KELISTRIKAN A. KONSEP KELISTRIKAN 1. Pendahuluan Setiap sepeda motor dilengkapi dengan beberapa rangkaian sistem kelistrikan. Umumnya sebagai sumber listrik utama sering digunakan baterai, namun ada juga yang menggunakan flywheel magnet (alternator) yang menghasilkan pembangkit listrik arus bolak-balik atau AC (alternating current). Bagian-bagian yang termasuk sistem kelistrikan pada sepeda motor antara lain; sistem starter, sistem pengapian (ignition system), sistem pengisian (charging system), dan sistem penerangan (lighting system) seperti lampu kepala/depan (headlight), lampu belakang (tail light), lampu rem (brake light), lampu sein/tanda belok (turn signal lights), klakson (horn) dan lampu-lampu instrumen/indikator. Sebelum pembahasan sistem kelistrikan tersebut, terlebih dahulu akan dijelaskan beberapa komponen elektronik, konsep dan simbol kelistrikan yang mendukung terhadap cara kerja sistem kelistrikan pada sepeda motor. Selain itu, akan dibahas pula beberapa contoh konkrit aplikasi/penggunaan komponen-komponen elektronika pada sepeda motor. 2. Arus Listrik, Tegangan dan Tahanan Untuk lebih memahami konsep tentang listrik, maka listrik diilustrasikan sebagai air karena memilki banyak kesamaan karakteristiknya. Gambar 3.1 di bawah ini menunjukkan dua buah wadah yang terhubung satu dengan lainnya melalui sebuah pipa yang dipersempit untuk menghambat aliran.

111 Kelistrikan 86 Gambar 3.1 Ilustrasi karakteristik antara air dengan listrik Tegangan (voltage) dapat diibaratkan beda ketinggian diantara kedua wadah, yang menyebabkan terjadinya aliran air. Makin besar perbedaan ketinggian air, makin kuat keinginan air untuk mengalir. Arus listrik diibaratkan jumlah/volume air yang mengalir setiap detiknya, melalui pipa. Sedangkan resistansi (tahanan) diibaratkan semua hambatan yang dijumpai air saat ia mengalir di dalam pipa. Makin besar pipa, makin kecil hambatan alirnya, sehingga makin besar arus air yang mengalir. dan begitu sebaliknya. Air yang mengalir pada suatu pipa dipengaruhi oleh besarnya dorongan yang menyebabkan air tersebut mengalir dan besarnya hambatan pada pipa. Besarnya dorongan untuk mengalir ditimbulkan oleh perbedaan ketinggian air di kedua wadah, dan dalam kelistrikan disebut tegangan atau beda potensial. Besarnya hambatan pada pipa disebabkan banyak faktor, yaitu; mutu permukaan dalam pipa, dan luas penampang pipa serta panjang pipa. Mutu permukaan pipa x panjang pipa Hambatan alir = Panjang pipa

112 Kelistrikan 87 Berdasarkan penjelasan di atas, dapat ditentukan beberapa persamaan karakteristik yang ada dalam kelistrikan, yaitu: a. Hambatan alir sama dengan Resistansi ( R ) b. Mutu permukaan dalam pipa sama dengan nilai hambat jenis (specific resistivity) dari kawat penghantar, dilambangkan dengan ρ (rho), yaitu nilai hambatan yang timbul akibat jenis bahan yang digunakan sebagai penghantar. c. Luas penampang pipa sama dengan luas penampang kawat penghantar, dilambangkan dengan A. d. Panjang pipa sama dengan panjang penghantar, dan dilambangkan dengan l. Arus listrik merupakan sejumlah elektron yang mengalir dalam tiap detiknya pada suatu penghantar. Banyaknya elektron yang mengalir ini ditentukan oleh dorongan yang diberikan pada elektron-elektron dan kondisi jalan yang akan dilalui elektron-elektron tersebut. Arus listrik dilambangkan dengan huruf I dan diukur dalam satuan Ampere. Tegangan listrik (voltage) dapat diyatakan sebagai dorongan atau tenaga untuk memungkinkan terjadinya aliran arus listrik. Tegangan listrik dibedakan menjadi dua macam, yaitu: a. Tegangan listrik searah (direct current /DC) b. Tegangan listrik bolak-balik (alternating current / AC) Tegangan listrik DC memungkinkan arus listrik mengalir hanya pada satu arah saja, yaitu dari titik satu ke titik lain dan nilai arus yang mengalir adalah konstan/tetap. Sedangkan tegangan listrik AC memungkinkan arus listrik mengalir dengan dua arah, pada tiap-tiap setengah siklusnya. Nilainya akan berubah-ubah secara periodik. Gambar 3.2 Arus listrik AC

113 Kelistrikan 88 Gambar 3.3 Arus listrik DC Resistansi (tahanan) dapat diartikan sebagai apapun yang menghambat aliran arus listrik dan mempengaruhi besarnya arus yang dapat mengalir. Pada dasarnya semua material (bahan) adalah konduktor (penghantar), namun resistansi-lah yang menyebabkan sebagian material dikatakan isolator, karena memiliki resistansi yang besar dan sebagian lagi disebut konduktor, karena memiliki resistansi yang kecil. Resistansi ada pada kawat, kabel, body atau rangka sepeda motor, namun nilainya ditekan sekecil mungkin dengan menggunakan logam-logam tertentu yang memiliki nilai ρ yang rendah. Resistansi ada yang dibuat dengan sengaja untuk mengatur besarnya arus listrik yang mengalir pada rangkaian tertentu, dan komponen yang memiliki nilai resistansi khusus tersebut, disebut Resistor. Resistor dibagi menjadi dua jenis : a. Resistor tetap (fixed resistor) b. Resistor variabel (variable resistor) Variable resistor terdiri dari beberapa macam : 1) Rotary-type Resistor 2) LDR (Light Dependent Resistor) 3) Thermistor, terdiri dari : a) NTC ( Negative Temperture Coeficient ) Thermistor b) PTC ( positive Temperature Coeficient ) Thermistor

114 Kelistrikan 89 Pada NTC thermistor, nilai resistansi dari thermistor akan menurun pada saat suhu meningkat, sedangkan pada PTC Thermistor, nilai resistansinya akan meningkat seiring dengan meningkatnya suhu. Thermistor digunakan untuk keperluan pendeteksian suhu suatu objek, misalnya suhu oli engine, transmisi, axle dan lain-lain. Simbol Simbol Gambar 3.4 Resistor dan simbolnya Contoh Aplikasi Resistor pada Sepeda Motor Hampir semua rangkaian kelistrikan pada sepeda motor terdapat tahanan (resistor). Bentuk tahanan pada rangkaian bisa berupa tahanan pada bola lampu atau kumparan maupun tahanan (resistor) biasa seperti gambar 3.4 di atas. Contoh aplikasi/penggunaan resistor tetap (fixed resistor) pada sepeda motor diantaranya bisa dilihat pada sistem tanda belok (turn signal) yang menggunakan flasher tipe kapasitor seperti gambar di bawah ini:

115 Kelistrikan 90 Gambar 3.5 Aplikasi resistor tetap (R) pada sepeda motor Resistor (R) pada gambar di atas akan dialiri arus dai baterai jika posisi plat kontak (P) dalam keadaan membuka. Dengan adanya resistor (R) tersebut, maka aliran arus yang melewatinya akan menjadi lebih kecil dibanding dengan arus yang mengalir melalui plat kontak (P) saat posisi menutup. Hal ini akan berakibat lampu tanda belok (lampu sein) tidak menyala saat arus melewati resistor tersebut walau saklar lampu sein sedang diarahkan ke kiri maupun ke kanan. Selanjutnya untuk contoh aplikasi/penggunaan variable resistor pada sepeda motor diantaranya bisa dilihat pada rangkaian pengukur bahan bakar seperti gambar di bawah ini: Gambar 3.6 Aplikasi variable resistor pada sepeda motor

116 Kelistrikan 91 Bekerjanya variable resistor pada gambar di atas berdasarkan tinggi rendahnya bahan bakar dalam tangki melalui perantaraan pelampung, lengan pelampung dan lengan penghubung (moving contact arm). Pergeseran ke kiri dan ke kanan dari lengan penghubung tersebut akan merubah besarnya tahanan pada variable resistor. 3. Hukum Ohm (Ohm s Law) Hukum Ohm menerangkan hubungan antara tegangan (Voltage), kuat arus (Ampere) dan resistansi (R). Hubungan antara tegangan (V), kuat arus (I) dan resistansi (R) dapat dirumuskan sebagai berikut: V = I. R atau R = I V atau I = R V, dimana; V = Tegangan listrik yang diberikan pada sirkuit/rangkaian dalam Volt (V) I = Arus listrik yang mengalir pada sirkuit dalam Ampere (A) R = Tahanan pada sirkuit, dalam Ohm (Ω) Untuk menjelaskan hubungan ketiganya tersebut dapat diilustrasikan seperti pada gambar di bawah ini: Gambar 3.7 Rangkaian untuk menjelaskan prinsip dari Hukum Ohm

117 Kelistrikan 92 Pada saat variable resistor diposisikan pada nilai resistansi rendah, arus akan mengalir maksimal. Namun tegangan akan menurun (mengecil). Pada saat nilai resistansi maksimal, kuat arus yang mengalir sangat kecil namun tegangan meningkat mencapai maksimal. Dari percobaan di atas dapat disimpulkan bahwa besarnya tegangan berbanding terbalik dengan kuat arus yang mengalir. Atau dengan kata lain, makin besar arus yang mengalir, makin minimum tegangan kerja pada lintasan rangkaian dan makin kecil (makin menjauhi tegangan baterai/sumber listrik). Makin kecil arus yang mengalir, makin maksimal tegangan kerja (makin mendekati tegangan baterai/sumber listrik). Contoh Aplikasi Hukum Ohm pada Sepeda Motor Hukum Ohm dapat digunakan untuk menentukan suatu tegangan V, arus I atau tahanan R pada sirkuit/rangkaian kelistrikan, seperti pada rangkaian lampu penerangan, sistem pengisian, sistem pengapian dan sebagainya. Tegangan, arus dan tahanan tersebut dapat ditentukan tanpa pengukuran yang aktual, bila diketahui harga dari dua faktor yang lain. a. Hukum ini dapat digunakan untuk menentukan besar arus yang mengalir pada sirkuit/rangkaian bila tegangan V diberikan pada tahanan R. Rumus Hukum Ohm yang digunakan adalah: I = R V Arus listrik = tegangan / tahanan b. Hukum ini juga dapat digunakan untuk menghitung tegangan V yang diperlukan agar arus I mengalir melalui tahanan R. Rumus Hukum Ohm yang digunakan adalah: V = I x R Tegangan = Arus listrik x tahanan 4. Rangkaian Kelistrikan Sistem kelistrikan pada sepeda motor terbuat dari rangkaian kelistrikan yang berbeda-beda, namun rangkaian tersebut semuanya berawal dan berakhir pada tempat yang sama, yaitu sumber listrik (misalnya baterai). Lalu, apa sebenarnya rangkaian (circuit) tersebut?

118 Kelistrikan 93 Supaya sistem kelistrikan dapat bekerja, listrik harus dapat mengalir dalam suatu rangkaian yang komplit/lengkap dari asal sumber listrik melewati komponen-komponen dan kembali lagi ke sumber listrik. Aliran listrik tersebut minimal memiliki satu lintasan tertutup, yaitu suatu lintasan yang dimulai dari titik awal dan akan kembali lagi ke titik tersebut tanpa terputus dan tidak memandang seberapa jauh atau dekat lintasan yang tempuh. Jika tidak ada rangkaian, listrik tidak akan mengalir. Artinya, setelah listrik mengalir dari terminal positif baterai kemudian melewati komponen sistem kelistrikan, maka supaya rangkaian bisa dinyatakan lengkap, listrik tersebut harus kembali lagi ke baterai dari arah terminal negatifnya, yang biasa disebut massa (ground). Untuk menghemat kabel, sambungan (connector) dan tempat, massa bisa langsung dihubungkan ke body atau rangka besi sepeda motor atau ke mesin. Tahanan, Arus dan Tegangan pada Rangkaian Pada satu rangkaian kelistrikan yang terdapat pada sepeda motor biasanya digabungkan lebih dari satu tahanan listrik atau beban. Beberapa tahanan listrik mungkin dirangkaikan di dalam satu rangkaian/sirkuit dengan salah satu diantar tiga metode penyambungan berikut ini: a. Rangkaian Seri b. Rangkaian Paralel c. Rangkaian Kombinasi (Seri Paralel) Nilai/jumlah tahanan dari seluruh tahanan yang dirangkaikan didalam sikuit/rangkaian disebut dengan tahanan total (combined resistance). Cara perhitungan tahanan, arus dan tegangan dari ketiga jenis rangkaian di atas adalah berbeda-beda antara satu dengan yang lainnya. Rangkaian Seri Tipe penyambungan rangkaian seri yaitu bila dua atau lebih tahanan (R1, R2, dan R3 dan seterusnya) dirangkaikan di dalam satu sirkuit/rangkaian seperti gambar 3. 8 di bawah ini, sehingga hanya ada satu jalur untuk mengalirnya arus.

119 Kelistrikan 94 Gambar 3.8 Rangkaian seri Pada rangkaian seri, jumlah arus yang mengalir selalu sama pada setiap titik/tempat komponen. Sedangkan tahanan total adalah sama dengan jumlah dari masing-masing tahanan R1, R2 dan R3. Dengan adanya tahanan listrik di dalam sirkuit, maka bila ada arus listrik yang mengalir akan menyebabkan tegangab turun setelah melewati tahanan. Besarnya perubahan tegangan dengan adanya tahanan disebut dengan penurunan tegangan (voltage drop). Pada rangkaian seri, penjumlahan penurunan tegangan setelah melewati tahanan akan sama dengan tegangan sumber (Vt). Adapun rumus arus listrik, tahanan dan tegangan pada rangkaian seri adalah sebagai berikut: I total = I 1 = I 2 = I 3 R total = R1 + R2 + R3 V total = V1 + V2 + V3 Kuat arus I yang mengalir pada rangkaian seri besarnya sama pada R1, R2 dan R3, sehingga dapat dihitung menjadi : I = V R total = I = V R1 + R2 + R3

120 Kelistrikan 95 Bila arus I mengalir pada sirkuit/rangkaian, penurunan tegangan V1, V2 dan V3 setelah melewati R1, R2 dan R3 dihitung dengan Hukum Ohm. V1 = R1 x I V2 = R2 x I V3 = R3 x I Berdasarkan contoh gambar 3.8 di atas besarnya masing-masing tahanan, kuat arus dan tegangan dapat dihitung sebagai berikut: Tahanan total R total = R1 + R2 + R3 = 2 Ω + 4 Ω + 6 Ω = 12 Ω Arus listrik I I = I = V R total V R1 + R2 + R3 Penurunan tegangan pada R1 Penurunan tegangan pada R2 12V I = 2Ω + 4Ω + 6Ω = 1 A V1 = R1 x I = 2 Ω x 1 A = 2 V V2 = R2 x I = 4 Ω x 1 A = 4 V Penurunan Tegangan pada R3 V3 = R3 x I = 6 Ω x 1 A = 6 V Rangkaian Paralel Tipe penyambungan rangkaian paralel yaitu bila dua atau lebih tahanan (R1, R2, dan R3 dan seterusnya) dirangkaikan di dalam satu sirkuit/rangkaian seperti gambar 3. 9 di bawah ini. Salah satu dari setiap ujung tahanan (resistor) dihubungkan ke bagian yang bertegangan tinggi (positif) dari sirkuit dan ujung lainnya dihubungkan ke bagian yang lebih rendah (negatif).

121 Kelistrikan 96 Gambar 3.9 Rangkaian paralel Pada rangkaian paralel, tegangan sumber (baterai) V adalah sama pada seluruh tahanan. Sedangkan jumlah arus I adalah sama dengan jumlah arus I1, I2 dan I3 yaitu arus yang mengalir melalui masing-masing resistor R1, R2 dan R3. Adapun rumus arus listrik, tahanan dan tegangan pada rangkaian seri adalah sebagai berikut: V total = V1 = V2 = V3 I total = I 1 + I 2 + I 3 sehingga ; R total = R1 R2 R3 R total = R1x R2 x R3 R1+ R2 + R3

122 Kelistrikan 97 Kuat arus I yang mengalir pada R1, R2 dan R3, dapat dihitung menjadi : I1 = V R1 I2 = V R2 I3 = V R3 Berdasarkan contoh gambar 3.9 di atas besarnya masing-masing tahanan, kuat arus dan tegangan dapat dihitung sebagai berikut: Tahanan total R total = R1xR2xR3 R1 + R1 + R3 = 2Ωx4Ωx6Ω 2Ω + 4Ω + 6Ω = 48Ω 12Ω = 4 Ω Arus I1 (lewat R1) I 1 = I 1 = Arus I2 (lewat R2) I 2 = I 2 = Arus I3 (lewat R3) I 3 = I 3 = V R1 12V 2Ω V R2 12V 4Ω V R3 12V 6Ω = 6 A = 3 A = 2 A Tegangan pada pada contoh gambar 3. 9 untuk masing-masing resistor pada rangkaian paralel sama dengan tegangan baterai, yaitu sebesar 12 V. Rangkaian Kombinasi (Seri Paralel) Tipe penyambungan rangkaian kombinasi (seri paralel) yaitu sebuah tahanan (R1) dan dua atau lebih tahanan (R2 dan R3 dan seterusnya) dirangkaikan di dalam satu sirkuit/rangkaian seperti gambar

123 Kelistrikan di bawah ini. Rangkaian seri paralel merupakan kombinasi (gabungan) dari rangkaian seri dan paralel dalam satu sirkuit. Gambar 3.10 Rangkaian kombinasi (seri paralel) Tahanan total dalam rangkaian seri paralel dihitung dengan langkah sebagai berikut : a. Menghitung tahanan pengganti (R Pengganti ), yaitu gabungan tahanan R2 dan R3 yang dihubungkan secara paralel. R Pengganti = R2 x R3 R2 + R3 b. Menghitung tahanan total, yaitu gabungan tahanan R1 dan R Pengganti yang dihubungkan secara seri. R total = R1 + R Pengganti = R total = R1 + R2 x R3 R2 + R3 Besar arus yang mengalir melalui rangkaian dihitung : I total = I 1 = I 2 + I 3 atau I = V R total V = R2 x R3 R1+ R2 + R3

124 Kelistrikan 99 Tegangan yang bekerja pada R1 (V1) dan pada R2 dan R3 (V pengganti ) dapat dihitung dengan menggunakan rumus : V1 = R1 x I V pengganti = R Pengganti x I = V total = V1 + V pengganti R2 x R3 R2 + R3 x I Selanjutnya berdasarkan contoh gambar 3.10 di atas besarnya masing-masing tahanan, kuat arus dan tegangan dapat dihitung sebagai berikut: Tahanan pengganti R Pengganti = = R2 x R3 R2 + R3 4Ωx6Ω 4Ω + 6Ω = 24Ω 10Ω = 2,4 Ω Tahanan total R total = R1 + R Pengganti = 2 Ω + 2,4 Ω = 4,4 Ω Arus total I = = V R total 12 V 4,4Ω = 2,727 A Tegangan V pengganti yang bekerja pada tahanan R1 dan R2 sebesar: V penganti = R pengganti x I = 2,4 Ω x 2,73 A = 6, 55 V Tegangan pada R1 V1 = R1 x I = 2 Ω x 2,727 A = 5,45 V Tegangan total Vtotal = V1 + Vpengganti = 5,45 + 6,55 = 12 V

125 Kelistrikan 100 V pengganti Arus I2 yang mengalir lewat R2 I2 = R2 6,55V = 4Ω = 1,6375 A V pengganti Arus I3 yang mengalir lewat R3 I3 = R3 6,55V = 6Ω = 1,0917 A Contoh Aplikasi Jenis Rangkaian pada Sepeda Motor Seperti telah dijelaskan pada bagian sebelumnya, bahwa hampir semua rangkaian kelistrikan pada sepeda motor terdapat tahanan (resistor). Bentuk tahanan pada rangkaian bisa berupa tahanan pada bola lampu atau kumparan maupun tahanan (resistor) biasa. Contoh aplikasi/penggunaan jenis rangkaian, baik rangkaian seri, paralel maupun gabungan seri - paralel pada sepeda motor bisa ditemukan dalam sistem penerangan (lampu-lampu dan tanda belok/sein), sistem pengisian yang menggunakan pengaturan tegangan (voltage regulator) secara elektronik, dan sistem pengapian elektronik. Diantara contoh-contoh tersebut yaitu sistem tanda belok (turn signal) yang menggunakan flasher tipe kapasitor seperti gambar di bawah ini: Gambar 3.11 Aplikasi jenis-jenis rangkaian pada sepeda motor

126 Kelistrikan 101 Berdasarkan gambar 3.10 di atas dapat dilihat bahwa rangkaian kelistrikan sistem tanda belok tersebut memiliki jenis rangkaian, yaitu: a. Rangkaian kombinasi seri - paralel antara tahanan (R) dengan kumparan L1 dan L2 b. Rangkaian paralel antara lampu sein kiri depan dengan lampu sein kiri belakang Sedangkan untuk menjelaskan salah satu aplikasi rangkaian seri pada sepeda motor, lihat gambar 3.16 pada pembahasan zener diode. Dalam gambar tersebut terdapat rangkaian seri antara R3 dan R4. 5. Diode Gambar 3.12 Dioda dan simbolnya Sebuah diode didefinisikan sebagai paduan dua elektroda, satu menjadi positif (anoda) dan yang lain adalah negatif (katoda) dan hanya mengijinkan arus mengalir dalam satu arah. Dioda merupakan komponen semikonduktor yang berfungsi untuk mengijinkan arus mengalir di dalam sebuah rangkaian hanya dalarn satu arah (forward bias), yaitu dari anoda ke katoda dan memblokirnya saat mengalir dalam arah yang berlawanan (reverse bias), hal ini dimungkinkan oleh karena karakteristik dari silicon, atau wafer di dalam diode. Saat sebuah penghantar/konduktor tegangan positif di hubungkan ke anoda dan penghantar tegangan negatif dihubungkan ke katoda, arus mengalir melalui diode. Jika penyambungan ini dibalik, arus tidak akan dapat mengalir sebab pemblokiran dari karakteristik silicon wafer, oleh karena itu diode beraksi sebagai katup satu arah (check valve) dan mengijinkan arus mengalir hanya satu arah.

127 Kelistrikan 102 Gambar 3.13 Contoh aplikasi penggunaan dioda Contoh Aplikasi Diode pada Sepeda Motor Aplikasi/penggunaan dioda pada sistem kelistrikan sepeda motor bisa ditemukan dalam rangkaian sistem penerangan maupun sistem pengisian yang menggunakan generator AC (alternator), seperti terlihat pada gambar di bawah ini: Gambar 3.14 Contoh aplikasi penggunaan diode pada sepeda motor Berdasarkan gambar 3.14 di atas, diode (rectifier) bekerja untuk merubah arus AC (bolak-balik) yang dihasilkan alternator menjadi arus Dc (searah). Arus DC ini kemudian disalurkan ke baterai dan beban (load) seperti lampu tanda belok/sein.

128 Kelistrikan Zener diode Zener diode merupakan suatu jenis diode yang memiliki sifat dioda hanya bila tegangan kerjanya (beda potensial diantara kedua kakinya) belum melampaui tegangan tembusnya (breakdown voltage ). Gambar 3.15 Zener diode dan simbolnya Bila tegangan kerjanya melampaui tegangan tembusnya, dioda ini akan kehilangan sifat ke-dioda-annya. Zener diode banyak digunakan pada rangkaian regulator tegangan pada alternator. Contoh Aplikasi Zener Diode pada Sepeda Motor Aplikasi/penggunaan zener dioda pada sistem kelistrikan sepeda motor bisa ditemukan dalam rangkaian sistem pengisian yang menggunakan generator AC (alternator) dengan pengatur tegangan (voltage regulator) secara elektronik, seperti terlihat pada gambar di bawah ini : Gambar 3.16 Contoh aplikasi penggunaan zener diode pada sepeda motor

129 Kelistrikan 104 Berdasarkan gambar 3.16 di atas, zener diode bekerja untuk mengaktifkan basis transistor T2 ketika tegangan yang berada diantara R4 dan R5 telah mencapai tegangan tembus zener diode tersebut. Dengan bekerjanya zener diode tersebut, menyebabkan arus yang mengalir pada R1 akan cenderung mengalir ke massa lewat T2 dan suplai arus listrik ke basis T1 terhenti. Dengan demikian rotor saat ini tidak mendapat suplai arus listrik karena T1 tidak hidup (OFF). Rotor alternator akan kehilangan kemagnetan, dan proses pengisian baterai akan terhenti. 7. Transistor Transistor merupakan kependekan dari Transfer Resistor, atau suatu komponen elektronika yang dapat mengalirkan atau memutuskan aliran arus yang besar dengan pengendalian arus listrik yang relatif sangat kecil, dengan mengubah resistansi lintasannya. Kemampuannya tersebut hampir sama dengan relay, namun transistor memiliki kelebihan antara lain yaitu : a. Arus pengendali pada transistor jauh lebih kecil sehingga lebih mudah mengendalikannya. b. Transistor tidak menggunakan kontak mekanis, sehingga tidak menimbulkan percikan api dan lebih tahan lama. c. Ukuran transistor relatif lebih kecil dan kompak dibanding relay. d. Dapat bekerja pada tegangan kerja yang bervariasi. Namun demikian, disamping mempunyai kelebihan, transistor juga mempunyai beberapa kelemahan antara lain: a. Kesalahan penghubungan kaki transistor akan berakibat kerusakan permanen. b. Panas yang dihasilkan pada transistor lebih besar sehingga bila tidak diberi pendinginan yang cukup, akan memperpendek usia transistor. Terdapat dua jenis transistor, yaitu : a. Tipe NPN b. Tipe PNP

130 Kelistrikan 105 Gambar 3.17 Transistor dan simbolnya (E = emitor, B = basis/gate, C = kolektor) Untuk menentukan apakah suatu transistor adalah NPN atau PNP tidak dapat secara fisik. Kita dapat melihat dari kode dan mencocokkannya dengan Transistor handbook. Pada transistor terdapat dua aliran arus lsitrik, yaitu arus dari kaki Basis ke Emitor ( atau sebaliknya ) yaitu I B-E dan arus yang mengalir dari Kolektor ke Emitor ( atau sebaliknya ) yaitu I C-E. Aplikasi/penerapan transistor dalam sistem kelistrikan banyak digunakan sebagai saklar elektronik. Adapun cara kerja transistor secara ringkas adalah: jika ada arus pemicu (arus kecil) yang mengalir dari Basis ke Emitor maka arus yang besar akan mengalir dari Kolektor ke Emitor (untuk jenis NPN) atau jika ada arus pemicu (arus kecil) dari Emitor ke Basis, maka arus yang besar akan mengalir dari Emitor ke Kolektor (untuk jenis PNP). Contoh Aplikasi Transistor pada Sepeda Motor Aplikasi/penggunaan transistor pada sistem kelistrikan sepeda motor bisa ditemukan dalam rangkaian sistem pengapian semi transistor maupun full transistor, sistem tanda belok yang menggunakan flasher tipe transistor, sistem pengisian yang menggunakan pengaturan tegangan secara elektronik, dan sebagainya. Gambar 3.18 di bawah ini memperlihatkan aplikasi transistor pada sistem pengapian full transistor sepeda motor: jika terminal basis TR2 mendapat sinyal dari pick up coil, maka arus yang mengalir lewat R akan cenderung ke massa lewat terminal C ke terminal E TR2. Akibatnya basis TR1 tidak ada arus sehingga TR1 akan OFF, sehingga arus pada kumparan primer ignition coil (koil pengapian) akan terputus dan akan terjadi induksi pada kedua kumparan koil pengapian tersebut. Terjadinya induksi tersebut menghasilkan percikan bunga api pada busi.

131 Kelistrikan 106 Gambar 3.18 Contoh aplikasi penggunaan transistorpada sepeda motor B. KAPASITOR/KONDENSOR Kapasitor merupakan komponen listrik yang dapat menyimpan energi listrik dalam jangka waktu tertentu. Dikatakan dalam jangka waktu tertentu karena walaupun kapasitor diisi sejumlah muatan listrik, muatan tersebut akan habis setelah beberapa saat, bergantung besarnya kapasitas kapasitor. Besarnya kapasitas kapasitor diukur dalam satuan Farad. Dalam prakteknya ukuran ini terlampau besar, sehingga digunakan satuan yang lebih kecil seperti microfarad (µf), nanofarad atau pikofarad. Kapasitor memiliki dua jenis yaitu: a. Kapasitor polar Pada kapasitor polar, adanya penentuan kutub-kutub kapasitor bila hendak dihubungkan dengan suatu rangkaian, dan hanya bekerja pada tegangan DC. Kapasitor polar memiliki kapasitas yang relatif besar b. Kapasitor non polar Pada kapasitor non-polar tidak memiliki kutub-kutub sehingga dapat dipasang pada posisi terbalik pada rangkaian, serta dapat dihubungkan dengan tegangan AC. Ukuran kapasitor non polar kebanyak relatif kecil, dengan satuan nanofarad dan pikofarad.

132 Kelistrikan 107 Gambar 3.19 Kapasitor Gambar 3.20 Simbol kapasitor

133 Kelistrikan 108 Kapasitor memiliki tegangan kerja maksimum yang tertera pada label di housingnya. Tegangan rangkaian listrik yang dihubungkan pada kapasitor tidak boleh melampaui tegangan kerja maksimum kapasitor yang bersangkutan, karena akan menyebabkan kerusakan permanen (bahkan pada beberapa kasus, terjadi ledakan). Tegangan kerja maksimum ini berkisar : 10V, 25V, 35V, 50V, 100V untuk kapasitor polar dan 250V sampai 750V untuk kapasitor non-polar. Terdapat dua ketentuan praktis tentang kapasitor, yaitu: 1) Kapasitor yang kosong muatan bertindak seolah-olah konduktor (penghantar), dan 2) Kapasitor yang penuh muatan bertndak seolah-olah isolator (penyekat). Contoh Aplikasi Kapasitor pada Sepeda Motor Aplikasi/penggunaan kapasitor pada sistem kelistrikan sepeda motor bisa ditemukan dalam rangkaian sistem pengapian konvensional (menggunakan platina), dan pengapian CDI (Capacitor Discharge Ignition) baik CDI dengan arus DC (searah) maupun CDI dengan arus AC (bolak balik). Gambar 3.21 di bawah ini memperlihatkan aplikasi kapasitor pada sistem pengapian CDI arus AC : Gambar 3.21 Contoh aplikasi penggunaan kapasitor pada sepeda motor

134 Kelistrikan 109 Berdasarkan gambar di atas, kapasitor dalam CDI unit bekerja menyimpan arus sementara (100 sampai 400 V) dari magnet yang telah di searahkan lebih dulu oleh diode ketika SCR (Silicone Control Rectifier) belum aktif. Setelah gerbang G pada SCR diberi arus sinyal untuk proses pengapian, maka SCR akan aktif dan menyalurkan arus listrik dari anoda (A) ke katoda (K). Dengan berfungsinya SCR tersebut, menyebabkan kapasitor melepaskan arus (discharge) dengan cepat. Kemudian arus mengalir ke kumparan primer (primary coil) koil pengapian untuk menghasilkan tegangan sebesar 100 sampai 400 volt sebagai tegangan induksi sendiri. Akibat induksi diri dari kumparan primer tersebut, kemudian terjadi induksi dalam kumparan sekunder dengan tegangan sebesar 15 KV sampai 20 KV. Tegangan tinggi tersebut selanjutnya mengalir ke busi dalam bentuk loncatan bunga api yang akan digunakan untuk membakar campuran bahan bakar dan udara dalam ruang bakar. Simbol-simbol Komponen Kelistrikan Jika rangkaian kelistrikan digambarkan dengan gambar asli benda yang bersangkutan, maka ilustrasi dan pemahamannya bisa menjadi cukup sulit dan rumit. Untuk itu, pada pembuatan diagram rangkaian kelistrikan biasanya dilakukan hanya dengan membuat simbol-simbol yang menunjukkan komponen kelistrikan dan kabel-kabel. Beberapa simbol-simbol telah disebutkan pada pembahasan di atas. Adapun simbol-simbol yang sering digunakan pada pembuatan rangkaian sistem kelistrikan secara garis besar adalah sebagai berikut:

135 Kelistrikan 110 Tabel 1. Simbol-simbol komponen kelistrikan SPARK PLUG (BUSI) GENERATOR WIRE SPLICED (KABEL TERHUBUNG) WIRE NOT CONNECTED (KABEL TIDAK TERHUBUNG WIRE (KABEL)

136 Kelistrikan 111 C. SISTEM STARTER Sistem starter listrik saat ini dapat ditemukan hampir disemua jenis sepeda motor. Sistem starter pada sepeda motor berfungsi sebagai pengganti kick starter, agar pengendara tidak perlu lagi mengengkol kakinya untuk menghidupkan mesin. Namun demikian, pada umumnya sepeda motor dilengkapi juga dengan kick starter. Penggunaan kick starter biasanya dilakukan jika kondisi sistem starter listrik sedang mengalami kerusakan atau masalah. Sebagai contoh jika kondisi baterai lemah atau terdapat kerusakan pada motor starter sehingga sistem starter listrik tidak dapat digunakan untuk menghidupkan mesin, maka pengendara bisa langsung memanfaatkan kick starter. Secara umum sistem starter listrik terdiri dari; baterai, sekring (fuse), kunci kontak (ignition switch), saklar starter (starter switch), saklar magnet starter (relay starter/solenoid switch), dan motor starter. Contoh ilustrasi posisi komponen sistem starter adalah seperti terlihat pada gambar 3.22 di bawah ini: Gambar 3.22 Posisi komponen sistem starter pada salah satu contoh sepeda motor

137 Kelistrikan Prinsip Kerja Motor Starter Bekerjanya suatu motor starter mempunyai banyak persamaan dengan generator DC, tetapi dalam arah yang sebaliknya. Motor starter mengubah energi listrik menjadi energi mekanik (tenaga putar), sedangkan generator DC mengubah energi mekanik menjadi energi listrik. Dalam kenyataannya, motor DC akan menghasilkan tenaga listrik jika diputar secara mekanik, dan generator DC dapat berputar (berfungsi) seperti motor. Motor bisa berputar jika diberi aliran arus berdasarkan prinsip berikut ini: Pada saat arus mengalir melewati konduktor (penghantar) A dan B yang berada diantara kutub magnet, maka penghantar A dan B akan menerima gaya dorong berdasarkan garis gaya magnet yang timbul dengan arah seperti pada gambar 3.23 di bawah ini. Hubungan antara arah arus, arah garis gaya magnet, dan arah gaya dorong pada penghantar merujuk pada aturan/kaidah tangan kiri Fleming. Gambar 3.23 Prinsip kaidah tangan kiri Fleming Arah arus yang masuk kebalikan dengan arah yang keluar sehingga gaya dorong yang dihasilkan juga saling berlawanan. Oleh karena itu penghantar akan berputar saat arus tersebut mengalir. Untuk membuat penghantar tetap berputar maka digunakan komutator dan sikat (brush).

138 Kelistrikan 113 Komponen utama motor starter terdiri atas; armature coil (kumparan jangkar), komutator, field coils (kumparan medan), dan sikatsikat (brushes). Berdasarkan kaidah tangan kiri Fleming di atas, prinsip kerja dari komponen-komponen utama motor starter adalah sebagai berikut (lihat gambar 3.24 di bawah): Armature dan field coil dihubungkan dengan baterai secara seri melalui sikat-sikat dan komutator. Urutan aliran arusnya yaitu dari baterai, relay starter, field coil, sikat positif, komutator, armature, sikat negatif dan selanjutnya ke massa. Gambar 3.24 Prinsip dasar Motor starter Pada saat arus listrik mengalir, pole core bersama-sama field coil akan terbangkit medan magnet. Armature yang juga dialiri arus listrik akan timbul garis gaya magnet sesuai tanda putaran panah pada gambar Sesuai dengan kaidah tanan kiri Fleming, armature coil sebelah kiri akan terdorong ke atas dan yang sebelah kanannya akan terdorong ke bawah. Dalam hal ini armature coil berfungsi sebagai kopel atau gaya puntir, sehingga armature akan berputar. Jumlah kumparan di dalam armature coil banyak, sehingga gaya putar yang ditimbulkan armature coil bekerja saling menyusul. Akibatnya putaran armature akan menjadi teratur.

139 Kelistrikan Persyaratan yang harus Dipenuhi Sistem Starter Pada umumnya sepeda motor yang dilengkapi dengan sistem starter listrik, sumber arus yang digunakan adalah baterai. Dalam hal ini kondisi baterai harus dapat menghasilkan tenaga putar (torque) yang sangat besar. Selain itu ukuran baterai juga diharapkan kecil dan ringan. Motor starter dalam sistem starter listrik harus dapat membangkitkan torque yang besar dari sumber tenaga baterai yang terbatas. Maka untuk itu sistem starter dilengkapi dengan motor starter arus searah (DC). Dalam menentukan motor starter yang tepat menurut kebutuhan suatu mesin, terdapat beberapa faktor yang perlu diperhatikan, antara lain: a. Sifat starter Tenaga putar (torque) yang dihasilkan motor starter akan menambah kadar arus yang mengalir pada starter secara proporsional (sepadan). Makin rendah putaran, makin besar arus yang mengalir pada starter sehingga menghasilkan tenaga putar yang besar. Begitu pula dengan tegangan yang disuplai pada starter, jika tegangannya bertambah besar, maka kapasitasnya akan menurun. Oleh karena itu kapasitas starter sangat erat hubungannya dengan baterai. b. Kecepatan putar dari mesin Mesin tidak akan start (hidup) sebelum melakukan siklus kerjanya berulang-ulang, yaitu langkah hisap, kompresi, pembakaran (usaha) dan buang. Langkah pertama untuk menghidupkan mesin, lalu memutarkannya dan menyebabkan siklus pembakaran awal (pendahuluan). Motor starter minimal harus dapat memutarkan mesin pada kecepatan minimum yang diperlukan untuk memperoleh pembakaran awal. Kecepatan putar minimum yang diperlukan untuk menghidupkan mesin berbeda tergantung pada konstruksi (banyaknya silinder, volume silinder, bentuk ruang bakar) dan kondisi kerjanya (suhu dan tekanan udara, campuran udara dan bensin dan lonctan bunga api busi), tetapi pada umumnya untuk motor bensin berkisar antara 40 sampai 60 rpm. c. Torque yang dihasilkan starter untuk menggerakkan mesin Torque yang dihasilkan starter merupakan faktor penting dalam menentukan apakah starter dapat berfungsi dengan baik atau tidak. Setiap mesin mempunyai torque maksimum yang dihasilkan, misal suatu mesin dengan 100 cc maksimum torquenya adalah 0,77 kg-m. Untuk dapat menggerakkan mesin dengan kapasitas tersebut, diperlukan torque yang melebihi kapasitas tersebut (sampai 6 kali). Tetapi pada umumnya starter hanya mempunyai torque yang yang tidak jauh berbeda dari torque maksimum mesin

140 Kelistrikan 115 tersebut, sehingga tidak akan mampu memutarkan poros engkol. Untuk mengatasi hal ini, pada motor starter dilengkapi dengan gigi pinion (pinion gear), sehingga momen yang dihasilkan bisa diperbesar. 3. Komponen Motor Starter Komponen yang berfungsi sebagai jantung dari motor adalah armature (jangkar) dan kumparan-kumparan yang mengelilingi poros armature dinamakan armature coil (kumparan jangkar). Pada bagian ujung armature yang berbentuk silinder dan terdiri dari sejumlah segmen/bagian tembaga yang dipisahkan oleh isolator mika dinamakan commutator (komutator). Komutator berfungsi agar arus listrik bisa mengalir secara terus menerus ke armature coil melalui carbon brushes (sikat) yang langsung bergesekan dengannya. Adapun pembahasan lebih terperinci dari komponen-komponen motor starter adalah sebagai berikut (lihat gambar 3.27 di bawah ini): a. Field coil (kumparan medan) Field coil dibuat dari lempengan tembaga dan berfungsi untuk membangkitkan medan magnet (nomor 2a gambar 3.27). Field coil disambungkan secara seri dengan armature coil (kumparan jangkar), agar arus yang melewati field coil juga mengalir ke armature coil. Field coil hanya terdapat pada sepeda motor yang menggunakan motor starter tipe elektromagnet (magnet remanen/bukan permanen). Pada sepeda motor yang menggunakan motor starter tipe magnet permanen tidak menggunakan field coil. Motor starter tipe magnet permanen bentuknya kompak dan bobotnya lebih ringan, sehingga banyak digunakan pada sepeda motor kecil saat ini (lihat gambar 3.25) Gambar 3.25 Motor starter tipe magnet permanen

141 Kelistrikan 116 b. Armature Armature terdiri atas sebatang besi yang berbentuk silindris dan diberi slot-slot, armature shaft (poros armature), komutator serta armature coil (kumparan armature). Armature berfungsi untuk merubah energi listrik menjadi energi mekanik, dalam bentuk gerak putar. (gambar 3.26 dan gambar 3.27 nomor 3 dan 3a). Gambar 3.26 Armature Jumlah lilitan armature coil dibuat banyak agar semakin banyak helai-helai kawat yang mendapat gaya elektromagnetik (garis gaya magnet), sehingga tenaga yang dihasilkan cukup besar untuk memutarkan cankshaft (poros engkol) c. Yoke dan pole core Yoke (stator) berfungsi sebagai tempat untuk mengikatkan pole core (nomor 2 dan 2b gambar 3.27). Yoke terbuat dari logam yang berbentuk silinder. Sedangkan pole core berfungsi untuk menopang field coil dan memperkuat medan magnet yang ditimbulkan field coil. d. Brush (sikat) Brush (sikat) dibuat dari tembaga lunak, dan berfungsi untuk meneruskan arus listrik dari field coil ke armature coil langsung ke massa melalui komutator (nomor 10 dan 11 gambar 3.27). Untuk motor starter tipe magnet permanen (tidak menggunakan field

142 Kelistrikan 117 coil), brush akan meneruskan arus listrik dari baterai langsung ke armature kemudian ke massa melalui komutator. Motor starter pada sepeda motor ada yang mempunyai dua buah sikat (satu sikat posisitf dan satu sikat negatif) dan empat buah sikat (dua sikat positif dan dua sikat negatif) tergantung dari beban mesin yang akan diputar. Biasanya motor starter dengan empat buah sikat hanya digunakan pada sepeda motor besar. 1 Gambar 3.27 Komponen motor starter tipe dua brush (sikat) 1. Motor starter 2. Stator (rumah field coil&pole core) 2a. Field coil 2b. Pole core 3. Armature 3a. Commutator 4. & 12. O-ring 5. Pinion gear (gigi pinion) 6. Circlip 7. End plate 8. & 13. Washer 8. Brush holder (pemegang sikat) 10 & 11Brush (sikat) 14. Bolt (baut) 15 & 17 Nut (mur) 18. Cable 19. Boot (sepatu kabel) Pada bagian rumah motor (stator) diikatkan field coil (kumparan medan) dan pole core (inti kutub) yang berfungsi untuk menghasilkan medan magnet. Biasanya terdapat empat buah pole core dan field coil yang mempunyai jumlah lilitan cukup banyak agar medan magnet yang ditimbulkan lebih besar. Untuk memperbesar momen putar yang dihasilkan motor disamping dengan adanya perbandingan gigi sproket (pinion) pada motor starter dengan gigi sproket pada crankshaft, maka pada salah satu ujung armature terdapat gigi reduksi. Dengan gigi reduksi perbandingan putaran yang keluar/output menjadi lebih kecil, sehingga momen putarnya akan lebih besar.

143 Kelistrikan 118 e. Starter relay/solenoid switch (saklar magnet starter) Starter relay (solenoid switch) pada sepeda motor ada yang sederhana dan yang mengadopsi dari starter relay yang digunakan pada mobil seperti jenis pre-engaged starter (starter relay langsung dipasangkan di bagian atas motor starter). Starter relay yang sederhana maksudnya adalah sejenis relay biasa yang hanya terdiri dari sebuah kumparan dan empat buah terminal dan ditempatkan terpisah dari motor starter (lihat gambar 3.22 pada pembahasan sebelumnya). Starter relay ini pada umumnya digunakan pada sepeda motor berukuran kecil. Gambar 3.28 Relay starter sederhana dan rangkaiannya

144 Kelistrikan 119 Starter relay (solenoid switch) jenis pre-engaged starter umumnya terdapat pada sepeda motor besar. Solenoid ini bertugas seperti relay, menghubungkan arus yang besar dari baterai ke starter motor (melalui moving contact atau plat kontak yang bisa bergerak karena adanya kemagnetan) dengan bantuan sejumlah kecil arus listrik yang dikontrol dari kunci kontak. Terdapat dua kumparan dalam starter jenis pre-engaged, yaitu pull-in coil dan holding coil. Pull-in coil bertugas menarik plunger melawan spring (pegas) hingga kontak terhubung, dan holding coil bertugas memegang (hold) plunger pada posisi tertarik agar pengontakan tetap berlangsung. Shift lever (tuas penggerak) bertugas pula untuk menggeserkan (shifting) gigi pinion (pinion gear) motor starter ke depan hingga terkait dengan flywheel gear (roda gila). Gambar 3.29 Gambar potongan pre-engaged starter

145 Kelistrikan 120 Overrunning clutch/starter clutch (kopling starter) dan gigi pinion bertugas menyalurkan torsi (tenaga putar) yang dihasilkan motor starter ke flywheel (roda gila) dan mencegah terjadinya putaran yang berlebihan (overrunning) akibat terbawa oleh berputarnya poros motor starter saat mesin telah hidup dan perkaitan antara gigi pinion dan flywheel masih terjadi. 4. Cara Kerja Sistem Starter Seperti telah disebutkan sebelumnya bahwa secara umum sistem starter listrik terdiri dari baterai, sekring (fuse), kunci kontak (ignition switch), saklar/tombol starter (starter switch), relay starter, dan motor starter. Arus yang besar (sekitar 40 ampere) akan mengalir ke motor starter saat dihidupkan. Untuk mengalirkan arus besar tersebut, diperlukan kabel yang tebal (besar) langsung dari baterai menuju motor tanpa lewat starter switch agar kontaknya tidak meleleh ketika ditekan. Oleh karena itu, dalam rangkaian sistem starter dilengkapi relay starter atau solenoid switch. a. Cara Kerja Sistem Starter Dengan Starter Relay Sederhana Seperti telah disebutkan sebelumnya bahwa sistem starter dengan relay starter sederhana banyak digunakan bahwa sepeda motor berukuran kecil (sepeda motor dengan mesin yang berkapasitas 200 cc ke bawah). Sepeda motor jenis ini banyak dijumpai di kalangan masyarakat yang banyak digunakan sebagai alat transportasi keluarga. Gambar 3.30 di bawah ini adalah contoh rangkaian sistem starter dengan relay starter sederhana yang digunakan pada salah satu tipe sepeda motor Honda. Pada gambar tersebut sistem starternya telah dilengkapi dengan sistem pengaman. Penjelesan tentang sistem pengaman akan dibahas lebih detil pada bagian 5 (inovasi sistem starter).

146 Kelistrikan 121 Gambar 3.30 Rangkaian sistem starter dengan starter relay sederhana Adapun cara kerjanya adalah sebagai berikut: Pada saat starter switch (tombol starter) ditekan, arus dari baterai akan mengalir ke kumparan relay starter melalui ignition switch (kunci kontak) terus ke massa. Dalam hal ini arus akan sampai ke massa jika posisi kopling sedang ditekan atau posisi gigi transmisi posisi netral (saklar kopling atau saklar neutral menghubungkan arus dari kumparan relay starter ke massa). Bagi sepeda motor dengan sistem starter yang tidak dilengkapi dengan sistem pengaman, maka aliran arusnya dari tombol starter ke kumparan relay starter ke massa. Arus yang dialirkan ke kumparan relay ini cukup kecil sehingga tidak akan membuat kontak pada tombol starter kelebihan beban. Setelah arus sampai ke massa, pada kumparan relay starter terjadi kemagnetan. Hal ini akan menyebabkan plat kontak pada relay starter tertarik (menutup), sehingga arus yang besar langsung dari baterai mengalir menuju motor starter. Selanjutnya motor starter tersebut akan berputar untuk menghidupkan mesin sesuai prinsip kerja motor starter yang telah dijelaskan sebelumnya

147 Kelistrikan 122 b. Cara Kerja Sistem Starter Dengan Starter Relay Jenis Pre- Engaged Sistem starter jenis pre-engaged banyak digunakan untuk sepeda motor berukuran besar. Salah sepeda motor yang menggunakan sistem starter jenis ini adalah sepeda motor BMW. Karena mengadopsi dari mobil maka cara kerjanya juga sama dengan sistem starter jenis pre-engaged yang digunakan pada mobil. Rangkaian sistem starter jenis pre-engaged bisa dilihat pada gambar 3.31 di bawah ini : Gambar 3.31 Rangkaian sistem starter jenis pre-engaged starter Cara kerjanya adalah sebagai berikut: Pada saat kunci kontak OFF, tidak ada arus yang mengalir ke dalam solenoid (starter relay) maupun motor starter. Arus dari baterai akan stand-by (berhenti) pada contact point (titik kontak) sebelah atas (lihat gambar 3.31). gigi pinion (pinion gear) tidak terkait dengan flywheel. Pada saat kunci kontak di-on-kan, arus listrik akan mengalir ke pull in coil dan hold in coil secara bersamaan. Selanjutnya pull in coil akan menarik plunger ke arah kanan dan hold in coil akan menahan plunger pada posisi terakhirnya. Dalam rangkaian sistem starter ini, pull ini coil terpasang seri dengan field coil sehingga arus yang keluar dari pull in coil akan diteruskan ke field

148 Kelistrikan 123 coil terus ke massa. Untuk lebih jelas lagi aliran arusnya adalah sebagai berikut : Baterai kunci kontak terminal hold in coil massa Baterai kunci kontak terminal pull ini coil field coil ----sikat positif armature sikat negatif massa. Oleh karena arus yang mengalir ke field coil pada saat ini masih kecil, maka armature akan berputar lambat untuk memungkinkan terjadinya perkaitan gigi pinion dengan flywheel secara lembut. Pada saat ini moving contact belum berhubungan dengan contact point (lihat gambar 3.32). Gambar 3.32 Rangkaian sistem starter jenis pre-engaged starter saat kunci kontak dihubungkan Pada saat yang bersamaan, pergerakan plunger juga akan menyebabkan shift lever (tuan penggerak/pengungkit) tertarik sehingga gigi pinion akan bergeser ke arah flywheel. Bila gigi pinion sudah berkaitan penuh dengan flywheel, moving contact akan menutup contact point sehingga arus besar dari baterai yang telah stand by pada contact point sebelah atas akan mengalir langsung ke field coil melalui terminal C. Akibatnya armature akan

149 Kelistrikan 124 berputar cepat dan putarannya diteruskan ke flywheel melalui overunning clutch dan gigi pinion (lihat gambar 3.33). untuk lebih jelas lagi aliran arusnya adalah sebagai berikut: Baterai kunci kontak terminal hold in coil massa Baterai kunci kontak contact point field coil sikat positif armature sikat negatif massa. Gambar 3.33 Rangkaian sistem starter jenis pre-engaged starter saat pinion berkaiatan penuh Pada saat moving contact telah berhubungan dengan contact point, maka arus dari pull in coil tidak dapat mengalir, akibatnya plunger ditahan oleh kemagnetan hold in coil saja. Jika mesin sudah mulai hidup, flywheel akan memutarkan armature melalui pinion karena kecepatan putar motor starter lebih kecil dibanding kecepatan mesin. Untuk menghindari kerusakan apada starter akibat hal tersebut, maka kopling starter (overunning clutch) akan membebaskan dan melindungi armature dari putaran yang berlebihan.

150 Kelistrikan Inovasi Sistem Starter Pada beberapa sepeda motor telah dilengkapi pengaman (safety) bagi si pengendaranya, yaitu sistem starter tidak akan hidup jika tidak sesuai kondisi atau syarat yang telah ditetapkan. Misalnya, sistem starter tidak akan hidup jika rem depan atau rem belakang tidak ditekan. Sistem ini biasanya ditemukan pada sepeda motor jenis scooter (misalnya Yamaha Nouvo) yang menggunakan transmisi otomatis. Contoh pengaman lainnya adalah sistem starter tidak akan hidup jika gigi transmisi masuk (tidak posisi netral) atau kopling tidak ditarik/ditekan. Ada juga sepeda motor yang akan memutuskan aliran arus pada sistem pengapian jika sidestand (standar samping) masih kondisi digunakan/diturunkan, sementara sepeda motor tersebut akan dijalankan oleh pengendaranya. Rangkaian sistem starter terhubung dengan posisi sidestand dan rangkaian posisi gigi dan unit CDI pengapian. a. Sistem Pengaman pada Scooter Sistem pengaman pada scooter dirancang untuk mencegah scooter jalan sendiri bila pengendara memutar gas saat akan menghidupkan (men-start) mesin. Dengan sistem pengaman ini, sistem starter hanya bisa dihidupkan jika pengendara menekan rem depan dan/atau rem belakang. Gambar 3.34 di bawah ini memperlihatkan rangkaian sistem starter pada scooter yang dilengkapi dengan pengaman. Cara kerja Sistem Starter yang Menggunakan Sistem Pengaman Jika rem depan maupun rem belakang ditekan, maka saklar rem depan/belakang (front/rear stop switch) akan menghubungkan kumparan relay starter dengan saklar utama (main switch). Gambar Rangkaian sistem starter scooter

151 Kelistrikan 126 Akibat adanya aliran arus pada kumparan relay starter, maka dalam relay starter akan timbul kemagnetan yang akan menarik plat kontaknya. Selanjutnya arus yang besar langsung mengalir dari baterai menuju motor starter dan motor starter berputar. b. Sistem Pengaman Sepeda Motor (selain Scooter) Rangkaian sistem pengaman pada gambar di bawah ini dirancang untuk mencegah sepeda motor jalan sendiri saat pengendara secara tidak sengaja/tidak tahu menekan starter switch sementara posisi kopling tidak ditekan/ditarik atau posisi gigi transimisi sedang tidak dalam kondisi netral. Gambar 3.35 Rangkaian sistem starter yang dilengkapi pengaman Cara kerja Sistem Starter yang Menggunakan Sistem Pengaman Berdasarkan gambar 3.35 di atas, terlihat bahwa kumparan relay starter tidak akan mendapat arus jika posisi gigi transmisi tidak netral atau kopling (clutch) tidak sedang ditekan/ditarik. Pada posisi tersebut, saklar netral (neutral switch) maupun saklar kopling (clutch switch) tidak akan menghubungkan rangkaian relay pengaman (safety relay) ke massa. Akibatnya safety relay tetap dalam kondisi tidak hidup (OFF) sehingga starter relay juga tidak akan hidup walaupun starter switch ditekan. Dengan demikian, motor starter tidak akan bisa berputar.

152 Kelistrikan 127 Aliran arus dari baterai menuju motor starter akan terjadi jika posisi gigi transmisi sedang netral. Skema aliran arusnya seperti digambarkan oleh tanda panah yang terlihat pada gambar 3.36 di bawah ini: Gambar 3.36 Aliran arus listrik menuju motor starter saat gigi transmisi netral Untuk lebih jelas lagi aliran arusnya berdasarkan gambar 3.36 di atas adalah sebagai berikut: Baterai main switch safety relay -----neutral switch massa. Baterai main switch safety relay starter relay starter switch massa. Baterai plat kontak starter relay motor starter massa (sehingga motor starter berputar). Aliran arus dari baterai menuju motor starter juga akan terjadi jika posisi kopling sedang ditekan. Skema aliran arusnya seperti digambarkan oleh tanda panah yang terlihat pada gambar 3.37 di bawah ini: Untuk lebih jelas lagi aliran arusnya berdasarkan gambar 3.37 tersebut adalah sebagai berikut:

153 Kelistrikan 128 Baterai main switch safety relay -----clutch switch massa. Baterai main switch safety relay starter relay starter switch massa. Baterai plat kontak starter relay motor starter massa (sehingga motor starter berputar). Gambar 3.37 Aliran arus listrik menuju motor starter saat kopling ditekan c. Sistem Switch Sidestand (Standar Samping) Sistem pengaman dengan sistem switch sidestand adalah sistem yang digunakan pada sepeda motor yang menggunakan kombinasi tiga sistem, yaitu sistem starter, sidestand, dan sistem pengapian. Tujuan utamanya adalah untuk memastikan agar posisi sidestand sudah benar-benar diangkat/dikembalikan ke posisinya (tidak digunakan untuk posisi menyandarkan sepeda motor) sebelum motor dihidupkan/dijalankan. Ada beberapa kondisi yang berkaitan dengan sistem pengaman ini, yaitu: 1) Jika posisi sidestand sedang diturunkan/digunakan untuk menyandarkan sepeda motor, motor starter tidak akan bisa dihidupkan saat pengendara menekan starter switch. Kalaupun pengendara mencoba menghidupkan dengan kick

154 Kelistrikan 129 starter (bukan sistem starter listrik), sistem pengapian tidak akan hidup kecuali posisi gigi transmisi netral. 2) Sistem pengapian akan hidup jika posisi transmisi netral atau posisi transmisi selain netral tapi kopling ditekan. 3) Jika sidestand dicoba diturunkan kembali setelah mesin hidup, pengapian akan mati (off) dan mesin akan mati sesaat ketika koplingnya ditarik dan gigi transmisi diganti dari posisi netral. D. SISTEM PENGISIAN (CHARGING SYSTEM) Sistem kelistrikan sepeda motor seperti; sistem starter, sistem pengapian, sistem penerangan dan peralatan instrumen kelistrikan lainnya membutuhkan sumber listrik supaya sistem-sistem tersebut bisa berfungsi. Energi listrik yang dapat disuplai oleh baterai sebagai sumber listrik (bagi sepeda motor yang dilengkapi baterai) jumlahnya terbatas. Sumber listrik dalam baterai tersebut akan habis jika terus menerus dipakai untuk menjalankan (mensuplai) sistem kelistrikan pada sepeda tersebut. Untuk mengatasi hal-hal tadi, maka pada sepeda motor dilengkapi dengan sistem pengisian (charging system). Secara umum sistem pengisian berfungsi untuk menghasilkan energi listrik supaya bisa mengisi kembali dan mempertahankan kondisi energi listrik pada baterai tetap stabil. Disamping itu, sistem pengisian juga berfungsi untuk menyuplai energi listrik secara langsung ke sistemsistem kelistrikan, khususnya bagi sepeda motor yang menggunakan flywheel magneto (tidak dilengkapi dengan baterai). Bagi sebagian sepeda motor yang dilengkapi baterai juga masih ada sistem-sistem (seperti sistem lampu-lampu) yang langsung disuplai dari sistem pengisian tanpa lewat baterai terlebih dahulu. Komponen utama sistem pengisian adalah generator atau alternator, rectifier (dioda), dan voltage regulator. Generator atau alternator berfungsi untuk menghasilkan energi listrik, rectifer untuk menyearahkan arus bolak-balik (AC) yang dihasilkan alternator menjadi arus searah (DC), dan voltage regulator berfungsi untuk mengatur tegangan yang disuplai ke lampu dan mengontrol arus pengisian ke baterai sesuai dengan kondisi baterai.

155 Kelistrikan Prinsip Kerja Generator Induksi Listrik Gambar 3.38 Prinsip terjadinya Induksi listrik Bila suatu kawat penghantar dililitkan pada inti besi, lalu didekatnya digerak-gerakkan sebuah magnet, maka akan timbul energi listrik pada kawat tersebut (jarum milivoltmeter bergerak). Timbulnya energi listrik tersebut hanya terjadi saat ujung magnet mendekati dan menjauhi inti besi. Induksi listrik terjadi bila magnet dalam keadaan bergerak. Saat ujung magnet mendekati inti besi, garis gaya magnet yang mempengaruhi inti besi akan menguat, dan sebaliknya. Perubahan kekuatan garis gaya magnet inilah yang menimbulkan induksi listrik.

156 Kelistrikan 131 Aplikasi Induksi Listrik Gambar 3.39 Posisi kawat penghantar pada 0 o Pada gambar di atas, batang kawat dibentuk sedemikian rupa, ditopang oleh sebuah shaff (poros), dan pada ujung-ujungnya dilengkapi dengan cincin yang disebut komutator. Melalui komutator dan brush (sikat), dihubungkan seutas kabel. Kawat penghantar diletakkan di antara dua kutub magnet yang tarik menarik (kutub U dan S). Berdasarkan gambar di atas, kawat penghantar berada pada posisi terjauh dari magnet. Oleh karena itu, kawat penghantar belum mendapat pengaruh dari garis gaya magnet.

157 Kelistrikan 132 Gambar 3.40 Posisi kawat penghantar pada 90 o Pada gambar 3.40 di atas, kawat penghantar melalui daerah dengan medan magnet terkuat karena berada pada posisi terdekat dengan magnet. Saat ini terbangkitkan energi listrik dengan tegangan tertinggi, yang membuat bola lampu menyala paling terang.

158 Kelistrikan 133 Gambar 3.41 Posisi kawat penghantar pada 180 o Pada gambar di atas, saat kawat penghantar telah mencapai posisi tegak kembali, kawat tidak mendapat pengaruh medan magnet karena kembali berada pada posisi terjauh dari magnet. Saat ini tidak terbangkit energi listrik di dalam kawat penghantar, dan lampu padam.

159 Kelistrikan Persyaratan yang harus Dipenuhi Sistem Pengisian Seperti telah disebutkan sebelumnya bahwa fungsi sistem pengisian secara umum adalah untuk menghasilkan energi listrik supaya bisa mengisi kembali dan mempertahankan kondisi energi listrik pada baterai tetap stabil. Disamping itu, sistem pengisian juga berfungsi untuk menyuplai energi listrik secara langsung ke sistem-sistem kelistrikan, khususnya bagi sepeda motor yang menggunakan flywheel magneto (tidak dilengkapi dengan baterai). Berdasarkan fungsi di atas, maka sistem pengisian yang baik setidaknya memenuhi persyaratan berikut ini: a. Sistem pengisian harus bisa mengisi (menyuplai) listrik dengan baik pada berbagai tingkat/kondisi putaran mesin. b. Sistem pengisian harus mampu mengatur tegangan listrik yang dihasilkan agar jumkah tegangan yang diperlukan untuk sistem kelistrikan sepeda motor tidak berlebih (overcharging). 3. Tipe Generator Generator yang dipakai pada sistem pengisian sepeda motor dibedakan menjadi dua, yaitu generator arus searah (DC), dan generator arus bolak-balik (AC). Yang termasuk ke dalam generator AC antara lain; generator dengan flywheel magnet dan alternator AC 3 Phase. a. Generator DC Prinsip kerja dari generator DC sama dengan pada motor starter yang telah di bahas pada bagian motor starter. Dalam hal ini, jika diberikan arus listrik maka akan berfungsi sebagai motor dan jika diputar oleh gaya luar maka akan berfungsi menjadi generator. Oleh karena itu, generator tipe ini sering juga disebut dinamo starter atau self starter dinamo. Terdapat dua jenis kumparan dalam stator, yaitu seri field coil (terhubung dengan terminal relay starter) dan shunt field coil (terhubung dengan regulator sistem pengisian). Ilustrasi rangkaiannya adalah seperti terlihat pada gambar di bawah ini : Cara Kerja Sistem Pengisian Tipe Generator DC (Self Starter Dinamo) Pada saat starter switch (saklar starter) dihubungkan, arus akan mengalir dari relay starter ke seri field coil terus ke armature coil dan berakhir ke massa. Motor akan berputar untuk memutarkan/menghidupkan mesin. Setelah mesin hidup, kontak pada relay starter diputuskan (starter switch tidak lagi ditekan), sehingga tidak ada lagi arus yang mengalir ke seri field coil.

160 Kelistrikan 135 Akibatnya motor berubah fungsi menjadi generator karena armature coil saat ini menghasilkan arus listrik yang disalurkan ke regulator pengisian melewati shunt field coil. Gambar 3.42 Rangkaian sistem pengisian dengan tipe generator DC (dinamo starter) Sistem pengisian dengan generator DC tidak secara luas digunakan pada sepeda motor karena tidak dapat menghasilkan gaya putar/engkol yang tinggi serta agak kurang efisien sebagai fungsi generatornya. Salah satu contoh yang menggunakan tipe ini adalah mesin dua langkah (yamaha RD200). b. Generator AC 1) Generator dengan Flywheel Magnet (Flywheel Generator) Generator dengan flywheel magnet sering disebut sebagai alternator sederhana yang banyak digunakan pada scooter dan sepeda motor kecil lainnya. Flywheel magnet terdiri dari stator dan flywheel rotor yang mempunyai magnet permanen. Stator diikatkan ke salah satu sisi crankcase (bak engkol). Dalam stator terdapat generating coils (kumparan pembangkit listrik).

161 Kelistrikan 136 Gambar Contoh konstruksi flywheel generator 1. Komponen-komponen flywheel generator 2. Flywheel rotor 3. Komponen-komponen stator 4. Stator plate (piringan stator) 5. Seperangkat contact breaker (platina) 6. Condenser (kapasitor) 7. Lighting coil (spool lampu) 8. Ignition coil (koil pengapian) Catatan : Pada gambar ini ignition coil termasuk bagian dari komponen stator. Pada mesin lainnya kemungkinan digunakan external coil, karenanya ignition coil dalam flywheel generator diganti dengan ignition source coil yang bentuknya hampir sama dengan lighting coil. Terdapat beberapa tipe aplikasi/penerapan pada rangkaian sistem pengisian sepeda motor yang menggunakan generator AC dengan flywheel magnet ini, diantaranya; a) Sepeda motor yang keseluruhan sistem kelistrikannya menggunakan arus AC sehingga tidak memerlukan rectifier untuk mengubah output pengisian menjadi arus DC. b) Sepeda motor yang sebagian sistem kelistrikannya masih menggunakan arus AC (seperti headlight lamp/lampu kepala, tail light/lampu belakang, dan meter lamp) dan sebagian kelistrikan lainnya menggunakan arus DC (seperti horn/klakson, turn signal lamp/lampu sein). Rangkaian sistem pengisiannya sudah dilengkapi dengan rectifier dan regulator. Rectifier digunakan untuk mengubah sebagian output pengisian menjadi arus DC yang akan dialirkannya ke baterai. Regulator digunakan untuk mengatur tegangan dan arus AC yang menuju ke sistem penerangan dan tegangan dan arus DC yang menuju baterai.

162 Kelistrikan 137 Gambar Rangkaian sistem pengisian dengan generator AC yang dilengkapi rectifier dan voltage Regulator Berdasarkan gambar 3.44 di atas, regulator akan bekerja mengatur arus dan tegangan pengisian yang masuk ke baterai dan mengatur tegangan yang masuk ke lampu supaya mendekati tegangan yang konstan supaya lampu tidak cenderung berkedip. Pengaturan tegangan dan arus tersebut berdasarkan peran utama ZD (zener dioda) dan SCR (thyristor). Jika tegangan dalam sistem telah mencapai tegangan tembus (breakdown voltage) maka tegangan yang berlebih akan dialirkan ke massa. ZD yang dipasang umumnya mempunyai tegangan tembus sebesar 14V. Untuk lebih memahami cara kerja ZD dan SCR tersebut, perhatikan gambar 3.45 di bawah ini:

163 Kelistrikan 138 Gambar Rangkaian sistem pengisian yang dilengkapi voltage regulator dan rectifier Cara Kerja Sistem Pengisian Generator AC Arus AC yang dihasilkan alternator disearahkan oleh rectifier dioda. Kemudian arus DC mengalir untuk mengisi baterai. Arus juga mengalir menuju voltage regulator jika saklar untuk penerangan (biasanya malam hari) dihubungkan. Pada kondisi siang hari, arus listrik yang dihasilkan lebih sedikit karena tidak semua kumparan (coil) pada alternator digunakan. Pada saat tegangan dalam baterai masih belum mencapai tegangan maksimum yang ditentukan, ZD masih belum aktif (off) sehingga SCR juga belum bekerja. Setelah tegangan yang dihasilkan sistem pengisian naik seiring dengan naiknya putaran mesin, dan telah mencapai tegangan tembus ZD, maka ZD akan bekerja dari arah kebalikan (katoda ke anoda) menuju gate pada SCR. Selanjutnya SCR akan bekerja mengalirkan arus ke massa. Saat ini proses pengisian ke baterai terhenti. Ketika tegangan baterai kembali menurun akibat konsumsi arus listrik oleh sistem kelistrikan (misalnya untuk penerangan) dan telah berada di bawah tegangan tembus ZD, maka ZD kembali bersifat sebagai dioda biasa. SCR akan menjadi off kembali sehingga tidak ada aliran arus yang di buang ke massa. Pengisian arus listrik ke baterai kembali seperti biasa. Begitu seterusnya proses tadi akan terus berulang sehingga pengisian baterai akan sesuai dengan yang dibutuhkan. Inilah yang dinamakan proses pengaturan tegangan pada sistem pengisian yang dilakukan oleh voltage regulator. Alternator satu phase (single-phase alternator) merupakan alternator yang menghasilkan arus AC satu gelombang,

164 Kelistrikan 139 masing-masing setengah siklus (180o) untuk gelombang positif dan negatifnya (gambar 3.46 bagian A). Jika disearahkan hanya dengan satu buah dioda, maka hanya akan menghasilkan setengah gelombang penuh (gambar 3.46 bagian B). Untuk itu pada rangkaian sistem pengisian yang menggunakan alternator, dipasangkan rectifier (dioda) setidaknya 4 buah untuk menyearahkan arus yang menuju baterai, sehingga bisa menghasilkan gelombang penuh pada sisi positifnya walau hanya menggunakan alternator satu phase (gambar 3.46 bagian C). Gambar 3.46 Gelombang arus yang keluar dari alternator Gambar 3.47 Sebuah dioda (A) dan empat buah dioda (B) Gambar 3.48 Contoh tipe alternator 1 phase

165 Kelistrikan 140 2) Alternator AC 3 Phase Perkembangan terakhir dari alternator yang digunakan pada sepeda motor adalah dengan merubah alternator dari satu phase menjadi 3 phase (3 gelombang). Alternator ini umumnya dipakai pada sepeda motor ukuran menengah dan besar yang sebagian besar telah menggunakan sistem starter listrik sebagai perlengkapan standarnya. Output (keluaran) listrik dari alternator membentuk gelombang yang saling menyusul, sehingga outputnya bisa lebih lembut dan stabil. Hal ini akan membuat output listriknya lebih tinggi dibanding alternator satu phase. Salah satu tipe alternator 3 phase yaitu alternator tipe magnet permanen, yang terdiri dari magnet permanen, stator yang membentuk cincin dengan generating coils (kumparan pembangkit) disusun secara radial dibagian ujung luarnya, dan rotor dengan kutub magnetnya dilekatkan didalamnya. Tipe lainnya dari alternator 3 phase adalah yang menggunakan elektromagnet seperti alternator pada mobil. Gambar 3.49 Alternator 3 phase tipe magnet permanen

166 Kelistrikan 141 Gambar 3.50 Alternator 3 phase tipe elekromagnetik Alternator tipe elektromagnetik terdiri dari komponenkomponen : a) Stator coil: kumparan yang dibentuk dalam hubungan delta atau bintang yang bertindak sebagai medium terjadinya pembangkitan arus listrik di dalam alternator. Stator coil statis terhadap housing (tidak berputar). b) Rotor coil: merupakan kumparan elektromagnet untuk membangkitkan gaya magnet yang akan memotong stator coil selama berputar hingga menghasilkan arus listrik. Rotor coil membangkitkan kemagnetan pada claw pole selama mendapat suplai listrik dari baterai (arus listrik eksitasi). c) Claw pole : merupakan kutub-kutub inti kumparan rotor (rotor coil) yang dibentuk sedemikian rupa hingga dihasilkan gaya magnet yang lebih kuat dan terkonsentrasi. Tiap sisi dari claw pole menghasilkan kutub yang berbeda. d) Brush dan slip ring: sebagai jalur masuk dan keluarnya arus listrik eksitasi (pemicu) menuju rotor coil. Dengan cara ini, arus listrik dari baterai dapat disalurkan ke dalam rotor coil selama rotor berputar.

167 Kelistrikan 142 Pengaturan tegangan dan penyearahan arus pada sistem pengisian alternator 3 phase pada prinsipnya sama dengan sistem pengisian alternator satu phase seperti yang telah dijelaskan sebelumnya. Namun dalam alternator 3 phase disamping menggunakan pengaturan tegangan (voltage regulator) secara elektronik menggunakan transistor dan zener diode, juga ada yang menggunakan voltage regulator mekanik (menggunakan contact point/platina). E. SISTEM PENGAPIAN (IGNITION SYSTEM) Sistem pengapian merupakan salah satu sistem kelistrikan yang sangat penting dalam sepeda motor. Penjelasan lebih rinci tentang sistem pengapian ini dijelaskan dalam Bab tersendiri, yaitu pada Bab IV F. SISTEM PENERANGAN (LIGHTING SYSTEM) Suatu sistem yang tidak kalah pentingnya dalam sepeda motor adalah sistem penerangan. Sistem penerangan sangat diperlukan untuk keselamatan pengendaraan, khususnya di malam hari dan juga untuk memberi isyarat/tanda pada kendaraan lainnya. Sistem penerangan pada sepeda motor dibagi menjadi dua fungsi, yaitu; 1) sebagai penerangan (illumination) dan 2) sebagai pemberi isyarat/peringatan (signalling/warning). Yang termasuk ke dalam fungsi penerangan antara lain: 1. Headlight (lampu kepala/depan) 2. Taillight (lampu belakang), 3. Instrument lights (lampu-lampu instrumen). Sedangkan yang termasuk ke dalam fungsi pemberi isyarat antara lain; 1. Brake light (lampu rem) 2. Turn signals (lampu sein/tanda belok), 3. Oil pressure dan level light (lampu tanda tekanan dan level oil) 4. Netral light (lampu netral untuk transmisi/perseneling) 5. Charging light (lampu tanda pengisian). Tidak semua sepeda motor dilengkapi charging light. 6. Untuk sistem yang lebih komplit, misalnya pada sepeda motor dengan sistem bahan bakar tipe injeksi (EFI), kadang-kadang terdapat juga hazard lamp (lampu hazard/tanda bahaya), low fuel

168 Kelistrikan 143 warnig (pemberi peringatan bahan bakar sudah hampir kosong), temperature warning (pemberi peringatan suhu), electronic fault warning (pemberi peringatan terjadinya kesalahan/masalah pada komponen elektronik), dan sebagainya. Contoh penempatan sistem penerangan (lighting system), baik yang berfungsi sebagai penerangan maupun pemberi isyarat adalah seperti pada gambar 3.51 di bawah ini: Gambar 3.51 Penempatan sistem penerangan pada salah satu sepeda motor 1. Lampu Kepala/Besar (Headlight) Fungsi lampu kepala adalah untuk menerangi bagian depan dari sepeda motor saat dijalankan pada malam hari. Selain kabel dan konektor (sambungan), komponen-komponen sistem lampu kepala antara lain (lihat gambar 3.51) :

169 Kelistrikan 144 a. Saklar lampu (lighting swicth) Saklar lampu berfungsi untuk menghidupkan dan mematikan lampu. Pada umumnya saklar lampu pada sepeda motor terdapat tiga posisi, yaitu; 1) posisi OFF (posisi lampu dalam keadaan mati/tidak hidup); 2) posisi 1 (pada posisi ini lampu yang hidup adalah lampu kota/jarak baik depan maupun belakang), dan 3) posisi 2 (pada posisi ini lampu yang hidup adalah lampu kepala/besar dan lampu kota. b. Saklar lampu Kepala (dimmer switch) Saklar lampu kepala berfungsi untuk memindahkan posisi lampu kepala dari posisi lampu dekat ke posisi lampu jauh aau sebaliknya. Posisi lampu dekat biasanya digunakan untuk saat berkendara dalam kota, sedangkan posisi lampu jauh digunakan saat berkendara ke luar kota selama tidak ada kendaraan lain dari arah berlawanan atau ada kendaraan lain dari arah berlawanan namun jaraknya masih cukup jauh dari kita. c. Bola lampu kepala (beam) Terdapat dua tipe lampu besar atau lampu kepala (headlight), yaitu; 1) tipe semi sealed beam, dan 2) tipe sealed beam. Lampu kepala biasanya menggunakan low filament beam untuk posisi lampu dekat dan high filament beam untuk posisi lampu jauh. Penjelasan kapan saatnya menggunakan lampu dekat dan lampu jauh sudah dibahas pada bagian saklar lampu kepala. 1) Tipe Semi Sealed Beam Tipe semi sealed beam adalah suatu konstruksi lampu yang dapat mengganti dengan mudah, dan cepat bola lampunya (bulb) tanpa memerlukan penggantian secara keseluruhan jika bola lampunya terbakar atau putus. Bola lampu yang termasuk tipe semi sealed beam adalah: a) Bola lampu biasa (filament tipe Tungsten) Bola lampu biasa adalah bola lampu yang menggunakan filamen (kawat pijar) tipe tungsten. Bola lampu jenis ini mempunyai keterbatasan yaitu tidak bisa bekerja di atas suhu yang telah ditentukan karena filamen bisa menguap. Uap tersebut bisa menimbulkan endapan yaitu membentuk lapisan seperti perak di rumah lensa kacanya (envelope) dan pada akhirnya bisa mengurangi daya terang lampu tersebut (menjadi suram).

170 Kelistrikan 145 Gambar 3.52 Konstruksi bola lampu tungsten b) Bola lampu quartz-halogen Pada bola lampu quartz-halogen, gas halogen tertutup rapat didalam tabungnya, sehingga bisa terhindar dari efek penguapan yang terjadi akibat naiknya suhu. Bola lampu halogen cahayanya lebih terang dan putih dibanding bola tungsten, namun lebih sensitif terhadap perubahan suhu. Gambar 3.53 Konstruksi bola lampu halogen

171 Kelistrikan 146 Bola lampu quartz-halogen lebih panas dibandingkan dengan bola lampu biasa (tungsten) saat digunakan. Masa pakai lampu akan lebih pendek jika terdapat oli atau gemuk yang menempel pada permukaannya. Selain itu, kandungan garam dalam keringat manuasia dapat menodai kacanya (quartz envelope). Oleh karena itu, bila hendak mengganti bola lampu hindari jari-jari menyentuh quartz envelope. Sebaiknya pegang bagian flange jika hendak menggantinya. 2) Tipe Sealed Beam Pada beberapa model sepeda motor generasi sebelumnya, lampu kepalanya menggunakan tipe sealed beam. Tipe ini terdiri dari lensa (glass lens), pemantul cahaya (glass reflector), filamen dan gas di dalamnya. Jika ada filamen yang rusak/terbakar, maka penggantiannya tidak dapat diganti secara tersendir, tapi harus keseluruhannya. Gambar 3.54 Konstruksi bola lampu tipe sealed beam

172 Kelistrikan Lampu Belakang dan Rem (Tail light dan Brake light) Lampu belakang berfungsi memberikan isyarat jarak sepeda motor pada kendaraan lain yang berada di belakangnya ketika malam hari. Lampu belakang pada umumnya menyala bersama dengan lampu kecil yang berada di depan. Lampu ini sering disebut dengan lampu kota, bahkan kadang-kadang disebut lampu senja karena biasanya sudah mulai dinyalakan sebelum hari terlalu gelap. Untuk bagian depan disebut lampu jarak (clereance light) dan untuk bagian belakang disebut lampu belakang (tail light). Sedangkan rem berfungsi untuk memberikan isyarat pada kendaraan lain agar tidak terjadi benturan saat kendaraan mengerem. Lampu rem pada sepeda motor biasanya digabung dengan lampu belakang. Maksudnya dalam satu bola lampu terdapat dua filamen, yaitu untuk lampu belakang dan lampu rem (lihat gambar 3.54 di bawah ini). Lampu yang menyalanya lebih redup (diameter kawat filament-nya lebih kecil) untuk lampu belakang dan lampu yang menyalanya lebih terang (diameter kawat filament-nya lebih besar) untuk lampu rem. Gambar 3.55 Posisi bola lampu belakang dan rem Komponen-komponen untuk sistem lampu belakang selain kabelkabel dan konektor antara lain (lihat gambar 3.51): a. Saklar lampu (lighting switch) Penjelasan saklar lampu sudah dibahas pada bagian lampu kepala.

173 Kelistrikan 148 b. Lampu belakang dan dudukannya Seperti terlihat pada gambar 3.55 di atas, bola lampu belakang digabung langsung dengan bola lampu rem. Pemasangan bola lampu belakang biasanya disebut dengan tipe bayonent yaitu menempatkan bola lampu pada dudukannya, dimana posisi pasak (pin) pada bola lampu harus masuk pada alur yang berada pada dudukannya. Komponen-komponen untuk sistem lampu rem selain kabel-kabel dan konektor antara lain (lihat gambar 3.51): a. Saklar lampu rem depan (front brake light switch) Saklar lampu rem depan berfungsi untuk.menghubungkan arus dari baterai ke lampu rem jika tuas/handel rem ditarik (umumnya berada pada stang/kemudi sebelah kanan). Dengan menarik tuas rem tersebut, maka sistem rem bagian depan akan bekerja, oleh karena itu lampu rem harus menyala untuk memberikan isyarat/tanda bagi pengendara lainnya. b. Saklar lampu rem belakang (rear brake light switch) Saklar lampu rem belakang berfungsi untuk.menghubungkan arus dari baterai ke lampu rem jika pedal rem ditarik (umumnya berada pada dudukan kaki sebelah kanan). Dengan menginjak pedal rem tersebut, maka sistem rem bagian belakang akan bekerja, oleh karena itu lampu rem harus menyala untuk memberikan isyarat/tanda bagi pengendara lainnya. c. Lampu rem dan dudukannya Seperti terlihat pada gambar 3.55 di atas, bola lampu belakang digabung langsung dengan bola lampu rem. Pemasangan bola lampu belakang biasanya disebut dengan tipe bayonent yaitu menempatkan bola lampu pada dudukannya, dimana posisi pasak (pin) pada bola lampu harus masuk pada alur yang berada pada dudukannya. 3. Sistem Lampu Sein/Tanda Belok (Turn Signals System) Semua sepeda motor yang dipasarkan dilengkapi dengan sistem lampu tanda belok. Pada beberapa model sepeda motor besar, dilengkapi saklar terpisah lampu hazard (tanda bahaya), yaitu dengan berkedipnya semua lampu sein kiri, kanan, depan dan belakang secara bersamaan. Fungsi lampu tanda belok adalah untuk memberikan isyarat pada kendaraan yang ada di depan, belakang ataupun di sisinya bahwa sepeda motor tersebut akan berbelok ke kiri atau kanan atau pindah jalur. Sistem tanda belok terdiri dari komponen utama, yaitu dua pasang lampu,

174 Kelistrikan 149 sebuah flasher/turn signal relay, dan three-way switch (saklar lampu tanda belok tiga arah). Flasher tanda belok merupakan suatu alat yang menyebabkan lampu tanda belok mengedip secara interval/jarak waktu tertentu yaitu antara antara 60 dan 120 kali setiap menitnya. Terdapat beberapa tipe flasher, diantaranya; 1) flasher dengan kapasitor, 2) flasher dengan bimetal, dan 3) flasher dengan transistor. a. Sistem Tanda Belok dengan Flasher Tipe Kapasitor Contoh rangkaian sistem tanda belok dengan flasher tipe kapasitor seperti terlihat di bawah ini: Gambar 3.56 Rangkaian sistem tanda belok dengan flasher tipe kapasitor Cara kerja sistem tanda belok dengan flasher tipe kapasitor Pada saat kunci kontak dihubungkan, namun saklar lampu sein masih dalam posisi off, arus mengalir ke L2 melalui plat kontak P kemudian mengisi kapasitor. Setelah saklar lampu sein diarahkan ke salah satu lampu, arus kemudian juga mengalir ke L1 terus ke lampu tanda belok sehingga lampu menyala. Saat ini L1 menjadi magnet (gambar 3.57)

175 Kelistrikan 150 Gambar 3.57 Cara kerja rangkaian sistem tanda belok dengan flasher tipe kapasitor (1) Sesaat setelah kumparan L1 menjadi magnet, plat kontak (contact point) P terbuka, sehingga arus yang mengalir ke lampu kecil karena melewati tahanan R. Plat kontak tetap dalam kondisi terbuka selama kumparan L2 masih menjadi magnet yang diberikan oleh kapasitor sampai muatan dalam kapasitor habis (gambar 3.58). Gambar 3.58 Cara kerja rangkaian sistem tanda belok dengan flasher tipe kapasitor (2)

176 Kelistrikan 151 Setelah muatan kapasitor habis, kemagnetan pada kumparan hilang dan plat kontak akan menutup kembali. Arus yang besar mengalir kembali ke lampu sehingga lampu akan menyala dan juga terjadi pengisian ke dalam kapasitor. Begitu seterusnya proses ini berulang sehingga lampu tanda belok berkedip. b. Sistem Tanda Belok dengan Flasher Tipe Bimetal Sistem tanda belok tipe ini yaitu dengan mengandalkan kerja dari dua keping/bilah (strip) bimetal untuk mengontrol kedipannya. Bimetal terdiri dari dua logam yang berbeda (biasanya kuningan dan baja) yang digabung menjadi satu. Jika ada panas dari aliran listrik yang masuk ke bimetal, maka akan terjadi pengembangan/pemuaian dari logam yang berbeda tersebut dengan kecepatan yang berbeda pula. Hal ini akan menyebabkan bimetal cenderung menjadi bengkok ke salah satu sisi. Dalam flasher tipe bimetal terdapat dua keping bimetal yang dipasang berdekatan dan masing-masing mempunyai plat kontak pada salah satu ujungnya (lihat gambar 3.59 di bawah ini). Gambar 3.59 Konstruksi bimetal

177 Kelistrikan 152 Gambar 3.60 Rangkaian sistem tanda belok dengan tipe bimetal Cara kerja sistem tanda belok dengan flasher tipe bimetal Pada saat saklar lampu sein digerakan (ke kiri atau kanan), arus mengalir ke voltage coil (kumparan) yang akan membuat kumparan tersebut memanas dan bengkok. Setelah kebengkokannya sampai menghubungkan kedua plat kontak di bagian ujungnya, arus kemudian mengalir ke current coil (kumparan arus) terus ke lampu sein/tanda belok dan akhirnya ke massa (gambar 3.61). Saat ini lampu sein menyala dan current coil akan mulai bengkok menjauhi voltage coil. Gambar 3.61 Cara kerja rangkaian sistem tanda belok dengan tipe bimetal

178 Kelistrikan 153 Setelah kebengkokan current coil membuat plat kontak terpisah/terbuka, maka lampu sein mati. Selanjutnya current coil akan menjadi dingin setelah arus yang mengalir hilang dan akhirnya bimatalnya akan lurus kembali posisinya sehingga plat konta menempel kembali dengan plat kontak yang dari voltage coil. Arus akan mengalir kembali untuk menghidupkan lampu sein. Begitu seterusnya proses ini berulang sehingga lampu tanda belok berkedip. c. Sistem Tanda Belok dengan Flasher Tipe Transistor Sistem tanda belok dengan flasher menggunakan transistor merupakan tipe flasher yang pengontrolan kontaknya tidak secara mekanik lagi, tapi sudah secara elektronik. Sistem ini menggunakan multivibrator oscillator untuk menghasilkan pulsa (denyutan) ON-OFF yang kemudian akan diarahkan ke flasher (turn signal relay) melawati amplifier (penguat listrik). Selanjutnya flasher akan menghidup-matikan lampu tanda belok agar lampu tersebut berkedip. Gambar 3.62 Rangkaian sistem tanda belok dengan tipe transistor

179 Kelistrikan Klakson (Horn) Fungsi klakson adalah untuk memberikan isyarat dengan bunyi atau suara yang ditimbulkannya. Terdapat beberapa tipe klakson, yaitu; 1) Klakson listrik, 2) klakson udara, dan 3) klakson hampa udara. Klakson listrik terdiri atas diafragma (diaphragm), lilitan kawat (coil), kontak platina (contact), dan pemutus (armature). Konstruksi klakson listrik seperti diperlihatkan pada gambar dibawah ini. Gambar 3.63 Konstruksi klakson listrik

180 Kelistrikan 155 Klakson yang banyak digunakan pada sepeda motor adalah klakson listrik. Salah satu contoh rangkaian sistem klakson listrik adalah seperti terlihat pada gambar 3.64 di bawah ini : Gambar 3.64 Rangkaian klakson listrik Cara kerja klakson listrik Saat saklar klakson ditekan, arus dari baterai mengalir melalui saklar klakson, terus ke coil (solenoid), menuju platina dan selanjutnya ke massa. Solenoid menjadi magnet dan menarik armature. Kemudian armature membukakan platina sehingga arus ke massa terputus. Dengan terputusnya arus tersebut, kemagnetan pada solenpid hilang, sehingga armature kembali ke posisi semula. Hal ini menyebabkan platina menutup kembali untuk menghubungkaan arus ke massa. Proses ini berlangsung cepat, dan diafragma membuat armature bergetar lebih cepat lagi, sehingga menghasilkan resonansi suara. 5. Sistem Instrumentasi dan Tanda Peringatan (Instrumentation and Warning System) Yang dimaksud dengan instrumentasi adalah perlengkapan sepeda motor berupa alat ukur yang memberikan informasi kepada pengendara tentang keadaan sepeda motor tersebut. Sistem instrumentasi pada sepeda motor tidak sama jumlahnya, mulai dari sepeda motor dengan instrumentasi sederhana sampai sepeda motor yang dilengkapi dengan instrumen yang banyak. Sistem instrumentasi yang lengkap antara lain terdiri dari; speedometer (pengukur kecepatan kendaraan), tachometer (pengukur putaran mesin), ammeter (pengukur arus listrik), voltmeter (pengukur tegangan listrik), clock (jam), fuel and temperature gauges (pengukur suhu dan bahan bakar), oil pressure gauge (pengkur tekanan oli) dan sebagainya.

181 Kelistrikan 156 Sama halnya dengan sistem instrumentasi, sistem tanda peringatan (warning system) pada sepeda motor juga tidak sama jumlahnya. Kebanyakan model sepeda motor generasi sekarang, lampulampu tanda peringatan disusun dan dipasangkan pada suatu tampilan (display) lengkap yang akan menampilkan status/keadaan dan kondisi umum dari mesin. Pada beberapa model, instrumentasi di dihubungkan dengan central control unit (unit pengontrol) yang akan memonitor seluruh aspek dari mesin dan fungsi sistem kelistrikan saat mesin dijalankan. Informasinya diperoleh dari berbagai swicth (saklar) dan sensor. Jika dalam sistem muncul kesalahan (terdapat masalah) akan ditampilkan dalam bentuk warning light (lampu tanda peringatan) atau dalam panel LCD (liquid crystal display) bagi beberapa model sepeda motor. a. Speedometer Speedometer adalah alat untuk memberikan informasi kepada pengendara tentang kecepatan kendaraan (sepeda motor). Speedometer pada sepeda motor ada yang digerakkan secara mekanik, yaitu kawat baja (kabel speedometer) dan secara elektronik. Speedometer yang digerakkan oleh kabel biasanya dihubungkan ke gigi penggerak pada roda depan, tetapi ada juga yang dihubungkan ke output shaft (poros output) transmisi/persneling untuk mendapatkan putarannya. Gambar 3.65 Contoh rangkaian speedometer elektronik

182 Kelistrikan 157 Pada bagian speedometernya terdapat magnet permanen yang diputar oleh kabel tersebut. Penunjukkan jarum kecepatan berdasarkan atas kekuatan medan magnet yang berputar, dan diterima oleh sebuah piringan besi non magnet yang dipasang berhadapan dengannya. Pada speedometer elektronik, sensor pulsa mengirimkan sinyal setiap putaran yang diperoleh dari sproket depan atau output shaft ke unit pengontrol. Hasilnya akan ditampilkan pada panel. b. Switch (Saklar) pada Sistem Tanda Peringatan Saklar-sakar yang terdapat pada sistem tanda peringatan umumnya digerakkan secara mekanik atau langsung digerakkan secara manual (oleh tangan) untuk menghidup-matikan (ONN/OFF) suatu sistem. Diantara saklar-saklar yang termasuk ke dalam sistem tanda peringatan adalah: 1) Neutral Switch (Saklar Netral) Hampir semua sepeda motor dilengkapi dengan netral switch (saklar yang menunjukkan gigi transmisi posisi sedang netral) untuk mengontrol lampu peringatan pada panel instrumen. Umumnya neutral switch diskrupkan ke rumah transmisi. Pada saat gigi transmisi netral, kontak pada saklar akan tertekan (tertutup) dan membuat lampu peringatan di-massa-kan sehingga menyala. Pada sepeda motor yang dilengkapi sistem pengaman, neutral switch juga digunakan untuk mencegah sistem starter tidak bisa dihidupkan jika posisi transmisi sedang masuk gigi (penjelasan detil sudah dibahas pada bagian sistem starter bagian 5 yaitu inovasi sistem starter). 2) Clutch switch (Saklar Kopling) Clutch switch merupakan tipe plunger dan dipasang pada bagian clutch lever (tuas kopling). Pada sepeda motor yang dilengkapi sistem pengaman, clutch switch juga digunakan untuk mencegah sistem starter tidak bisa dihidupkan jika kopling tidak ditarik (penjelasan detil sudah dibahas pada bagian sistem starter bagian 5 yaitu inovasi sistem starter). 3) Sidestand switch (Saklar Standar samping) Sidestand switch juga merupakan bagaian dari sistem pengaman yang dirancang agar sepeda motor tidak bisa dijalankan jika sidestand-nya sedang pada posisi diturunkan/digunakan untuk menyandarkan sepeda motor (penjelasan detil sudah dibahas pada bagian sistem starter bagian 5 yaitu inovasi sistem starter). Tipe sidestand switch bisa tipe plunger maupun rotari yang dipasangkan.

183 Kelistrikan 158 Secara sederhana kombinasi hubungan antara neutral switch, clutch switch dan side stand switch yang berfungsi sebagai pengaman dapat dilihat dalam gambar 3.66 di bawah ini: Gambar 3.66 Rangkaian neutral, clutch, dan sidestand switch Berdasarkan gambar 3.66 di atas, dapat diambil kesimpulan bahwa rangkaian starter relay pada sistem starter baru bisa dihubungkan ke massa jika clutch switch dan kickdown switch posisi menutup atau neutral switch saja yang menutup. Clucth switch menutup jika kopling sedang ditarik, sidestand switch menutup jika posisi sidestand sedang dinaikkan (tidak sedang dipakai untuk menyandarkan sepdea motor). Sedangkan neutral swicth menutup kalau posisi gigi transmisi sedang netral (i transmisi tidak masuk gigi). 4) Brake light switch (saklar lampu rem) Fungsi brake light switch adalah untuk menghidupkan lampu rem ketika rem depan atau rem belakang sedang digunakan. Saklar rem depan biasanya tipe pressure switch (saklar tekanan) yang digerakkan oleh sistem hidrolik rem depan. Sedangkan saklar rem belakang biasanya tipe plunger yang digerakkan melalui pegas pedal rem belakang, dan dapat distel sesuai ketinggian pedal dan jarak bebas rem.

184 Kelistrikan 159 Gambar 3.67 Saklar rem belakang (A = saklar rem belakang tipe plunger, B = pegas, dan C = pedal rem) Gambar 3.68 Rangkaian sistem lampu rem

185 Kelistrikan 160 Berdasarkan gambar di atas, jika pedal rem ditarik/ditekan, maka saklar rem akan menutup yang akan menghubungkan arus dari baterai ke massa melalui lampu rem. Akibanya lampu rem akan menyala. 6. Sumber Listrik Sistem Penerangan Sumber listrik untuk sistem penerangan dapat dibedakan menjadi beberapa tipe, diantaranya: a. Sumber Listrik AC dengan Pengontrolan pada Main Switch (Saklar Utama) Sistem penerangan pada tipe ini hampir semuanya menggunakan arus listrik AC, kecuali peralatan pemberi isyarat (seperti lampu sein). Sistem ini digunakan pada motor-motor kecil yang menggunakan flywheel magnet (gambar 3.69). Gambar 3.69 Rangkaian sistem penerangan dengan sumber listrik AC dengan pengontrolan pada main switch Lampu-lampu akan menyala jika mesin sedang hidup dengan posisi main switch (saklar utama) pada nomor II dan atau nomor III. Pada sistem ini tidak ada pengaturan arus dan tegangan yang keluar dari flywheel magnet. Oleh karena itu, pada kecepatan rendah, output listrik terbatas dan lampu menyala agak suram. Sedangkan pada kecepatan tinggi, lampu-lampu akan cenderung lebih terang.

186 Kelistrikan 161 b. Sumber Listrik AC dan DC dengan Pengontrolan pada Lamp Switch (Saklar Lampu) Sistem penerangan tipe ini menggunakan sumber listrik DC dari baterai untuk lampu sein, lampu belakang, dan lampu pada dashboard. Sumber listrik AC digunakan untuk lampu kepala. Gambar 3.70 Rangkaian sistem penerangan dengan sumber listrik AC dengan pengontrolan pada main switch Pengontrolan lampu-lampu dilakukan secara terpisah pada saklar lampunya. Untuk lampu belakang, lampu sein, dan lampu dashboard, bisa dihidup-matikan oleh saklar utama seperti terlihat pada gambar 3.70 di atas. c. Sumber Listrik AC dengan pengontrolan pada Regulator Sistem penerangan dengan pengontrolan sumber listrik menggunakan regulator dan penyearahan arus oleh rectifer meupakan tipe yang banyak digunakan pada sepeda motor saat ini. Arus dan tegangan yang keluar sumber listrik AC tersebut digunakan untuk lampu kepala, lampu belakang, lampu rem, lampu dashboard dan sebagainya. Namun dalam penggunaan lampu-lampu tadi, tegangannya dikontrol oleh regulator sehingga bisa memperpanjang umur pakainya.

187 Kelistrikan 162 Gambar 3.71 Rangkaian sistem penerangan dengan sumber listrik AC yang dikontrol regulator d. Sumber listrik DC Sistem penerangan dengan sumber listrik DC banyak digunakan pada sepeda motor sedang sampai besar. Semua lampu-lampu sumber listriknya berasal dari baterai. Jika dihasilkan tegangan yang lebih besar (misalnya pada putaran tinggi), daya listriknya bisa langsung digunakan untuk sistem penerangan karena semua output listriknya sudah dalam arus DC. 7. Peraturan Tentang Sistem Penerangan Peraturan tentang sistem penerangan berbeda-beda antara satu negara dengan lainnya, sehingga untuk model sepeda motor yang sama bisa jadi sistem penerangannya dibuat berbeda jika akan dipasarkan untuk negara yang berbeda. Misalnya untuk negara bagian Amerika dan Kanada, tidak boleh ada saklar untuk penerangan. Lampu pada sistem penerangan secara otomatis berasal dari ignition switch (kunci kontak), tidak dapat dipisah, sehingga lampu-lampu otomatis menyala saat mesin hidup (gambar 3.72). Untuk lampu sein, sering digunakan lampu yang mempunyai dua filament. Lampu yang daya (watt) kecil akan tetap hidup selama mesin hidup. Ketika tanda lampu sein diaktifkan, lampu yang mempunyai daya lebih tinggi akan berkedip-kedip sebagai tanda bahwa lampu sein sedang dihidupkan untuk memberi isyarat kepada pengendara lainnya.

188 Kelistrikan 163 Gambar 3.72 Rangkaian sistem penerangan model Amerika/Kanada (tidak dilengkapi saklar lampu) Bagi negara-negara Eropa dan Asia, pada umumnya rangkaian sistem penerangan dibuat dengan melengkapi saklar lampu setelah kunci kontak. Dengan rangkaian seperti ini bisa memungkinkan sepeda motor hidup tetapi sistem penerangan tidak hidup/menyala selama saklar lampunya tidak diaktifkan. Ilustrasi rangkaian sistem penerangan model Eropa dan Asia seperti terlihat pada gambar 3.73 di bawah ini: Gambar 3.73 Rangkaian sistem penerangan model Eropa dan sebagian Asia (dilengkapi dengan saklar lampu)

189 Kelistrikan 164 G. PEMERIKSAAN DAN PERBAIKAN SISTEM KELISTRIKAN Pembahasan pemeriksaan dan perbaikan sistem kelistrikan dijelaskan setelah selesai membahas secara keseluruhan bagian kelistrikan sepeda motor. Pembahasan sistem kelistrikan masih berlanjut sampai Bab IV (sistem pengapian), sedangkan pembahasan dan pemeriksaan sistem kelistrikan dibahas pada Bab V.

190 Kelistrikan 165 SOAL-SOAL LATIHAN BAB III 1. Bila tegangan baterai mobil 12 Volt dan seandainya dipasangkan 2 lampu kepala dengan daya masing-masing 45 Watt, maka besarnya arus yang mengalir adalah Tiga komponen elektronika yang paling banyak digunakan pada sistem kelistrikan sepeda motor adalah Perbedaan prinsip antara motor listrik dengan generator/alternator adalah Jelaskan mengapa pada sebagian besar sepeda motor terdapat sistem pengaman sistem starter! 5. Sistem starter adalah kombinasi antara bagian mekanis dan komponen elektris yang bekerja bersama-sama. Adapun komponen dari sistem starter listrik pada sepeda motor terdiri dari; 6. Apa efek yang akan ditimbulkan jika sistem pengisian pada sepeda motor tidak dapat berfungsi dengan baik? 7. Kenapa lampu jenis halogen tidak boleh disentuh dengan jari tangan pada bagian envelope (tabung gelas kacanya)? 8. Kenapa klakson diperlukan pada sepeda motor? 9. Apa efeknya jika terjadi kesalahan pemasangan (tertukar) antara terminal lampu belakang dengan lampu rem? 10. Sistem instrumen apa saja yang terdapat pada sepeda motor sistem injeksi (EFI)?

191 Sistem Pengapian (Ignition System) 166 BAB IV SISTEM PENGAPIAN (IGNITION SYSTEM) A. PENDAHULUAN Sistem pengapian pada motor bensin berfungsi mengatur proses pembakaran campuran bensin dan udara di dalam silinder sesuai waktu yang sudah ditentukan yaitu pada akhir langkah kompresi. Permulaan pembakaran diperlukan karena, pada motor bensin pembakaran tidak bisa terjadi dengan sendirinya. Pembakaran campuran bensin-udara yang dikompresikan terjadi di dalam silinder setelah busi memercikkan bunga api, sehingga diperoleh tenaga akibat pemuaian gas (eksplosif) hasil pembakaran, mendorong piston ke TMB menjadi langkah usaha. Agar busi dapat memercikkan bunga api, maka diperlukan suatu sistem yang bekerja secara akurat. Sistem pengapian terdiri dari berbagai komponen, yang bekerja bersama-sama dalam waktu yang sangat cepat dan singkat. B. SYARAT-SYARAT SISTEM PENGAPIAN Ketiga kondisi di bawah ini adalah merupakan syarat penting yang harus dimiliki oleh motor bensin, agar mesin dapat bekerja dengan efisien yaitu: 1. Tekanan kompresi yang tinggi. 2. Saat pengapian yang tepat dan percikan bunga api yang kuat. 3. Perbandingan campuran bensin dan udara yang tepat. Agar sistem pengapian bisa berfungsi secara optimal, maka sistem pengapian harus memiliki kriteria seperti di bawah ini:

192 Sistem Pengapian (Ignition System) Percikan Bunga Api Harus Kuat Pada saat campuran bensin-udara dikompresi di dalam silinder, maka kesulitan utama yang terjadi adalah bunga api meloncat di antara celah elektroda busi sangat sulit, hal ini disebabkan udara merupakan tahanan listrik dan tahanannya akan naik pada saat dikompresikan. Tegangan listrik yang diperlukan harus cukup tinggi, sehingga dapat membangkitkan bunga api yang kuat di antara celah elektroda busi. Terjadinya percikan bunga api yang kuat antara lain dipengaruhi oleh pembentukan tegangan induksi yang dihasilkan oleh sistem pengapian. Semakin tinggi tegangan yang dihasilkan, maka bunga api yang dihasilkan bisa semakin kuat. Penjelasan lebih jauh tentang pembentukan tegangan induksi yang baik dibahas pada bagian E sampai H (koil pengapian sampai busi). Namun secara garis besar agar diperoleh tegangan induksi yang baik dipengaruhi oleh faktor-faktor berikut ini: a. Pemakaian koil pengapian yang sesuai b. Pemakaian kondensor yang tepat c. Penyetelan saat pengapian yang sesuai d. Penyetelan celah busi yang tepat e. Pemakaian tingkat panas busi yang tepat f. Pemakaian kabel tegangan yang tepat 2. Saat Pengapian Harus Tepat Untuk memperoleh pembakaran, maka campuran bensin-udara yang paling tepat, maka saat pengapian harus sesuai dan tidak statis pada titik tertentu, saat pengapian harus dapat berubah mengikuti berbagai perubahan kondisi operasional mesin. Saat Pengapian (Ignition Timing) Saat pengapian dari campuran bensin dan udara adalah saat terjadinya percikan bunga api busi beberapa derajat sebelum Titik Mati Atas (TMA) pada akhir langkah kompresi. Saat terjadinya percikan waktunya harus ditentukan dengan tepat supaya dapat membakar dengan sempurna campuran bensin dan udara agar dicapai energi maksimum.

193 Sistem Pengapian (Ignition System) 168 Gambar 4.1 Batas TMA dan TMB piston Setelah campuran bahan bakar dibakar oleh bunga api, maka diperlukan waktu tertentu bagi api untuk merambat di dalam ruangan bakar. Oleh sebab itu akan terjadi sedikit keterlambatan antara awal pembakaran dengan pencapaian tekanan pembakaran maksimum. Dengan demikian, agar diperoleh output maksimum pada engine dengan tekanan pembakaran mencapai titik tertinggi (sekitar 10 0 setelah TMA), periode perambatan api harus diperhitungkan pada saat menentukan saat pengapian (ignition timing). Karena diperlukannya waktu untuk perambatan api, maka campuran bahan bakar udara harus sudah dibakar sebelum TMA. Saat mulai terjadinya pembakaran campuran bahan bakar dan udara tersebut disebut dengan saat pengapian (ignition timing). Agar saat pengapian dapat disesuaikan dengan kecepatan, beban mesin dan lainnya diperlukan peralatan untuk merubah (memajukan atau memundurkan) saat pengapian. Salah satu diantaranya adalah dengan menggunakan vacuum advancer dan governor advancer untuk pengapian konvensional. Dalam sepeda motor biasanya disebut dengan unit pengatur saat pengapian otomatis atau ATU (Automatic Timing Unit). ATU akan mengatur pemajuan saat pengapian. Pada sepeda motor dengan sistem pengapian konvensional (menggunakan platina) ATU diatur secara mekanik sedangkan pada sistem pengapian elektronik ATU diatur secara

194 Sistem Pengapian (Ignition System) 169 elektronik. Penjelasan lebih jauh tentang ATU dibahas pada bagian I (Tipe Sistem Pengapian Pada Sepeda Motor). Bila saat pengapian dimajukan terlalu jauh (lihat gambar 4.2 titik A) maka tekanan pembakaran maksimum akan tercapai sebelum 10 0 sesudah TMA. Karena tekanan di dalam silinder akan menjadi lebih tinggi dari pada pembakaran dengan waktu yang tepat, pembakaran campuran udara bahan bakar yang spontan akan terjadi dan akhirnya akan terjadi knocking atau detonasi. Gambar 4.2 Posisi saat pengapian Knocking merupakan ledakan yang menghasilkan gelombang kejutan berupa suara ketukan karena naiknya tekanan yang besar dan kuat yang terjadi pada akhir pembakaran. Knocking yang berlebihan akan mengakibatkan katup, busi dan torak terbakar. Saat pengapian yang terlalu maju juga bisa menyebabkan suhu mesin menjadi terlalu tinggi. Sedangkan bila saat pengapian dimundurkan terlalu jauh (lihat gambar 4.2 titik C) maka tekanan pembakaran maksimum akan terjadi setelah 10 0 setelah TMA (saat dimana torak telah turun cukup jauh). Bila dibandingkan dengan pengapian yang waktunya tepat (gambar 4.2 titik B), maka tekanan di dalam silinder agak rendah sehingga output mesin menurun, dan masalah pemborosan bahan bakar dan lainnya akan terjadi. Saat pengapian yang tepat dapat menghasilkan tekanan pembakaran yang optimal.

195 Sistem Pengapian (Ignition System) Sistem Pengapian Harus Kuat dan Tahan Sisem pengapian harus kuat dan tahan terhadap perubahan yang terjadi setiap saat pada ruang mesin atau perubahan kondisi operasional kendaraan; harus tahan terhadap getaran, panas, atau tahan terhadap tegangan tinggi yang dibangkitkan oleh sistem pengapian itu sendiri. Komponen-komponen sistem pengapian seperti koil pengapian, kondensor, kabel busi (kabel tegangan tinggi) dan busi harus dibuat sedemikan rupa sehingga tahan pada berbagai kondisi. Misalnya dengan naiknya suhu di sekitar mesin, busi harus tetap tahan (tidak meleleh) agar bisa terus memberikan loncatan bunga api yang baik. Oleh karena itu, pemilihan tipe busi harus benar-benar tepat. Begitu pula dengan koil pengapian maupun kabel busi, walaupun terjadi perubahan suhu yang cukup tinggi (misalnya karena mesin bekerja pada putaran tinggi yang cukup lama), komponen tersebut harus mampu menghasilkan dan menyalurkan tegangan tinggi (induksi) yang cukup. Pemilihan tipe koil hendaknya tepat sesuai kondisi operasional sepeda motor yang digunakan. C. SUMBER TEGANGAN TINGGI PADA SEPEDA MOTOR Untuk menjamin tersedianya tegangan pengapian yang tetap tinggi maka diperlukan sistem yang akurat. Sistem pengapian tegangan tinggi menghasilkan percikan bunga api di busi. Sumber tegangan pada sepeda motor dapat berasal dari: 1. Pengapian Langsung Bentuk yang paling sederhana sumber tegangan pengapian adalah dengan menyediakan source coil (koil sumber pengapian) yang tergabung langsung dengan generator utama (alternator atau flywheel magneto). Keuntungannya adalah sumber tegangan tidak dipengaruhi oleh beban sistem kelistrikan mesin. Sedangkan kekurangannya adalah pada kecepatan mesin rendah, seperti pada saat menghidupkan (starting) mesin, tegangan yang keluar dari koil sumber berkemungkinan tidak cukup untuk menghasilkan percikan yang kuat. Arus listrik yang dihasilkan oleh alternator atau flywheel magneto adalah arus listrik AC (Alternating Currrent). Prinsip kerja alternator dan flywheel magneto sebenarnya adalah sama, perbedaannya hanyalah terletak pada penempatan atau konstruksi magnetnya. Pada flywheel magneto bagian magnet ditempatkan di sebelah luar spool (kumparan). Magnet tersebut berputar untuk membangkitkan listrik pada spool (kumparan) dan juga sebagai roda gila (flywheel) agar putaran poros

196 Sistem Pengapian (Ignition System) 171 engkol tidak mudah berhenti atau berat. Sedangkan pada alternator magnet ditempatkan di bagian dalam spool (kumparan). Untuk lebih jelasnya dapat dilihat pada gambar 4.3 berikut : Gambar 4.3 Kontruksi Flywheel magneto dan Alternator Pembangkit listrik AC pada sepeda motor baik model alternator ataupun model flywheel magneto terdiri dari beberapa buah kumparan kawat yang berbeda-beda jumlah lilitannya sesuai dengan fungsinya masing-masing, dan akan menghasilkan arus listrik apabila ada kutubkutub magnet yang mempengaruhi kumparan tersebut. Kutub ini didapat dari rotor magnet yang ditempatkan pada poros engkol, dan biasanya dilengkapi dengan empat atau enam buah magnet permanen dan arus listrik AC yang dihasilkan dapat berubah-ubah sekitar 50 kali per detik (50 cycle per second) 2. Pengapian Baterai Selain dari sumber tegangan langsung di atas terdapat juga sumber tegangan alternatif dari sistem kelistrikan utama. Sistem ini biasanya terdapat pada mesin yang mempunyai sistem kelistrikan di mana baterai sebagai sumber tegangan sehingga mesin tidak dapat dihidupkan tanpa baterai. Hampir semua baterai menyediakan arus listrik tegangan rendah (12 V) untuk sistem pengapian. Dengan sumber tegangan baterai akan terhindar kemungkinan terjadi masalah dalam menghidupkan awal mesin, selama baterai, rangkaian dan komponen sistem pengapian lainnya dalam kondisi baik. Arus listrik DC (Direct Current) dihasilkan dari baterai (Accumulator). Baterai tidak dapat menciptakan arus listrik, tetapi dapat menyimpan arus listrik melalui proses kimia. Pada umumnya baterai yang digunakan pada sepeda motor ada dua jenis sesuai dengan kapasitasnya yaitu baterai 6 volt dan baterai 12 volt.

197 Sistem Pengapian (Ignition System) 172 Di dalam baterai terdapat sel-sel yang jumlahnya tergantung pada kapasitas baterai itu sendiri, untuk baterai 6 volt mempunyai tiga buah sel sedangkan baterai 12 volt mempunyai enam buah sel yang berhubungan secara seri dan untuk setiap sel baterai menghasilkan tegangan kurang lebih sebesar 2,1 volt. Sementara untuk setiap sel terdiri dari dua buah pelat yaitu pelat positif dan pelat negatif yang terbuat dari timbal atau timah hitam (Pb). Pelat-pelat tersebut disusun bersebelahan dan diantara pelat dipasang pemisah (Separator) sejenis bahan non konduktor dengan jumlah pelat negatif lebih banyak dibandingkan dengan pelat positif untuk setiap sel baterainya. Gambar 4.4 Konstruksi baterai Pelat-pelat ini direndam dalam cairan elektrolit (H 2 SO 4 ). Akibat terjadinya reaksi kimia antara pelat baterai dengan cairan elektrolit tersebut akan menghasilkan arus listrik DC (Direct Current). Adapun reaksi kimia yang terjadi adalah sebagai berikut : PbO 2 + H 2 SO 4 + Pb Pb SO 4 + H 2 O + PbSO 4 PbO 2 = Timah peroksida PbSO 4 = Sulfat Timah H 2 SO 4 = Cairan Elektrolit H 2 O = Air Jika baterai telah digunakan dalam jangka waktu tertentu maka arus listrik yang tersimpan di dalam baterai akan habis, oleh sebab itu diperlukan sistem untuk melakukan pengisian kembali. Sistem pengisian

198 Sistem Pengapian (Ignition System) 173 ini memanfaatkan arus dari kumparan yang terlebih dahulu disearahkan dengan menggunakan penyearah arus yang disebut dengan Cuprok (Rectifier). Reaksi yang terjadi pada saat pengisian baterai adalah sebagai berikut : Pb SO 4 + H 2 O + PbSO 4 PbO 2 + H 2 SO 4 + Pb Gambar 4.5 Konstruksi baterai kering Pengaruh Tegangan Baterai pada Sistem Pengapian Pada kehidupan sehari-hari kita sering membuat api yang digunakan untuk membakar sesuatu, tentunya kita memerlukan sumber api, seperti batu korek api yang digunakan untuk membakar gas dari dalarn korek saat menyalakan rokok, kesempurnaan terbakarnya gas dalam korek sangat tergantung pada seberapa besar batu korek api dapat menghasilkan percikan api. Gambaran sederhana di atas memiliki dasar yang sama dengan pembakaran di dalam silinder motor bensin. Baterai adalah sumber api utama pada sistem pengapian. Kekuatan dari baterai dapat dinyatakan dengan tegangan (volt) yang dimiliki, artinya kekuatan baterai sebagai sumber api tergantung dari besar tegangannya. Lalu, bagaimana pengaruh tegangan baterai terhadap besarnya bunga api?

199 Sistem Pengapian (Ignition System) 174 Sebagai ilustrasi lebih jauh mengenai pengaruh besarnya tegangan baterai terhadap sistem pengapian dapat kita amati dari kondisi tegangan jaringan listrik rumah dari PLN. Malam hari saat kita menyalakan beban listrik seperti setrika, kompor listrik, dan pompa air bersama-sama sering jaringan listrik rumah jatuh/terputus, padahal pada siang hari masih mampu hidup. Peristiwa ini menandakan bahwa tegangan listrik rumah turun dari nilai semestinya. Pernahkah Anda mengukur tegangan listrik dari PLN saat malam hari, dan membandingkannya dengan pengukuran siang hari? Tegangan tinggi yang terinduksikan pada koil pengapian tergantung dari tegangan baterai, oleh karena itu baterai yang lemah tidak dapat memproduksi kemagnetan yang kuat. Sedangkan tegangan tinggi yang dapat diinduksikan bergantung pada kemagnetan yang terjadi D. KUNCI KONTAK Pada sistem pengapian, kunci kontak diperlukan untuk memutushubungkan rangkaian tegangan baterai ke koil pengapian terminal (15/IG/+) saat menghidupkan atau mematikan mesin. Gambar 4.6 Kunci kontak Bila kunci kontak posisi (On/IG/15), maka arus dari baterai akan mengalir ke terminal positif (+/15) koil pengapian, maka tegangan primer sistem pengapian siap untuk bekerja.

200 Sistem Pengapian (Ignition System) 175 E. IGNITION COIL (KOIL PENGAPIAN) Untuk menghasilkan percikan, listrik harus melompat melewati celah udara yang terdapat di antara dua elektroda pada busi. Karena udara merupakan isolator (penghantar listrik yang jelek), tegangan yang sangat tinggi dibutuhkan untuk mengatasi tahanan dari celah udara tersebut, juga untuk mengatasi sistem itu sendiri dan seluruh komponen sistem pengapian lainnya. Koil pengapian mengubah sumber tegangan rendah dari baterai atau koil sumber (12 V) menjadi sumber tegangan tinggi (10 KV atau lebih) yang diperlukan untuk menghasilkan loncatan bunga api yang kuat pada celah busi dalam sistem pengapian. Pada koil pengapian, kumparan primer dan sekunder digulung pada inti besi. Kumparan-kumparan ini akan menaikkan tegangan yang diterima dari baterai menjadi tegangan yang sangat tinggi melalui induksi elektromagnetik. Inti besi (core) dikelilingi kumparan yang terbuat dari baja silicon tipis. Terdapat dua kumparan yaitu sekunder dan primer di mana lilitan primer digulung oleh lilitan sekunder. Untuk mencegah terjadinya hubungan singkat (short circuit) maka antara lapisan kumparan disekat dengan kertas khusus yang mempunyai tahanan sekat yang tinggi. Ujung kumparan primer dihubungkan dengan terminal negatif primer, sedangkan ujung yang lainnya dihubungkan dengan terminal positif primer. Kumparan sekunder dihubungkan dengan cara serupa di mana salah satunya dihubungkan dengan kumparan primer lewat (pada) terminal positif primer yang lainnya dihubungkan dengan tegangan tinggi malalui suatu pagas dan keduanya digulung. Gambar 4.7 Rangkaian primer ketika platina tertutup

201 Sistem Pengapian (Ignition System) 176 Medan magnet akan dibangkitkan pada saat arus mengalir pada gulungan (kumparan) primer. Garis gaya magnet yang dibangkitkan pada inti besin berlawanan dengan garis gaya magnet dalam kumparan primer. Gambar 4.8 Rangkaian primer ketika platina terbuka Arus yang mengalir pada rangkaian primer tidak akan segera mencapai maksimum, karena adanya perlawanan oleh induksi diri pada kumparan primer. Diperlukan waktu agar arus maksimum pada rangkaian primer dapat tercapai. Bila arus mengalir dalam kumparan primer dan kemudian arus tersebut diputuskan tiba-tiba, maka akan dibangkitkan tegangan dalam kumparan primer berupa induksi sendiri sebesar V, searah dengan arus yang mengalir sebelumnya. Arus ini kemudian mengalir dan disimpan untuk sementara dalam kondensor. Apabila platina menutup kembali maka muatan listrik yang ada dalam kondensor tersebut akan mengalir ke rangkaian, sehingga arus primer segera menjadi penuh.

202 Sistem Pengapian (Ignition System) 177 Kumparan sekunder Kumparan primer Gambar 4.9 Hubungan Kumparan Primer dan Kumparan Sekunder Jika dua kumparan disusun dalam satu garis (dalam satu inti besi) dan arus yang mengalir kumparan primer dirubah (diputuskan), maka akan terbangkitkan tegangan pada kumparan sekunder berupa induksi sebesar 10 KV atau lebih. Arahnya berlawanan dengan garis gaya magnet pada kumparan primer. Tegangan terbangkit pada kumparan sekunder Gambar Terjadinya tegangan pada kumparan sekunder

203 Sistem Pengapian (Ignition System) 178 Pada saat kunci kontak di-on-kan, arus mengalir pada gulungan primer (demikian juga saat kunci kontak off) garis gaya magnet yang telah terbentuk tiba-tiba menghi-lang, akibatnya pada kum-paran sekunder terbangkit tegangan tinggi. Sebaliknya apabila kunci kontak dihubungkan kembali, maka pada kumparan sekunder juga akan dibangkitkan tegangan dengan arah yang berlawanan dengan pembentukan garis gaya magnet pada kumparan primer (berlawanan dengan yang terjadi saat arus diputuskan). Koil pengapian dapat membangkitkan tegangan tinggi apabila arus primer tiba-tiba diputuskan dengan membuka platina. Hubungan antara kumparan primer dan sekunder diperlihatkan pada diagram di bawah ini. Gambar 4.11 Diagram hubungan antara kumparan primer dan sekunder Besarnya arus primer yang mengalir tidak segera mencapai maksimum pada saat platina menutup, karena arus tidak segera mengalir pada kumparan primer. Adanya tahanan dalam kumparan tersebut, mengakibatkan perubahan garis gaya magnet yang terjadi juga secara bertahap. Tegangan tinggi yang terinduksi pada kumparan sekunder juga terjadi pada waktu yang sangat singkat. Besamya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor sebagai berikut: 1. Banyaknya Garis Gaya Magnet Semakin banyak garis gaya magnet yang terbentuk dalam kumparan, semakin besar tegangan yang diinduksi.

204 Sistem Pengapian (Ignition System) Banyaknya Kumparan Semakin banyak lilitan pada kumparan, semakin tinggi tegangan yang diinduksikan. 3. Perubahan Garis Gaya Magnet Semakin cepat perubahan banyaknya garis gaya magnet yang dibentuk pada kumparan, semakin tinggi tegangan yang dibangkitkan kumparan sekunder. Untuk memperbesar tegangan yang dibangkitkan pada kumparan sekunder, maka arus yang masuk pada kumparan primer harus sebesar mungkin dan pemutusan arus primer harus juga secepat mungkin. 1. Tipe Koil Pengapian Terdapat tiga tipe utama koil pengapian yang umum digunakan pada sepeda motor, yaitu: a. Tipe Canister Tipe ini mempunyai inti besi di bagian tengahnya dan kumparan sekunder mengelilingi inti besi tersebut. Kumparan primernya berada di sisi luar kumparan sekunder. Keseluruhan komponen dirakit dalam satu rumah di logam canister. Kadang-kadang canister diisi dengan oli (pelumas) untuk membantu meredam panas yang dihasilkan koil. Kontsruksi tipe canister seperti terlihat pada gambar 4.13 di bawah ini. Gambar 4.12 Koil pengapian tipe Canister

205 Sistem Pengapian (Ignition System) 180 b. Tipe Moulded Tipe moulded coil merupakan tipe yang sekarang umum digunakan. Pada tipe ini inti besi di bagian tengahnya dikelilingi oleh kumparan primer, sedangkan kumparan sekunder berada di sisi luarnya. Keseluruhan komponen dirakit kemudian dibungkus dalam resin (damar) supaya tahan terhadap getaran yang biasanya ditemukan dalam sepeda motor. Tipe moulded coil menjadi pilihan yang populer sebab konstruksinya yang tahan dan kuat. Pada mesin multicylinder (silinder banyak) biasanya satu coil melayani dua busi karena mempunyai dua kabel tegangan tinggi dari kumparan sekunder. Gambar 4.13 Koil pengapian tipe Moulded

206 Sistem Pengapian (Ignition System) 181 c. Tipe Koil gabungan (menyatu) dengan tutup busi (spark plug) Tipe koil ini merupakan tipe paling baru dan sering disebut sebagai koil batang (stick coil). Ukuran besar dan beratnya lebih kecil dibanding tipe moulded coil dan keuntungan palng besar adalah koil ini tidak memerlukan kabel tegangan tinggi. Gambar 4.14 Tipe koil pengapian yang menyatu dengan tutup busi F. CONTACT BREAKER (PLATINA) Platina pada sistem pengapian berfungsi untuk memutushubungkan tegangan baterai ke kumparan primer. Platina bekerja seperti switch (saklar) yang menyalurkan supply listrik ke kumparan primer koil dan memutuskan aliran listrik untuk menghasilkan induksi. Pembukaan dan penutupan platina digerakkan secara mekanis oleh cam/nok yang menekan bagian tumit dari platina pada interval waktu yang ditentukan.

207 Sistem Pengapian (Ignition System) 182 Moving point Air gap Fixed point Gambar 4.15 Konstruksi platina Pada saat poros berputar maka nok akan mendorong lengan platina kearah kontak membuka dan selanjutnya apabila nok terus berputar lebih jauh maka platina akan kembali pada posisi menutup demikian seterusnya. Pada waktu platina menutup, maka arus mengalir ke rangkaian primer sehingga inti besi pada koil pengapian akan jadi magnet. Saat platina membuka, maka kemagnetan inti besi akan hilang dengan tibatiba. Kehilangan kemagnetan pada inti besi tersebut akan dapat membangkitkan tegangan tinggi (induksi) pada kumparan sekunder. Tegangan tinggi akan disalurkan ke busi, sehingga timbul loncatan bunga api pada celah elektroda busi untuk membakar campuran bensin dan udara pada akhir langkah kompresi. Permukaan kontak platina dapat terbakar oleh percikan bunga api tegangan tinggi yang dihasilkan oleh induksi diri pada kumparan primer, oleh karena itu platina harus diperiksa dan diganti secara periodis. Karena platina sangat penting untuk menentukan performa sistem pengapian (konvensional), maka dalam pemeriksaannya perlu memperhatikan hal-hal sebagai berikut; 1. Tahanan kontak platina Oksidasi/kerak kotoran yang terjadi pada permukaan permukaan platina akan semakin bertambah dan semakin buruk sebanding umur pemakaiannya.bertambahnya lapisan oksidasi membuat permukaan platina semakin kasar/kotor dan memperbesar tahanannya, sehingga aliran arus pada rangkaian primer koil menjadi berkurang. Faktor-faktor di bawah ini menyebabkan tahanan kontak platina semakin bertambah, yaitu:

208 Sistem Pengapian (Ignition System) 183 a. Gemuk Menempel pada Permukaan Celah Kontak Jika bahan ini melekat pada kontak platina, maka kontak akan bertambah hangus oleh loncatan bunga api, sehingga menambah tahanan kontak. Oleh karena itu, pada saat mengganti kontak platina harus diperhatikan agar oli atau gemuk tidak menempel pada celah kotak. Gambar 4.16 Cara membersihkan celah platina Usahakan selalu membersih-kan celah kontak (air gap) saat akan melakukan pemasangan. a. Titik Kontak Tidak Lurus a. baik b. miring c. miring d. tergeser Gambar 4.17 Posisi atau kedudukan kontak platina

209 Sistem Pengapian (Ignition System) 184 Posisi/kedudukan kontak platina sebaiknya seperti pada gambar a. Kedudukan kontak platina yang salah seperti gambar b, c dan (D3) dapat menyebabkan aliran arus pada rangkaian primer tidak optimal sehingga mempengaruhi besarnya induksi yang dihasilkan koil pengapian tersebut. 2. Celah Tumit Ebonit Gambar 4.18 Tumit ebonit Untuk menghindari aus yang terlalu cepat, sebaiknya beri gemuk pada tumit ebonit tersebut. Jika tumit ebonit aus dapat menyebabkan platina tidak bisa terbuka saat cam berputar sehingga sehingga tidak akan terjadi loncatan bunga api dan mesin bisa mati. 3. Sudut Dwell Sudut pengapian merupakan sudut yang diperlukan untuk satu kali pengapian pada satu silinder motor. Di mana secara detail dapat diterangkan sebagai sudut putar nok/cam saat platina mulai membuka sampai platina mulai membuka pada tonjolan nok/kam berikutnya Gambar 4.19 Perbedaan sudut pengapian dengan sudut dwell

210 Sistem Pengapian (Ignition System) 185 Berdasarkan gambar di samping, sudut dwell adalah lamanya posisi platina dalam keadaan menutup. Oleh karena Dengan memperbesar celah platina sudut dwell menjadi kecil, dan sebaliknya bila celah platina diperkecil maka sudut dwell akan menjadi besar. Sudut dwell yang terlalu besar dapat menyebabkan kemungkinan percikan busi pada sistem pengapian terlambat, putaran mesin kasar, tidak optimalnya fungsi kondenser, dan sebagainya. Sedangkan sudut dwell yang terlalu kecil, dapat menyebabkan kemungkinan percikan bunga api yang lemah/kecil, mesin overheating (mesin teralu panas), performa mesin jelek dan sebagainya. G. KONDENSOR Saat arus primer mengalir akan terjadi hambatan pada arus tersebut, hal ini disebabkan oleh induksi diri yang terjadi pada waktu arus mengalir pada kumparan primer. Induksi diri tidak hanya terjadi pada waktu arus primer mengalir, akan tetapi juga pada waktu arus primer diputuskan oleh platina saat mulai membuka. Pemutusan arus primer yang tiba-tiba pada waktu platina membuka, menyebabkan bangkitnya tegangan tinggi sekitar 500 V pada kumparan primer. Induksi diri tersebut, menyebabkan sehingga arus prima tetap mengalir dalam bentuk bunga api pada celah kontak. Hal ini terjadi karena gerakan pemutusan platina cenderung lebih lambat dibanding gerakan aliran listrik yang ingin terus melanjutkan alirannya ke masa/ground. Jika terjadi loncatan bungai api pada platina tersebut saat platina mulai membuka, maka pemutusan arus primer tidak terjadi dengan cepat, padahal tegangan yang dibangkitkan pada kumparan sekunder naik bila pemutusan arus primer lebih cepat. Untuk mencegah terjadinya loncatan bunga api pada platina seperti percikan api pada busi, maka dipasang kondensor pada rangkaian pengapian. Pada umumnya kondensor dipasang (dirangkai) secara paralel dengan platina.. Gambar 4.20 Kondensor

211 Sistem Pengapian (Ignition System) 186 Dengan adanya kondensor, maka induksi diri pada kumparan primer yang terjadi waktu platina membuka, disimpan sementara pada kondensor, sekaligus akan mempercepat pemutusan arus primer Kemampuan dari suatu kondensor ditunjukkan oleh seberapa sebesar kapasitasnya. Kapasitas kondensor diukur am satuan mikro farad (µf), misalnya kapasitor dengan kapasitas 0,22 µf atau 0,25 µf. Agar fungsi kondensor bisa benar-benar mencegah terbakarnya platina karena adanya loncatan bunga api pada paltina tersebut, maka kapasitas kondensor harus sesuai dengan spesifikasi yang telah ditentukan. H. BUSI Gambar 4.21 Busi Tegangan tinggi yang dihasilkan oleh kumparan sekunder koil pengapian, setelah melalui rangkaian tegangan tinggi akan dikeluarkan diantara elektroda tengah (elektroda positif) dan elektroda sisi (elektroda negatif) busi berupa percikan bunga api. Tujuan adanya busi dalam hal ini adalah untuk mengalirkan pulsa atau arus tegangan tinggi dari tutup (terminal) busi ke bagian elektroda tengah ke elektroda sisi melewati celah udara dan kemudian berakhir ke masa (ground). Busi merupakan bagian (komponen) sistem pengapian yang bisa habis, dirancang untuk melakukan tugas dalam waktu tertentu dan harus diganti dengan yang baru jika busi sudah aus atau terkikis. 1. Konstruksi busi Bagian paling atas dari busi adalah terminal yang menghubungkan kabel tegangan tinggi. Terminal ini berhubungan dengan elektroda tengah yang biasanya terbuat dari campuran nikel agar

212 Sistem Pengapian (Ignition System) 187 tahan terhadap panas dan elemen perusak dalam bahan bakar, dan sering mempunyai inti tembaga untuk membantu membuang panas. Pada beberapa busi elektroda terbuat dari campuran perak, platina, paladium atau emas. Busi-busi ini dirancang untuk memberikan ketahanan terhadap erosi yang lebih besar serta bisa tetap bagus. Terminal Insulator ribs Ceramic insulator Steel body Ceramic resistor Copper core Sealing washer (gasket) Center electrode Threaded section Nose Ground insulator electrode Gambar. Konstruksi busi Electrode gap (air gap) Gambar 4.22 Konstruksi busi Elektroda tengah melewati isolator (penyekat) keramik yang terdapat pada bagian luarnya. Isolator ini berfungsi untuk melindungi elektroda tengah dari kebocoran listrik dan melindungi dari panas mesin. Untuk mencegah kebocoran gas terdapat seal (perapat) antara elektroda tengah dengan isolator dan antara isolator dengan bodi busi. Bodi busi dibuat dari baja dan biasanya diberi pelat nikel untuk mencegah korosi. Bagian atas luar bodi berbentuk hexagon (sudut segi enam) yang berfungsi untuk mengeraskan (memasang) dan mengendorkan (membuka) busi. Pada bagian bawahnya dibuat ulir agar busi bisa disekrupkan (dipasang) ke kepala silinder. Pada bagian ujung bawah busi terdapat elektroda sisi atau elektroda negatif. Elektroda ini dilas ke bodi busi untuk jalur ke masa saat terjadi percikan. Terdapat dua tipe dudukan (seat) busi yaitu berbentuk datar dan kerucut. Dudukan busi merupakan bagian dari bodi busi pada bagian atas ulir yang akan bertemu/berpasangan dengan kepala silinder. Jika dudukan businya berbentuk datar, maka terdapat cincin perapat (sealing washer), sebaliknya jika dudukannya berbentuk kerucut maka tidak memerlukan cincin perapat.

213 Sistem Pengapian (Ignition System) 188 Kemampuan dalam menghasilkan bunga api tergantung pada beberapa faktor, antara lain sebagai berikut: a. Bentuk elektroda busi Elektroda busi yang bulat akan mempersulit lompatan bunga api sedangkan bentuk persegi dan runcing dan tajam akan mempermudah loncatan api. Elektroda tengah busi akan membulat setelah dipakai dalam waktu lama, oleh karena itu loncatan bunga api akan menjadi lemah dan menyebabkan terjadinya kesalahan pengapian, sebaliknya elektroda yang tipis atau tajam akan mempermudah percikan bunga api, akan tetapi umur penggunaannya menjadi pendek karena lebih cepat aus b. Celah Busi Bila celah elektroda busi lebih besar, bunga api akan menjadi sulit melompat dan tegangan sekunder yang diperlukan untuk itu akan naik.bila elektroda busi telah aus, berarti celahnya bertambah, loncatan bunga api menjadi lebih sulit sehingg akan menyebabkan terjadinya kesalahan pengapian. Celah elektroda untuk sepeda motor (tanda panah pada gambar di samping) biasanya 0,6-0,7mm (untuk lebih jelasnya lihat buku Manual atau katalog busi)

214 Sistem Pengapian (Ignition System) 189 Gambar di samping adalah celah elektroda yang terlalu kecil. Hal ini akan berakibat; bunga api lemah, elektroda cepat kotor, khususnya pada mesin 2 tak (two stroke). Gambar di samping adalah celah elektroda yang terlalu besar. Hal ini akan berakibat kebutuhan tegangan untuk meloncatkan bunga api lebih tinggi. Isolator-isolator bagian tegangan tinggi cepat rusak karena dibe-bani tegangan pengapian yang luar biasa tingginya. Jika sistem pengapian tidak da-pat memenuhi kebutuhan tersebut, mesin mulai hidup tersen-dat-sendat pada beban penuh. Selain itu, celah busi yang terlalu besar juga bisa menyebabkan mesin agak sulit dihidupkan.

215 Sistem Pengapian (Ignition System) 190 c. Tekanan Kompressi Bila tekanan kompresi meningkat, maka bunga apipun akan menjadi semakin sulit untuk meloncat dan tegangan yang dibutuhkan semakin tinggi, hal ini juga terjadi pada saat beban berat dan kendaraan bejalan lambat dengan kecepatan rendah dan katup gas terbuka penuh. Tegangan pengapian yang dibutuhkan juga naik bila suhu campuran udara-bahan bakar turun. 2. Tingkat Panas Busi Elektroda busi harus dipertahankan pada suhu kerja yang tepat, yaitu antara C sampai C. Bila suhu elektroda tengah kurang dari C, maka tidak akan cukup untuk membakar endapan karbon yang dihasilkan oleh pembakaran sehingga karbon tersebut akan melekat pada permukaan insulator, sehingga akan menurunkan tahanan dengan rumah-nya. Akibatnya, tegangan tinggi yang diberikan ke elektroda tengah akan menuju ke massa tanpa meloncat dalam bentuk bunga api pada celah elektroda, sehingga mengakibatkan tarjadinya kesalahan pembakaran (misfiring). Bila suhu elektroda tengah melebihi C, maka akan terjadi peningkatan kotoran oksida dan terbakarnya elektroda tersebut. Pada suhu C elektroda busi akan menjadi sumber panas yang dapat membakar campuran bahan bakar tanpa adanya bunga api, hal ini disebut dengan istilah pre-ignition yaitu campuan bahan bakar dan udara akan terbakar lebih awal karena panas elektroda tersebut sebelum busi bekerja memercikkan bunga api (busi terlalu panas sehingga dapat membakar campuran dengan sendirinya). Jika terjadi pre-ignition, maka daya mesin akan turun, karena waktu pengapian tidak tepat dan elektroda busi atau bahkan piston dapat retak, leleh sebagian atau bahkan lumer. Gambar 4.23 Ilustrasi urutan terjadinya pre-ignition

216 Sistem Pengapian (Ignition System) 191 Busi yang ideal adalah busi yang mempunyai karakteristik yang dapat beradaptasi terhadap semua kondisi operasional mesin mulai dari kecepatan rendah sampai kecepatan tinggi. Seperti disebutkan di atas busi dapat bekerja dengan baik bila suhu elektroda tengahnya sekitar C sampai C. Pada suhu tersebut karbon pada insulator akan terbakar habis. Batas suhu operasional terendah dari busi disebut dengan self-cleaning temperature (busi mencapai suhu membersihkan dengan sendirinya), sedangkan batas suhu tertinggi disebut dengan istilah pre-ignition. Gambar 4.24 Grafik batas suhu operasional busi yang baik antara 450 o C sampai 800 o C

217 Sistem Pengapian (Ignition System) 192 Gambar 4.25 Pengaruh suhu operasional busi Tingkat panas dari suatu busi adalah jumlah panas yang dapat disalurkan/dibuang oleh busi. Busi yang dapat menyalur-kan/membuang panas lebih banyak dan lebih cepat disebut busi dingin (cold type), karena busi itu selalu dingin, sedangkan busi yang lebih sedikit/susah menyalurkan panas disebut busi panas (hot type), karena busi itu sendiri tetap panas. Pada busi terdapat kode abjad dan angka yang menerang-kan struktur busi, karakter busi dan lain-lain. Kode-kode tersebut berbeda-beda tergantung pada pabrik pembuatnya, tetapi biasanya semakin besar nomomya menunjukkan semakin besar tingkat penyebaran panas; artinya busi makin dingin. Semakin kecil nomornya, busi semakin panas.

218 Sistem Pengapian (Ignition System) 193 Gambar 4.26 Tingkat panas busi (a) busi dingin, (b) busi sedang, dan (c) busi panas Gambar 4.27 Bentuk ujung insulator busi panas dan busi dingin Panjang insulator bagian bawah busi dingin dan busi panas berbeda seperti ditunjukkan gambar di atas. Busi dingin mempunyai insulator yang lebih pendek seperti pada gambar 4.26 bagian (a), karena permukaan penampang yang berhubungan dengan api sangat kecil dan rute penyebaran panasnya lebih pendek, jadi penyebaran panasnya sangat baik dan suhu elektroda tengah tidak naik terlalu tinggi, oleh sebab itu jika dipakai busi dingin pre ignition lebih sulit terjadi. Sebaliknya karena busi panas mempunyai insulator bagian bawah yang lebih panjang, maka luas permukaan yang berhubungan dengan api lebih besar, rute penyebaran panas lebih panjang, akibatnya temperatur

219 Sistem Pengapian (Ignition System) 194 elektroda tengah naik cukup tinggi dan self-cleaning temperature dapat dicapai lebih cepat, meskipun pada kecepatan yang rendah dibandingkan dengan busi dingin. Pada mesin-mesin yang selalu beroperasi pada kecepatan tinggi, biasanya kondisi mesin berada pada suhu yang cenderung panas. Oleh karena itu diperlukan busi yang mempunyai tingkat pembuangan panas dari elektroda lebih cepat. Dalam hal ini perlu dipilih tipe busi dingin. Sebaliknya bila mesin cenderung beroperasi pada kecepatan rendah, maka panas harus dipertahankan dalam elektroda busi lebih lama. Dalam hal ini perlu dipilih busi panas. 3. Tipe-Tipe Busi Terdapat beberapa macam tipe busi, diantaranya: a. Busi Tipe Standar (Standard Type) Busi dengan ujung elektroda tengah saja yang menonjol keluar dari diameter rumah yang berulir (threaded section) disebut busi standar. Ujung insulator (nose insulator) tetap berada di dalamnya (tidak menonjol). Gambar 4.28 Busi standar Tipe busi ini biasa-nya cocok untuk mesin-mesin dengan tahun pem-buatan lebih tua b. Busi Tipe Resistor (Resistor Type) Busi dengan tipe resistor merupakan busi yang dibagian dalam elektroda tengah dekat daerah loncatan api dipasangkan (disisipkan) sebuah resistor (sekitar 5 kilo ohm). Tujuan pemasangan resistor tersebut adalah untuk memperlemah gelombang-gelombang elektromagnet yang ditimbulkan oleh loncatan pengapian, sehingga bisa mengurangi gangguan (interferensi) radio dan peralatan telekomunikasi yang dipasang disekitarnya maupun yang dipasang pada mobil lain.

220 Sistem Pengapian (Ignition System) 195 Gambar 4.29 Busi tipe resistor c. Busi dengan Elektroda yang Menonjol (Projected Nose Type) Busi dengan elektroda yang menonjol maksudnya adalah busi dengan ujung elektroda tengah dan ujung insulator sama-sama menonjol keluar. Suhu elektroda akan lebih cepat naik dibanding tipe busi standar karena busi tipe ini menonjol ke ruang bakar, sehingga dapat membantu menjaga busi tetap bersih. Selain itu, pada putaran mesin yang tinggi, efek pendinginan yang datang dari campuran bahan bakar (bensin) dan udara akan meningkat, sehingga dapat juga membantu menjaga busi beroperasi dalam suhu kerjanya. Hal ini akan mempunyai kecenderungan mengurangi pre-ignition. Busi tipe ini cocok untuk mesin-mesin modern namun tertentu saja. Oleh karena itu, hindari penggunaan busi tipe ini pada mesin yang tidak direkomendasikan karena dapat menyebabkan gangguan pada katup maupun piston serta kerusakan mesin. Gambar 4.30 Tipe busi dengan elektroda yang menonjol

221 Sistem Pengapian (Ignition System) 196 d. Busi dengan Pengeluaran Percikan dari Dua Sisi atau ke Body (Semi-Surface Discharge Plugs) Busi tipe ini dirancang agar lintasan percikan bunga api yang terjadi melompat ke sisi elektroda atau langsung ke body. Hal ini akan membantu menjaga busi tetap bersih karena percikannya efektif mampu membakar setiap deposit (endapan) karbon. Dengan menggunakan elektroda negatif yang berada di sisi bisa membantu membakar campuran bensin dan udara lebih sempurna karena ujung elektroda tengah tidak tertutup elektroda negatif tersebut. Gambar 4.31 Tipe busi semi-surface disharge e. Busi dengan Elektroda Platinum Kemampuan pengapian yang telah dijelaskan juga berlaku untuk busi dengan ujung elektroda platinum. Ujung elektroda tengah dan elektroda masa dilapisi dengan lapisan platinum untuk memperpanjang umur busi. Tipe busi ini sudah beredar dan sering digunakan meskipun harganya lebih mahal. Perbedaannya dengan busi biasa yaitu sebagai berikut: 1) Untuk menyempurnakan kemampuan pengapian, maka diameter elektroda tengahnya diperkecil sampai 1,1 mm (busi biasa diameter elektrodanya 2,5 mm), dan celah elektroda busi dengan platinum adalah 1,1 mm. 2) Ujung elektroda dilapisi dengan platinum untuk mengurangi keausan elektroda, hal ini membuat waktu pemeriksaan dan penyetelan celah elektroda menjadi semakin lama, sampai km. 3) Lebar bidang rata bagian segi enamnya diperkecil dari 20,6 mm pada busi biasa, menjadi 16 mm (busi platinum) dengan tujuan untuk mengurangi berat dan ukurannya serta meningkatkan pendinginan busi. 4) Untuk mempermudah membedakan busi ini dengan busi biasa tanpa membukanya dari mesin, maka busi platinum biasanya ditandai dengan 3-5 garis biru tua atau merah mengelilingi insulatornya.

222 Sistem Pengapian (Ignition System) 197 Gambar 4.32 Busi platinum 4. Analisis Busi Berdasarkan foto-foto busi berikut ini, maka kita dapat melakukan analisanya sebagai berikut: Gambar 4.33 Contoh kerusakan busi 1 dan 2 Berdasarkan gambar 4.33 di atas dapat dianalisis yaitu kondisi busi terlihat normal. Ujung insulator busi berwarna putih keabu-abuan, tatepi dapat juga kuning atau coklat keabu-abuan. Hal ini mengindikasikan bahwa mesin beroperasi bagus dan pemakaian tingkat panas busi telah benar.

223 Sistem Pengapian (Ignition System) 198 Gambar 4.34 Contoh kerusakan busi 3 dan 4 Berdasarkan gambar 4.34 di atas dapat dianalisa yaitu kondisi insulator dan elektroda busi terlihat hitam tidak mengkilat, seperti beludru karena terdapat endapan karbon. Penyebabnya antara lain: perbandingan campuran yang tidak benar, saringan udara tersumbat, tipe busi yang terlalu dingin atau cara mengemudi yang terlalu ekstrim. Gambar 4.35 Contoh kerusakan busi 5 dan 6 Berdasarkan gambar 4.35 di atas dapat dianalisa yaitu kondisi insulator dan elektroda busi terlihat basah dan mengkilat karena terdapat endapan oli. Penyebabnya antara lain: kelebihan jumlah oli yang masuk ke ruang bakar karena ausnya dinding silinder, piston ring atau valve (katup). Dalam motor dua langkah, kondisi di atas mengindikasikan perbandingan campuran oli yang terlalu kaya.

224 Sistem Pengapian (Ignition System) 199 Gambar 4.36 Contoh kerusakan busi 7 dan 8 Berdasarkan gambar 4.36 di atas dapat dianalisa yaitu kondisi insulator busi terlihat berwarna kuning karena terdapat lead/timah dalam aditif bahan bakar yang digunakan. Pada beban yang lebih tinggi, kondisi endapan tersebut bisa menyebabkan bersifat konduksi dan terjadinya misfiring (kesalahan pengapian). Gambar 4.37 Contoh kerusakan busi 9 dan 10 Berdasarkan gambar 4.37 di atas dapat dianalisa yaitu kondisi insulator busi terlihat berwarna kecoklatan dalam lapisan warna kuning karena terdapat gabungan endapan lead/timah dan karbon. Endapan akan terkumpul dalam ujung insulator selama kondisi berkendaranya dalam kecepatan rendah dan endapan tersebut akan meleleh jika kendaraan berada pada putaran tinggi. Setelah kondisi busi dingin kembali, endapan tersebut akan menjadi keras.

225 Sistem Pengapian (Ignition System) 200 Gambar 4.38 Contoh kerusakan busi 11 dan 12 Berdasarkan gambar 4.38 di atas dapat dijelaskan yaitu kondisi insulator busi terlihat berwarna kecoklatan seperti terdapat sisa arang/bara karena terdapat endapan sisa abu dari aditif oli dan gas. Campuran aditif tersebut menyisakan abu yang tidak dapat terbakar dalam ruang bakar dan pada busi. I. TIPE SISTEM PENGAPIAN PADA SEPEDA MOTOR Secara umum tipe sistem pengapian pada sepeda motor dibagi menjadi: 1. Sistem Pengapian Konvensional (menggunakan contact breaker/platina) a. Sistem Pengapian Dengan Magnet (Flywheel Generator/ Magneto Ignition System) b. Sistem Pengapian Dengan Baterai (Battery And Coil Ignition System) 2. Sistem Pengapian Electronic (Electronic Ignition System) a. Sistem Pengapian Semi-Transistor (Dengan Platina) b. Sistem Pengapian Full Transistor (Tanpa Platina) c. Sistem Pengapian CDI (Capacitor Discharge Ignition) 1. Sistem Pengapian Dengan Magnet (Flywheel Generator/ Magneto Ignition System) Sistem pengapian flywheel magnet merupakan sistem pengapian yang paling sederhana dalam menghasilkan percikan bunga api di busi dan telah terkenal penggunaannya dalam pengapian motor-motor kecil sebelum munculnya pengapian elektronik. Sistem pengapian ini

226 Sistem Pengapian (Ignition System) 201 mempunyai keuntungan yaitu tidak tergantung pada baterai untuk menghidupkan awal mesin karena sumber tegangan langsung berasal dari source coil (koil sumber/pengisi) sendiri. Seperti yang telah dijelaskan pada bagian sebelumnya (lihat bagian sumber tegangan pada sepeda motor), yang menghasilkan arus listrik adalah alternator atau flywheel magneto. Sistem pengapian magnet terdiri dari rotor yang berisi magnet permanen/tetap, dan stator yang berisi ignition coil (koil/spool pengapian) dan spool lampu. Rotor diikatkan ke salah satu ujung crankshaft (poros engkol) dan berputar bersama crankshaft tersebut serta berfungsi juga sebagai flywheel (roda gila) tambahan. Arus listrik dihasilkan oleh alternator atau flywheel magneto adalah arus listrik bolak-balik atau AC (Alternating Currrent). Hal ini terjadi karena arah kutub magnet berubah secara terus menerus dari utara ke selatan saat magnet berputar. a. Cara kerja sistem pengapian magnet Prinsip kerja dari sistem pengapian ini adalah seperti transfer/pemindahan energi atau pembangkitan medan magnet. Source coil pengapian terhubung dengan kumparan primer koil pengapian. Diantara dua komponen (koil) tersebut dipasang platina (contact breaker/contact point) yang berfungsi sebagai saklar dan dipasang secara paralel dengan koil-koil tadi. Gambar 4.39 dan 4.40 di bawah ini adalah contoh rangkaian sistem pengapian magnet pada sepeda motor. Pada saat platina dalam keadaan menutup, maka arus yang dihasilkan magnet akan mengalir ke massa melalui platina, sedangkan pada koil pengapian tidak ada arus yang mengalir. Saat posisi rotor sedemikian rupa sehingga arus yang dihasilkan source coil sedang maksimum, platina terbuka oleh cam/nok. Gambar 4.39 Rangkaian sistem pengapian magnet (1)

227 Sistem Pengapian (Ignition System) Rangkaian sistem pengapian magnet (2) Kejadian ini menyebabkan arus ke massa lewat platina terputus dan arus mengalir ke kumparan primer koil dalam bentuk tegangan induksi sekitar 200V 300V. Karena perbandingan kumparan sekunder lebih banyak dibanding kumparan primer, maka pada kumparan sekunder terjadi induksi yang lebih besar sekitar 10KV 20KV yang bisa membuat terjadinya percikan bunga api pada busi untuk membakar campuran bahan bakar dan udara. Induksi ini disebut induksi bersama (mutual induction). Untuk menghasilkan tegangan induksi yang besar maka pada saat platina mulai membuka, tidak boleh ada percikan bunga api dan aliran arus pada platina tersebut yang cenderung ingin terus mengalirnya ke massa. Oleh karena itu, pada rangkaian sistem pengapian dipasangkan kondensor/kapasitor untuk mengatasi percikan pada platina saat mulai membuka. b. Pengontrolan saat pengapian (ignition timing) Pengontrolan saat pengapian pada sistem pengapian magnet generasi awal pada umumnya telah di set/stel oleh pabrik pembuatnya. Posisi stator telah ditentukan sedemikian rupa sehingga untuk merubah/membuat variasi saat penga-piannya tidak dapat dilakukan. Walau demikian pengubahan saat pengapian masih dapat dilakukan dengan jumlah variasi yang kecil yaitu dengan merubah celah platina. Perubahan saat pengapian yang cukup kecil tadi masih cukup untuk motor kecil dua langkah, sedangkan untuk motor yang lebih besar dan empat langkah dibutuhkan pemajuan (advance) saat pengapian yang lebih besar seiring dengan naiknya putaran mesin. Untuk mengatasinya dipasangkan unit pengatur saat pengapian otomatis atau ATU (automatic timing unit). Konstruksi ATU seperti ditunjukkan pada gambar 3.41 di bawah ini:

228 Sistem Pengapian (Ignition System) 203 Gambar 4.41 ATU dengan dua buah platina 1. Centrifugal weights 2. centrifugal weight pivot 3. Cam pivot 4. Cam 5. Condenser 6. Contact leaf spring 7. Contacts 8. Cam lubrication pad 9. Cam follower or heel ATU terdiri dari sebuah piringan yang di bagian tengahnya terdapat pin (pasak) yang membawa cam (nok). Cam dapat berputar pada pin, tetapi pergerakkannya dikontrol oleh dua buah pegas pemberat. Pada saat kecepatan idle dan rendah, pegas menahan cam ke posisi memundurkan (retarded) saat pengapian (lihat gambar 4.42). Sedangkan pada saat kecepatan mesin dinaikkan, pemberat akan terlempar ke arah luar karena gaya gravitasi. saat pengapian. Gambar 4.42 Cara kerja ATU saat kecepatan rendah

229 Sistem Pengapian (Ignition System) 204 Hal ini akan berakibat cam berputar dan terjadi pemajuan (advance). Semakin naik putaran mesin, maka pemajuan saat pengapian pun semakin bertambah maksimum pemajuan seki-tar putaran sudut crankshaft (lihat gambar 4.43 di bawah ini). Gambar 4.43 Cara kerja ATU saat kecepatan tinggi 2. Sistem Pengapian Konvensional dengan Baterai (Battery And Coil Ignition System) Sistem pengapian konvensional baterai merupakan sistem pengapian yang mendapat sumber tegangan tidak dari source coil lagi, melainkan langsung dari sistem kelistrikan utama mesin, yaitu baterai. Baterai berfungsi sebagai tempat menyimpan energi listrik. Sistem pengapian ini akan lebih menguntungkan karena lebih kuat dan stabil dalam memberikan suplai tegangan, baik untuk pengapian itu sendiri maupun untuk aksesoris seperti sistem penerangan. a. Cara kerja sistem pengapian baterai Cara kerja sistem pengapian konvensional baterai pada dasarnya sama dengan sistem pengapian konvensional magnet. Namun terdapat perbedaan dalam pemasangan/perangaian platina. Dalam sistem pengapian magnet, platina dirangkai secara paralel dengan koil pengapian, sedangkan dalam sistem pengapian baterai dirangkai secara seri. Oleh karena itu, dalam sistem pengapian baterai, rangkaian primer pengapian baru akan terjadi secara sempurna (arus mengalir dari baterai sampai massa) jika

230 Sistem Pengapian (Ignition System) 205 posisi platina dalam keadaan tertutup. Gambar 4.44 dan 4.45 di bawah ini adalah contoh rangkaian sistem pengapian baterai pada sepeda motor. Gambar 4.44 Sistem pengapian baterai (1) Pada saat ignition switch (kunci kontak) dinyalakan, dan posisi platina dalam keadaan menutup, arus dari baterai mengalir ke massa melalui kumparan primer koil pengapian dan platina. Dengan mengalirnya arus tersebut, pada inti besi koil pengapian akan timbul medan magnet. Gambar 4.45 Sistem pengapian baterai (2)

231 Sistem Pengapian (Ignition System) 206 Pada saat platina terbuka oleh cam, aliran arus pada rangkaian primer akan terputus. Hal ini akan menyebabkan terjadi induksi sendiri pada kumparan primer sebesar 200 V 300 V. Karena perbandingan kumparan sekunder lebih banyak dibanding kumparan primer, maka pada kumparan sekunder terjadi induksi yang lebih besar sekitar 10KV 20KV yang bisa membuat terjadinya percikan bunga api pada busi untuk pembakaran campuran bahan bakar dan udara. Induksi ini disebut induksi bersama (mutual induction). Sama halnya seperti pada sistem pengapian konvensional yang menggunakan magnet, untuk menghasilkan tegangan induksi yang besar maka pada saat platina mulai membuka, tidak boleh ada percikan bunga api dan aliran arus dari platina tyang cenderung ingin terus mengalirkannya ke massa. Oleh karena itu, pada rangkaian sistem pengapian baterai juga dipasang kondensor/kapasitor untuk mengatasi percikan pada platina saat mulai membuka tersebut. b. Pengontrolan saat pengapian (ignition timing) sistem pengapian baterai Untuk mengatur dan mengontrol saat pengapian pada sistem pengapian baterai, dipasangkan unit pengatur saat pengapian otomatis (ATU). Mengenai konstruksi dan cara kerja sudah dijelaskan dalam sistem pengapian magnet (lihat bagian pengontrolan saat pengapian sistem pengapian magnet). 3. Sistem Pengapian Elektronik (Electronic Ignition System) Sistem pengapian elektronik pada sepeda motor dibuat untuk mengatasi kelemahan-kelemahan yang terjadi pada sistem pengapian konvensional, baik yang menggunakan baterai maupun magnet. Pada pengapian konvensional umumnya kesulitan membuat komponen seperti contact breaker (platina) dan unit pengatur saat pengapian otomatis yang cukup presisi (teliti) untuk menjamin keterandalan dari kerja mesin. Bahkan saat dipakai pada kondisi normalpun, keausan komponen tersebut tidak dapat dihindari. Terdapat beberapa macam sistem pengapian elektronik yang digunakan pada sepeda motor, diantaranya: 1) Sistem pengapian semi transistor (dilengkapi platina) Sistem pengapian semi transistor merupakan sistem pengapian elektronik yang masih menggunakan platina. Namun demikian, fungsi dari platina (breaker point) tidak sama persis seperti pada pengapian konvensional. Aliran arus dari rangkaian primer tidak langsung diputuskan dan dihubungkan oleh platina, tapi perannya diganti oleh transistor sehingga platina cenderung lebih awet

232 Sistem Pengapian (Ignition System) 207 (tidak cepat aus) karena tidak langsung menerima beban arus yang besar dari rangkaian primer tersebut. Dalam hal ini platina hanyalah bertugas sebagai switch (saklar) untuk meng-on-kan dan meng-off-kan transistor. Arus listrik yang mengalir melalui platina diperkecil dan platina diusahakan tidak berhubungan langsung dengan kumparan primer agar tidak arus induksi yang mengalir saat platina membuka. Terjadinya percikan bunga api pada busi yaitu saat transistor off disebabkan oleh arus dari rangkaian primer yang menuju ke massa (ground) terputus, sehingga terjadi induksi pada koil pengapian. Cara kerja Sistem Pengapian Semi-Transistor Apabila kunci kontak (ignition switch) posisi on dan platina dalam posisi tertutup, maka arus listrik mengalir dari terminal E pada TR1 ke `terminal B. Selanjutnya melalui R1 dan platina, arus mengalir ke massa, sehingga TR1 menjadi ON. Dengan demikian arus dari terminal E TR1 mengalir ke terminal C. Selanjutnya arus mengalir melalui R2 menuju terminal B terus ke terminal E pada TR2 yang diteruskan ke massa. (lihat gambar 4.46 di bawah). Akibat dari kejadian arus listrik yang mengalir dari B ke E pada TR2 yang diteruskan ke massa tersebut menyebabkan mengalirnya arus listrik dari kunci kontak ke kumparan primer, terminal C, E pada TR2 terus ke massa. Dengan mengalirnya arus pada rangkaian primer tersebut, maka terjadi kemagnetan pada kumparan primer koil pengapian. Gambar 4.46 Rangkaian sistem pengapian semi transistor

233 Sistem Pengapian (Ignition System) 208 Apabila platina terbuka maka TR1 akan Off dan TR2 juga akan Off sehingga timbul induksi pada kumparan kumparan ignition coil (koil pengapian) yang menyebabkan timbulnya tegangan tinggi pada kumparan sekunder. Induksi pada kumparan sekunder membuat terjadinya percikan bunga api pada busi untuk pembakaran campuran bahan bakar dan udara. 2) Sistem pengapian full transistor (tanpa platina) Dalam banyak hal, sistem pengapian elektronik full tansistor sama dengan pangapian elektronik CDI. Diantaranya adalah tidak terdapatnya bagian-bagian yang bergerak (secara mekanik) dan mengandalkan magnetic trigger (magnet pemicu) dan sistem pick up coil untuk memberikan sinyal ke control unit guna menghasilkan percikan bunga api pada busi. Sedangkan salah satu perbedaannya adalah pada sistem pengapian transistor menggunakan prinsip field collapse (menghilangkan/ menjatuhkan kemagnetan) dan pada sistem pengapian CDI menggunakan prinsip field build-up (membangkitkan kemagnetan). Pengapian CDI telah menjadi metode untuk mengontrol pengapian yang disenangi dalam beberapa tahun belakangan ini. Namun, seiring dengan perkembangan transistor yang bergandengan dengan berkembangnya pengontrolan dari tipe analog ke tipe digital, perusahaan/pabrik mulai mengembangkan sistem pengapian transistor. Cara Kerja Sistem Pengapian Full Transistor Secara umum, pada sistem pengapian transistor arus yang mengalir dari baterai dihubungkan dan diputuskan oleh sebuah transistor yang sinyalnya berasal dari pick up coil (koil pemberi sinyal). Akibatnya tegangan tinggi terinduksi dalam koil pengapian (ignition coil). Adapun cara kerja secara lebih detilnya adalah sebagai berikut (lihat gambar 4.47): Ketika kunci kontak di-on-kan, arus mengalir menuju terminal E TR1 (transistor 1) melalui sekring, kunci kontak, tahanan (R) pada unit igniter yang selanjutnya diteruskan ke massa. Akibatnya TR1 menjadi ON sehingga arus mengalir ke kumparan primer koil pengapian menuju ke massa melalui terminal C E pada TR1.

234 Sistem Pengapian (Ignition System) 209 Gambar 4.47 Sistem pengapian full transistor Pada saat yang bersamaan, sewaktu mesin berputar (hidup) timing plate tempat kedudukan reluctor juga ikut berputar. Ketika saat pengapian telah memberikan sinyal, sebuah arus akan terinduksi di dalam pick up coil dan arus tersebut akan dialirkan ke terminal B pada TR2 terus ke massa. Akibatnya TR2 menjadi ON, sehingga arus yang mengalir dari batrai saat ini disalurkan ke massa melewati terminal C E pada TR2. Dengan kejadian ini TR1 akan menjadi OFF sehingga akan memutuskan arus yang menuju kumparan primer coil pengapian. Selanjutnya akan terjadi tegangan induksi pada kumparan primer dan kumparan sekunder koil pengapian. Karena perbandingan kumparan sekunder lebih banyak dibanding kumparan primer, maka pada kumparan sekunder terjadi induksi yang lebih besar sekitar yang bisa membuat terjadinya percikan bunga api pada busi untuk pembakaran campuran bahan bakar dan udara. 3) Sistem pengapian Capacitor Discharge Ignition (CDI) Capacitor Discharge Ignition (CDI) merupakan sistem pengapian elektronik yang sangat populer digunakan pada sepeda motor saat ini. Sistem pengapian CDI terbukti lebih menguntungkan dan lebih baik dibanding sistem pengapian konvensional (menggunakan platina). Dengan sistem CDI, tegangan pengapian yang dihasilkan lebih besar (sekitar 40 KV) dan stabil sehingga

235 Sistem Pengapian (Ignition System) 210 proses pembakaran campuran bensin dan udara bisa berpeluang makin sempurna. Dengan demikian, terjadinya endapan karbon pada busi juga bisa dihindari. Selain itu, dengan sistem CDI tidak memerlukan penyetelan seperti penyetelan pada platina. Peran platina telah digantikan oleh oleh thyristor sebagai saklar elektronik dan pulser coil atau pick-up coil (koil pulsa generator) yang dipasang dekat flywheel generator atau rotor alternator (kadang-kadang pulser coil menyatu sebagai bagian dari komponen dalam piringan stator, kadang-kadang dipasang secara terpisah). Secara umum beberapa kelebihan sistem pengapian CDI dibandingkan dengan sistem pengapian konvensional adalah antara lain : 1. Tidak memerlukan penyetelan saat pengapian, karena saat pengapian terjadi secara otomatis yang diatur secara elektronik. 2. Lebih stabil, karena tidak ada loncatan bunga api seperti yang terjadi pada breaker point (platina) sistem pengapian konvensional. 3. Mesin mudah distart, karena tidak tergantung pada kondisi platina. 4. Unit CDI dikemas dalam kotak plastik yang dicetak sehingga tahan terhadap air dan goncangan. 5. Pemeliharaan lebih mudah, karena kemungkinan aus pada titik kontak platina tidak ada. Pada umumnya sistem CDI terdiri dari sebuah thyristor atau sering disebut sebagai silicon-controlled rectifier (SCR), sebuah kapasitor (kondensator), sepasang dioda, dan rangkaian tambahan untuk mengontrol pemajuan saat pengapian. SCR merupakan komponen elektronik yang berfungsi sebagai saklar elektronik. Sedangkan kapasitor merupakan komponen elektronik yang dapat menyimpan energi listrik dalam jangka waktu tertentu. Dikatakan dalam jangka waktu tertentu karena walaupun kapasitor diisi sejumlah muatan listrik, muatan tersebut akan habis setelah beberapa saat. Dioda merupakan komponen semikonduktor yang memungkinkan arus listrik mengalir pada satu arah (forward bias) yaitu, dari arah anoda ke katoda, dan mencegah arus listrik mengalir pada arah yag berlawanan\sebaliknya (reverse bias). Berdasarkan sumber arusnya, sistem CDI dibedakan atas sistem CDI-AC (arus bolakbalik) dan sistem CDI DC (arus searah).

236 Sistem Pengapian (Ignition System) Sistem Pengapian CDI-AC Sistem CDI-AC pada umumnya terdapat pada sistem pengapian elektronik yang suplai tegangannya berasal dari source coil (koil pengisi/sumber) dalam flywheel magnet (flywheel generator). Contoh ilustrasi komponen-komponen CDI-AC seperti gambar: 4.48 dibawah ini. Gambar 4.48 Komponen-komponen CDI AC berikut rangkaiannya Cara Kerja Sistem Pengapian CDI-AC Pada saat magnet permanen (dalam flywheel magnet) berputar, maka akan dihasilkan arus listrik AC dalam bentuk induksi listrik dari source coil seperti terlihat pada gambar 4.49 di bawah ini. Arus ini akan diterima oleh CDI unit dengan tegangan sebesar 100 sampai 400 volt. Arus tersebut selanjutnya dirubah menjadi arus setengah gelombang (menjadi arus searah) oleh diode, kemudian disimpan dalam kondensor (kapasitor) dalam CDI unit.

237 Sistem Pengapian (Ignition System) 212 Gambar 4.49 Cara kerja CDI AC (1) Rangkaian CDI unit bisa dilihat dalam gambar Kapasitor tersebut tidak akan melepas arus yang disimpan sebelum SCR (thyristor) bekerja. Gambar 4.50 Diagram rangkaian dasar Unit CDI Pada saat terjadinya pengapian, pulsa generator akan menghasilkan arus sinyal. Arus sinyal ini akan disalurkan ke gerbang (gate) SCR. Seperti terlihat pada gambar 4.51 di bawah ini:

238 Sistem Pengapian (Ignition System) 213 Dengan adanya trigger (pemicu) dari gate tersebut, kemudian SCR akan aktif (on) dan menyalurkan arus listrik dari anoda (A) ke katoda (K) (lihat posisi anoda dan katoda pada gambar 4.52) Gambar 4.51 Cara kerja CDI AC (2) Dengan berfungsinya SCR tersebut, menyebabkan kapasitor melepaskan arus (discharge) dengan cepat. Kemudian arus mengalir ke kumparan primer (primary coil) koil pengapian untuk menghasilkan tegangan sebesar 100 sampai 400 volt sebagai tegangan induksi sendiri (lihat arah panah aliran arus pada kumparan primer koil). Gambar 4.52 Cara kerja CDI AC (3)

239 Sistem Pengapian (Ignition System) 214 Akibat induksi diri dari kumparan primer tersebut, kemudian terjadi induksi dalam kumparan sekunder dengan tegangan sebesar 15 KV sampai 20 KV. Tegangan tinggi tersebut selanjutnya mengalir ke busi dalam bentuk loncatan bunga api yang akan membakar campuran bensin dan udara dalam ruang bakar. Terjadinya tegangan tinggi pada koil pengapian adalah saat koil pulsa dilewati oleh magnet, ini berarti waktu pengapian (Ignition Timing) ditentukan oleh penetapan posisi koil pulsa, sehingga sistem pengapian CDI tidak memerlukan penyetelan waktu pengapian seperti pada sistem pengapian konvensional. Pemajuan saat pengapian terjadi secara otomatis yaitu saat pengapian dimajukan bersama dengan bertambahnya tegangan koil pulsa akibat kecepatan putaran motor. Selain itu SCR pada sistem pengapian CDI bekerja lebih cepat dari contact breaker (platina) dan kapasitor melakukan pengosongan arus (discharge) sangat cepat, sehingga kumparan sekunder koil pengapian teriduksi dengan cepat dan menghasilkan tegangan yang cukup tinggi untuk memercikan bunga api pada busi. 2. Sistem Pengapian CDI-DC Sistem pengapian CDI ini menggunakan arus yang bersumber dari baterai. Prinsip dasar CDI-DC adalah seperti gambar di bawah ini: Gambar 4.53 Prinsip dasar CDI Berdasarkan gambar di atas dapat dijelaskan bahwa baterai memberikan suplai tegangan 12V ke sebuah inverter (bagian dari unit CDI). Kemudian inverter akan menaikkan tegangan menjadi sekitar 350V. Tegangan 350V ini selanjutnya akan mengisi kondensor/kapasitor. Ketika dibutuhkan percikan

240 Sistem Pengapian (Ignition System) 215 bunga api busi, pick-up coil akan memberikan sinyal elektronik ke switch (saklar) S untuk menutup. Ketika saklar telah menutup, kondensor akan mengosongkan (discharge) muatannya dengan cepat melalui kumparan primaer koil pengapian, sehingga terjadilah induksi pada kedua kumparan koil pengapian tersebut. Jalur kelistrikan pada sistem pengapian CDI dengan sumber arus DC ini adalah arus pertama kali dihasilkan oleh kumparan pengisian akibat putaran magnet yang selanjutnya disearahkan dengan menggunakan Cuprok (Rectifier) kemudian dihubungkan ke baterai untuk melakukan proses pengisian (Charging System). Dari baterai arus ini dihubungkan ke kunci kontak, CDI unit, koil pengapian dan ke busi. Untuk lebih jelasnya dapat dilihat pada gambar berikut : Gambar 4.54 Sirkuit sistem pengapian CDI dengan arus DC Cara kerja sistem pengapian CDI dengan arus DC yaitu pada saat kunci kontak di ON-kan, arus akan mengalir dari baterai menuju sakelar. Bila sakelar ON maka arus akan mengalir ke kumparan penguat arus dalam CDI yang meningkatkan tegangan dari baterai (12 Volt DC menjadi 220 Volt AC). Selanjutnya, arus disearahkan melalui dioda dan kemudian dialirkan ke kondensor untuk disimpan sementara. Akibat putaran mesin, koil pulsa menghasilkan arus yang kemudian

241 Sistem Pengapian (Ignition System) 216 mengaktifkan SCR, sehingga memicu kondensor/kapasitor untuk mengalirkan arus ke kumparan primer koil pengapian. Pada saat terjadi pemutusan arus yang mengalir pada kumparan primer koil pengapian, maka timbul tegangan induksi pada kedua kumparan yaitu kumparan primer dan kumparan sekunder dan menghasilkan loncatan bunga api pada busi untuk melakukan pembakaran campuran bahan bakar dan udara.

242 Pemeriksaan dan Perbaikan Sistem Kelistrikan 217 BAB V PEMERIKSAAN DAN PERBAIKAN SISTEM KELISTRIKAN A. Pemeriksaan dan Perbaikan Sistem Kelistrikan a. Peringatan Umum 1) Baterai mengeluarkan gas-gas yang gampang meledak, jauhkan dari api dan sediakan ventilasi yang cukup ketika mengisi baterai. 2) Hindari kulit atau mata kontak dengan cairan elektrolit baterai karena dapat menyebabkan luka bakar. 3) Selalu matikan kunci kontak sebelum memutuskan hubungan antar komponen listrik. 4) Baterai dapat rusak jika diisi kelebihan atau kurang, apalagi dibiarkan tidak diisi dalam jangka waktu yang lama. 5) Isilah baterai setiap dua minggu sekali untuk mencegah pembentukan sulfat, karena tegangan (voltage) baterai akan berkurang sendiri pada saat sepeda motor tidak digukan b. Sambungan (Konektor) 1) Bila memasang sambungan, tekanlah sampai terdengar bunyi klik. 2) Periksa sambungan dari kerenggangan, keretakan, kerusakan pembungkusnya, karat, kotoran dan uap air. c. Sekering (Fuse) 1) Jangan pergunakan sekering yang kemampuannya berbeda. 2) Jangan mengganti sekering dengan kawat atau sekering yang imitasi (tiruan). 3) Jika sekering putus, jangan langsung menggantinya, tapi periksa dulu penyebabnya. Gambar 5.1 Sekering

243 Pemeriksaan dan Perbaikan Sistem Kelistrikan 218 d. Menggunakan Multi meter 1) Pastikan posisi skala pengukuran sesuai dengan komponen yang akan diukur. Gunakan posisi skala pengukuran; a) tahanan untuk mengukur tahanan, b) tegangan DC untuk mengukur tegangan DC (arus searah), c) tegangan AC untuk mengukur tegangan AC (rus bolak-balik). Mengkur dengan posisi skala pengukuran yang salah dapat merusak multi meter. 2) Pastikan kabel-kabel tester positif (+) dan negatif (-) tepat pada posisinya. Bila penempatan salah dapat merusak multi meter. Gambar 5.2 Multi meter digital 3) Bila tegangan dan besarnya arus belum diketahui, mulailah skala pengukuran dengan skala tertinggi. 4) Jika melakukan pengukuran tahanan dengan multi meter analog (multi meter biasa yang menggunakan jarum penunjuk bukan multi meter digital), lakukan kalibrasi (penyetelan ke 0 Ω) sebelum melakukan pengukuran tahanan dan setelah mengganti posisi skala pengukuran tahanan. 5) Posisikan saklar pemilih ke posisi OFF setelah selesai menggunakan multi meter.

244 Pemeriksaan dan Perbaikan Sistem Kelistrikan 219 e. Perletakan Kabel-Kabel 1) Kabel listrik atau kabel lain yang longgar dapat menjadi sumber kerusakan. Periksalah kembali setelah melakukan pemasangan untuk memastikan kabel sudah terpasang dengan baik. 2) Pasang kabel pada rangka dengan menggunakan gelang pemasangan pada tempat yang ditentukan. Kencangkan gelang sedemikian rupa sehingga hanya bagian-bagian yang berisolasi yang menyentuh kabel. Gambar 5.3 Pemasangan gelang kabel 3) Tempatkan susunan kabel listrik sedemikian rupa sehingga tidak menyentuh ujung atau sudut-sudut yang tajam. 4) Jangan gunakan kabel listrik dengan isolasi yang rusak. Perbaiki terlebih dahulu dengan membalutnya dengan pita isolasi atau ganti dengan yang baru. 5) Jauhkan susunan kabel-kabel listrik dari bagian yang panas, seperti knalpot. 6) Jepit (clamp) susunan kabel sedemikian rupa sehingga tidak terlalu terjepit atau longgar. Gambar 5.4 Pemasangan penjepit kabel

245 Pemeriksaan dan Perbaikan Sistem Kelistrikan 220 7) Setelah pemasangan, periksa bahwa susunan kabel listrik tidak terpuntir atau tertekuk. 8) Jangan menekuk atau memuntir kabel pengontrol (misalnya kabel gas) karena dapat menyebabkan kabel pengontrol tidak dapat bekerja dengan lancar dan mungkin macet atau tersangkut. 9) Susunan kabel yang dipasang sepanjang stang kemudi tidak boleh ditarik kencang, atau dipsang terlalu longgar, terjepit/tertekuk atau terganggu oleh bagian-bagian disekitarnya pada semua posisi kemudi. 10) Tempatkan kabel-kabel pada jalurnya dengan tepat. Gambargambar berikut ini adalah contoh penempatan kabel-kabel pada jalur kabel yang ada pada salah satu merek sepeda motor. Gambar 5.5 Peletakan kabel-kabel (1)

246 Pemeriksaan dan Perbaikan Sistem Kelistrikan 221 Gambar 5.6 Peletakan kabel-kabel (2) Gambar 5.7 Peletakan kabel-kabel (3)

247 Pemeriksaan dan Perbaikan Sistem Kelistrikan 222 Gambar 5.8 Peletakan kabel-kabel (4) B. Perawatan Berkala Sistem Kelistrikan Jadwal perawatan berkala sistem kelistrikan sepeda motor yang dibahas berikut ini adalah berdasarkan kondisi umum, artinya sepeda motor dioperasikan dalam keadaan biasa (normal). Pemeriksaan dan perawatan berkala sebaiknya rentang operasinya diperpendek sampai 50% jika sepeda motor dioperasikan pada kondisi jalan yang berdebu dan pemakaian berat (diforsir). Tabel 1 di bawah ini menunjukkan jadwal perawatan berkala sistem kelistrikan yang sebaiknya dilaksanakan demi kelancaran dan pemakaian yang hemat atas sepeda motor yang bersangkutan. Pelaksanaan servis dapat dilaksanakan dengan melihat jarak tempuh atau waktu, tinggal dipilih mana yang lebih dahulu dicapai.

248 Pemeriksaan dan Perbaikan Sistem Kelistrikan 223 Tabel 1. Jadwal perawatan berkala (teratur) sistem kelistrikan No Bagian Yang Diservis Tindakan setiap dicapai jarak tempuh 1 Baterai (Aki) Periksa baterai setelah menempuh jarak 500 km, km, km dan seterusnya setiap km atau setiap 1 bulan 2 Busi Periksa dan bersihkan busi setelah menempuh jarak 500 km, km, km dan seterusnya ganti setiap km 3 Platina (khusus pengapian dengan platina) Periksa, bersihkan, stel atau ganti bila perlu setelah menempuh jarak 500 km, km, km, dan seterusnya setiap km 4 Saklar lampu rem Periksa dan stel atau ganti (bila perlu) saklar lampu rem setelah menempuh jarak 500 km, km, km, km dan seterusnya setiap km 5 Arah sinar lampu depan 6 Lampu-lampu dan klakson Periksa dan stel (bila perlu) arah sinar lampu setelah menempuh jarak 500 km, km, km, km dan seterusnya setiap km Periksa dan stel (bila perlu) saklar lampu rem setelah menempuh jarak 500 km, km, km, km dan seterusnya setiap km C. Sumber Kerusakan Sistem Kelistrikan Tabel 2 di bawah ini menguraikan permasalahan atau kerusakan sistem kelistrikan yang umum terjadi pada sepeda motor, untuk diketahui kemungkinan penyebabnya dan menentukan jalan keluarnya atau penanganannya (solusinya).

249 Pemeriksaan dan Perbaikan Sistem Kelistrikan 224 Tabel 2. Sumber-sumber kerusakan sistem kelistrikan Permasalahan Terdapat selubung putih (sulfasi) pada baterai Kapasitas baterai cepat sekali menurun Kemungkinan Penyebab 1. Kapasitas cairan yang menurun telah bereaksi dan berat jenisnya (BJ) rendah atau tinggi 2. Kapasitas pengisian yang terlalu tinggi atau rendah (bila baterai tidak terpakai maka harus dicharge (disetrum) minimal sebulan sekali untuk menghindari sulfasi) 3. Baterai tersimpan lama di tempat yang dingin 1. Sistem/cara pengisian tidak benar 2. Plat-plat sel baterai sudah tidak aktif (bagus) karena kelebihan pengisian (overcharging) 3. Terjadi korslet (short circuit) karena banyaknya endapan yang disebabkan oleh BJ cairan (elektrolit) yang terlalu tinggi Solusi (Jalan Keluar) 1. Isi cairan baterai sampai batas yang ditentukan dan sesuaikan BJ-nya. 2. Ganti (bila perlu) 3. Ganti bila sudah terlalu usang 1. Periksa rangkaian sistem pengisian, stator, regulator/rectifie r. Lakukan penyetelan sistem pengisian (bila perlu) 2. Ganti baterai dan perbaiki sistem pengisian 3. Ganti baterai 4. BJ elektrolit yang terlalu rendah 4. Strum baterai dan sesuaikan BJ-nya 5. Telah terjadi reaksi pada elektrolit baterai 5. Ganti elektrolit lalu lakukan penyetruman dan sesuaikan BJ-nya 6. Batarei sudah terlalu lama 6. Ganti baterai

250 Pemeriksaan dan Perbaikan Sistem Kelistrikan 225 Permasalahan Daya kerja baterai kurang bagus (terputusputus) Tombol (saklar) starter tidak berfungsi Pengisian tidak stabil Pengisian berlebihan (overcharging) Pengisian di bawah spesifikasi (ketentuan) Kemungkinan Penyebab Solusi (Jalan Keluar) 1. Terminal (kutub) baterai kotor 1. Bersihkan 2. Cairan elektrolit tidak murni atau BJ nya terlalu tinggi 2. Ganti elektrolit baterai lalu lakukan penyetruman baterai dan sesuaikan BJnya 1. Baterai lemah 1. Perbaiki atau ganti 2. Saklar (tombol) rusak 2. Ganti 3. Karbon brush (karbon sikat) habis 3. Ganti 4. Starter relay (solenoid) rusak 4. Perbaiki atau ganti 1. Rangkaian kabel sistem pengisian 1. Perbaiki atau ada yang longgar atau korslet ganti 2. Bagian dalam generator (alternator) 2. Ganti korslet 3. Regulator/retifier rusak 3. Ganti 1. Rangkaian dalam baterai ada yang 1. Ganti korslet 2. Hubungan massa (ground) regulator/rectifier kurang bagus/kendor 2. Bersihkan dan perbaiki hubungan massa 3. Ganti 3. Resistor dalam regulator/rectifier rusak 1. Kabel tidak terawat atau rangkaian terbuka atau sambungan terminal lepas 2. Kumpaan stator dalam generator 2. Ganti korslet 3. Regulator/rectifier rusak 3. Ganti 4. Plat-plat sel baterai rusak atau elektrolitnya kurang 1. Perbaiki atau ganti bila perlu 4. Ganti atau tambah elektrolit jika hanya kurang elektrolitnya

251 Pemeriksaan dan Perbaikan Sistem Kelistrikan 226 Permasalahan Bunga api busi lemah atau tidak ada Busi cepat mati karena tertutup arang Busi terlalu panas atau hangus (elektroda terbakar) Busi cepat menjadi kotor (cepat mati) Kemungkinan Penyebab Solusi (Jalan Keluar) 1. CDI atau ignition coil (kumparan 1. Ganti pengapian) rusak 2. Pick up coil rusak 2. Ganti 3. Busi rusak 3. Ganti 4. Sambungan kabel sistem pengapian longgar 4. Perbaiki sambungan 5. Magnet rusak (khususnya sepeda 5. Ganti motor 2 langkah/tak) 1. Campuran sistem bahan bakar dan 1. Perbaiki atau udara terlalu gemuk/kaya stel karburator 2. Penyetelan putaran idle (langsam) 2. Perbaiki atau terlalu tinggi stel karburator 3. Saringan udara kotor/tersumbat 3. Bersihkan atau ganti bila perlu 4. Menggunakan jenis busi terlalu 4. Ganti dengan dingin jenis yang lebih panas 5. Mutu (kualitas) bensin jelek 5. Ganti 1. Jenis busi terlalu panas 1. Ganti dengan jenis busi dingin 2. Busi kendor 2. Perbaiki (kencangkan) 3. Campuran sistem bahan bakar dan 3. Perbaiki atau udara terlalu kurus/miskin stel karburator 4. Mesin terlalu panas (overheat) 4. Periksa atau stel kembali 1. Piston atau silinder aus 1. Ganti/oversize 2. Ring piston aus 2. Ganti 3. Kerenggangan bos klep (valve 3. Ganti guide) dan tangkai klep (valve stem) sudah aus (terlalu longgar) 4. Sil oli (oil seal) valve stem rusak/aus 4. Ganti

252 Pemeriksaan dan Perbaikan Sistem Kelistrikan 227 D. Mencari dan Mengatasi Kerusakan Baterai Tegangan baterai menurun dengan cepat Periksa kelengkapan yang memerlukan tenaga listrik Dipasang Lepas perlengkapan tersebut Tidak dipasang Periksa kebocoran arus Dipasang - Hubungan pendek pada kabel Tidak bocor - Sambungan terlepas/longgar Periksa tegangan pengisian antara terminal baterai Tidak baik Baik - Baterai lemah (soak) - Kondisi pemakaian tidak normal Periksa hubungan sel-selnya Bagus Tidak berhubungan Kumparan generator rusak/sambungan lepas Periksa tegangan generator tanpa beban Tidak baik Magnet rusak Bagus Periksa regulator/rectifier Tidak baik Regulator/rectifier rusak Bagus Periksa kabel-kabel dipasang - Kabel body korslet - Sambungan tidak Baik baik Baterai rusak Diagram 1. Tahapan mencari dan mengatasi kerusakan baterai

253 Pemeriksaan dan Perbaikan Sistem Kelistrikan 228 E. Pemeriksaan dan Perbaikan Baterai a. Periksa kerusakan tempat baterai atau plat terhadap adanya pembentukan sulfat (selubung putih). Ganti baterai jika sudah rusak atau telah mengalami sulfasi. b. Periksa tinggi permukaan elektrolit pada tiap sel, apakah masih berada diantara batas bawah (lower level) dan batas atas (upper level). Jika rendah, tambah air suling agar tinggi permukaan mencapai batas teratas (upper level). c. Periksa berat jensi (BJ) setiap sel dengan menghisap cairan elektrolit ke dalam hydrometer. Berat jenis: Muatan penuh : 1,270 1,290 pada suhu 20 o C Muatan kosong : di bawah 1, 260 pada suhu 20 o C Gambar 5.9 Pembacaan berat jenis elektrolit menggunakan hydrometer Catatan: 1) Berat jenis akan berubah sekitar 0,007 per 10 0 C perubahan suhu. Perhatikanlah suhu sekitar saat melakukan pengukuran. 2) Jika perbedaan berat jenis antara sel-sel lebih dari 0,01, isi ulang (strum) baterai. Jika perbedaanya terlampau besar, ganti baterai. 3) Baterai juga harus diisi kembali apabila berat jenisnya kurang dari 1,230. 4) Pembacaan tinggi pada permukaan cairan pada hydrometer harus dilakukan secara horisontal.

254 Pemeriksaan dan Perbaikan Sistem Kelistrikan 229 d. Ukur tegangan baterai menggunakan multimeter Standar tegangan (voltage) untuk baterai bebas perawatan (free maintanenace): Bermuatan penuh : 13,0 13,2 V Bermuatan kurang : di bawah 12, 3 V Gambar 5.10 Pengukuran tegangan baterai F. Pemeriksaan dan Perbaikan Sistem Starter a. Pemeriksaan Sikat (Brush) 1) Periksa sikat-sikat terhadap kerusakan atau keretakan. Bila sudah rusak, ganti dengan yang baru. 2) Ukur panjang setiap sikat. Jika sudah di bawah batas servis (limit), ganti dengan yang baru. Batas servis : 4,0 mm Gambar 5.11 Pengukuran panjang sikat

255 Pemeriksaan dan Perbaikan Sistem Kelistrikan 230 b. Pemeriksaan Komutator dan Armature 1) Periksa lempengan-lempengan komutator terhadap adanya perubahan warna atau kotor. a) Bila berubah warna, ganti motor starter karena telah terjadi hubungan singkat (korslet). b) Bila kotor permukaannya, bersihkan dengan kertas gosok yang halus (sekitar nomor 400) kemudian bersihkan dengan lap kering. Gambar 5.12 Pemeriksaan komutator dan armature 2) Periksa dengan menggunakan multimeter (skala ohmmeter) terhadap adanya kontinuitas diantara tiap lempengan (segmen) komutator (lihat gambar di atas). Bila tidak ada kontinuitas (hubungan), ganti armature. 3) Periksa dengan menggunakan multimeter (skala ohmmeter) terhadap adanya kontinuitas diantara masing-masing lempengan (segmen) komutator dengan poros (as) armature (lihat gambar di atas). Bila tidak ada kontinuitas (hubungan), berarti baik dan bila ada kontinuitas, ganti armature. c. Pemeriksaan Saklar Relay Starter/Solenoid (Starter Relay Switch) 1) Periksa bahwa saklar relay starter terdengar bunyi klik saat kunci kontak ON dan tombol starter ditekan. Jika tidak terdengar bunyi tersebut, lepaskan konektor lalu periksa terhadap kontinuitas dan tegangan antara terminalterminalnya.

256 Pemeriksaan dan Perbaikan Sistem Kelistrikan 231 Gambar 5.13 Posisi relay starter pada salah satu sepeda motor 2) Contoh pemeriksaan kontinuitas relay starter pada Honda Supra PGM-FI Periksa terhadap kontinuitas menggunakan multimeter (skala ohmmeter) antara kabel kuning/merah dan massa. Jika ada kontinuitas (hubungan), berarti relay starter baik/normal. Gambar 5.14 Pemeriksaan kontinuitas relay starter Catatan: Warna kabel setiap produk/merek sepeda motor kemungkinan berbeda, namum prosedur pemeriksaanya pada dasarnya sama.

257 Pemeriksaan dan Perbaikan Sistem Kelistrikan 232 3) Contoh pemeriksaan teganganrelay starter pada Honda Supra PGM-FI Ukur tegangan relay starter menggunakan multi meter (skala voltmeter) antara kabel hitam (+) dan massa. Jika tegangan (voltage) baterai pada multi meter hanya muncul ketika kunci kontak posisi ON, berarti relay starter baik/normal. Gambar 5.15 Pemeriksaan tegangan relay starter G. Pemeriksaan dan Perbaikan Sistem Pengisian a. Pemeriksaan Tegangan (voltage) pengisian 1) Hidupkan mesin sampai mencapai suhu kerja normal. 2) Ukur tegangan baterai menggunakan multimeter (skala voltmeter) seperti pada gambar di bawah: Standar tegangan pengisian pada putaran rpm: 13,0 16, 0 V (Suzuki) 14,0 15,0 V (Honda) 14,5 V (Yamaha) 3) Baterai dalam keadaan normal jika tegangan yang diukur sesuai standar. Lihat bagian 3 (menemukan sumber-sumber kerusakan) untuk menentukan kemungkinan penyebab yang terjadi jika hasil tegangan pengisian tidak sesuai dengan standar.

258 Pemeriksaan dan Perbaikan Sistem Kelistrikan 233 Gambar 5.16 Pengukuran tegangan pengisian Catatan: a) Jangan memutuskan hubungan baterau kabel manapun juga pada sistem pengisian tanpa mematikan kunci kontak terlebih dahulu karena bisa merusak alat uji dan komponen listrik. b) Pastikan baterai berada dalam kondisi baik sebelum melakukan pemeriksaan sistem pengisian. b. Pemeriksaan Kebocoran Arus 1) Matikan kunci kontak (putar ke posisi OFF) lalu lepaskan kabel negatif dari terminal baterai. 2) Hubungkan jarum positif (+) ampermeter ke kabel negatif baterai (massa) dan jarum negatif (-) ke terminal negatif baterai seperti gambar di bawah: Standar kebocoran arus : maksimum 1 A 3) Jika kebocoran arus melebihi standar yang ditentukan, kemungkinan terjadi korslet pada rangkaian sistem pengisian. Periksa dengan melepas satu persatu sambungansambungan pada rangkaian sistem pengisian sampai jarum penunjuk ampermeter tidak bergerak.

259 Pemeriksaan dan Perbaikan Sistem Kelistrikan 234 Gambar 5.17 Pengukuran kebocoran arus c. Pemeriksaan Kumparan Generator (Alternator) 1) Periksa (ukur) dengan menggunakan multimeter (skala ohmmeter) tahanan koil/kumparan pengisian (charging coil) dengan massa seperti gambar di bawah: Gambar 5.18 Pengukuran koil pengisian

260 Pemeriksaan dan Perbaikan Sistem Kelistrikan 235 Standar tahanan kumparan pengisian (pada suhu 20 0 C): 0,2 1,5 ohm (Ω) untuk Honda Astrea 0,3-1,1 Ω (Honda Supra PGM-FI) 0,6-1,2 Ω (Suzuki Shogun) 0,32 0,48 Ω (Yamaha Vega) 2) Jika hasil pengukuran terlalu jauh dari standar yang ditentukan, ganti kumparan stator alternator (koil pengisian). Catatan: a) Warna kabel koil pengisian setiap merek sepeda motor berbeda, lihat buku manual yang bersangkutan untuk lebih jelasnya. b) Pengukuran tahanan tersebut bisa dilakukan dengan kumparan stator dalam keadaan terpasang. d. Pemeriksaan Regulator/Rectifier 1) Lepaskan konektor regulator/rectifier dan periksa konektor terhadap terminal-terminal yang longgar atau berkarat. 2) Periksa (ukur) dengan menggunakan multimeter (skala ohmmeter) tahanan pada terminal konektor regulator/rectifier seperti gambar di bawah: Catatan: Gambar 5.19 Pengukuran regulator/rectifier

261 Pemeriksaan dan Perbaikan Sistem Kelistrikan 236 a) Warna kabel pada konektor regulator/rectifier setiap merek sepeda motor kemungkinan berbeda, lihat buku manual yang bersangkutan untuk lebih jelasnya. b) Standar tahanan (spesifikasi) pada konektor regulator/rectifier setiap merek sepeda motor kemungkinan berbeda, lihat buku manual yang bersangkutan untuk lebih jelasnya. c) Tabel 3 berikut ini adalah contoh spesifikasi tahanan dan tegangan (voltage) regulator/rectifier sepeda motor Honda Tiger Tabel 3. Contoh spesifikasi tahanan dan tegangan (voltage) regulator/rectifier sepeda motor Honda Tiger 3) Jika tahanan tidak sesuai dengan spesifikasi, ganti regulator/rectifier dengan yang baru. H. Pemeriksaan dan Perbaikan Sistem Pengapian a. Pemeriksaan Igntion Coil (Koil Pengapian) dengan Electro Tester 1) Posisikan tombol power tester pada posisi OFF 2) Hubungkan kabel-kabel tester seperti terlihat pada gambar di bawah. Gambar 5.20 Pemeriksaan koil pengapian dengan electro tester

262 Pemeriksaan dan Perbaikan Sistem Kelistrikan 237 3) Arahkan tombol selector ke IG COIL. 4) Posisikan tombol power ke posisi ON. 5) Amati pancaran (loncatan) bunga api listrik pada tester. Pancaran harus kuat dan berkelanjutan. Biarkan pengetesan ini berjalan sekitar 5 menit untuk memastikan koil pengapian bekerja dengan baik. a) Loncatan bunga api pengapian yang baik adalah berjarak sekitar 8 mm. b) Bila tidak terjadi pengapian atau pengapian berwarna orange, berarti keadaan koil pengapian kurang baik. b. Pemeriksaan Igntion Coil (Koil Pengapian) dengan Multimeter 1) Periksa tahanan kumparan primer koil pengapian menggunakan multimeter (skala ohmmeter x 1Ω) antara terminal kabel primer dengan massa. Standar : 0,5 0,6 Ω pada suhu 20 0 C(Honda) 0,32 0,48 Ω suhu 20 0 C (Yamaha) 0,1 0,2 Ω suhu 20 0 C (Suzuki) 2) Periksa tahanan kumparan sekunder koil pengapian menggunakan multimeter (skala ohmmeter x kω) antara terminal kabel primer dengan tutup busi seperti gambar di bawah. Standar : 11,5 14,5 kω pada suhu 20 0 C (Honda) 10 kω pada suhu 20 0 C (Yamaha) kω pada suhu 20 0 C (Suzuki) Gambar 5.21 Pemeriksaan tahanan kumparan sekunder

263 Pemeriksaan dan Perbaikan Sistem Kelistrikan 238 3) Periksa tahanan kumparan sekunder koil pengapian menggunakan multimeter (skala ohmmeter x kω ) antara terminal kabel primer dengan kabel busi/kabel tegangan tinggi (tanpa tutup busi) seperti gambar di bawah: Standar : 7,8 8,2 kω pada suhu 20 0 C (Honda) 5,68 8,52 kω pada suhu 20 0 C (Yamaha) Gambar 5.22 Pemeriksaan tahanan kumparan sekunder Jika hasil-hasil pengukuran di atas tidak sesuai dengan standar yang telah ditentukan, ganti koil pengapian. c. Pemeriksaan Unit CDI 1) Periksa unit CDI terhadap adanya hubungan yang longgar atau terminal-terminal yang berkarat. 2) Periksa tahanan diantara terminal-terminal konektor unit CDI seperti gambar di bawah:

264 Pemeriksaan dan Perbaikan Sistem Kelistrikan 239 Gambar 5.23 Pemeriksaan tahanan unit CDI Catatan: a) Warna kabel pada konektor unit CDI setiap merek sepeda motor kemungkinan berbeda, lihat buku manual yang bersangkutan untuk lebih jelasnya. b) Standar tahanan (spesifikasi) pada konektor unit CDI setiap merek sepeda motor kemungkinan berbeda, lihat buku manual yang bersangkutan untuk lebih jelasnya. c) Tabel berikut ini adalah contoh spesifikasi tahanan dan unit CDI sepeda motor Honda Astrea Tabel 4. Contoh spesifikasi tahanan dan unit CDI sepeda motor Honda Astrea Keterangan tabel : BI/Y = Hitam/kuning BI/W = Hitam/putih Lb/Y = Biru muda/kuning G/W = Hijau/putih BI/R = Hitam/merah Jika hasil-hasil pengukuran di atas tidak sesuai dengan standar yang telah ditentukan, ganti unit CDI.

265 Pemeriksaan dan Perbaikan Sistem Kelistrikan 240 d. Pemeriksaan Ignition Timing (Saat Pengapian) 1) Panaskan mesin sampai mencapai suhu kerja normal lalu matikan mesin. 2) Periksa saat pengapian dengan melepaskan tutup lubang pemeriksaan tanda pengapian terlenbih dahulu. 3) Pasangkan timing light ke kabel busi. 4) Hidupkan mesin pada putaran idle/stasioner. Putaran stasioner : 1400± 100 rpm 5) Saat pengapian sudah tepat jika tanda F bertapatan (sejajar) dengan tanda penyesuai pada tutup bak mesin sebelah kiri seperti terlihat pada gambar di bawah: Gambar 5.24 Tanda saat pengapian pada bak mesin sebelah kiri e. Pemeriksaan Busi 1) Periksa endapan karbon pada busi. Bila terdapat endapan karbon, bersihkan busi dengan mesin pembersih busi atau menggunakan alat yang lancip. (Lihat pembahasan pada Bab IV bagian H.4 untuk melihat analisis busi yang lebih detil). 2) Ukur celah (gap) busi menggunakan feeler gauge. Bila celahnya tidak sesuai spesifikasi, stel celah busi tersebut. Standar celah busi: 0,6 0,8 mm

266 Pemeriksaan dan Perbaikan Sistem Kelistrikan 241 Gambar 5.25 Celah (gap) busi 9. Pemeriksaan dan Perbaikan Sistem Penerangan a. Pemeriksaan Saklar (Switch) 1) Periksa sambungan antar terminal yang ada switch (atau konektor switch) dengan menggunakan multimeter (skala ohmmeter x 1Ω) untuk menentukan benar atau baik tidaknya sambungan. 2) Tanda 0 0 menunjukkan terminal yang memiliki hubungan (kontinuitas) yaitu sirkuit/rangkaian tertutup pada posisi switch yang ditunjukkan (yang bersangkutan). 3) Jika terdapat sambungan yang kurang baik atau tidak ada hubungan (kontinuitas), perbaiki atau ganti (bila perlu) switch tersebut. Catatan: a) Warna kabel pada switch (konektor switch) setiap merek sepeda motor kemungkinan berbeda, lihat buku manual yang bersangkutan untuk lebih jelasnya. b) Bentuk switch setiap merek sepeda motor kemungkinan berbeda, lihat buku manual yang bersangkutan untuk lebih jelasnya. c) Tabel berikut ini adalah contoh pemeriksaan switch (saklar) pada sepeda motor Honda Supra PGM-FI

267 Pemeriksaan dan Perbaikan Sistem Kelistrikan 242 Gambar 5.26 Peta sambungan saklar kanan stang stir/kemudi Gambar 5.27 Peta sambungan saklar kiri stang stir/kemudi Gambar 5.28 Peta sambungan saklar kunci kontak

268 Pemeriksaan dan Perbaikan Sistem Kelistrikan 243 Keterangan warna : Y/R = Kuning/merah W = Putih Br = Coklat BI = Hitam Bu = Biru G = Hijau Lb = Biru muda Gr = Abu-abu Lg = Hijau muda b. Pemeriksaan Lampu Kepala Jika lampu kepala (depan) tidak menyala, maka: 1) Periksa bola lampu, ganti bila bola lampu putus. 2) Periksa tahanan lighting coil (kumparan penerangan atau spul lampu). Standar tahanan dan warna kabel kumparan penerangan berbeda setiap merek sepeda motor, lihat buku manual masing-masing. Jika hasil pengukuran terlalu dari standar, ganti kumparan penerangan atau stator alternator. 3) Periksa saklar (switch) lampu. Lihat bagian 9.a tentang pemeriksaan saklar. 4) Periksa saklar lampu jauh dekat (dimmer switch). Untuk memeriksa tahanannya (kontinuitas-nya), lihat bagian 9.a tentang pemeriksaan saklar. Untuk memeriksa tegangannya: a) Hubungkan multimeter (skala voltmeter) terminal (+) ke konektor lampu lauh maupun lampu dekat secara bergantian (tergantung posisi saklar dimmer tersebut). b) Hubungkan terminal (-) multimeter ke massa atau kabel yang menuju massa. Gambar 5.29 Konektor lampu depan

269 Pemeriksaan dan Perbaikan Sistem Kelistrikan 244 c) Hidupkan mesin d) Geser saklar lampu ke posisi ON e) Geser saklar dimmer ke posisi lampu dekat atau ke lampu jauh bergantian. f) Multimeter harus menunjukkan tegangan sebesar tegangan baterai (12 V) pada sambungan konektor bola lampu depan tersebut. Jika tegangan yang diperoleh di luar spesifikasi, terdapat kerusakan rangkaian kabel dari kunci kontak ke sambungan soket tersebut. 5) Periksa sambungan kabel. Periksa seluruh sambungan kabel sistem penerangan. Perbaiki jika ada yang rusak, terputus, longgar dan sebagainya. 6) Periksa kondisi tiap sirkuit/rangkaian sistem penerangan. c. Pemeriksaan Lampu Sein Jika lampu tanda belok (sein) tidak menyala, maka: 1) Periksa bola lampu, ganti bila bola lampu putus. 2) Periksa sekering, ganti jika sekering terbakar atau putus. Periksa sambungan kabel rangkaian sistem lampu sein. Perbaiki jika ada yang rusak, terputus, longgar dan sebagainya. 3) Periksa relay (flasher) lampu sein Jika seluruh sambungan dan kabel sistem lampu sein masih bagus, periksa relay lampu sein dengan cara menghubungsingkatkan antara terminal yang ada dalam lampu sein menggunakan kabel jumper. Kemudian periksa nyala lampu sein dengan memposisikan saklar lampu sein ke ON. Jika lampu sein menyala, berarti relay rusak dan harus diganti dengan yang baru. d. Pemeriksaan Klakson Jika klakson tidak berbunyi, maka: 1) Periksa saklar/tombol klakson. Lihat bagian 9.a tentang pemeriksaan saklar. 2) Periksa tegangan yang menuju klakson, dengan cara: a) Periksa dengan menggunakan multimeter (skala voltmeter), yaitu terminal (+) multimeter ke kabel di terminal klakson (kabel yang mendapat arus dari baterai) dan terminal (-) multimeter ke massa. b) Putar kunci kontak ke posisi ON c) Multimeter harus menunjukkan tegangan sebesar tegangan baterai (12 V) pada pengukuran tersebut. Jika tegangan yang diperoleh di luar spesifikasi, terdapat kerusakan rangkaian kabel dari kunci kontak ke klakson.

270 Pemeriksaan dan Perbaikan Sistem Kelistrikan 245 3) Periksa klakson, dengan cara: a) Periksa dengan menggunakan multimeter (skala voltmeter),yaitu terminal (+) multimeter ke terminal klakson (terminal yang kabelnya menuju massa) dan terminal (-) multimeter ke massa. b) Putar kunci kontak ke posisi ON c) Multimeter harus menunjukkan tegangan sebesar tegangan baterai (12 V) pada pengukuran tersebut. Jika tegangan yang diperoleh di luar spesifikasi, terdapat kerusakan pada klakson.ganti klakson dengan yang baru. 4) Cara lain memeriksa klakson adalah dengan menghubungkan langsung baterai 12V ke terminal klakson seperti terlihat pada gambar di bawah ini: Gambar 5.30 Pemeriksaan klakson 5) Jika klakson berbunyi nyaring, maka klakson normal. e. Pemeriksaan Pengukur Tinggi Permukaan Bensin 1) Buka/lepaskan pengukur tinggi permukaan bensin. 2) Periksa tahanan dengan menggunakan multimeter (skala ohmmeter) pada setiap posisi pelampung.

271 Pemeriksaan dan Perbaikan Sistem Kelistrikan 246 Gambar 5.31 Pengukur tinggi permukaan bensin 3) Standar tahanan masing-masing terminal pengukur tinggi permukaan bensin setiap merek sepeda motor berbeda. Lihat buku manual yang bersangkutan untuk lebih jelasnya. 4) Jika nilai tahanan yang diukur tidak sesuai dengan spesifikasi, ganti satu set pengukur tinggi permukaan bensin tersebut.

272 Pemeriksaan dan Perbaikan Sistem Kelistrikan 247 SOAL-SOAL LATIHAN BAB V 1. Kenapa pada sepeda motor berbahan bakar bensin diperlukan sistem pengapian? 2. Apa yang dimaksud dengan pengapian terlalu maju atau terlalu mundur? 3. Jelaskan perbedaan antara sistem pengapian CDI DC dengan CDI AC! 4. Jelaskan bagaimana terjadinya tegangan induksi pada koil pengapian! 5. Kenapa kita harus memperhatikan tingkat panas busi? Apa efek yang ditimbulkan jika terjadi kesalahan pemasangan tipe busi yang mempunyai tingkat panas berbeda?

273 Sistem Bahan Bakar (Fuel System) 248 BAB VI SISTEM BAHAN BAKAR (FUEL SYSTEM) A. PENDAHULUAN Secara umum sistem bahan bakar pada sepeda mesin berfungsi untuk menyediakan bahan bakar, melakukan proses pencampuran bahan bakar dan udara dengan perbandingan yang tepat, kemudian menyalurkan campuran tersebut ke dalam silinder dalam jumlah volume yang tepat sesuai kebutuhan putaran mesin. Cara untuk melakukan penyaluran bahan bakarnya dapat dibedakan menjadi dua, yaitu sistem penyaluran bahan bakar dengan sendirinya (karena berat gravitasi) dan sistem penyaluran bahan bakar dengan tekanan. Sistem penyaluran bahan bakar dengan sendiri diterapkan pada sepeda mesin yang masih menggunakan karburator (sistem bahan bakar konvensional). Pada sistem ini tidak diperlukan pompa bahan bakar dan penempatan tangki bahan bakar biasanya lebih tinggi dari karburator. Sedangkan sistem penyaluran bahan bakar dengan tekanan terdapat pada sepeda mesin yang menggunakan sistem bahan bakar injeksi atau EFI (electronic fuel injection). Dalam sistem ini, peran karburator yang terdapat pada sistem bahan bakar konvensional diganti oleh injektor yang proses kerjanya dikontrol oleh unit pengontrol elektronik atau dikenal ECU (electronic control unit) atau kadangkala ECM (electronic/engine control module). B. BAHAN BAKAR Bahan bakar mesin merupakan persenyawaan Hidro-karbon yang diolah dari minyak bumi. Untuk mesin bensin dipakai bensin dan untuk mesin diesel disebut minyak diesel. Premium adalah bensin dengan mutu yang diperbaiki. Bahan bakar yang umum digunakan pada sepeda mesin adalah bensin. Unsur utama bensin adalah carbon (C) dan hydrogen (H). Bensin terdiri dari octane (C 8 H 18 ) dan nepthane (C 7 H 16 ). Pemilihan bensin sebagai bahan bakar berdasarkan pertimbangan dua kualitas; yaitu nilai kalor (calorific value) yang merupakan sejumlah energi panas yang bisa digunakan untuk menghasilkan kerja/usaha dan volatility yang mengukur seberapa mudah bensin akan menguap pada suhu rendah. Dua hal tadi

274 Sistem Bahan Bakar (Fuel System) 249 perlu dipertimbangkan karena semakin naik nilai kalor, volatility-nya akan turun, padahal volatility yang rendah dapat menyebabkan bensin susah terbakar. Perbandingan campuran bensin dan udara harus ditentukan sedemikian rupa agar bisa diperoleh efisiensi dan pembakaran yang sempurna. Secara tepat perbandingan campuran bensin dan udara yang ideal (perbandingan stoichiometric) untuk proses pembakaran yang sempurna pada mesin adalah 1 : 14,7. Namun pada prakteknya, perbandingan campuran optimum tersebut tidak bisa diterapkan terus menerus pada setiap keadaan operasional, contohnya; saat putaran idel (langsam) dan beban penuh kendaraan mengkonsumsi campuran udara bensin yang gemuk, sedangkan dalam keadaan lain pemakaian campuran udara bensin bisa mendekati yang ideal. Dikatakan campuran kurus/miskin, jika di dalam campuran bensin dan udara tersebut terdapat lebih dari 14,7 prosentase udara. Sedangkan jika kurang dari angka tersebut disebut campuran kaya/gemuk. C. PERBANDINGAN CAMPURAN UDARA DAN BAHAN BAKAR (AIR FUEL RATIO) Untuk dapat berlangsung pembakaran bahan bakar, maka dibutuhkan oksigen yang diambil dari udara. Udara mengandung 21 sampai 23% oksigen dan kira-kira 78% nitrogen, lainnya sebanyak 1% Argon dan beberapa unsur yang dapat diabaikan. Untuk keperluan pembakaran, oksigen tidak dipisahkan dari unsur lainnya tapi disertakan bersama-sama. Yang ikut bereaksi pada pembakaran hanyalah oksigen, sedangkan unsur lainnya tidak beraksi dan tidak memberikan pengaruh apapun. Nitrogen akan keluar bersama gas sisa pembakaran dalam jumlah dan bentuk yang sama seperti semula. Pembakaran yang terjadi adalah tidak lain dari suatu reaksi kimia yang berlangsung dalam waktu yang amat pendek, dan dari reaksi tersebut dihasilkan sejumlah panas. Karena itu untuk sejumlah tertentu bahan bakar dibutuhkan pula sejumlah oksigen. Perbandingan antara jumlah udara dan bahan bakar tersebut dapat dihitung dengan persamaan reaksi pembakaran. Pada bagian sebelumnya telah disebutkan bahwa perbandingan campuran bensin dan udara yang ideal (campuran bensin udara untuk pembakaran dengan tingkat polusi yang paling rendah) adalah 1 : 14,7 atau dalam ukuran liter dapat disebutkan 1 liter bensin secara ideal harus bercampur dengan liter udara.

275 Sistem Bahan Bakar (Fuel System) 250 Simbol perbandingan udara yang masuk ke silinder mesin dengan jumlah udara menurut teori dinyatakan dengan = χ χ = Jumlah udara masuk Jumlah syarat udara menurut teori χ = 1 χ < 1 Jumlah udara masuk ke dalam silinder mesin sama dengan jumlah syarat udara dalam teori Jumlah udara yang masuk lebih kecil dari jumlah syarat udara dalam teori, pada situasi ini mesin kekurangan udara, campuran gemuk, dalam batas tertentu dapat meningkatkan daya mesin. χ > 1 Jumlah udara yang masuk lebih banyak dari syarat udara secara teoritis, saat ini motor kelebihan udara, campuran kurus, tenaga motor kurang. Tabel 1. Perkiraan Perbandingan Campuran dengan Keadaan Operasional Mesin Kondisi Operasional Mesin Perkiraan Perbandingan Campuran Bensin dengan Udara Lambda (χ) Keterangan Mesin hidup pada suhu rendah ( 0 derajat C) Mesin hidup pada suhu rendah ( 20 derajat C) 1 : 1 1 : 5 0,07 0,34 Bila mesin sangat dingin saat dihidupkan, maka mesin akan sulit hidup karena bensin sukar menguap, bensin bahkan menempel pada saluran masuk/ sulit bercampur dengan udara. Keadaan seperti ini; mesin memerlukan penambahan bensin hingga perbandingan campuran gemuk.

276 Sistem Bahan Bakar (Fuel System) 251 Kondisi Operasional Mesin Perkiraan Perbandingan Campuran Bensin dengan Udara Lambda (χ) Keterangan Saat Akselerasi 1 : 8 0,54 Karena berat jenis bensin dan udara berbeda, maka bensin tidak dapat mengimbangi jumlah udara yang masuk selama akselarasi, hal ini menyebabkan perbandingan campuran menjadi kurus, sehingga diperlukan penambahan bensin sementara, sehingga campuran udarabensin jadi gemuk. Kecepatan Rendah. Putaran Idel 1 : : 11 0,88 0,75 Ketika kendaraan berjalan pada putaran lambat atau idel, maka jumlah aliran campuran udara bensin melalui saluran masuk juga rendah, hal itu akan menyebabkan bahan bakar dan udara tidak bercampur dengan baik, sehingga sebagian udara yang tidak terbakar keluar dan campuran yang dihasilkan kurus. Bila campuran udarabensin digemukkan pada kaburator maka hampir semua udara yang masuk ke dalarn silinder dapat terbakar.

277 Sistem Bahan Bakar (Fuel System) 252 Kondisi Operasional Mesin Perkiraan Perbandingan Campuran Bensin dengan Udara Lambda (χ) Beban Penuh 1 : ,81-0,88 Ekonomis 1 : ,09-1,22 Keterangan Pada saat mesin kecepatan tinggi dan daya maksimum, maka aliran campuran udara bensin juga lebih besar jika dibandingkan saat mesin putaran rendah/idel, oleh karena itu tidak semua udara yang masuk dalam silinder terbakar, sebagian keluar melalui saluran buang, Pada kondisi ini diperlukan perbandingan campuran yang sedikit lebih gemuk untuk mendapatkan daya yang lebih besar dan pembakaran yang lebih sempuma. Karburator dirancang untuk memberikan perbandingan campuran udara bensin yang optimal guna menghasilkan pembakaran yang ekonomis dan sempurna dari bensin selama mengendara dengan ekonomis Situasi ini perbandingan campuran udarabensin adalah ideal, sehingga tidak ada bensin atau udara dalam silinder yang tidak terbakar.

278 Sistem Bahan Bakar (Fuel System) 253 D. SISTEM BAHAN BAKAR KONVENSIONAL (KARBURATOR) Sistem bahan bakar konvensional merupakan sistem bahan bakar yang mengunakan kaburator untuk melakukan proses pencampuran bensin dengan udara sebelum disalurkan ke ruang bakar. Sebagian besar sepeda motot saat ini masih menggunakan sistem ini. Komponen utama dari sistem bahan bakar terdiri dari: tangki dan karburator. Sepeda mesin yang menggunakan sistem bahan bakar konvensional umumnya tidak dilengkapi dengan pompa bensin karena sistem penyalurannya tidak menggunakan tekanan tapi dengan penyaluran sendiri berdasarkan berat gravitasi. 1. Tangki Bahan Bakar Tangki merupakan tempat persediaan bahan bakar. Pada sepeda mesin yang mesinnya di bawah maka tangki bahan bakar ditempatkan di belakang, sedangkan mobil yang mesinnya di belakang biasanya tangki bahan bakar ditempatkan di bagian depan. Kapasitas tangki dibuat bermacam-macam tergantung dari besar kecilnya mesin. Bahan tangki umumnya dibuat dari plat baja dengan dilapisi pada bagian dalam dengan logam yang tidak mudah berkarat. Namun demikian terdapat juga tangki bensin yang terbuat dari aluminium. Tangki bahan bakar dilengkapi dengan pelampung dan sebuah tahanan geser untuk keperluan alat pengukur jumlah minyak yang ada di dalam tangki. Gambar 6.1 Contoh struktur tangki sepeda motor

279 Sistem Bahan Bakar (Fuel System) 254 Struktur tangki terdiri dari; a. Tank cap (penutup tangki); berfungsi sebagai lubang masuknya bensin, pelindung debu dan air, lubang pernafasan udara, dan mejaga agar bensin tidak tumpah jika sepeda mesin terbalik. b. Filler tube; berfungsi menjaga melimpahnya bensin pada saat ada goncangan (jika kondisi panas, bensin akan memuai). c. Fuel cock (kran bensin); berfungsi untuk membuka dan menutup aliran bensin dari tangki dan sebagai penyaring kotoran/partikel debu. Terdapat dua tipe kran bensin, yaitu tipe standar dan tipe vakum. Tipe standar adalah kran bensin yang pengoperasiannya dialakukan secara manual. Gambar 6.2 Kran bensin tipe standar

280 Sistem Bahan Bakar (Fuel System) 255 Ada tiga posisi yaitu OFF, RES dan ON. Jika diputar ke posisi ÓFF akan menutup aliran bensin dari tangkinya dan posisi ini biasanya digunakan untuk pemberhentian yang lama. Posisi RES untuk pengendaraan pada tangki cadangan dan posisi ON untuk pengendaraan yang normal. Tipe vakum adalah tipe otomatis yang akan terbuka jika mesin hidup dan tertutup ketika mesin mati. Kran tipe vakum mempunyai diapragma yang dapat digerakkan oleh hisapan dari mesin. Pada saat mesin hidup, diapragma menerima hisapan dan membuka jalur bensin, dan pada saat mesin mati akan menutup jalur bensin (OFF). Terdapat 4 jalur dalam kran tipe vakum, yaitu OFF, ON, RES dan PRI. Fungsi OFF, ON dan RES sama seperti pada kran standar. Sedangkan fungsi PRI adalah akan mengalirkan langsung bensin ke filter cup (wadah saringan) tanpa ke diapragma dulu. Jika telah mengisi tangki bensin yang kosong, usahakan memutar kran bensin ke posisi ON. Gambar 6.3 Kran bensin tipe vakum d. Damper locating (peredam); berupa karet yang berfungsi untuk meredam posisi tangki saat sepeda mesin berjalan. SLANG BAHAN BAKAR Slang bahan bakar berfungsi sebagai saluran perpindahan bahan bakar dari tangki ke karburator. Pada sebagian sepeda mesin untuk meningkatkan kualitas dan kebersihan bahan bakar, dipasang saringan tambahan yang ditempatkan pada slang bahan bakar. Dalam pemasangan slang bahan bakar, tanda panah harus sesuai dengan arah aliran bahan bakar.

281 Sistem Bahan Bakar (Fuel System) Karburator Fungsi dari karburator adalah: a. Mengatur perbandingan campuran antara udara dan bahan bakar. b. Mengubah campuran tersebut menjadi kabut. c. Menambah atau mengurangi jumlah campuran tersebut sesuai dengan kecepatan dan beban mesin yang berubah-ubah. Sejak sebuah mesin dihidupkan sampai mesin tersebut berjalan pada kondisi yang stabil perbandingan campuran mengalami bebarapa kali perubahan. Perkiraan perbandingan campuran dengan keadaan operasional mesin telah dijelaskan pada bagian sebelumnya, yaitu bagian C. Untuk melakukan perubahan perbandingan sesuai dengan kondisi mesin tersebut maka terdapat beberapa sistem dalam karburator. Cara kerja masing-masing sistem dalam karbuartor akan dibahas pada bagian selanjutnya. a. Prinsip Kerja Karburator Prinsip kerja karburator berdasarkan hukum-hukum fisika seperti: Qontinuitas dan Bernauli. Apabila suatu fluida mengalir melalui suatu tabung, maka banyaknya fluida atau debit aliran (Q) adalah Q = A. V = Konstan Dimana: Q = Debit aliran (m 3 /detik) A = Luas penampang tabung (m 2 ) V = Kecepatan aliran (m/detik) Jumlah tekanan (P) pada sepanjang tabung alir (yang diameternya sama) juga akan selalu tetap. Jika terdapat bagian dari tabung alir/pipa yang diameternya diperkecil maka dapat diperoleh kesimpulan bahwa bila campuran bensin dan udara yang mengalir melalui suatu tabung yang luas penampangnya mengecil (diameternya diperkecil) maka kecepatannya akan bertambah sedangkan tekanannya akan menurun. Prinsip hukum di atas tersebut dipakai untuk mengalirkan bensin dari ruang pelampung karburator dengan memperkecil suatu diameter dalam karburator. Pengecilan diameter atau penyempitan saluran ini disebut dengan venturi. Berdasarkan gambar 6.4 di bawah maka dapat diambil kesimpulan bahwa bensin akan terhisap dan keluar melalui venturi dalam bentuk butiran-butiran kecil karena saat itu kecepatan udara dalam venturi lebih tinggi namum tekanannya lebih rendah dibanding dalam ruang bensin yang berada di bagian bawahnya.

282 Sistem Bahan Bakar (Fuel System) 257 Gambar 6.4 Cara Kerja Venturi Di dalam mesin, pada saat langkah hisap, piston akan bergerak menuju Titik Mati Atas (TMA) dan menimbulkan tekanan rendah atau vakum. Dengan terjadinya tekanan antara ruang silinder dan udara (tekanan udara luar lebih tinggi) maka udara mengalir masuk ke dalam silinder. Perbedaan tekanan merupakan dasar kerja suatu karburator, yaitu dengan membuat venturi seperti gambar di atas. Semakin cepat udara mengalir pada saluran venturi, maka tekanan akan semakin rendah dan kejadian ini dimanfaatkan untuk menghisap bahan bakar. b. Tipe Karburator Berdasarkan konstruksinya, karburator pada sepeda mesin dapat dibedakan menjadi tiga, yaitu: 1) Karburator dengan venturi tetap (fixed venturi) Karburator tipe ini merupakan karburator yang diameter venturinya tidak bisa dirubah-rubah lagi. Besarnya aliran udaranya tergantung pada perubahan throttle butterfly (katup throttle/katup gas). Pada tipe ini biasanya terdapat pilot jet untuk kecepatan idle/langsam, sistem kecepatan utama sekunder untuk memenuhi proses pencampuran udara bahan bakar yang tepat pada setiap kecepatan. Terdapat juga sistem akselerasi atau percepatan untuk mengantisipasi saat mesin di gas dengan tiba-tiba. Semua sistem tambahan tersebut dimaksudkan untuk membantu agar mesin bisa lebih responsif karena katup throttle mempunyai keterbatasan dalam membentuk efek venturi.

283 Sistem Bahan Bakar (Fuel System) 258 Gambar 6.5 Karburator dengan venturi tetap 2) Karburator dengan venturi berubah-ubah (slide carburettor or variable venturi) Karburator dengan venturi berubah-ubah menempatkan throttle valve/throttle piston (skep) berada didalam venturi dan langsung dioperasikan oleh kawat gas. Oleh karena itu, diameter venturi bisa dibedakan (bervariasi) susuai besanya aliran campuran bahan bakar udara dalam karburator. Karburator tipe ini dalam menyalurkan bahan bakar hanya melalui main jet (spuyer utama) yang dikontrol oleh needle (jarum), karena bentuk jarum dirancang tirus. Hal ini akan mengurangi jet (spuyer) dan saluran tambahan lainnya seperti yang terdapat pada karburator venturi tetap. Gambar 6.6 Karburator dengan venturi berubah-ubah (variable venturi)

284 Sistem Bahan Bakar (Fuel System) 259 3) Karburator dengan kecepatan konstan (constant velocity carburettor) Karburator tipe ini merupakan gabungan dari kedua karburator di atas, yaitu variable venturi yang dilengkapi katup gas (throttle valve butterfly). Sering juga disebut dengan karburator CV (CV caburettor). Piston valve berada dalam venturi berfungsi agar diameter venturi berubah-ubah dengan bergeraknya piston tersebut ke atas dan ke bawah. Pergerakan piston valve ini tidak oleh kawat gas seperti pada karburator variable venturi, tetapi oleh tekanan negatif (kevakuman) dalam venturi tersebut. Gambar 6.7 Karburator dengan kecepatan konstan; (1) diapragma, (2) lubang udara masuk ke ruang vakum, (3) Katup gas/throttle valve, dan (4) pegas pengembali. Berdasarkan gambar 6.7 diatas, udara yang mempunyai tekanan sama dengan udara luar mengisi daerah di bawah diapragma (3). Udara tersebut masuk ke ruang vakum lewat lubang (2) pada bagian bawah piston. Tekanan rendah dihasilkan dalam ruang vakum dan piston mulai terangkat karena katup gas (3) dibuka oleh kabel gas. Pegas pengembali (4) dalam piston membantu menjaga piston berada dalam posisinya sehingga tekanan pada kedua sisi diaprgama seimbang. Ketika katup gas dibuka penuh, kecepatan udara yang melewati venturi bertambah. Hal ini akan menghasilkan tekanan dalam ruang vakum yang lebih rendah lagi, sehingga piston terangkat penuh.

285 Sistem Bahan Bakar (Fuel System) 260 c. Bagian-bagian Utama Karburator Setiap karburator, yang sederhana sekalipun terdiri dari komponen-komponen utama berikut ini: 1) Sebuah tabung berbentuk silinder, tempat terjadinya campuran udara dan bahan bakar. 2) Perecik utama (main nozzle), yaitu pemancar utama yang mengabutkan bahan bakar. Tinggi ujung perecik utama hampir sama tinggi dengan permukaan bahan bakar di dalam bak pelampung. Main nozzle biasanya terdapat pada karburator tipe venturi tetap seperti terlihat pada gambar 6.11 no.20. Sedangkan pada karburator tipe slide (variable venturi) maupun tipe kecepatan konstan (CV), peran main nozzle digantikan oleh needle jet seperti terlihat pada gambar 6.10 no. 9. Needle jet mengontrol pencampuran bahan bakar dan udara yang dialirkan dari celah diantara needle jet dan jet needle (jarum pengabut) tersebut. 3) Venturi yaitu bagian yang sempit di dalam tabung karburator berfungsi untuk mempertinggi kecepatan aliran udara. Sesuai dengan tipe karburator yang ada pada sepeda mesin, diameter venturi akan selalu tetap untuk tipe karburator venturi tetap dan diameter venturi akan berubah-ubah untuk tipe karburator varible venturi. Gambar 6.8 Variable venturi dan venturi tetap 4) Katup trotel (throttle valve atau throttle butterfly), untuk mengatur besar-kecilnya pembukaan tabung karburator yang berarti mengatur banyaknya campuran udara bahan bakar. Katup trotel terdapat pada karburator tipe venturi tetap (lihat gambar 6.8) dan karburator tipe kecepatan konstan (CV) seperti terlihat pada gambar 6.7 no.3.

286 Sistem Bahan Bakar (Fuel System) 261 5) Wadah (ruang) bahan bakar dilengkapi dengan pelampung (float chamber) untuk mengatur agar tinggi permukaan bahan bakar selalu tetap (lihat gambar 6.11 no. 26). Bahan bakar masuk ke dalam ruang pelampung melalui sebuah katup jarum (needle valve). Katup jarum tersebut akan membuka dan menutup aliran bahan bakar yang masuk ke ruang pelampung melalui pergerakan turun-naik pelampung (float). Ilustrasi dari katup jarum dan pelampung seperti terlihat pada gambar 6.11 no. 25 dan no ) Spuyer utama (main jet), yaitu berfungsi mengontrol aliran bahan bakar pada main system (sistem utama) pada putaran menengah dan tinggi (lihat gambar 6.10 no. 8 dan gambar 6.11 no. 21). 7) Pilot jet, yaitu berfungsi sebagai pengontrol aliran bahan bakar pada bagian pilot system pada putaran rendah dan menengah (lihat gambar 6.11 no. 19 dan gambar 6.10 no. 10). 8) Jet needle (jarum pengabut), yaitu berfungsi mengontrol jumlah aliran bahan bakar dan udara melalui bentuk ketirusan jet needle/jarum pengabut tersebut. Jet needle umumnya terdapat pada karburator tipe variable venturi dan kecepatan konstan atau tipe CV (lihat gambar 6.10 no. 5). 9) Pilot air jet, yaitu berfungsi mengontrol jumlah aliran udara pada pilot system pada putaran langsam/idle/stasioner ke putaran rendah. Ilustrasi penempatan pilot air jet seperti terlihat pada karburator tipe variable venturi berikut ini: Gambar 6.9 Pilot air jet (1) pada karburator tipe variable venturi

287 Sistem Bahan Bakar (Fuel System) ) Diapragma dan pegas, yaitu berfungsi bekerja berdasarkan perbedaan tekanan diantara tekanan udara luar dan tekanan negatif lubang untuk mengontrol jumlah pemasukan udara. Diapragma dan pegas (spring) biasanya terdapat pada karbuartor tipe CV (lihat gambar 6.10 no.7 dan 2). 11) Main air jet, yaitu berfungsi mengontrol udara pada percampuran bahan bakar dan udara pada putaran menengah dan tinggi. Kemudian juga mengontrol udara yang menuju ke needle jet sehingga mudah tercampur dengan bensin yang berasal dari main jet. 12) Pilot screw, yaitu berfungsi mengontrol sejumlah campuran udara dan bahan bakar yang keluar pada pilot outlet (lihat gambar 6.9 no. 6). Untuk selanjutnya, bagian-bagian utama ini dapat dilihat pada gambar berikut: Gambar 6.10 Komponen-komponen karburator tipe venturi tetap

288 Sistem Bahan Bakar (Fuel System) 263 d. Cara Kerja Karburator Gambar 6.11 Contoh komponen-komponen kaburator tipe venturi tetap

289 Sistem Bahan Bakar (Fuel System) 264 Sebuah karburator terdiri dari banyak sekali komponen yang fungsinya satu sama lain berbeda. Untuk mesin yang sederhana dipakai karburator yang sederhana, sedangkan umumnya mesin yang tergolong moderen mempunyai karburator yang lebih rumit. Yang dimaksud dengan mesin yang sederhana di sini ialah mesin yng tidak memerlukan bermacam-macam kecepatan dan beban yang berubah. Untuk dapat memenuhi bermacam-macam kebutuhan beban dan kecepatan maka karburator dilengkapi dengan beberapa sistem/sistem. Makin sederhana sebuah karburator, makin sedikit sistem yang dimilikinya. Biasanya sangat sukar untuk dapat memahami cara kerja sebuah karburator yang kompleks. Metode yang sederhana dan yang sampai sekarang masih dianggap yang paling mudah ialah dengan mempelajari masing-masing sistem. Dengan demikian sekaligus mulai dari karburator yang sederhana sampai bermacam-macam karburator yang kompleks dengan mudah dapat dimengerti. Memang banyak sekali jenis karburator dengan bentuk yang berbeda-beda. Sebelum mempelajari masing-masing sistem terlebih dahulu ditentukan sistem apa yang ada pada karburator tersebut. Sedangkan setiap jenis sistem pada umumnya mempunyai proses yang sama untuk semua jenis karburator. e. Beberapa Sistem Pada Karburator Yang dimakskud dengan sistem di sini ialah semacam rangkaian aliran bahan bakar yang adakalanya disebut juga sebagai sistem. Berikut ini diuraikan beberapa sistem yang perlu untuk diketahui, yang sekaligus memberikan pengertian bagaimana cara bekerja sebuah karburator. 1) Sistem Pelampung (Float System) Sistem ini cukup penting karena ia mengontrol tinggi permukaan bahan bakar di dalam bak pelampung. Jika tinggi bahan bakar terlalu rendah atau terlalu tinggi, maka sistem yang lain tidak akan bekerja dengan baik. Pelampung (float) pada karbuartor sepeda mesin terdiri dari dua tipe yaitu tipe single (satu buah pelampung) dan tipe double (dua buah pelampung). Sebagian bentuk dari pelampung ada yang berbentuk bulat dan ada yang berbentuk segi empat. Pelampung terbuat dari bahan tembaga dab synthetic resin. Pada gambar 6.12 dapat dilihat bahwa bahan bakar masuk melalui katup masuk dan pembukaan serta penutupan katup diatur oleh sebuah jarum (needle valve). Jika pelampung turun, bahan bakar mengalir ke dalam ruang pelampung (float cahmber). Jika bahan bakat sudah terisi dalam jumlah yang

290 Sistem Bahan Bakar (Fuel System) 265 mencukupi, pelampung terangkat ke atas dan menekan needle valve pada rumahnya sehingga aliran bahan bakar tertutup (terhenti). Gambar 6.12 Sistem pelampung menjaga level/ketinggian bensin selalu tetap dalam ruang bensin dalam sistem pelampung Needle valve dilengkapi dengan damper spring (pegas). Tujuan adanya pegas tersebut adalah untuk mencegah needle valve terbuka dan tertutup oleh gerakan naik turun pelampung yang disebabkan oleh gerakan dari sepeda mesin, sekaligus menjaga permukaan bahan bakar tetap. 2) Sistem Kecepatan Rendah (Pilot System) Pada sistem kecepatan rendah sekaligus dapat mencakup keadaan aliran bahan bakar pada waktu mesin dihidupkan yaitu kecepatan idle/langsam/stasioner. Pada waktu mesin

291 Sistem Bahan Bakar (Fuel System) 266 dihidupkan, dibutuhkan campuran bahan bakar dan udara yang gemuk. Untuk ini trotel diatur dalam keadaan tertutup sehingga jumlah udara yang masuk sedikit sekali yaitu melalui celah pada ujung choke atau lebih tepatnya melalui pengontrolan dari pilot air jet. Dapat dilihat dengan jelas bahwa bahan bakar hanya masuk melalui ujung sekrup penyetel stasioner (pilot screw). Prinsip kerja sistem kecepatan rendah setiap tipe karburator pada dasarnya sama, yaitu dengan memanfaatkan kevakuman di bawah katup trotel. Cara Kerja Sistem Kecepatan Rendah Karburator Tipe Variable Venturi Gambar 6.13 Sistem kecepatan rendah pada karburator tipe variable venturi (slide carburettor)

292 Sistem Bahan Bakar (Fuel System) 267 Berdasarkan gambar 6.13 di atas dapat dilihat bahwa bila katup trotel (slide) masih menutup pada kecepatan stasioner, maka aliran udara hanya dapat mengalir melalui pilot air jet (1) menuju pilot outlet (3). Bahan bakar dari ruang pelampung masuk melalui primary pilot jet (5) dan akan mulai bercampur dengan udara di dalam secondary pilot jet (4). Campuran udara dan bahan bakar selanjutnya akan keluar melalui pilot outlet menuju ruang bakar melewati manifold masuk (intake manifold). Pilot screw (6) berfungsi untuk mengatur jumlah campuran yang diinginkan. Jika katup trotel dibuka sedikit (masih kecepatan rendah tapi sudah di atas putaran/kecepatan stasioner), maka jumlah pasokan udara akan bertambah karena disamping melewati pilot air jet, udara juga mengalir melalui air bypass outlet (2). Dengan bertambahnya jumlah udara maka bahan bakar yang terhisap juga akan bertambah sehingga jumlah campuran yang dialirkan ke ruang bakar semakin banyak. Dengan demikian putaran mesin akan naik seiring dengan bertambahnya jumlah campuran yang masuk ke ruang bakar Cara Kerja Sistem Kecepatan Rendah Karburator Tipe Kecepatan Konstan (Tipe CV) Gambar 6.14 Sistem kecepatan rendah pada karburator tipe kecepatan konstan

293 Sistem Bahan Bakar (Fuel System) 268 Berdasarkan gambar di atas, bila katup trotel/katup gas masih menutup pada kecepatan stasioner, maka kevakuman dalam saluran masuk (setelah katup gas) tinggi sehingga aliran udara hanya dapat mengalir melalui pilot air jet (1) menuju pilot outlet (4). Bahan bakar dari ruang pelampung masuk melalui primary pilot jet dan akan mulai bercampur dengan udara di dalam pilot jet (4). Kevakuman yang tinggi tersebut menyebabkan campuran bahan bakar dan udara terhisap melalui lubang pilot / idle (no. 5 gambar 6.14). Bila mesin sudah hidup dan throttle sudah dibuka sedikit (masih kecepatan rendah tapi sudah di atas putaran/kecepatan stasioner), maka campuran bahan bakar dan udara akan mengalir melalui lubang no. 4 dan no. 5 pada gambar 6.14 tersebut. Dengan demikian putaran mesin akan naik seiring dengan bertambahnya jumlah campuran yang masuk ke ruang bakar. Perlengkapan yang dapat menambah banyaknya bahan bakar adalah saluran kecepatan yang jumlahnya dua, tiga dan kadang-kadang empat. Potongan gambar karburator tipe CV yang memperlihatkan aliran bahan bakar dan udara pada kecepatan rendah (lihat tanda panah) dapat dilihat pada gambar 6.15 di bawah ini: Gambar 6.15 Aliran bahan bakar dan udara kecepatan rendah pada karburator tipe kecepatan konstan

294 Sistem Bahan Bakar (Fuel System) 269 Cara Kerja Sistem Kecepatan Rendah Karburator Tipe Venturi Tetap Cara kerja sistem kecepatan rendah (pilot system) pada karburator tipe venturi tetap hampir sama dengan karburator tipe CV. Oleh karena itu, tidak diperlukan lagi penjelasan yang lebih rinci. 3) Sistem Kecepatan Utama/Tinggi Bila katup gas/katup trotel dibuka ¾ sampai dibuka sepenuhnya maka aliran udara sekarang sudah cukup kuat untuk menarik udara dari pengabut utama (main jet). Sekarang bahan bakar seluruhnya hanya melalui pengabut utama. Pada karburator tipe variable venturi dan tipe kecepatan konstan (CV karburator), ujung tirus needle (jarum) seperti terlihat pada gambar 6.16 no. 2 akan membuka saluran utama sehingga pengontrolan aliran campuran bahan bakar dan udara saat itu melewati spuyer utama (main jet). Pada karburator tipe venturi tetap, tidak terdapat needle seperti pada karburator tipe variable dan tipe CV. Oleh karena itu, sistem kecepatan utamanya bisa terdapat dua atau lebih. Kecepatan utama tersebut sering diistilahkan dengan kecepatan utama primer (primary high speed system) dan kecepatan utama sekunder (secondary high speed system). Sistem kecepatan utama primer bekerja pada saat sepeda mesin berjalan pada kecepatan sedang (menengah) dan tinggi. Sistem ini umumnya bekerja ketika mesin bekerja pada beban ringan dan jumlah udara yang masuk masih sedikit. Bila suplai campuran udara dan bahan bakar ke dalam silinder (ruang bakar) oleh sistem kecepatan utama primer tidak cukup (misalnya pada saat mesin bekerja pada beban berat dan kecepatan tinggi) maka sistem kecepatan uatam sekunder pada saat ini mulai bekerja membantu sistem kecepatan utama primer.

295 Sistem Bahan Bakar (Fuel System) 270 Cara Kerja Sistem Kecepatan Utama Karburator Tipe Variable Venturi Gambar 6.16 Sistem kecepatan utama pada karburator Keterangan: (1) main air jet (saluran udara utama), (2) Jet needle (jarum pengabut), (3) venturi, (4) saluaran udara, (5) Throttle slide, (6) needle jet, (7) air bleed pipe (pipa saluran udara), dan (8) main jet (pengabut/spuyer utama) Berdasarkan gambar 6.16 di atas terlihat bahwa butiran bahan bakar yang sudah tercampur dengan udara akan keluar dari saluran needle jet jika throttle slide/piston ditarik ke atas oleh kawat gas. Disamping udara langsung mengalir melalui venturi (3), sebagian kecil udara juga mengalir melalui main air

296 Sistem Bahan Bakar (Fuel System) 271 jet (1). Tujuan utama udara mengalir melalui main air jet adalah agar bahan bakar yang keluar dari main jet (8) terpecah menjadi butiran-butiran kecil sebelum dikeluarkan melalui needle jet (6). Dengan berbentuk butiran-butiran tersebut, maka proses atomisasi (bercampurnya bahan bakar dan udara dalam bentuk kabut) pada ujung needle jet akan menjadi lebih baik saat udara tambahan dari venturi bertemu. Atomisasi yang sempurna akan membuat proses pembakaran menjadi lebih baik. Ujung jet needle (jarum) yang meruncing membuat saluran yang keluar dari needle jet (6) lebih terbuka lebar jika jet needle (2) tersebut semakin ditarik ke atas oleh piston (5). Gambar 6.17 Posisi Jet needle (jarum) pada needle jet Pada gambar 6.17 di samping diperlihatkan bahwa jika jet needle lebih tinggi diangkat maka lubang needle jet akan semakin terbuka, sehingga memungkinkan butiran bensin lebih banyak keluar.

297 Sistem Bahan Bakar (Fuel System) 272 Cara Kerja Sistem Kecepatan Utama Karburator Tipe Kecepatan Konstan (Tipe CV) Bahan bakar pada sistem kecepatan utama diukur pada main jet dan dikontrol dengan perbedaan diamater yang ada pada jet needle (lihat gambar 6.17) yang digerakan oleh throttle slide (throttle piston). Naik turunnya throttle piston ini dikarenakan tekanan negatif (vakum) pada diapragma. Sejumlah udara dikontrol secara otomatis oleh luas area pada bagian venturi. Pada karburator tipe variable venturi dan tipe CV, diameter venturi akan berubah-ubah sesuai dengan pergerakan throttle piston. Sebagian kecil udara juga mengalir dan diukur pada main air jet. Ilustrasi aliran udara, bahan bakar dan sekaligus campuran antara udara bahan bakar pada karburator tipe CV dapat dilihat pada gambar potongan di bawah ini: Gambar 6.18 Aliran bahan bakar dan udara utama pada karburator tipe kecepatan konstan

298 Sistem Bahan Bakar (Fuel System) 273 Berdasarkan gambar di atas dapat dilihat bahwa jika katup gas (throttle valve) terbuka lebih jauh atau terbuka penuh, maka kecepatan aliran udara pada lubang masuk akan bertambah besar (maksimum). Throttle piston akan terangkat sehingga akan menambah luas area pada bagian venturi sehingga menambah udara pada posisi maksimum. Pada saat bersamaan perbedaan diameter dalam needle jet dan jet needle akan semakin besar. Jet needle terangkat makin jauh ke atas seiring naiknya throttle piston sehingga posisi diameter ujung jet needle pada needle jet semakin kecil karena semakin tirus. Bahan bakar dari ruang pelampung saat ini masuk melalui main jet dan bercampur dengan udara yang berasal dari maian air jet di dalam saluran needle jet. Bahan bakar yang telah tercampur dengan udara tersebut selanjutnya akan berbentuk butiran-butiran kecil. Dengan berbentuk butiranbutiran tersebut, maka proses atomisasi (bercampurnya bahan bakar dan udara dalam bentuk kabut) pada ujung needle jet akan menjadi lebih baik saat udara tambahan dari venturi bertemu. Atomisasi yang sempurna akan membuat proses pembakaran menjadi lebih baik. Pada sistem kecepatan utama ini, pengontrolan bahan bakar dilakukan oleh main jet. 4) Sistem Beban Penuh (sistem tenaga) Pada waktu mesin jalan dengan kecepatan tinggi, campuran bahan bakar dan udara diatur sedikit agak kurus, karena mesin berputar dengan beban ringan. Dikatakan juga dengan istilah kecepatan ekonomis. Akan tetapi bila mesin berputar dengan beban penuh, maka diperlukan campuran yang gemuk. Salah satu cara yang dipergunakan pada karburator tipe variable venturi yaitu dengan memasang main jet tambahan dalam pipa yang berasal dari ruang pelampung, tetapi penempatan pipa tersebut sedikit lebih tinggi dibandingkan ujung dari throttle slide/piston. Hal ini akan membuat pengaruh venturi hanya dapat dicapai untuk sistem tenaga (power) jika throttle slide/piston diangkat cukup tinggi.

299 Sistem Bahan Bakar (Fuel System) 274 Gambar 6.19 Posisi power jet untuk sistem tenaga pada karburator tipe variable venturi Berdasarkan gambar di atas dapat dilihat bahwa bila pembukaan throttle piston masih sekitar setengah karena putaran mesin belum terlalu tinggi dan mesin beroparesi/bekerja pada beban ringan, maka aliran campuran udara dan bahan bakar hanya melalui needle jet. Tetapi bila pembukaan throttle piston lebih naik lagi sampai melewati ketinggian dari power jet, maka aliran campuran udara dan bahan bakar disamping melalui needle jet, juga melalui power jet. Pada kondisi ini mesin bekerja pada putaran yang lebih tinggi lagi atau jalan menanjak sehingga diperlukan tambahan pasokan bahan bakar untuk menambah tenaga mesin tersebut.

300 Sistem Bahan Bakar (Fuel System) 275 5) Sistem Choke Sistem choke (cuk) berfungsi untuk menambah perbandingan bahan bakar dengan udara (bahan bakar diperbanyak) dalam karburator. Cara pengoperasian sistem cuk ada yang manual dan ada juga yang secara otomatis. Kebanyakan karburator tipe baru menggunakan sistem cuk otomatis. Gambar 6.20 Konstruksi sistem cuk otomatis Salah satu cara kerja sistem cuk otomatis adalah seperti terlihat pada gambar 6.20 di atas. Wax unit (bimetal) akan mengkerut penuh jika kondisi mesin dingin sehingga needle (jarum) akan tertarik ke atas Hal ini akan membuat sejumlah bahan bakar keluar dari cold start jet (pengabut kondisi dingin). Bahan bakar tersebut kemudian bercampur dengan campuran udara dan bahan bakar yang keluar dari saluran yang digunakan pada kondisi normal, sehingga menghasilkan campuran gemuk/kaya.

301 Sistem Bahan Bakar (Fuel System) 276 Ketika mesin mulai panas, wax (bimetal) dalam sistem cuk yang dialiri arus tersebut, akan mulai panas dan mengembang. Dengan mengembangnya wax tadi akan mendorong (membuat) needle secara perlahan turun. Penurunan needle tersebut akan mengurangi bahan bakar yang keluar dari cold start jet, sehingga lama kelamaan akan membuat campuran semakin kurus. Jika mesin sudah berada pada suhu kerja norrmalnya, maka needle akan menutup cold start jet sehingga sistem cuk tidak bekerja lagi. 6) Sistem Percepatan Pada waktu mesin mengalami percepatan (mesin di gas dengan tiba-tiba), throttle valve (untuk karburator tipe venturi tetap maupun tipe CV) atau throttle piston atau skep (untuk karburator tipe variable venturi) akan membuka secar tiba-tiba pula, sehingga aliran udara menjadi lebih cepat. Akan tetapi karena bahan bakar lebih berat dibanding udar, maka bahan bakar akan datang terlambat masuk ke intake manifold. Akibatnya campuran tiba-tiba menjadi kurus sedangkan mesin berputar dengan tambahan beban untuk keperluan percepatan tersebut. Untuk mendapatkan campuran yang gemuk, maka pada waktu percepatan, karburator dilengkapi dengan pompa percepatan. Salah satu bentuk mekanisme sistem percepatan pada karburator sepeda motor adalah seperti terlihat pada gambar 6.21 di bawah. Mekanis pompa ini dihubungkan dengan pedal gas (throttle) sehingga jika trotel dibuka dengan tiba-tiba maka plunyer pompa menekan minyak yang dibawahnya. Dengan demikian jumlah minyak yang keluar melalui pengabut utama (main jet) akan lebih banyak. Untuk lebih jelasnya cara kerjanya adalah sebagai berikut: Pada saat handle gas di putar dengan tiba-tiba, throttle lever (tuas gas) akan berputar ke arah kiri (lihat tanda panah). Pergerakan throttle lever tadi akan mendorong pump rod (batang pendorong) ke arah bawah. Karena ujung pump rod dihubungkan ke pump lever (tuas pompa), maka pump lever akan mengungkit diapragma ke atas melawan tekanan pegas (spring). Akibatnya ruang pompa (pump chamber) di atas diapragma menyempit dan medorong atau menekan sejumlah bahan bakar mengalir melalui check valve ke lubang pengeluaran bahan bakar (discharge hole). Selanjutnya bahan bakar tersebut akan bercampur dengan udara pada venturi.

302 Sistem Bahan Bakar (Fuel System) 277 Gambar 6.21 Konstruksi sistem percepatan

303 Sistem Bahan Bakar (Fuel System) 278 Setelah melakukan penekanan tersebut, pump lever akan kembali ke posisi semula dengan adanya dorongan pegas di atas diapragma. Pergerakan diapragma ke bawah membuat pump chamber membesar lagi. Karena desain/rancangan valve (katup) yang ada di pum chamber dibuat berlawanan arah antara katup masuk dan katup keluar, maka pada saat diapragma ke bawah katup masuk terbuka sedangkan katup keluar menutup. Dengan membukanya katup masuk tersebut, membuat bahan bakar kembali masuk ke pump chamber dan sistem percepatan siap untuk dipakai kembali. Demikian beberapa sistem dengan car kerja yang umumnya dipakai pada karburator. Jika semua sistem tersebut digabungkan pada sebuah karburator maka jadilah ia sebuah karburator yang kelihatannya sangat kompleks. E. SISTEM BAHAN BAKAR INJEKSI (EFI) Sistem bahan bakar tipe injeksi merupakan langkah inovasi yang sedang dikembangkan untuk diterapkan pada sepeda mesin. Tipe injeksi sebenarnya sudah mulai diterapkan pada sepeda mesin dalam jumlah terbatas pada tahun 1980-an, dimulai dari sistem injeksi mekanis kemudian berkembang menjadi sistem injeksi elektronis. Sistem injeksi mekanis disebut juga sistem injeksi kontinyu (K-Jetronic) karena injektor menyemprotkan secara terus menerus ke setiap saluran masuk (intake manifold). Sedangkan sistem injeksi elektronis atau yang lebih dikenal dengan Electronic Fuel Injection (EFI), volume dan waktu penyemprotannya dilakukan secara elektronik. Sistem EFI kadang disebut juga dengan EGI (Electronic Gasoline Injection), EPI (Electronic Petrol Injection), PGM-FI (Programmed Fuel Injenction) dan Engine Management. Penggunaan sistem bahan bakar injeksi pada sepeda mesin komersil di Indonesia sudah mulai dikembangkan. Salah satu contohnya adalah pada salah satu tipe yang di produksi Astra Honda Mesin, yaitu pada Supra X 125. Istilah sistem EFI pada Honda adalah PGM-FI (Programmed Fuel Injection) atau sistem bahan bakar yang telah terprogram. Secara umum, penggantian sistem bahan bakar konvensional ke sistem EFI dimaksudkan agar dapat meningkatkan unjuk kerja dan tenaga mesin (power) yang lebih baik, akselarasi yang lebih stabil pada setiap putaran mesin, pemakaian bahan bakar yang ekonomis (iriit), dan menghasilkan kandungan racun (emisi) gas buang yang lebih sedikit sehingga bisa lebih ramah terhadap lingkungan. Selain itu, kelebihan dari mesin dengan bahan bakar tipe injeksi ini adalah lebih

304 Sistem Bahan Bakar (Fuel System) 279 mudah dihidupkan pada saat lama tidak digunakan, serta tidak terpengaruh pada temperatur di lingkungannya. 1. Prinsip Kerja Sistem EFI Istilah sistem injeksi bahan bakar (EFI) dapat digambarkan sebagai suatu sistem yang menyalurkan bahan bakarnya dengan menggunakan pompa pada tekanan tertentu untuk mencampurnya dengan udara yang masuk ke ruang bakar. Pada sistem EFI dengan mesin berbahan bakar bensin, pada umumnya proses penginjeksian bahan bakar terjadi di bagian ujung intake manifold/manifold masuk sebelum inlet valve (katup/klep masuk). Pada saat inlet valve terbuka, yaitu pada langkah hisap, udara yang masuk ke ruang bakar sudah bercampur dengan bahan bakar. Secara ideal, sistem EFI harus dapat mensuplai sejumlah bahan bakar yang disemprotkan agar dapat bercampur dengan udara dalam perbandingan campuran yang tepat sesuai kondisi putaran dan beban mesin, kondisi suhu kerja mesin dan suhu atmosfir saat itu. Sistem harus dapat mensuplai jumlah bahan bakar yang bervariasi, agar perubahan kondisi operasi kerja mesin tersebut dapat dicapai dengan unjuk kerja mesin yang tetap optimal. 2. Konstruksi Dasar Sistem EFI Secara umum, konstruksi sistem EFI dapat dibagi menjadi tiga bagian/sistem utama, yaitu; a) sistem bahan bakar (fuel system), b) sistem kontrol elektronik (electronic control system), dan c) sistem induksi/pemasukan udara (air induction system). Ketiga sistem utama ini akan dibahas satu persatu di bawah ini. Jumlah komponen-komponen yang terdapat pada sistem EFI bisa berbeda pada setiap jenis sepeda mesin. Semakin lengkap komponen sistem EFI yang digunakan, tentu kerja sistem EFI akan lebih baik sehingga bisa menghasilkan unjuk kerja mesin yang lebih optimal pula. Dengan semakin lengkapnya komponen-komponen sistem EFI (misalnya sensor-sensor), maka pengaturan koreksi yang diperlukan untuk mengatur perbandingan bahan bakar dan udara yang sesuai dengan kondisi kerja mesin akan semakin sempurna. Gambar di bawah ini memperlihatkan contoh skema rangkaian sistem EFI pada Yamaha GTS1000 dan penempatan komponen sistem EFI pada Honda Supra X 125.

305 Sistem Bahan Bakar (Fuel System) 280 Gambar 6.22 Skema rangkaian sistem EFI Yamaha GTS1000 Keterangan nomor pada gambar 5.22 : 1. Fuel rail/delivery pipe (pipa pembagi) 2. Pressure regulator (pengatur tekanan) 3. Injector (nozel penyemprot bahan bakar) 4. Air box (saringan udara) 5. Air temperature sensor (sensor suhu udara) 6. Throttle body butterfly (katup throttle) 7. Fast idle system 8. Throttle position sensor (sensor posisi throttle) 9. Engine/coolant temperature sensor (sensor suhu air pendingin) 10. Crankshaft position sensor (sensor posisi poros engkol) 11. Camshaft position sensor (sensor posisi poros nok) 12. Oxygen (lambda) sensor 13. Catalytic converter 14. Intake air pressure sensor (sensor tekanan udara masuk) 15. ECU (Electronic control unit) 16. Ignition coil (koil pengapian) 17. Atmospheric pressure sensor (sensor tekanan udara atmosfir)

306 Sistem Bahan Bakar (Fuel System) 281 Gambar 6.23 Komponen sistem EFI pada sepeda mesin Honda Supra X 125 a. Sistem Bahan Bakar Komponen-komponen yang digunakan untuk menyalurkan bahan bakar ke mesin terdiri dari tangki bahan bakar (fuel pump), pompa bahan bakar (fuel pump), saringan bahan bakar (fuel filter), pipa/slang penyalur (pembagi), pengatur tekanan bahan bakar (fuel pressure regulator), dan injektor/penyemprot bahan bakar. Sistem bahan bakar ini berfungsi untuk menyimpan, membersihkan, menyalurkan dan menyemprotkan /menginjeksikan bahan bakar. Gambar 6.24 Contoh komponen sistem bahan bakar pada sistem EFI Honda Supra X 125

307 Sistem Bahan Bakar (Fuel System) 282 Adapun fungsi masing-masing komponen pada sistem bahan bakar tersebut adalah sebagai berikut: 1) Fuel suction filter; menyaring kotoran agar tidak terisap pompa bahan bakar. 2) Fuel pump module; memompa dan mengalirkan bahan bakar dari tangki bahan bakar ke injektor. Penyaluran bahan bakarnya harus lebih banyak dibandingkan dengan kebutuhan mesin supaya tekanan dalam sistem bahan bakar bisa dipertahankan setiap waktu walaupun kondisi mesin berubahubah. Gambar 6.25 Konstruksi fuel pump module 3) Fuel pressure regulator; mengatur tekanan bahan bakar di dalam sistem aliran bahan bakar agar tetap/konstan. Contohnya pada Honda Supra X 125 PGM-FI tekanan dipertahankan pada 294 kpa (3,0 kgf/cm 2, 43 psi). Bila bahan bakar yang dipompa menuju injektor terlalu besar (tekanan bahan bakar melebihi 294 kpa (3,0 kgf/cm 2, 43 psi)) pressure regulator mengembalikan bahan bakar ke dalam tangki. 4) Fuel feed hose; slang untuk mengalirkan bahan bakar dari tangki menuju injektor. Slang dirancang harus tahan tekanan bahan bakar akibat dipompa dengan tekanan minimal sebesar tekanan yang dihasilkan oleh pompa. 5) Fuel Injector; menyemprotkan bahan bakar ke saluran masuk (intake manifold) sebelum, biasanya sebelum katup masuk, namun ada juga yang ke throttle body. Volume penyemprotan disesuaikan oleh waktu pembukaan nozel/injektor. Lama dan banyaknya penyemprotan diatur oleh ECM (Electronic/Engine Control Module) atau ECU (Electronic Control Unit).

308 Sistem Bahan Bakar (Fuel System) 283 Gambar 6.26 Konstruksi injektor Terjadinya penyemprotan pada injektor adalah pada saat ECU memberikan tegangan listrik ke solenoid coil injektor. Dengan pemberian tegangan listrik tersebut solenoid coil akan menjadi magnet sehingga mampu menarik plunger dan mengangkat needle valve (katup jarum) dari dudukannya, sehingga saluran bahan bakar yang sudah bertekanan akan memancar keluar dari injektor.

309 Sistem Bahan Bakar (Fuel System) 284 Gambar 6.27 Contoh penempatan injector pada throttle body Skema aliran sistem bahan bakar pada sistem EFI adalah sebagai berikut: Gambar 6.28 Skema aliran sistem bahan bakar EFI b. Sistem Kontrol Elektronik Komponen sistem kontrol elektronik terdiri dari beberapa sensor (pengindera), seperti MAP (Manifold Absolute Pressure) sensor, TP (Throttle Position) sensor, IAT (Intake Air Temperature) sensor, bank angle sensor, EOT (Engine Oil Temperature) sensor, dan sensor-sensor lainnya. Pada sistem ini juga terdapat ECU (Electronic Control Unit) atau ECM dan komponenkomponen tambahan seperti alternator (magnet) dan

310 Sistem Bahan Bakar (Fuel System) 285 regulator/rectifier yang mensuplai dan mengatur tegangan listrik ke ECU, baterai dan komponen lain. Pada sistem ini juga terdapat DLC (Data Link Connector) yaitu semacam soket dihubungkan dengan engine analyzer untuk mecari sumber kerusakan komponen Gambar 6.29 Rangkaian sistem kontrol elektronik pada Honda Supra X 125 Secara garis besar fungsi dari masing-masing komponen sistem kontrol elektronik antara lain sebagai berikut; 1) ECU/ECM; menerima dan menghitung seluruh informasi/data yang diterima dari masing-masing sinyal sensor yang ada dalam mesin. Informasi yang diperoleh dari sensor antara lain berupa informasi tentang suhu udara, suhu oli mesin, suhu air pendingin, tekanan atau jumlah udara masuk, posisi katup throttle/katup gas, putaran mesin, posisi poros engkol, dan informasi yang lainnya. Pada umumnya sensor bekerja pada tegangan antara 0 volt sampai 5 volt. Selanjutnya ECU/ECM menggunakan informasi-informasi yang telah diolah tadi untuk menghitung dan menentukan saat (timing) dan lamanya injektor bekerja/menyemprotkan bahan bakar dengan mengirimkan tegangan listrik ke solenoid injektor. Pada

311 Sistem Bahan Bakar (Fuel System) 286 beberapa mesin yang sudah lebih sempurna, disamping mengontrol injektor, ECU/ECM juga bisa mengontrol sistem pengapian. 2) MAP (Manifold absolute pressure) sensor; memberikan sinyal ke ECU berupa informasi (deteksi) tekanan udara yang masuk ke intake manifold. Selain tipe MAP sensor, pendeteksian udara yang masuk ke intake manifold bisa dalam bentuk jumlah maupun berat udara. Jika jumlah udara yang dideteksi, sensornya dinamakan air flow meter, sedangkan jika berat udara yang dideteksi, sensornya dinamakan air mass sensor. Gambar 6.30 Contoh posisi penempatan sensor yang menyatu (built in) dengan throttle body

312 Sistem Bahan Bakar (Fuel System) 287 3) IAT (Engine air temperature) sensor; memberikan sinyal ke ECU berupa informasi (deteksi) tentang suhu udara yang masuk ke intake manifold. Tegangan referensi/suplai 5 Volt dari ECU selanjutnya akan berubah menjadi tegangan sinyal yang nilainya dipengaruhi oleh suhu udara masuk. 4) TP (Throttle Position) sensor; memberikan sinyal ke ECU berupa informasi (deteksi) tentang posisi katup throttle/katup gas. Generasi yang lebih baru dari sensor ini tidak hanya terdiri dari kontak-kontak yang mendeteksi posisi idel/langsam dan posisi beban penuh, akan tetapi sudah merupakan potensiometer (variable resistor) dan dapat memberikan sinyal ke ECU pada setiap keadaan beban mesin. Konstruksi generasi terakhir dari sensor posisi katup gas sudah full elektronis, karena yang menggerakkan katup gas adalah elektromesin yang dikendalikan oleh ECU tanpa kabel gas yang terhubung dengan pedal gas. Generasi terbaru ini memungkinkan pengontrolan emisi/gas buang lebih bersih karena pedal gas yang digerakkan hanyalah memberikan sinyal tegangan ke ECU dan pembukaan serta penutupan katup gas juga dilakukan oleh ECU secara elektronis. 5) Engine oil temperature sensor; memberikan sinyal ke ECU berupa informasi (deteksi) tentang suhu oli mesin. 6) Bank angle sensor; merupakan sensor sudut kemiringan. Pada sepeda motor yang menggunakan sistem EFI biasanya dilengkapi dengan bank angle sensor yang bertujuan untuk pengaman saat kendaraan terjatuh dengan sudut kemiringan minimal sekitar Gambar 6.31 Bank angle sensor dan posisi sudut kemiringan sepeda motor

313 Sistem Bahan Bakar (Fuel System) 288 Sinyal atau informasi yang dikirim bank angle sensor ke ECU saat sepeda motor terjatuh dengan sudut kemiringan yang telah ditentukan akan membuat ECU memberikan perintah untuk mematikan (meng-off-kan) injektor, koil pengapian, dan pompa bahan bakar. Dengan demikian peluang terbakarnya sepeda motor jika ada bahan bakar yang tercecer atau tumpah akan kecil karena sistem pengapian dan sistem bahan bakar langsung dihentikan walaupun kunci kontak masih dalam posisi ON. Gambar 6.32 Informasi bank angle sensor kepada ECU untuk meng-off-kan injektor, koil pengapian, dan pompa bahan bakar saat terdeteksi sudut kemiringan yang telah ditentukan Bank angle sensor akan mendeteksi setiap sudut kemiringan sepeda motor. Jika sudut kemiringan masih di bawah limit yang ditentukan, maka informasi yang dikirim ke ECU tidak sampai membuat ECU meng-off-kan ketiga komponen di atas. Bagaimana dengan sudut kemiringan sepeda motor yang sedang menikung/berbelok? Gambar 6.33 Posisi bank angle sensor saat sepeda motor menikung dan terjatuh

314 Sistem Bahan Bakar (Fuel System) 289 Jika sepeda motor sedang dijalankan pada posisi menikung (walau kemiringannya melebihi 55 0 ), ECU tidak meng-offkan ketiga komponen tersebut. Pada saat menikung terdapat gaya centripugal yang membuat sudut kemiringan pendulum dalam bank angle sensor tidak sama dengan kemiringan sepeda motor. Dengan demikian, walaupun sudut kemiringan sepeda motor sudah mencapai 55 0, tapi dalam kenyataannya sinyal yang dikirim ke ECU masih mengindikasikan bahwa sudut kemiringannya masih di bawah 55 0 sehingga ECU tidak meng-off-kan ketiga komponen tersebut. Selain sensor-sensor di atas masih terdapat sensor lainnya digunakan pada sistem EFI, seperti sensor posisi camshaft/poros nok, (camshaft position sensor) untuk mendeteksi posisi poros nok agar saat pengapiannya bisa diketahui, sensor posisi poros engkol (crankshaft position sensor) untuk mendeteksi putaran poros engkol, sensor air pendingin (water temperature sensor) untuk mendeteksi air pendingin di mesin dan sensor lainnya. Namun demikian, pada sistem EFI sepeda motor yang masih sederhana, tidak semua sensor dipasang. c. Sistem Induksi Udara Komponen yang termasuk ke dalam sistem ini antara lain; air cleaner/air box (saringan udara), intake manifold, dan throttle body (tempat katup gas). Sistem ini berfungsi untuk menyalurkan sejumlah udara yang diperlukan untuk pembakaran. Gambar 6.34 Konstruksi throttle body

315 Sistem Bahan Bakar (Fuel System) Cara Kerja Sistem EFI Sistem EFI atau PGM-FI (istilah pada Honda) dirancang agar bisa melakukan penyemprotan bahan bakar yang jumlah dan waktunya ditentukan berdasarkan informasi dari sensor-sensor. Pengaturan koreksi perbandingan bahan bakar dan udara sangat penting dilakukan agar mesin bisa tetap beroperasi/bekerja dengan sempurna pada berbagai kondisi kerjanya. Oleh karena itu, keberadaan sensor-sensor yang memberikan informasi akurat tentang kondisi mesin saat itu sangat menentukan unjuk kerja (performance) suatu mesin. Semakin lengkap sensor, maka pendeteksian kondisi mesin dari berbagai karakter (suhu, tekanan, putaran, kandungan gas, getaran mesin dan sebagainya) menjadi lebih baik. Informasi-informasi tersebut sangat bermanfaat bagi ECU untuk diolah guna memberikan perintah yang tepat kepada injektor, sistem pengapian, pompa bahan bakar dan sebagainya. a. Saat Penginjeksian (Injection Timing) dan Lamanya Penginjeksian Terdapat beberapa tipe penginjeksian (penyemprotan) dalam sistem EFI motor bensin (khususnya yang mempunyai jumlah silinder dua atau lebih), diantaranya tipe injeksi serentak (simoultaneous injection) dan tipe injeksi terpisah (independent injection). Tipe injeksi serentak yaitu saat penginjeksian terjadi secara bersamaan, sedangkan tipe injeksi terpisah yaitu saat penginjeksian setiap injektor berbeda antara satu dengan yang lainnya, biasanya sesuai dengan urutan pengapian atau firing order (FO). Seperti telah disebutkan sebelumnya bahwa penginjeksian pada motor bensin pada umumnya dilakukan di ujung intake manifod sebelum inlet valve (katup masuk). Oleh karena itu, saat penginjeksian (injection timing) tidak mesti sama persis dengan percikan bunga api busi, yaitu beberapa derajat sebelum TMA di akhir langkah kompresi. Saat penginjeksian tidak menjadi masalah walau terjadi pada langkah hisap, kompresi, usaha maupun buang karena penginjeksian terjadi sebelum katup masuk. Artinya saat terjadinya penginjeksian tidak langsung masuk ke ruang bakar selama posisi katup masuk masih dalam keadaan menutup. Misalnya untuk mesin 4 silinder dengan tipe injeksi serentak, tentunya saat penginjeksian injektor satu dengan yang lainnya terjadi secara bersamaan. Jika FO mesin tersebut adalah , saat terjadi injeksi pada silinder 1 pada langkah hisap, maka pada silinder 3 injeksi terjadi pada satu langkah sebelumnya, yaitu langkah buang. Selanjutnya pada silinder 4 injeksi terjadi pada langkah usaha, dan pada silinder 2 injeksi terjadi pada langkah kompresi.

316 Sistem Bahan Bakar (Fuel System) 291 Sedangkan lamanya (duration) penginjeksian akan bervariasi tergantung kondisi kerja mesin. Semakin lama terjadi injeksi, maka jumlah bahan bakar akan semakin banyak pula. Dengan demikian, seiring naiknya putara mesin, maka lamanya injeksi akan semakin bertambah karena bahan bakar yang dibutuhkan semakin banyak. b. Cara Kerja Saat Kondisi Mesin Dingin Pada saat kondisi mesin masih dingin (misalnya saat menghidupkan di pagi hari), maka diperlukan campuran bahan bakar dan udara yang lebih banyak (campuran kaya). Hal ini disebabkan penguapan bahan bakar rendah pada saat kondisi temperatur/suhu masih rendah. Dengan demikian akan terdapat sebagian kecil bahan bakar yang menempel di dinding intake manifold sehingga tidak masuk dan ikut terbakar dalam ruang bakar. Untuk memperkaya campuran bahan bakar udara tersebut, pada sistem EFI yang dilengkapi dengan sistem pendinginan air terdapat sensor temperatur air pendingin (engine/coolant temperature sensor) seperti terlihat pada gambar 6.34 no. 9 di bawah ini. Sensor ini akan mendeteksi kondisi air pendingin mesin yang masih dingin tersebut. Temperatur air pendingin yang dideteksi dirubah menjadi signal listrik dan dikirim ke ECU/ECM. Selanjutnya ECU/ECM akan mengolahnya kemudian memberikan perintah pada injektor dengan memberikan tegangan yang lebih lama pada solenoid injektor agar bahan bakar yang disemprotkan menjadi lebih banyak (kaya). Gambar 6.35 Sensor air pendingin (9) pada mesin Yamaha GTS1000

317 Sistem Bahan Bakar (Fuel System) 292 Sedangkan bagi mesin yang tidak dilengkapi dengan sistem pendinginan air, sensor yang dominan untuk mendeteksi kondisi mesin saat dingin adalah sensor temperatur oli/pelumas mesin (engine oil temperature sensor) dan sensor temperatur udara masuk (intake air temperature sensor). Sensor temperature oli mesin mendeteksi kondisi pelumas yang masih dingin saat itu, kemudian dirubah menjadi signal listrik dan dikirim ke ECU/ECM. Sedangkan sensor temperatur udara masuk mendeteksi temperatur udara yang masuk ke intake manifold. Pada saat masih dingin kerapatan udara lebih padat sehingga jumlah molekul udara lebih banyak dibanding temperatur saat panas. Agar tetap terjadi perbandingan campuran yang tetap mendekati ideal, maka ECU/ECM akan memberikan tegangan pada solenoid injektor sedikit lebih lama (kaya). Dengan demikian, rendahnya penguapan bahan bakar saat temperatur masih rendah sehingga akan ada bahan bakar yang menempel di dinding intake manifold dapat diantisipasi dengan memperkaya campuran tersebut. Gambar 6.36 Engine oil temperature sensor dan Intake air temperature sensor (dalam sensor unit) pada mesin Honda Supra X 125

318 Sistem Bahan Bakar (Fuel System) 293 c. Cara Kerja Saat Putaran Rendah Pada saat putaran mesin masih rendah dan suhu mesin sudah mencapai suhu kerjanya, ECU/ECM akan mengontrol dan memberikan tegangan listrik ke injektor hanya sebentar saja (beberapa derajat engkol) karena jumlah udara yang dideteksi oleh MAP sensor dan sensor posisi katup gas (TP sensor ) masih sedikit. Hal ini supaya dimungkinkan tetap terjadinya perbandingan campuran bahan bakar dan udara yang tepat (mendekati perbandingan campuran teoritis atau ideal). Posisi katup gas (katup trotel) pada throttle body masih menutup pada saat putaran stasioner/langsam (putaran stasioner pada sepeda motor pada umumnya sekitar 1400 rpm). Oleh karena itu, aliran udara dideteksi dari saluran khusus untuk saluran stasioner (lihat gambar 6.36). Sebagian besar sistem EFI pada sepeda motor masih menggunakan skrup penyetel (air idle adjusting screw) untuk putaran stasioner (lihat gambar 6.37). Berdasarkan informasi dari sensor tekanan udara (MAP sensor) dan sensor posisi katup gas (TP) sensor tersebut, ECU/ECM akan memberikan tegangan listrik kepada solenoid injektor untuk menyemprotkan bahan bakar. Lamanya penyemprotan/ penginjeksian hanya beberapa derajat engkol saja karena bahan bakar yang dibutuhkan masih sedikit. Gambar 6.37 Lubang/saluran masuk (air inlet idle adjusting screw) untuk putaran stasioner saat katup trotel masih menutup pada motor Honda Supra X 125

319 Sistem Bahan Bakar (Fuel System) 294 Gambar 6.38 Posisi skrup penyetel putaran stasioner (idle adjusting screw) pad throttle body Pada saat putaran mesin sedikit dinaikkan namun masih termasuk ke dalam putaran rendah, tekanan udara yang dideteksi oleh MAP sensor akan menjadi lebih tinggi dibanding saat putaran stasioner. Naiknya tekanan udara yang masuk mengindikasikan bahwa jumlah udara yang masuk lebih banyak. Berdasarkan informasi yang diperoleh oleh MAP sensor tersebut, ECU/ECM akan memberikan tegangan listrik sedikit lebih lama dibandingkan saat putara satsioner. Gambar 6.38 di bawah ini adalah ilustrasi saat mesin berputar pada putaran rendah, yaitu 2000 rpm. Seperti terlihat pada gambar, saat penyemprotan/penginjeksian (fuel injection) terjadi diakhir langkah buang dan lamanya penyemprotan/penginjeksian juga masih beberapa derajat engkol saja karena bahan bakar yang dibutuhkan masih sedikit.

320 Sistem Bahan Bakar (Fuel System) 295 Gambar 6.39 Contoh penyemprotan injector pada saat putaran 2000 rpm Seperti telah disebutkan sebelumnya bahwa proses penyemprotan pada injektor terjadi saat ECU/ECM memberikan tegangan pada solenoid injektor. Dengan pemberian tegangan listrik tersebut solenoid coil akan menjadi magnet sehingga mampu menarik plunger dan mengangkat needle valve (katup jarum) dari dudukannya, sehingga bahan bakar yang berada dalam saluran bahan bakar yang sudah bertekanan akan memancar keluar dari injektor. d. Cara Kerja Saat Putaran Menengah dan Tinggi Pada saat putaran mesin dinaikkan dan kondisi mesin dalam keadaan normal, ECU/ECM menerima informasi dari sensor posisi katup gas (TP sensor) dan MAP sensor. TP sensor mendeteksi pembukaan katup trotel sedangkan MAP sensor mendeteksi jumlah/tekanan udara yang semakin naik. Saat ini deteksi yang diperoleh oleh sensor tersebut menunjukkan jumlah udara yang masuk semakin banyak. Sensor-sensor tersebut mengirimkan informasi ke ECU/ECM dalam bentuk signal listrik. ECU/ECM kemudian mengolahnya dan selanjutnya akan

321 Sistem Bahan Bakar (Fuel System) 296 memberikan tegangan listrik pada solenoid injektor dengan waktu yang lebih lama dibandingkan putaran sebelumnya. Disamping itu saat pengapiannya juga otomatis dimajukan agar tetap tercapai pembakaran yang optimum berdasarkan infromasi yang diperoleh dari sensor putaran rpm. Gambar 6.39 di bawah ini adalah ilustrasi saat mesin berputar pada putaran menengah, yaitu 4000 rpm. Seperti terlihat pada gambar, saat penyemprotan/penginjeksian (fuel injection) mulai terjadi dari pertengahan langkah usaha sampai pertengahan langkah buang dan lamanya penyemprotan/penginjeksian sudah hampir mencapai setengah putaran derajat engkol karena bahan bakar yang dibutuhkan semakin banyak. Gambar 6.40 Contoh penyemprotan injector pada saat putaran 4000 rpm Selanjutnya jika putaran putaran dinaikkan lagi, katup trotel semakin terbuka lebar dan sensor posisi katup trotel (TP sensor) akan mendeteksi perubahan katup trotel tersebut. ECU/ECM memerima informasi perubahan katup trotel tersebut dalam bentuk signal listrik dan akan memberikan tegangan pada solenoid injektor lebih lama dibanding putaran menengah karena bahan bakar yang dibutuhkan lebih banyak lagi. Dengan demikian lamanya penyemprotan/penginjeksian otomatis akan melebihi dari setengah putaran derajat engkol.

322 Sistem Bahan Bakar (Fuel System) 297 e. Cara Kerja Saat Akselerasi (Percepatan) Bila sepeda motor diakselerasi (digas) dengan serentak dari kecepatan rendah, maka volume udara juga akan bertambah dengan cepat. Dalam hal ini, karena bahan bakar lebih berat dibanding udara, maka untuk sementara akan terjadi keterlambatan bahan bakar sehingga terjadi campuran kurus/miskin. Untuk mengatasi hal tersebut, dalam sistem bahan bakar konvensional (menggunakan karburator) dilengkapi sistem akselerasi (percepatan) yang akan menyemprotkan sejumlah bahan bakar tambahan melalui saluran khusus (lihat gambar 6.21). Sedangkan pada sistem injeksi (EFI) tidak membuat suatu koreksi khusus selama akselerasi. Hal ini disebabkan dalam sistem EFI bahan bakar yang ada dalam saluran sudah bertekanan tinggi. Perubahan jumlah udara saat katup gas dibuka dengan tiba-tiba akan dideteksi oleh MAP sensor. Walaupun yang dideteksi MAP sensor adalah tekanan udaranya, namun pada dasarnya juga menentukan jumlah udara. Semakin tinggi tekanan udara yang dideteksi, maka semakin banyak jumlah udara yang masuk ke intake manifold. Dengan demikian, selama akselerasi pada sistem EFI tidak terjadi keterlambatan pengiriman bahan bakar karena bahan bakar yang telah bertekanan tinggi tersebut dengan serentak diinjeksikan sesuai dengan perubahan volume udara yang masuk. Demikian tadi cara kerja sistem EFI pada beberapa kondisi kerja mesin. Masih ada beberapa kondisi kerja mesin yang tidak dibahas lebih detil seperti saat perlambatan (deselerasi), selama tenaga yang dikeluarkan tinggi (high power output) atau beban berat dan sebagainya. Namun pada prinsipnya adalah hampir sama dengan penjelasan yang sudah dibahas. Hal ini disebabkan dalam sistem EFI semua koreksi terhadap pengaturan waktu/saat penginjeksian dan lamanya penginjeksian berdasarkan informasiinformasi yang diberikan oleh sensor-sensor yang ada. Informasi tersebut dikirim ke ECU/ECM dalam bentuk signal listrik yang merupakan gambaran tentang berbagai kondisi kerja mesin saat itu. Semakin lengkap sensor yang dipasang pada suatu mesin, maka koreksi terhadap pengaturan saat dan lamanya penginjeksian akan semakin sempurna, sehingga mesin bisa menghasilkan unjuk kerja atau tampilan (performance) yang optimal dan mengeluarkan kandungan emisi beracun yang minimal.

323 Sistem Bahan Bakar (Fuel System) 298 F. PEMERIKSAAN DAN PERBAIKAN SISTEM BAHAN BAKAR KONVENSIONAL (KARBURATOR) 1. Jadwal Perawatan Berkala Sistem Bahan Bakar Konvensional Jadwal perawatan berkala sistem bahan bakar konvensional sepeda mesin yang dibahas berikut ini adalah berdasarkan kondisi umum, artinya sepeda mesin dioperasikan dalam keadaan biasa (normal). Pemeriksaan dan perawatan berkala sebaiknya rentang operasinya diperpendek sampai 50% jika sepeda mesin dioperasikan pada kondisi jalan yang berdebu dan pemakaian berat (diforsir). Tabel di bawah ini menunjukkan jadwal perawatan berkala sistem bahan bakar konvensional yang sebaiknya dilaksanakan demi kelancaran dan pemakaian yang hemat atas sepeda mesin yang bersangkutan. Pelaksanaan servis dapat dilaksanakan dengan melihat jarak tempuh atau waktu, tinggal dipilih mana yang lebih dahulu dicapai. Tabel 2. Jadwal Perawatan Berkala (Teratur) Sistem Bahan bakar Konvensional Bagian Yang No Diservis 1 Saluran (slang) bahan bakar (bensin) 2 Saringan Bahan bakar Tindakan setiap dicapai jarak tempuh Periksa saluran bahan bakar setelah menempuh jarak km, km dan seterusnya setiap km. Ganti setiap 4 tahun Periksa dan bersihkan saringan bahan bakar setelah menempuh jarak 500 km, km, km dan seterusnya bersihkan setiap km 3 Karburator Periksa, bersihkan, setel putaran stasioner/langsam setelah menempuh jarak 500 km, km, km, dan seterusnya setiap km 4 Cara kerja gas tangan Periksa dan setel (bila perlu) gas tangan setelah menempuh jarak 500 km, km, km, km dan seterusnya setiap km 5 Kabel gas Beri oli pelumas setiap km 6 Handel gas Beri gemuk setiap km 7 Saringan udara Periksa dan bersihkan saringan udara setelah menempuh jarak km dan seterusnya bersihkan setiap km. Ganti setiap km

324 Sistem Bahan Bakar (Fuel System) Sumber-Sumber Kerusakan Sistem Bahan Bakar Konvensional Tabel di bawah ini menguraikan permasalahan atau kerusakan sistem bahan bakar konvensional yang umum terjadi pada sepeda mesin, untuk diketahui kemungkinan penyebabnya dan menentukan jalan keluarnya atau penanganannya (solusinya). Tabel 3. Sumber-sumber kerusakan sistem bahan bakar konvensional (karburator) Permasalahan Masalah pada kecepatan rendan dan stasioner (langsam) Mesin tidak mau hidup Kelebihan bahan bakar Solusi Kemungkinan Penyebab (Jalan Keluar) 1. Pilot air jet tersumbat atau 1. Periksa dan lepas bersihkan 2. Pilot outlet tersumbat 2. Periksa dan ganti bila perlu 3. Piston choke tidak sepenuhnya 3. Periksa dan tertutup 4. Kerusakan pada joint (sambungan) karburator atau sambungan pipa vakum setel 4. Periksa dan ganti bila perlu 1. Pipa bahan bakar tersumbat 1. Periksa dan bersihkan 2. Starter jet tersumbat 2. Periksa dan bersihkan 3. Piston choke tidak berfungsi 3. Periksa dan setel 4. Udara masuk dari saluran karburator atau pipa vakum tersumbat 5. Penyumbatan pada joint antara sarter body dan karburator 1. Needle valve pada sistem pelampung rusak atau aus 2. Pegas (spring) pada needle valve patah 3. Permukaan bahan bakar terlalu tinggi atau terlalu rendah 4. Terdapat benda atau kotoran di needle valve 5. Pelampung tidak bekerja dengan semestinya 4. Periksa dan setel 5. Periksa dan kencangkan karburator 1. Ganti 2. Ganti 3. Setel ketinggian pelampung 4. Periksa dan bersihkan 5. Periksa dan setel

325 Sistem Bahan Bakar (Fuel System) 300 Permasalahan Masalah pada kecepatan rendah dan kecepatan tinggi Kemungkinan Penyebab 1. Main jet atau main air jet tersumbat Solusi (Jalan Keluar) 1. Periksa dan bersihkan 2. Needle jet tersumbat 2. Periksa dan bersihkan 3. Throttle piston (skep) tidak 3. Periksa berfungsi dengan baik throttle piston saat jalan 4. Saringan bahan bakar (fuel 4. Periksa dan filter) tersumbat 5. Pipa ventilasi bahan bakar tersumbat bersihkan 5. Periksa dan bersihkan 3. Pemeriksaan Saringan Bahan Bakar Karat atau kotoran di dalam bahan bakar yang sedang mengalir dalam sistem bahan bakar cenderung mengendap pada saringan. Dalam jangka waktu yang lama saringan bisa tersumbat dan bisa mengakibatkan tenaga mesin menjadi berkurang. Bersihkan saringan bahan bakar secara teratur menggunakan udara bertekanan (kompresor). Ganti saringan bahan bakar yang telah tersumbat. 4. Pemeriksaan dan Perawatan Saringan Udara a. Keluarkan elemen saringan udara dari kotak saringan udara. Gambar 6.41 Elemen saringan udara

326 Sistem Bahan Bakar (Fuel System) 301 b. Cuci elemen dalam minyak solar atau minyak pembersih yang tidak mudah terbakar dan biarkan sampai mengering. c. Celupkan elemen dalam minyak transmisi (SAE 80-90) dan peras keluar kelebihan minyak. d. Pasang kembali elemen dan tutup kembali kotak saringan udara. e. Ilustrasi urutan pencucian elemen saringan udara adalah seperti terlihat pada gambar di bawah ini: Gambar 6.42 Urutan pencucian elemen saringan udara 5. Knalpot Gas buang sepeda motor keluar disalurkan melalui knalpot ke udara luar. Bagian dalam knalpot dikonstruksi sedemikian rupa sehingga di samping menampung gas buang, knalpot juga dapat meredam suara (silencer). Biasanya panjang dan diameter knalpot sudah tertentu sehingga jika dilakukan perubahan (modifikasi) akan mempengaruhi kemampuan sepeda motor. Konstruksi knalpot tidak boleh (dilarang) untuk dirubah, dilubangi ataupun dicopot. Perubahan ini merupakan pelanggaran hukum dan pelakunya dapat dituntut. Konstruksi knalpot sepeda motor empat langkah dan sepeda motor dua langkah umumnya tidak sama. Knalpot sepeda motor dua langkah terdiri atas dua bagian yang disambungkan. Kedua bagian tersebut disambungkan dengan ring mur sehingga mudah dilepas. Hal ini dimaksudkan agar lebih mudah dibersihkan. Knalpot mesin dua langkah lebih cepat kotor dikarenakan pada proses pembakarannya oli ikut terbakar sehingga kemungkinan timbul kerak pada lubang knalpot sangat besar. Untuk itu knalpot sepeda motor dua langkah harus sering dibersihkan.

327 Sistem Bahan Bakar (Fuel System) 302 Cara membersihkan knalpot sepeda motor dua langkah: 1. Lepaskan knalpot dari dudukannya 2. Pisahkan bagian-bagian knalpot Keterangan gambar: 1 gasket pipa buang 2 gasket sambungan mufler 3 baut penahan pipa buang 4 mur Gambar 6.43 Bagian-Bagian Knalpot 3. Bersihkan bagian luar knalpot dengan kain dan air atau amplas halus. Supaya kering, jemur sebentar dengan cahaya matahari atau keringkan dengan udara bertekanan (kompresor). 4. Panaskan bagian luar ujung knalpot sampai merah membara dengan api las karbit. 5. Semprot bagian dalam knalpot dengan udara bertekanan sampai kotoran-kotoran di dalamnya terlempar ke luar. 6. Untuk membersihkan peredam suara. Semprotkan dengan air panas agar sisa bahan bakar yang ada bisa keluar. Setelah itu keringkan dengan udara bertekanan. 7. Bersihkan saluran buang pada blok silinder dengan skrap pembersih kerak kemudian semprot saluran buang dengan udara bertekanan. Yang perlu diperhatikan pada saat membersihkan kerak dengan skrap posisi piston harus ada pada Titik Mati Bawah agar tidak tergores oleh skrap. 8. Periksa keadaan paking knalpot, bila ada yang rusak harus diganti. Paking yang rusak akan menyebabkan kebocoran gas buang. 9. Pasang knalpot dengan cara kebalikan dari waktu membongkar. Periksa kebocoran gas buang dengan cara menghidupkan motor dan menutup ujung knalpot dengan kain. Jika ada kebocoran gas buang, segera perbaiki bagian yang menyebabkan kebocoran tersebut. Fungsi knalpot mesin dua langkah tidak hanya sekedar mengalirkan gas buang tapi juga harus dapat menimbulkan

328 Sistem Bahan Bakar (Fuel System) 303 tekanan balik pada lubang buang. Tekanan balik tersebut diperlukan karena mesin dua langkah tidak menggunakan katup. Hal ini untuk mencegah gas baru ikut keluar bersama dengan gas buang. Ketika lubang pembuangan terbuka gas keluar mendorong sampai ke sistem pembuangan. Gas bergerak turun dimana saat itu gelombang tekanan gas berangsurangsur mengembang dan kehilangan kecepatan sampai mendekati reversed cone Saat mencapai reversed cone gas dimampatkan dan sebagiannya ditembakkan melalui system pembuangan dalam bentuk getaran yang memutar. Ini mempunyai efek menghentikan campuran udara yang segar lepas melalui system pembuangan sebelum lubang pembuangan tertutup piston Gambar 6.44 Gambar Ekspansi pada sistem pembuangan dari mesin dua langkah Tips: Dengan melihat warna asap knalpot, kerusakan mesin dapat diperkirakan. Warna asap knalpot mesin dua langkah yang baik adalah putih. Jika warna asap knalpotnya hitam berarti pelumasannya kurang. Jika warna asap knalpotnya putih mengepul berarti pelumasannya terlalu banyak. Cara mengatasinya kurangi prosentase pelumas pada bensin atau setel pompa pelumasnya. Knalpot sepeda motor empat langkah tidak terdiri atas dua bagian yang disambungkan. Pada knalpot sepeda motor empat langkah oli tidak ikut terbakar sebagaimana di knalpot sepeda motor dua langkah, sehingga knalpot lebih bersih.

329 Sistem Bahan Bakar (Fuel System) 304 Gambar 6.45 Gambar bagian sistem pembuangan jenis mesin empat langkah 6. Pemeriksaan Jet (Pengabut) Karburator Periksa jet-jet karburator dari kerusakan, kotoran atau tersumbat. Jet-jet yang diperiksa antara lain: a. Pilot Jet/idle jet (spuyer/pengabut putaran langsam/stasioner) b. Main Jet (spuyer utama) c. Main Air Jet (spuyer saluran udara utama) d. Pilot Air Screw (sekrup penyetel udara putaran langsam/stasioner) e. Float (pelampung) f. Needle valve (jarum Pelampung) g. Starter Jet/cold star jet (spuyer saat mesin dingin) h. Gasket dan O-ring i. Lubang by pass dan pilot outlet Bersihkan komponen-komponen di atas jika kotor atau tersumbat dan ganti jika sudah rusak.

330 Sistem Bahan Bakar (Fuel System) Pemeriksaan Jarum Pelampung a. Bila diantara dudukan dan jarum terdapat benda asing, bahan bakar (bensin) akan terus mengalir dan mengakibatkan banjir. b. Bila dudukan dan jarum sudah termakan/aus, gantilah keduaduanya. c. Sebaliknya bila jarum tidak mau bergerak, maka bahan bakar tidak dapat turun. d. Bersihkanlah ruang pelampungnya dengan bensin. e. Bila jarum pelampung cacat seperti terlihat pada gambar di bawah, ganti dengan yang baru. Gambar 6.46 Kondisi jarum yang bagus Dengan yang tidak bagus f. Bersihkan saluran-saluran bahan bakar dan ruang pencampur dengan angin kompresor. 8. Pemeriksaan Tinggi Pelampung Untuk mengetahui tinggi pelampung maka: a. Buka dan balikan karburator dengan arm (lengan) pelampung bebas. b. Ukurlah tinggi dengan menggunakan varnier caliper/jangka sorong atau alat pengukur pelampung (float level gauge) saat lidah pelampung menyentuh dengan ujung jarum (needle valve).

331 Sistem Bahan Bakar (Fuel System) 306 Gambar 6.47 Contoh pengukuran tinggi pelampung pada Honda Astrea c. Bengkokan lidah untuk mendapatkan ketinggian yang ditentukan. Catatan: 1) Ukuran spesifikasi tinggi pelampung berbeda antara merk sepeda motor satu dengan lainnya. Lihat buku manual masing-masing untuk memastikan ukuran tersebut. 2) Pada sebagian merk sepeda motor (misalnya Honda) tinggi pelampung tidak dapat disetel. Ganti pelampung secara keseluruhan (set) jika tinggi pelampung sudah tidak sesuai dengan spesifikasi. 9. Pemeriksaan Penyetelan Putaran Stasioner/Langsam a. Putar sekrup udara (pilot/idle mixture screw) searah jarum jam sampai duduk dengan ringan dan kemudian kembalikan pada posisi sesuai spesifikasi yang diberikan. Catatan: 1) Kerusakan pada dudukan sekrup udara akan terjadi jika sekrup udara dikencangkan terlalu keras pada dudukannya.

332 Sistem Bahan Bakar (Fuel System) 307 2) Bukaan awal sekrup udara : putaran keluar (untuk lebih 4 pastinya, lihat buku manual sepeda motor yang bersangkutan). Gambar 6.48 Posisi sekrup udara dan penahan skep (throttle piston) pada karburator yang terdapat pada salah satu merk sepeda motor b. Hangatkan mesin sampai pada suhu operasi/suhu kerja mesin. c. Matikan mesin dan pasang tachometer (pengukur putaran mesin) yang disesuaikan dengan instruksi penggunaan oleh pabrikan tachometer. d. Hidupkan mesin dan setel putaran stasioner mesin dengan sekrup penahan skep (throttle piston). Putaran stasioner/langsam : 1400 ± 100 rpm (untuk lebih pastinya, lihat buku manual sepeda motor yang bersangkutan) e. Putar sekrup udara masuk atau keluar secara perlahan sampai diperoleh kecepatan mesin tertinggi. f. Ulangi langkah d dan e. g. Setel kembali putaran stasioner mesin dengan memutar sekrup penahan skep.

333 Sistem Bahan Bakar (Fuel System) 308 h. Putar gas tangan perlahan-lahan dan periksa apakah kecepatan putaran mesin naik secara halus: Jika tidak, ulangi langkah d sampai dengan g. Catatan: 1) Sekrup udara telah disetel menurut ketentuan pabrik. Penyetelan tidak diperlukan kecuali jika karburator dibongkar atau pada saat mengganti sekrup udara dengan yang baru. 2) Mesin harus dalam keadaan hangat untuk mendapatkan ketepatan penyetelan, sekitar 10 menit dihidupkan sudah cukup untuk menghangatkan mesin dalam mencapai suhu kerjanya. 3) Gunakan tachometer dengan ukuran kenaikan tiap 50 rpm atau lebih kecil. 10. Pemeriksaan Cara Kerja Gas Tangan a. Periksa apakah putaran gas tangan dapat bekerja dengan lancar dan halus sewaktu membuka dengan penuh dan menutup kembali secara otomatis pada semua stang kemudi. b. Periksa kabel gas dari kerusakan, lekukan atau keretakan. Ganti jika sudah rusak, terdapat lekukan atau retakan. c. Lumasi kabel gas jika cara kerja gas tangan tidak lancar (tersa berat). d. Ukur jarak main bebas gas tangan pada ujung sebelah dalam gas tangan. Gambar 6.49 Jarak main bebas gas tangan Jarak main bebas : 2 6 mm.

334 Sistem Bahan Bakar (Fuel System) 309 e. Jarak main bebas gas tangan dapat disetel melalui penyetel gas tangan seperti terlihat pada gambar di bawah ini. f. Lepaskan penutup debu pada penyetel. g. Setel jarak main bebas dengan melonggarkan mur pengunci dan memutar penyetel. Gambar 6.50 Penyetelan jarak main bebas gas tangan h. Periksa ulang cara kerja gas tangan. i. Ganti (bila perlu) komponen-komponen (parts) yang rusak. G. PEMERIKSAAN DAN PERBAIKAN SISTEM BAHAN BAKAR TIPE INJEKSI (EFI) 1. Beberapa Hal Umum yang Perlu Diperhatikan Berkaitan dengan Service Sistem EFI atau PGM-FI a. Pastikan untuk membuang tekanan bahan bakar sementara mesin dalam keadaan mati. b. Sebelum melepaskan fuel feed hose (slang penyaluran bahan bakar), buanglah tekanan dari sistem dengan melepaskan quick connector fitting (peralatan penyambungan dengan cepat) pada fuel pump (pompa bahan bakar) c. Jangan tutup throttle valve dengan mendadak dari posisi terbuka penuh ke tertutup penuh setelah throttle cable (kabelgas tangan) telah di lepaskan. Hal ini dapat mengakibatkan putaran stasioner yang tidak tepat.

335 Sistem Bahan Bakar (Fuel System) 310 d. Programmed fuel injection (PGM-FI) system dilengkapi dengan Self-Diagnostic System (sistem pendiagnosaan sendiri) yang telah diuraikan. Jika malfunction indicator (MIL) (lampu indikator kegagalan pemakaian) berkedip-kedip, ikuti Self- Diagnostic Procedures (prosedur pendiagnosaan sendiri) untuk memperbaiki persoalan. e. Sebuah sistem PGM FI yang tidak bekerja dengan baik seringkali di sebabkan oleh hubungan yang buruk atau konektornya yang berkarat. Periksalah hubungan-hubungan ini sebelum melanjutkan. 2. Jadwal Perawatan Berkala Sistem Bahan Bakar Tipe Injeksi (EFI) Jadwal perawatan berkala sistem bahan bakar tipe injeksi (EFI) sepeda motor yang dibahas berikut ini adalah berdasarkan kondisi umum, artinya sepeda mesin dioperasikan dalam keadaan biasa (normal). Pemeriksaan dan perawatan berkala sebaiknya rentang operasinya diperpendek sampai 50% jika sepeda mesin dioperasikan pada kondisi jalan yang berdebu dan pemakaian berat (diforsir). Tabel di bawah ini menunjukkan jadwal perawatan berkala sistem bahan bakar konvensional yang sebaiknya dilaksanakan demi kelancaran dan pemakaian yang hemat atas sepeda mesin yang bersangkutan. Pelaksanaan servis dapat dilaksanakan dengan melihat jarak tempuh atau waktu, tinggal dipilih mana yang lebih dahulu dicapai. Tabel 4. Jadwal perawatan berkala (teratur) sistem bahan bakar tipe injeksi (EFI) Bagian Yang No Diservis 1 Saluran (slang) bahan bakar (bensin) 2 Sistem penyaluran udara sekunder 3 Putaran stasioner mesin 4 Cara kerja gas tangan Tindakan setiap dicapai jarak tempuh Periksa saluran bahan bakar setelah menempuh jarak km, km, dan seterusnya setiap km Periksa dan bersihkan saluran udara sekunder setelah menempuh jarak km. Ganti setiap 3 tahun atau setelah menempuh jarak km Periksa, bersihkan, setel putaran stasioner/langsam setelah menempuh jarak 500 km, km, km, dan seterusnya setiap km Periksa dan setel (bila perlu) gas tangan setelah menempuh jarak km, km, km dan seterusnya setiap km 5 Saringan udara Periksa dan bersihkan saringan udara setelah menempuh jarak km, km dan seterusnya bersihkan setiap km. Ganti setiap km

336 Sistem Bahan Bakar (Fuel System) Sumber-Sumber Kerusakan Sistem Bahan Bakar Tipe Injeksi (EFI) Tabel di bawah ini menguraikan permasalahan atau kerusakan sistem bahan bakar dan sistem pendukung lainnya pada tipe injeksi (EFI) yang umum terjadi pada sepeda mesin, untuk diketahui kemungkinan penyebabnya dan menentukan jalan keluarnya atau penanganannya (solusinya). Tabel 5. Sumber-Sumber Kerusakan Sistem Bahan Bakar Tipe Injeksi (EFI) Permasalahan Mesin mati, sulit dihidupkan, putaran stasioner kasar Mesin tidak mau hidup Terjadi ledakan (misfiring) saat melakukan akselerasi Kemungkinan Penyebab Solusi (Jalan Keluar) 1. Terdapat kebocoran udara masuk 1. Periksa dan perbaiki 2. Tekanan dalam sistem bahan bakar terlalu tinggi 2. Periksa dan perbaiki 3. Tekanan dalam sistem bahan bakar terlalu rendah 3. Periksa dan perbaiki 4. Saringan injektor (injektor filter) tersumbat 4. Bersihkan dan ganti bila perlu 5. Penyetelan stasioner tidak tepat 5. Periksa dan setel kembali 6. Saluran udara stasioner tersumbat 6. Bersihkan 7. Bahan bakar tercemar/kualitas jelek 7. Ganti 1. Pompa bahan bakar tidak bekerja 1. Periksa dan dengan baik ganti bila perlu 2. Saringan injektor (injektor filter) 2. Periksa dan tersumbat bersihkan 3. Jarum injektor (injector needle) 3. Periksa dan tertahan ganti bila perlu 4. Bahan bakar tercemar/kualitas jelek 4. Ganti 5. Terdapat kebocoran udara masuk 5. Periksa dan perbaiki 1. Sistem penyaluran bahan bakar 1. Periksa dan tidak bekerja dengan baik perbaiki 2. Saringan injektor (injektor filter) 2. Periksa dan tersumbat ganti bila perlu 3. Sistem pengapian (ignition system) 3. Periksa dan tidak bekerja dengan baik perbaiki

337 Sistem Bahan Bakar (Fuel System) Informasi Pendiagnosaan Sendiri Sistem EFI atau PGM-FI Prosedur Pendiagnosaan Sendiri (Self Diagnosis) a. Letakkan sepeda motor pada standar utamanya. Catatan: Malfunction indicataor lamp (MIL) akan berkedip-kedip sewaktu kunci kontak diputar ke ON atau putaran mesin di bawah putaran permenit (rpm). Pada semua kondisi lain, MIL akan tetap hidup dan tetap hidup. b. Putar kunci kontak ke posisi ON. c. Malfuction indicator (MIL) berkedip-kedip. d. Catat berapa kali MIL berkedip dan tentukan penyebab persoalan. Gambar 6.51 Posisi MIL e. Jika MIL tidak hidup atau berkedip, sistem dalam keadaan normal. f. Jika ingin membaca memori EFI/PGM-FI untuk data kesukaran, lakukan sebagai berikut: g. Untuk membaca data persoalan yang telah disimpan. Putar kunci kontak ke posisi OFF. h. Lepaskan front top cover.

338 Sistem Bahan Bakar (Fuel System) 313 i. Lepaskan connector cover (penutup konektor) dari data Link connector (DLC) [konektor sambung data], seperti terlihat pada gambar di bawah ini : Gambar 6.52 Posisi DLC j. Hubungkan special tool ke data Link connector (DLC). Gambar 6.53 Pemasangan konektor DLC ke DLC

339 Sistem Bahan Bakar (Fuel System) 314 k. Putar kunci kontak ke posisi ON. l. Jika ECM tidak menyimpan data memori pendiagnosaan sendiri, MIL akan menyala terus ketika kunci kotak di putar ke posisi ON. Gambar 6.54 MIL menyala ketika kunci kontak ON m. Catat berapa kali MIL berkedip dan tentukan penyebab persoalan. Catatan: 1) Pada sistem EFI atau PGM-FI Honda, MIL (malfunction indicator lamp) menunjukkan kode-kode masalah/persoalan yang terjadi pada sepeda motor. Jumlah kedipannya dari 0 sampai 54. Jenis kedipan dari MIL ada dua, yaitu kedipan pendek (0,3 detik) dan kedipan panjang (1,3 detik). Jika sebuah kedipan panjang terjadi, dan kemudian dua buah kedipan pendek, berarti kode persoalan itu adalah 12 karena satu kedipan panjang = 10 dan dua kedipan pendek = 2 kedipan. 2) Jika ECU/ECM menyimpan beberap kode kegagalan/masalah, MIL memperlihatkan kode kegagalan menurut urutan dari jumlah terendah sampai tertinggi. 3) Jika terjadi kegagalan fungsi pada rangkaian MAP sensor, MIL akan berkedip 1 kali. Penyebab kegagalan pada rangkaian MAP sensor antara lain ; kontak longgar atau lemah pada sensor unit, terjadi rangkaian terbuka atau hubungan singkat (korslet) pada kabel MAP sensor dari sensor unit, atau MAP sensor tidak bekerja dengan baik.

340 Sistem Bahan Bakar (Fuel System) 315 4) Jika terjadi kegagalan fungsi pada rangkaian suplai (daya) atau massa sensor unit, MIL akan berkedip 1, 8 dan 9 kali. Penyebab kegagalannya antara lain ; kontak longgar atau lemah pada sensor unit, terjadi rangkaian terbuka atau hubungan singkat korslet) pada kabel daya atau massa sensor unit, atau sensor unit tidak bekerja dengan baik. Sensor unit adalah gabungan dari TP (throttle positioner), MAP (manifold absolute pressure), dan IAT (intake air temperature) sensor. 5) Jika terjadi kegagalan fungsi pada rangkaian EOT (engine oil temperature) sensor, MIL akan berkedip 7 kali. Penyebab kegagalan pada rangkaian EOT sensor antara lain ; kontak longgar atau lemah pada EOT sensor, terjadi rangkaian terbuka atau hubungan singkat (korslet) pada kabel EOT sensor, atau EOT sensor tidak bekerja dengan baik. 6) Jika terjadi kegagalan fungsi pada rangkaian bank angle sensor, MIL akan berkedip 54 kali. Penyebab kegagalan pada rangkaian bank angle sensor antara lain ; kontak longgar atau lemah pada bank angle sensor, terjadi rangkaian terbuka atau hubungan singkat (korslet) pada kabel bank angle sensor, atau bank angle sensor tidak bekerja dengan baik. 7) Jika terjadi kegagalan fungsi di dalam ECU/ECM, MIL akan berkedip 33 kali. Penyebab kegagalannya adalah karena ECU/ECM tidak bekerja dengan baik. 8) Jika terjadi kegagalan fungsi pada data link (penghubung kabel data) atau rangkaian MIL, MIL akan hidup terus. Penyebab kegagalannya antara lain ; kontak longgar atau lemah pada injektor, terjadi rangkaian terbuka atau hubungan singkat (korslet) pada kabel injektor, injektor tidak bekerja dengan baik, atau ECU/ECM tidak bekerja dengan baik. 9) Jika terjadi kegagalan fungsi pada rangkaian injektor, MIL akan berkedip 12 kali. Penyebab kegagalannya antara lain ; hubungan singkat pada kabel data link conector (DLC), hubungan singkat pada kabel MIL, atau ECU/ECM tidak bekerja dengan baik. 10) Secara umum, urutan pemeriksaan dan perbaikan dari kegagalan-kegagalan di atas adalah sebagai berikut: a) Melakukan pemeriksaan terhadap kontak dari sambungan (konektor) komponen yang bersangkutan. Jika longgar atau lemah, perbaiki dengan mengencangkan posisinya. b) Jika point a) di atas tidak bermasalah, lakukan pemeriksaan tahanan/resistansi pada terminal-terminal komponen yang bersangkutan dan juga periksa kontinuitas (hubungan) antara terminal dengan massa. (Untuk melihat standar/spesifikasi ukuran tahanan dan warna kabel, lihat buku manual yang bersangkutan).

341 Sistem Bahan Bakar (Fuel System) 316 Gambar 6.55 Contoh pemeriksaan tahanan pada EOT sensor c) Jika point b) di atas tidak bermasalah, lakukan pemeriksaan tegangan (voltage) antara konektor komponen yang bersangkutan pada sisi wire harness (rangkaian kabel dari ECU/ECM yang menuju komponen tersebut) dan massa. Khusus sensor yang hanya mempunyai dua terminal, ukur tegangan antara konektor sensor tersebut pada sisi wire harness (Untuk melihat standar/spesifikasi ukuran tegangan, lihat buku manual yang bersangkutan). Gambar 6.56 Contoh pemeriksaan tegangan pada EOT sensor

342 Sistem Bahan Bakar (Fuel System) 317 d) Jika pada pemeriksaan point c) di atas terdapat tegangan yang sesuai standar, ganti komponen (sensor) yang bersangkutan. e) Jika pada pemeriksaan point c) di atas tidak terdapat tegangan yang sesuai standar, periksa kontinuitas antara konektor komponen (sensor) yang bersangkutan dengan konektor dari ECU/ECM. (Untuk melihat standar/spesifikasi warna kabel, lihat buku manual yang bersangkutan). f) Jika pada pemeriksaan point e) di atas kontinuitas antara konektor tidak normal, berarti terdapat hubungan singkat (korslet) atau rangkaian terbuka pada kabel-kabel tersebut. g) Jika pada pemeriksaan point e) di atas kontinuitas antara konektor normal, berarti terdapat masalah pada ECU/ECM. Ganti ECU/ECM dengan yang baru dan lakukan pemeriksaan sekali lagi. 5. Prosedur Me-Reset Pendiagnosaan Sendiri Catatan: Data memori pendiagnosaan sendiri tidak akan terhapus sewaktu kabel negatif baterai dilepaskan. a. Putar kunci kontak ke OFF. b. Lepaskan front top cover. c. Lepaskan connector cover (penutup konektor) dari data Link connector seperti terlihat pada gambar 5.49). d. Hubungkan special tool (konektor DLC atau DLC short connector) ke data Link connector (DLC) seperti terlihat pada gambar 5.50) e. Putar kunci kontak ke ON. f. Lepaskanlah DLC short connector dari data Link connector (DLC) seperti terlihat pada gambar di bawah : Gambar 6.57 Prosedur melepas dan menghubungkan kembali konektor DLC dari DLC

343 Sistem Bahan Bakar (Fuel System) 318 g. Hubungkan DLC short connector ke data Link connector (DLC) lagi sementara lampu MIL hidup selama kira-kira 5 detik (pola penerimaan reset; seperti terlihat pada gambar di atas). h. Data memori pendiagnosaan sendiri telah terhapus, jika MIL mati dan mulai berkedip. Hal ini menandakan prosedur me-reset telah berhasil. Lihat pada gambar di bawah untuk melihat bentuk/pola me-reset yang berhasil (pola keberhasilan). Gambar 6.58 Pola keberhasilan saat me-reset pendiagnosaan sendiri i. Data link konektor harus dihubungkan singkat sementara lampu indikator hidup. Jika DLC short connector tidak tersambungkan dalam 5 detik, MIL akan mati dan hidup kembali dengan pola kegagalan seperti terlihat ppada gambar di bawah : Gambar 6.59 Pola kegagalan saat me-reset pendiagnosaan sendiri

344 Sistem Bahan Bakar (Fuel System) 319 j. Matikan kunci kontak dan coba lagi mulai dari langkah d. Catatan : Perhatikan bahwa data memori pendiagnosaan-sendiri tidak akan terhapus jika kunci kontak dimatikan sebelum MIL mulai berkedip.

345 Sistem Bahan Bakar (Fuel System) 320 SOAL-SOAL LATIHAN BAB VI 1. Jelaskan fungsi masing-masing komponen sistem bahan bakar konvensional! 2. Jelaskan perbedaan kran bensin tipe standar dengan tipe vakum pada sistem bahan bakar konvensional! 3. Kenapa tidak boleh menggunakan needle valve (katup jarum) pada sistem pelampung yang sudah kotor atau rusak/aus? 4. Jelaskan perbedaan jet needle dengan needle jet pada karburator! 5. Jelaskan perbedaan antara karburator tipe fixed venturi dengan karburator tipe variable venturi! 6. Jelaskan kelebihan sistem EFI dibanding sistem bahan bakar konvensional! 7. Jelaskan sensor-sensor utama yang terdapat pada sistem EFI sepeda motor! 8. Kenapa jika ingin membuang tekanan dalam sistem bahan bakar EFI harus dalam keadaan mesin mati? 9. Kenapa dalam sistem EFI sepeda motor Honda dilengkapi bank angle sensor? 10. Jelaskan fungsi DLC dan MIL! 11. Jelaskan apa perbedaan antara knalpot sepeda motor dua langkah dengan sepeda motor empat langkah, baik dari segi kontruksinya maupun dari proses yang terjadi di dalamnya! 12. Apa yang terjadi bila diketahui gas buang yang keluar dari knalpot sepeda motor dua langkah berwarna hitam dan apa yang harus dilakukan untuk mengatasinya? 13. Jelaskan urutan pekerjaan yang harus dilakukan untuk membersihkan knalpot sepeda motor dua langkah yang biasanya cepat mengalami kotor!

346 Sistem Pemindah Tenaga (Power Transmission) 321 BAB VII SISTEM PEMINDAH TENAGA (POWER TRANSMISSION) A. PRINSIP PEMINDAHAN TENAGA Sepeda motor dituntut bisa dioperasikan atau dijalankan pada berbagai kondisi jalan. Namun demikian, mesin yang berfungsi sebagai penggerak utama pada sepeda motor tidak bisa melakukan dengan baik apa yang menjadi kebutuhan atau tuntutan kondisi jalan tersebut. Misalnya, pada saat jalanan mendaki, sepeda motor membutuhkan momen puntir (torsi) yang besar namun kecepatan atau laju sepeda motor yang dibutuhkan rendah. Pada saat ini walaupun putaran mesin tinggi karena katup trotel atau katup gas dibuka penuh namun putaran mesin tersebut harus dirubah menjadi kecepatan atau laju sepeda motor yang rendah. Sedangkan pada saat sepeda motor berjalan pada jalan yang rata, kecepatan diperlukan tapi tidak diperlukan torsi yang besar. Berdasarkan penjelasan di atas, sepeda motor harus dilengkapi dengan suatu sistem yang mampu menjembatani antara output mesin (daya dan torsi mesin) dengan tuntutan kondisi jalan. Sistem ini dinamakan dengan sistem pemindahan tenaga. Prinsip kerja mesin dan pemindahan tenaga pada sepeda motor adalah sebagai berikut: Gambar 7.1 Rangkaian pemindahan tenaga dari mesin sampai roda

347 Sistem Pemindah Tenaga (Power Transmission) 322 Ketika poros engkol (crankshaft) diputar oleh pedal kick starter atau dengan motor starter, piston bergerak naik turun (TMA dan TMB). Pada saat piston bergerak ke bawah, terjadi kevakuman di dalam silinder atau crankcase. Kevakuman tersebut selanjutnya menarik (menghisap) campuran bahan bakar dan udara melalui karburator (bagi sistem bahan bakar konvensional). Sedangkan bagi sistem bahan bakar tipe injeksi (tanpa karburator), proses pencampuran terjadi dalam saluran masuk sebelum katup masuk setelah terjadi penyemprotan bahan bakar oleh injektor. Ketika piston bergerak ke atas (TMA) campuran bahan bakar dan udara di dalam silinder dikompresi. Kemudian campuran dinyalakan oleh busi dan terbakar dengan cepat (peledakan). Gas hasil pembakaran tersebut melakukan expansi (pengembangan) dan mendorong piston ke bawah (TMB). Tenaga ini diteruskan melalui connecting rod (batang piston), lalu memutar crankshaft. menekan piston naik untuk mendorong gas hasil pembakaran. Selanjutnya piston melakukan langkah yang sama. Gerak piston naik turun yang berulang-ulang diubah menjadi gerak putar yang halus. Tenaga putar dari crankshaft ini akan dipindahkan ke roda belakang melalui roda gigi reduksi, kopling, gear box (transmisi), sprocket penggerak, rantai dan roda sprocket. Gigi reduksi berfungsi untuk mengurangi putaran mesin agar terjadi penambahan tenaga. B. KOMPONEN SISTEM PEMINDAH TENAGA 1. Kopling (Clutch) Kopling berfungsi meneruskan dan memutuskan putaran dari poros engkol ke transmisi (perseneling) ketika mulai atau pada saat mesin akan berhenti atau memindahkan gigi. Umumnya kopling yang digunakan pada sepeda motor adalah adalah kopling tipe basah dengan plat ganda, artinya kopling dan komponen kopling lainnya terendam dalam minyak pelumas dan terdiri atas beberapa plat kopling. Tipe kopling yang digunakan pada sepeda motor menurut cara kerjanya ada dua jenis yaitu kopling mekanis dan kopling otomatis. Cara melayani kedua jenis kopling ini sewaktu membebaskan (memutuskan) putaran poros engkol sangat berbeda. a. Kopling Mekanis (Manual Clutch) Kopling mekanis adalah kopling yang cara kerjanya diatur oleh handel kopling, dimana pembebasan dilakukan dengan cara menarik handel kopling pada batang kemudi. Kedudukan kopling ada yang terdapat pada crankshaft (poros engkol/kruk as) (misalnya: Honda S90Z, Vespa, Bajaj dan lain-lain) dan ada yang

348 Sistem Pemindah Tenaga (Power Transmission) 323 berkedudukan pada as primer (input/main shaft) (misalnya: Honda CB 100 dan CB 125, Yamaha, Suzuki dan Kawasaki). Sistem kopling mekanis terdiri atas bagian-bagian berikut yaitu a) mekanisme handel terdiri atas: handel, tali kopling (kabel kopling), tuas (batang) dan pen pendorong. b) mekanisme kopling terdiri atas (gambar 7.2): gigi primer kopling (driven gear), rumah (clutch housing), plat gesek (friction plate) plat kopling (plain plate), per (coil spring), pengikat (baut), kopling tengah (centre clutch), plat tutup atau plat penekan (pressure plate), klep penjamin dan batang penekan/pembebas (release rod). Rumah kopling (clutch housing) ditempatkan pada poros utama (main shaft) yaitu poros yang menggerakkan semua roda gigi transmisi. Tetapi rumah kopling ini bebas terhadap poros utama, artinya bila rumah kopling berputar poros utama tidak ikut berputar. Pada bagian luar rumah kopling terdapat roda gigi (diven gear) yang berhubungan dengan roda gigi pada poros engkol sehingga bila poros engkol berputar maka rumah kopling juga ikut berputar. Agar putaran rumah kopling dapat sampai pada poros utama maka pada poros utama dipasang hub kopling (clutch sleeve hub). Untuk menyatukan rumah kopling deng hub kopling digunakan dua tipe pelat, yaitu pelat tekan (clutch driven plate/plain plate) dan pelat gesek (clutch drive plate/friction plate). Pelat gesek dapat bebas bergerak terhadap hub kopling, tetapi tidak bebas terhadap rumah kopling. Sedangkan pelat tekan dapat bebas bergerak terhadap rumah kopling, tetapi tidak bebas pada hub kopling. Gambar 7.2 Konstruksi kopling plat banyak dengan penggerak tipe coil spring (pegas keong)

349 Sistem Pemindah Tenaga (Power Transmission) 324 Cara kerja kopling mekanis adalah sebagai berikut: Bila handel kopling pada batang kemudi bebas (tidak ditarik) maka pelat tekan dan pelat gesek dijepit oleh piring penekan (clutch pressure plate) dengan bantuan pegas kopling sehingga tenaga putar dari poros engkol sampai pada roda belakang. Sedangkan bila handel kopling pada batang kemudi ditarik maka kawat kopling akan menarik alat pembebas kopling. Alat pembebas kopling ini akan menekan batang tekan (pushrod) atau release rod yang ditempatkan di dalam poros utama. Pushrod akan mendorong piring penekan ke arah berlawanan dengan arah gaya pegas kopling. Akibatnya pelat gesek dan pelat tekan akan saling merenggang dan putaran rumah kopling tidak diteruskan pada poros utama, atau hanya memutarkan rumah kopling dan pelat geseknya saja. Ilustrasi aliran tenaga (putaran) dari mesin ke transmisi adalah seperti terlihat pada gambar 7.3, 7.4 dan 7.5 berikut ini. Gambar 7.3 mengilustrasikan saat handel kopling ditekan sehingga kopling saat ini tidak meneruskan putaran dari mesin ke transmisi. Pada gambar 7.4 mengilustrasikan saat handel kopling mulai dilepas sehingga saat ini plat plat pada kopling mulai berhubungan antara satu dengan yang lainnya sehingga putaran dari mesin (chranshaft) mulai diteruskan ke transmisi. Sedangkan pada gambar 7.5 mengilustrasikan saat handel kopling dilepas penuh sehingga putaran dari mesin diteruskan dengan sempurna ke transmisi karena antara plat kopling dan plat gesek pada kopling sudah saling berhubungan. Gambar 7.3 Putaran mesin tidak diteruskan ke transmisi saat handel kopling ditekan

350 Sistem Pemindah Tenaga (Power Transmission) 325 Gambar 7.4 Putaran mesin mulai diteruskan ke Transmisi saat handel kopling mulai dilepas Gambar 7.5 Putaran mesin diteruskan dengan sempurna ke transmisi saat handel kopling dilepas Pada tipe kopling mekanik terdapat dua cara untuk membebaskan kopling (putaran mesin tidak diteruskan ke transmisi), yaitu secara manual dan hidrolik. Metode pembebasan kopling secara manual adalah dengan menggunakan kabel kopling yang ditarik oleh handel kopling.

351 Sistem Pemindah Tenaga (Power Transmission) 326 Terdapat tiga tipe untuk pembebasan kopling secara manual, yaitu: 1) Tipe dengan mendorong dari arah luar (outer push type) Pada tipe ini, jika handel kopling ditarik, plat penekan (pressure plate) akan ditekan ke dalam dari arah sebelah luar. Dengan tertekannya plat penekan tersebut, plat kopling akan merenggang dari plat penekan, sehingga kopling akan bebas dan putaran mesin tidak diteruskan ke transmisi. Gambar 7.6 Pembebas kopling dengan outer push type 2) Tipe dengan mendorong ke arah dalam (inner push type) Pada tipe ini, jika handel kopling ditarik, plat penekan (pressure plate) akan ditekan ke luar dari arah sebelah dalam. Dengan tertekannya plat penekan tersebut, plat kopling akan merenggang dari plat penekan, sehingga kopling akan bebas dan putaran mesin tidak diteruskan ke transmisi. Gambar 7.7 Pembebas kopling dengan inner push type

352 Sistem Pemindah Tenaga (Power Transmission) 327 3) Tipe rack and pinion Pada tipe ini, dimungkinkan kopling dapat dihubungkan dan dilepas secara langsung. Konstruksinya sederhana namun mempunyai daya tahan yang tinggi sehingga cocok untuk sepeda motor bermesin putaran tinggi Gambar 7.8 Pembebas kopling dengan rack and pinion type Sedangkan metode pembebasan kopling tipe mekanik dengan menggunakan sistem hidrolik adalah dengan mengganti fungsi kabel kopling oleh cairan hidrolik. Cara kerjanya hampir sama dengan sistem rem yang menggunakan cairan/fluida hidrolik. Jika handel kopling/tangkai kopling ditarik, batang pendorong (pushrod) pada master cylinder mendorong cairan hidrolik yang berada pada slang. Kemudian cairan hidrolik tersebut menekan piston yang terdapat pada silinder pembebas (release cylinder). Gambar 7.9 Pembebas kopling dengan sistem hidrolik

353 Sistem Pemindah Tenaga (Power Transmission) 328 Akibatnya piston bergerak keluar dan mendorong pushrod yang terdapat pada bagian dalam poros utama transmisi. Pergerakan pushrod pada poros utama transmisi tersebut akan menyebabkan plat penekan pada kopling tertekan sehingga kopling akan terbebas dan putaran mesin tidak diteruskan ke transmisi. Metode pembebasan kopling tipe mekanik dengan menggunakan sistem hidrolik mempunyai keuntungan, antara lain; lembut dan ringan dalam membebaskan dan menghubungkan pergerakan kopling, bebas penyetelan dan perawatan terkecuali pemeriksaan berkala/rutin pada sistem hidrolik seperti ketinggian cairan hidrolik, dan penggantian cairan dan perapat (seal) hidrolik. Dengan pergerakan yang ringan tersebut, maka tipe ini bisa menggunakan pegas kopling (clutch spring) yang lebih kuat dibanding kopling tipe mekanik yang menggunakan kabel kopling. Pegas kopling yang lebih kuat akan menyebabkan daya tekan/cengkram plat penekan menjadi lebih kuat juga saat kopling tersebut terhubung, sehingga proses penyambungan putaran mesin ke transmisi akan lebih baik. b. Kopling Otomatis (Automatic Clutch) Kopling otomatis adalah kopling yang cara kerjanya diatur oleh tinggi atau rendahnya putaran mesin itu sendiri, dimana pembebasan dilakukan secara otomatis, pada saat putaran rendah. Kedudukan kopling berada pada poros engkol/kruk as dan ada juga yang berkedudukan pada as primer persnelling/poros utama transmisi (main/input shaft transmisi) seperti halnya kopling mekanis. Mekanisme atau peralatan kopling otomatis tidak berbeda dengan peralatan yang terdapat pada kopling mekanis, hanya tidak ada perlengkapan handel sebagai gantinya terdapat alat khusus yang bekerja secar otomatis pula seperti: a) otomatis kopling; terdapat pada kopling tengah (untuk kopling yang berkedudukan pada crankshaft), b) Bola baja keseimbangan gaya berat (roller weight); berguna untuk menekan palat dasar waktu digas, c) per kopling yang lemah; berguna untuk menetralkan (menolkan) kopling waktu mesin hidup langsam/idle, dan 4) pegas pengembali (return spring); berguna untuk mengembalikan cepat dari posisi masuk kenetral bila mesin hidup dari putaran tinggi menjadi rendah. Kopling otomatis terdiri atas dua unit kopling yaitu kopling pertama dan kopling kedua. Kopling pertama ditempatkan pada poros engkol. Komponennya terdiri atas pasangan sepatu (kanvas) kopling, pemberat sentrifugal, pegas pengembali dan rumah kopling.

354 Sistem Pemindah Tenaga (Power Transmission) 329 Cara kerjanya adalah sebagai berikut: Pada putaran stasioner/langsam (putaran rendah), putaran poros engkol tidak diteruskan ke gigi pertama penggerak (primary drive gear) maupun ke gigi pertama yang digerakkan (primary driven gear). Ini tejadi karena rumah kopling bebas (tidak berputar) terhadap kanvas, pemberat, dan pegas pengembali yang terpasang pada poros engkol. Gambar 7.10 Konstruksi kopling otomatis tipe centripugal, (A) centripugal tipe kanvas/sepatu, (B) centripugal tipe plat Pada saat putaran mesin rendah (stasioner), gaya sentrifugal dan kanvas kopling, pemberat menjadi kecil sehingga sepatu kopling terlepas dari rumah kopling dan tertarik ke arah poros engkol, akibatnya rumah kopling yang berkaitan dengan gigi pertama penggerak menjadi bebas terhadap poros engkol. Saat putaran mesin bertambah, gaya sentrifugal semakin besar sehingga mendorong kanvas kopling mencapai rumah kopling di mana gayanya lebih besar dari gaya tarik pengembali. Rumah kopling ikut berputar dan meneruskan ke tenaga gigi pertama yang digerakkan. Sedangkan kopling kedua ditempatkan bersama primary driven gear pada poros center (countershaft) dan berhubungan langsung dengan mekanisme pemindah gigi transmisi/persnelling. Pada saat gigi persnelling dipindahkan oleh pedal pemindah gigi, kopling kedua dibebaskan oleh pergerakan poros pemindah gigi (gear shifting shaft).

355 Sistem Pemindah Tenaga (Power Transmission) 330 c. Tipe-tipe kopling Selain dibedakan menurut cara kerjanya, tipe kopling juga bisa dibedakan sebagai berikut: 1) Berdasarkan Konstruksi Kopling: a) Kopling tipe piringan Kopling tipe piringan (disc) terdiri dari berbagai plat gesek (friction plate) sebagai plat penggerak untuk menggerakkan kopling. Plat gesek dan plat yang digerakkan (plain plate) pada tipe kopling manual digerakkan oleh per/pegas, baik jenis pegas keong (coil spring) seperti terlihat pada gambar 7.2 maupun pegas diapragma (diapraghm spring). Gambar 7.11 Kopling piringan dengan penggerak tipe diaphragm spring 1. Strengthening ring (cincin penguat) 2. Diaphragm spring (pegas diapragma) 3. Pressure plate (plat penekan) 4. Plain plates (plat yang digerakkan) 5. Friction plates (plat gesek/penggerak) 6. Wire retaining ring (cincin kawat penahan) 7. Inner plain plate (plain plate bagian dalam) 8. Inner friction plate (friction plate bagian dalam) 9. Anti-judder spring (pegas) 10. Anti-judder spring seat (dudukan pegas)

356 Sistem Pemindah Tenaga (Power Transmission) 331 Selain kopling piringan yang digerakkan secara manual d atas, kopling piringan juga bisa digerakkan secara otomatis berdasarkan gerakan sentripugal. Konstruksi kopling piringan dengan gerakan sentripugal seperti terlihat pada gambar 7.10 bagian B pada bab sebelumnya. b) Kopling sepatu sentrifugal Kopling sepatu sentripugal (the shoe-type centrifugal clucth) terdiri dari susunan sepatu atau kanvas kopling yang akan bergerak ke arah luar karena gerakan sentripugal saat kopling berputar. Kopling tipe ini akan meneruskan putaran dari mesin ke transmisi setelah gerakan sepatunya ke arah luar berhubungan dengan rumah kopling (drum) sampai rumah kopling tersebut ikut berputar. Kontsruksi kopling sepatu dengan gerakan sentripugal seperti terlihat pada gambar 7.10 bagian A pada pembahasan sebelumnya. c) Kopling " V Belt Kopling "V belt merupakan kopling yang terdiri dari sabuk (belt) yang berbentuk "V dan puli (pulley). Kopling akan bekerja meneruskan putaran karena adanya gerakan tenaga sentripugal yang menjepit sabuk V tersebut. Gambar 7.12 Kopling tipe "V belt 2) Berdasarkan Kondisi Kerja kopling a) Wet clutch (kopling basah) Kopling basah merupakan salah satu tipe yang ditinjau berdasarkan kondisi kerja kopling, yaitu merendam bagian dalam kopling yang terdapat dalam crank case (bak poros engkol) dengan minyak pelumas/oli. Pelumas berfungsi

357 Sistem Pemindah Tenaga (Power Transmission) 332 sebagai pendingin untuk mencegah kopling terbakar. Fungsi lainnya adalah untuk melumasi bushing (bos) dan bearing (bantalan) yang terdapat pada rumah kopling dan melumasi kanvas dan gigi yang terdapat pada plat kopling. Bahan-bahan yang bergesekan pada kopling basah dirancang khusus agar dapat bekerja dalam rendaman oli dan bisa membuat kerja kopling sangat lembut. Oleh karena itu, kopling basah banyak digunakan pada sepeda motor. b) Dry clutch (kopling kering) Kopling kering digunakan untuk mengatasi kelemahan kopling basah. Gesekan yang dihasilkan pada kopling basah tidak sebanyak kopling kering, sehingga memerlukan jumlah plat kopling yang lebih banyak. Disebut kopling kering karena penempatan kopling berada di luar ruang oli dan selalu terbuka dengan udara luar untuk menyalurkan panas yang dihasilkan saat kopling bekerja. Namun demikian, penggunaan kopling kering umumnya terbatas untuk sepeda motor balap saja. Alasan utamanya adalah pada sepeda motor balap dibutuhkan respon kopling yang baik dan cepat walau kerja kopling yang dihasilkan tidak selembut kopling basah. Selain itu, dengan kopling kering, tentunya akan mengurangi berat sepeda motor. 3) Berdasarkan tipe plat kopling (plate clutch ) a) Single or double plate type (plat kopling tunggal atau ganda) Plat kopling tunggal atau ganda digunakan pada sepeda motor yang poros engkol-nya (crankshaft) sejajar dengan rangka (rumah transmisi/persnelling) dan kopling tersebut dibautkan pada ujung rangka tersebut. Kopling mempunyai rumah tersendiri yang berada diantara mesin dan transmisi. Diameter kopling dibuat besar agar menghasilkan luas permuakaan gesek yang besar karena hanya terdiri dari satu atau dua buah plat kopling.

358 Sistem Pemindah Tenaga (Power Transmission) 333 1a. Flywheel (roda gaya) 1. Clutch housing (rumah kopling) 2. Spring (pegas) 3. Pressure plate (plat penekan) 4. Pressure plate lifter (pengangkat plat penekan 5. Friction plates (plat gesek/penggerak) 6. Plain plates (plat yang digerakkan) 7. Gearbox input shaft (poros masuk transmisi) 8. Pushrod (batang pendorong) 9. Mekanisme pembebas kopling 10. Kabel kopling Gambar 7.13 Konstruksi plat kopling ganda b) Multi-plate type (tipe plat kopling banyak) Kopling plat banyak adalah suatu kopling yang terdiri dari plat gesek (friction plate) dan plat yang digerakkan (plain plate) lebih dari satu pasang. Biasanya plat gesek berjumlah 7, 8 atau 9 buah. Sedangkan plain plate selalu kurang satu dari jumlah plat gesek karena penempatan plain plate selalu diapit diantara plat gesek. Pada umumnya sepeda motor yang mempunyai mesin dengan posisi poros engkol melintang menggunakan kopling tipe plat banyak. Alasannya adalah kopling dapat dibuat dengan diameter yang kecil. Kopling plat banyak juga sedikit lebih ringan dibanding kopling plat tunggal, namun masih bisa memberikan kekuatan dan luas permukaan gesek yang lebih besar. Kopling plat banyak yang digunakan pada sepeda motor modern pada umumnya kopling plat banyak tipe basah (wet multi-plate type). Konstruksi kopling plat banyak seperti terlihat pada

359 Sistem Pemindah Tenaga (Power Transmission) 334 gambar 7.2 dan gambar 7.11 pada pembahasan sebelumnya. Sedangkan contoh uraian komponen kopling plat banyak seperti terlihat pada gambar 7.14 di bawah ini. Gambar 7.14 Komponen tipe plat kopling banyak 1. Diaphragm spring retainer (penahan pegas diapragma) 2. Diaphragm spring 3. Diaphragm spring seat (dudukanpegas diapragma) 4. Pressure plat (plat penekan) 5. Pullrod and bearing (batang pendorong dan bantalan) 6. Friction plates (plat gesek) 7. Plain plates (plat yang digerakkan 8. Nut and lockwasher (mur & cincin pengunci kopling) 9. Wire retaining ring (cincin kawat penahan) 10. Inner plain plate (plain plate bagian dalam) 11. Inner friction plate (plat gesek bagian dalam) 12. Anti-judder spring (pegas) 13. Anti-judder spring seat (dudukan pegas) 14. Clucth centre (kopling tengah) 15. Thrust washer (cincin pendorong) 16. Clucth housing (rumah kopling) 17. Needle bearing (bantalan) 18. Starter clutch gear (gigi kopling starter) 19. Needle bearing (bantalan) 20. Starter clutch sprag (ganjal kopling starter) 21. Gearbox input shaft (poros masuk transmisi)

360 Sistem Pemindah Tenaga (Power Transmission) 335 4) Berdasarkan posisi kopling a) Hubungan langsung Maksud dari hubungan langsung adalah pemasangan kopling langsung pada ujung poros engkol (crankshaft) sehingga putaran kopling akan sama dengan putaran mesin. Sepeda motor yang posisi kopling-nya menggunakan tipe hubungan langsung harus dirancang sedemikian rupa agar daya tahan dan kerja kopling bisa tetap presisi dan baik. Gambar Posisi kopling tipe hubungan langsung b) Tipe reduksi Maksud dari tipe reduksi adalah pemasangan kopling berada pada ujung poros utama atau poros masuk transmisi (input shaft). Jumlah gigi kopling yang dipasang pada ujung poros utama transmisi lebih banyak dibanding jumlah gigi penggerak pada ujung poros engkol. Dengan demikian putaran kopling akan lebih lambat dibanding putaran mesin. Hal ini bisa membuat kopling lebih tahan lama. Konstruksi posisi kopling tipe reduksi seperti terlihat pada gambar 7.1 pada pembahasan awal bab ini. 2. Transmisi (Gear box) Prinsip dasar transmisi adalah bagaimana bisa digunakan untuk merubah kecepatan putaran suatu poros menjadi kecepatan yang

361 Sistem Pemindah Tenaga (Power Transmission) 336 diinginkan untuk tujuan tertentu. Gigi transmisi berfungsi untuk mengatur tingkat kecepatan dan momen (tenaga putaran) mesin sesuai dengan kondisi yang dialami sepeda motor. Transmisi pada sepeda motor terbagi menjadi; a) transmisi manual, dan b) transmisi otomatis. Komponen utama dari gigi transmisi pada sepeda motor terdiri dari susunan gigi-gigi yang berpasangan yang berbentuk dan menghasilkan perbandingan gigi-gigi tersebut terpasang. Salah satu pasangan gigi tersebut berada pada poros utama (main shaft/input shaft) dan pasangan gigi lainnya berada pada poros luar (output shaft/ counter shaft). Jumlah gigi kecepatan yang terpasang pada transmisi tergantung kepada model dan kegunaan sepeda motor yang bersangkutan. Kalau kita memasukkan gigi atau mengunci gigi, kita harus menginjak pedal pemindahnya. Tipe transmisi yang umum digunakan pada sepeda motor adalah tipe constant mesh, yaitu untuk dapat bekerjanya transmisi harus menghubungkan gigi-giginya yang berpasangan. Untuk menghubungkan gigi-gigi tersebut digunakan garu pemilih gigi/garpu persnelling (gearchange lever). a. Transmisi Manual Cara kerja transmisi manual adalah sebagai berikut: Gambar Contoh konstruksi kopling manual

362 Sistem Pemindah Tenaga (Power Transmission) 337 Pada saat pedal/tuas pemindah gigi ditekan (nomor 5 gambar 7.16), poros pemindah (21) gigi berputar. Bersamaan dengan itu lengan pemutar shift drum (6) akan mengait dan mendorong shift drum (10) hingga dapat berputar. Pada shift drum dipasang garpu pemilih gigi (11,12 dan 13) yang diberi pin (pasak). Pasak ini akan mengunci garpu pemilih pada bagian ulir cacing. Agar shift drum dapat berhenti berputar pada titik yang dikendaki, maka pada bagian lainnya (dekat dengan pemutar shift drum), dipasang sebuah roda yang dilengkapi dengan pegas (16) dan bintang penghenti putaran shift drum (6). Penghentian putaran shift drum ini berbeda untuk setiap jenis sepeda motor, tetapi prinsipnya sama. Garpu pemilih gigi dihubungkan dengan gigi geser (sliding gear). Gigi geser ini akan bergerak ke kanan atau ke kiri mengikuti gerak garpu pemilih gigi. Setiap pergerakannya berarti mengunci gigi kecepatan yang dikehendaki dengan bagian poros tempat gigi itu berada. Gigi geser, baik yang berada pada poros utama (main shaft) maupun yang berada pada poros pembalik (counter shaft/output shaft), tidak dapat berputar bebas pada porosnya (lihat no 4 dan 5 gambar 7.16). Lain halnya dengan gigi kecepatan (1, 2, 3, 4, dan seterusnya), gigi-gigi ini dapat bebas berputar pada masingmasing porosnya. Jadi yang dimaksud gigi masuk adalah mengunci gigi kecepatan dengan poros tempat gigi itu berada, dan sebagai alat penguncinya adalah gigi geser. b. Transmisi Otomatis Transmisi otomatis umumnya digunakan pada sepeda motor jenis scooter (skuter). Transmisi yang digunakan yaitu transmisi otomatis "V belt atau yang dikenal dengan CVT (Constantly Variable Transmission). CVT merupakan transmisi otomatis yang menggunakan sabuk untuk memperoleh perbandingan gigi yang bervariasi.

363 Sistem Pemindah Tenaga (Power Transmission) 338 Gambar 7.17 Konstruksi transmisi otomatis tipe CVT Seperti terlihat pada gambar di atas transmisi CVT terdiri dari; dua buah puli yang dihubungkan oleh sabuk (belt), sebuah kopling sentripugal (6) untuk menghubungkan ke penggerak roda belakang ketika throttle gas di buka (diputar), dan gigi transmisi satu kecepatan untuk mereduksi (mengurangi) putaran. Puli penggerak/drive pulley centripugal unit (1) diikatkan ke ujung poros engkol (crankshaft); bertindak sebagai pengatur kecepatan berdasarkan gaya sentripugal. Puli yang digerakkan/driven pulley (5) berputar pada bantalan poros utama (input shaft) transmisi. Bagian tengah kopling sentripugal/centripugal clutch (6) diikatkan/dipasangkan ke puli (5) dan ikut berputar bersama puli tersebut. Drum kopling/clucth drum (7) berada pada alur poros utama (input shaft) dan akan memutarkan poros tersebut jika mendapat gaya dari kopling.

364 Sistem Pemindah Tenaga (Power Transmission) 339 Kedua puli masing-masing terpisah menjadi dua bagian, dengan setengah bagiannya dibuat tetap dan setengah bagian lainnya bisa bergeser mendekat atau menjauhi sesuai arah poros. Pada saat mesin tidak berputar, celah puli penggerak (1) berada pada posisi maksimum dan celah puli yang digerakkan (5) berada pada posisi minimum. Pada gambar 7.18 di bawah ini dapat dilihat bahwa pergerakkan puli (2) dikontrol oleh pergerakkan roller (nomor 7 dalam gambar 7.18). Fungsi roller hampir sama dengan plat penekan pada kopling sentripugal. Ketika putaran mesin naik, roller akan terlempar ke arah luar dan mendorong bagian puli yang bisa bergeser mendekati puli yang diam, sehingga celah pulinya akan menyempit. Gambar Posisi dan cara kerja puli 1. Ujung poros engkol 2. Puli penggerak 3. Bagian puli penggerak yang bisa bergeser 4. Sabuk (belt) 5. Puli yang digerakan 6. Poros roda belakang 7. Roller

365 Sistem Pemindah Tenaga (Power Transmission) 340 Ketika celah puli mendekat, maka akan mendorong sabuk ke arah luar. Hal ini akan membuat puli (2) tersebut berputar dengan diameter yang lebih besar. Setelah sabuk tidak dapat diregangkan kembali, maka sabuk akan meneruskan putaran dari puli (2) ke puli yang digerakkan (5). Jika gaya dari puli (2) mendorong sabuk ke arah luar lebih besar dibandingkan dengan tekanan pegas yang menahan puli yang digerakkan (5), maka puli (5) akan tertekan melawan pegas, sehingga sabuk akan berputar dengan diameter yang lebih kecil. Kecepatan sepeda motor saat ini sama seperti pada gigi tinggi untuk transmisi manual (lihat ilustrasi bagian C gambar 7.18). Jika kecepatan mesin menurun, roller puli penggerak (7) akan bergeser ke bawah lagi dan menyebabkan bagian puli penggerak yang bisa bergeser merenggang. Secara bersamaan tekanan pegas di pada puli (5) akan mendorong bagian puli yang bisa digeser dari puli tersebut, sehingga sabuk berputar dengan diameter yang lebih besar pada bagain belakang dan diameter yang lebih kecil pada bagain depan. Kecepatan sepeda motor saat ini sama seperti pada gigi rendah untuk transmisi manual (lihat ilustrasi bagian A gambar 7.18). 3. Final Drive (Penggerak Akhir) Final drive adalah bagian terakhir dari sistem pemindah tenaga yang memindahkan tenaga mesin ke roda belakang. Final drive juga berfungsi sebagai gigi pereduksi untuk mengurangi putaran dan menaikkan momen (tenaga ). Biasanya perbandingan gigi reduksinya berkisar antara 2,5 sampai 3 berbanding 1 (2,5 atau 3 putaran dari transmisi akan menjadi 1 putaran pada roda). Gambar 7.19 Final drive jenis rantai dan sproket

366 Sistem Pemindah Tenaga (Power Transmission) 341 Final drive pada sepeda motor sebagai bagian terpisah dari transmisi/persnelling, terkecuali scooter dengan transmisi CVT. Final drive dapat dilakukan dengan menggunakan rantai dan gigi sproket, sabuk dan puli, atau sistem poros penggerak. Jenis rantai dan sproket adalah jenis yang paling umum digunakan pada sepeda motor. Final drive jenis poros penggerak (drive shaft) biasanya digunakan untuk sepeda motor model touring. Jenis ini cukup kuat, lebih terjaga kebersihannya dan perawatan rutinnya hanya saat penggantian oli. Namun demikian final drive jenis ini cukup berat dan biaya pembuatannya mahal. (lihat pada gambar 7.8). Sedangkan final drive jenis sabuk dan puli hanya dipakai pada beberapa sepeda motor saja, khususnya generasi awal sepeda motor, dimana power atau tenaga yang dihasilkan masih banyak yang rendah, sehingga penggunaan jenis sabuk dan puli masih efektif. Gambar 7.20 Final drive jenis shaft drive

367 Sistem Pemindah Tenaga (Power Transmission) 342 Gambar 7.21 Final drive jenis sabuk dan puli (belt and pulley) C. PEMERIKSAAN DAN PERBAIKAN SISTEM PEMINDAH TENAGA 1. Jadwal Perawatan Berkala Sistem Pemindah Tenaga Jadwal perawatan berkala sistem pemindah tenaga sepeda motor yang dibahas berikut ini adalah berdasarkan kondisi umum, artinya sepeda motor dioperasikan dalam keadaan biasa (normal). Pemeriksaan dan perawatan berkala sebaiknya rentang operasinya diperpendek sampai 50% jika sepeda motor dioperasikan pada kondisi jalan yang berdebu dan pemakaian berat (diforsir). Tabel di bawah ini menunjukkan jadwal perawatan berkala sistem pemindah tenaga yang sebaiknya dilaksanakan demi kelancaran dan pemakaian yang hemat atas sepeda motor yang bersangkutan. Pelaksanaan servis dapat dilaksanakan dengan melihat jarak tempuh atau waktu, tinggal dipilih mana yang lebih dahulu dicapai.

368 Sistem Pemindah Tenaga (Power Transmission) 343 Tabel 1. Jadwal Perawatan Berkala (Teratur) Sistem Pemindah Tenaga Bagian Yang No Diservis 1 Oli Transmisi (khusus mesin 2 tak) Tindakan setiap dicapai jarak tempuh Ganti setelah menempuh km dan selanjutnya setelah km 2 Kopling Periksa setelah menempuh km dan selanjutnya setelah km 3 Rantai penggerak Periksa, bersihkan, dan lumasi setiap km 3. Sumber-Sumber kerusakan Sistem Pemindah Tenaga Tabel di bawah ini menguraikan permasalahan atau kerusakan sistem Pemindah Tenaga yang umum terjadi pada sepeda motor, untuk diketahui kemungkinan penyebabnya dan menentukan jalan keluarnya atau penanganannya (solusinya). Tabel 2. Sumber-Sumber kerusakan Sistem Pemindah Tenaga Permasalahan Kopling selip Kemungkinan Penyebab Solusi (Jalan Keluar) 1. Kanvas kopling aus 1. Ganti 2. Penyetelan kopling yang salah 1. Setel 2. Ganti 3. Plat kopling aus 3. Ganti 1. Gaya/gerak kopling tidak 1. Ganti sama Kopling macet Pemindahan gigi keras 2. Oli transmisi terlalu kental 2. Ganti dengan oli Mesin hidup tetapi kendaraan tidak dapat jalan Saat kerja pemindah gigi terlalu cepat Saat kerja pemindah gigi terlalu lambat yang benar 1. Kopling pertama rusak 1. Ganti kanvas kopling 2. Penyetelan yang salah pada 2. Setel kopling pemindah gigi (kedua) 3. Gigi transmisi macet 3. Ganti 4. Counter shaft dan drive shaft 4. Ganti rusak 1. Gaya berat kanvas kopling yang tidak sama 1. Ganti kanvas kopling 1. Kanvas kopling aus 1. Ganti kanvas kopling

369 Sistem Pemindah Tenaga (Power Transmission) Pemeriksaan Kopling Otomatis a. Sepeda motor ini dilengkapi dengan kopling otomatis yang fungsinya diatur oleh putaran mesin dan mekanis sentrifugal yang terletak di kopling. Untuk menjamin kemampuan daya tekan kopling secara keseluruhan, maka sengatlah perlu kopling dapat bekerja dengan lancar dan halus b. Pemeriksaan hubungan pertama 1) Panaskan mesin hingga mencapai panas yang normal 2) Hubungkan digital engine tachometer. 3) Duduklah di atas sepeda motor, naikan putaran mesin secara perlahan dan lihatlah digital engine tachometer pada putaran berapa sepeda motor mulai bergerak maju. c. Pemeriksaan saat kopling berfungsi untuk menentukan kopling dapat bekerja penuh dan tidak terjadi selip. 1) Injak peda rem belakang sekuat mungkin 2) Buka gas dengan singkat sampai habis dan perhatikan putaran d. Jangan membuka gas sampai habis lebih dari 3 detik, karena dapat menyebabkan kopling atau mesin cepat rusak

370 Sistem Pemindah Tenaga (Power Transmission) 345 SOAL-SOAL LATIHAN BAB VII 1. Jelaskan sedikitnya tiga keuntungan transmisi roda gigi dibandingkan dengan dengan transmisi hidrolik/otomotic 2. Jelaskan sedikitnya tiga keunungan transmisi hidrolik dibandingkan dengna transmisi roda gigi 3. Mengapa pada jalan menanjak diperlukan transmisi putaran rendah (seperti pemakaian gigi 1 dan dan gigi 2) 4. Jelaskan 3 macam kerusakan pada transmisi roda gigi dan bagaimana cara mengatasinya

371 Sistem Rem dan Roda (Brake System and Wheel) 346 BAB VIII SISTEM REM DAN RODA (BRAKE SYSTEM AND WHEEL) A. PENDAHULUAN Sistem rem dalam suatu kendaraan sepeda motor termasuk sistem yang sangat penting karena berkaitan dengan faktor keselamatan berkendara. Sistem rem berfungsi untuk memperlambat dan atau menghentikan sepeda motor dengan cara mengubah tenaga kinetik/gerak dari kendaraan tersebut menjadi tenaga panas. Perubahan tenaga tersebut diperoleh dari gesekan antara komponen bergerak yang dipasangkan pada roda sepeda motor dengan suatu bahan yang dirancang khusus tahan terhadap gesekan. Gesekan (friction) merupakan faktor utama dalam pengereman. Oleh karena itu komponen yang dibuat untuk sistem rem harus mempunyai sifat bahan yang tidak hanya menghasilkan jumlah gesekan yang besar, tetapi juga harus tahan terhadap gesekan dan tidak menghasilkan panas yang dapat menyebabkan bahan tersebut meleleh atau berubah bentuk. Bahan-bahan yang tahan terhadap gesekan tersebut biasanya merupakan gabungan dari beberapa bahan yang disatukan dengan melakukan perlakuan tertentu. Sejumlah bahan tersebut antara lain; tembaga, kuningan, timah, grafit, karbon, kevlar, resin/damar, fiber dan bahan-bahan aditif/tambahan lainnya. Terdapat dua tipe sistem rem yang digunakan pada sepeda motor, yaitu: 1) Rem tromol (drum brake) dan 2) rem cakram/piringan (disc brake). Cara pengoperasian sistem rem-nya juga terbagi dua, yaitu; 1) secara mekanik dengan memakai kabel baja, dan 2) secara hidrolik dengan menggunakan fluida/cairan. Cara pengoperasian sistem rem tipe tromol umumnya secara mekanik, sedangkan tipe cakram secara hidrolik. B. REM TROMOL (DRUM BRAKE) Rem tromol merupakan sistem rem yang telah menjadi metode pengereman standar yang digunakan sepeda motor kapasitas kecil pada beberapa tahun belakangan ini. Alasannya adalah karena rem tromol sederhana dan murah. Konstruksi rem tromol umumnya terdiri dari komponen-komponen seperti: sepatu rem (brake shoe), tromol (drum),

372 Sistem Rem dan Roda (Brake System and Wheel) 347 pegas pengembali (return springs), tuas penggerak (lever), dudukan rem tromol (backplate), dan cam/nok penggerak. Cara pengoperasian rem tromol pada umumnya secara mekanik yang terdiri dari; pedal rem (brake pedal) dan batang (rod) penggerak. Konstruksi dan cara kerja rem tromol seperti terlihat pada gambar 8.1 dan 8.2 di bawah ini: Gambar 8.1 Konstruksi rem tromol Pada saat kabel atau batang penghubung (tidak ditarik), sepatu rem dan tromol tidak saling kontak (gambar 8.2). Tromol rem berputar bebas mengikuti putaran roda.tetapi saat kabel rem atau batang penghubung ditarik, lengan rem atau tuas rem memutar cam/nok pada sepatu rem sehingga sepatu rem menjadi mengembang dan kanvas rem (pirodo)nya bergesekan dengan tromol. Akibatnya putaran tromol dapat ditahan atau dihentikan, dan ini juga berarti menahan atau menghentikan putaran roda. Gambar 8.2 Rem tromol dan kelengkapannya Brake pedal (pedal rem), (2) Operating rod (batang penghubung), (3) Brake lever (tuas rem), (4) Brake shoe (sepatu rem), dan (5) Drum (tromol)

373 Sistem Rem dan Roda (Brake System and Wheel) 348 Rem tromol terbuat dari besi tuang dan digabung dengan hub saat rem digunakan sehingga panas gesekan akan timbul dan gaya gesek dari brake lining dikurangi. Drum brake mempunyai sepatu rem (dengan lining) yang berputar berlawanan dengan putaran drum (wheel hub) untuk mengerem roda dengan gesekan. Pada sistem ini terjadi gesekangesekan sepatu rem dengan tromol yang akan memberikan hasil energi panas sehingga bisa menghentikan putaran tromol tersebut. Rem jenis tromol disebut internal expansion lining brake. Permukaan luar dari hub tersedia dengan sirip-sirip pendingin yang terbuat dari aluminium alloy (paduan aluminium) yang mempunyai daya penyalur panas yang sangat baik. Bagian dalam tromol akan tetap terjaga bebas dari air dan debu kerena tromol mempunyai alur untuk menahan air dan debu yang masuk dengan cara mengalirkannya lewat alur dan keluar dari lubang aliran. Berdasarkan cara pengoperasian sepatu rem, sistem rem tipe tromol pada sepeda motor diklasifikaskan menjadi dua, yaitu: 1. Tipe Single Leading Shoe Rem tromol tipe single leading shoe merupakan rem paling sederhana yang hanya mempunyai sebuah cam/nok penggerak untuk menggerakkan dua buah sepatu rem. Pada ujung sepatu rem lainnya dipasang pivot pin (pasak) sebagai titik tumpuan sepatu rem. Gambar 8.3 Rem tromol tipe single leading shoe

374 Sistem Rem dan Roda (Brake System and Wheel) Tipe Two Leading Shoe Rem tromol tipe two leading shoe dapat menghasilkan gaya pengereman kira-kira satu setengah kali single leading shoe. Terutama digunakan sebagai rem depan, tetapi baru-baru ini digantikan oleh disk brake (rem cakram). Rem tipe ini mempunyai dua cam/nok dan ditempatkan di masing-masing ujung dari leading shoe dan trailing shoe. Cam tersebut bergerak secara bersamaan ketika rem digunakan melalui batang penghubung yang bisa distel. Setiap sepatu rem mempunyai titik tumpuan tersendiri pivot) untuk menggerakkan cam. Gambar 8.4 Rem tromol tipe two leading shoe C. REM CAKRAM (DISC BRAKE) Rem cakram dioperasikan secara mekanis dengan memakai kabel baja dan batang/tangkai secara hidrolist dengan memakai tekanan cairan. Pada rem cakram, putaran roda dikurangi atau dihentikan dengan cara penjepitan cakram (disc) oleh dua bilah sepatu rem (brake pads). Rem cakram mempunyai sebuah plat disc (plat piringan) yang terbuat dari stainless steel (baja) yang akan berputar bersamaan dengan roda. Pada saat rem digunakan plat disc tercekam dengan gaya bantalan piston yang bekerja sacara hidrolik.

375 Sistem Rem dan Roda (Brake System and Wheel) 350 Gambar 8.5 Jangka pelengkung sebagai alat pelengkap untuk cabang meluncurkan cakram dan cakram siap keatas Menurut mekanisme penggerakannya, rem cakram dibedakan menjadi dua tipe, yaitu rem cakram mekanis dan rem cakram hidrolis. Pada umumnya yang digunakan adalah rem cakram hidrolis. Gambar 8.6 Cara kerja rem cakram hydraulic

376 Sistem Rem dan Roda (Brake System and Wheel) 351 Pada rem cakram tipe hidrolis sebagai pemindah gerak handel menjadi gerak pad, maka digunakanlah minyak rem. Ketika handel rem ditarik, piston di dalam silinder master akan terdorong dan menekan minyak rem keluar silinder. Melalui selang rem tekanan ini diteruskan oleh minyak rem untuk mendorong piston yang berada di dalam silinder caliper. Akibatnya piston pada caliper ini mendorong pad untuk mencengkram cakram, sehingga terjadilah aksi pengereman. Gambar 8.7 Pengambangan konstruksi cakram Cara kerja rem cakram: Saat tangkai rem atau pedal digerakkan, master silinder mengubah gaya yang digunakan kedalam tekanan cairan. Master silinder ini terdiri dari sebuah reservoir yang berisi cairan minyak rem dan sebuah silinder yang mana tekanan cair diperoleh. Reservoir biasanya dibuat dari plastik atau besi tuang atau aluminium alloy dan tergabung dengan silinder. Ujung dari pada master silinder di pasang tutup karet untuk memberikan seal yang baik dengan silindernya, dan pada ujung yang lain juga diberikan tutup karet untuk mencegah kebocoran cairan. Cara kerjanya: Saat tangki rem ditekan, piston mengatasi kembalinya spring dan begerak lebih jauh. Tutup piston pada ujung piston menutup port kembali dan piston bergerak lebih jauh. Tekanan cairan dalam master silinder meningkat dan cairan akan memaksa caliper lewat hose dari rem (brake hose). Saat tangkai rem dilepaskan/dibebaskan, piston tertekan kembali ke reservoir lewat port kembali (lubang kembali).

377 Sistem Rem dan Roda (Brake System and Wheel) 352 Sebelum bekerja - Tekanan minyak rem = 0 - Pad tidak menyentuh piringan Mulai bekerja - Tekanan minyak rem bertambah - Pad menyentuh piringan dengan ringan - Gesekan kecil - Tenaga pengeremen - kecil Pada saat bekerja - Tekanan minyak rem besar - Tekanan pad pada disk besar - Gesekan besar - Gaya pengereman besar Bebas pengereman - Tekanan minyak rem = 0 - Pad kembali pada posisi semula - Gaya pengeremen = 0 Gambar 8.8 Cara kerja rem cakram

378 Sistem Rem dan Roda (Brake System and Wheel) 353 Adapun keuntungan dari menggunakan rem cakram (Disk Brake) adalah sebagai berikut: 1. Panas akan hilang dengan cepat dan memiliki sedikit kecendrungan menghilang pada saat disk dibuka. Sehingga pengaruh rem yang stabil dapat terjamin. 2. Tidak akan ada kekuatan tersendiri seperti rem sepatu yang utama pada saat dua buah rem cakram digunakan, tidak akan ada perbedaan tenaga pengereman pada kedua sisi kanan dan kiri dari rem. Sehingga sepeda motor tidak mengalami kesulitan untuk tertarik kesatu sisi. 3. Sama jika rem harus memindahkan panas, Clearence antara rem dan bantalan akan sedikit berubah. Kerena itu tangkai rem dan pedal dapat beroperasi dengan normal. 4. Jika rem basah, maka air tersebut akan akan dipercikkan keluar dengan gaya Sentrifugal. Dari beberapa keuntungan di atas rem cakram terutama digunakan untuk rem depan. Karena pada saat rem digunakan sebagian besar beban dibebankan kebagian depan maka perlu menempatkan rem cakram pada rem depan. Baru-baru ini untuk meningkatkan tenaga pengereman digunakan double disc brake sistem (rem cakram untuk rem depan dan belakang). No.12 piston assembly (primary cup,piston and seal) 1 Reservoir cover 7 Brake lever 12 piston assembly 2 Diaphragm plate 8 Lever pivot bolt 13 spring 3 Rubber diaphragm 9 Pivot bolt locknut 14 rubber boot 4 Protector 10 Dust boot 15 sealing washer 5 Clamp 11 Circlip 16 banyo bolt 6 Brake light switch Gambar 8.9 Kekhasan master silinder pada rem depan

379 Sistem Rem dan Roda (Brake System and Wheel) 354 Gambar 8.10 Kekhasan komponen master silinder rem belakang Cairan Minyak Rem (Brake Fluid) Cairan minyak rem harus memenuhi syarat tidak merusak karet, dingin, dan mamiliki titik didih yang tinggi dan tidak bersifat korosi terhadap part. Cairan minyak rem biasanya menyerap uap air dalam udara sehingga titik didih lebih rendah akibatnya kekurangan uap air. Karena itu cairan minyak rem harus diganti secara berkala

380 Sistem Rem dan Roda (Brake System and Wheel) 355 D. RODA DAN BAN (WHEEL AND TYRE) 1. Roda (wheel) Pada sepeda motor roda berfungsi untuk menopang berat motor dan pengendara, menyalurkan daya dorong, pengereman, daya stir pada jalan.. Disaat yang sama roda juga menyerap tekanan/kejutan dari permukaan jalan Pada sepeda motor roda berfungsi untuk menopang berat motor dan pengendara pada area yang kecil dimana permukaan ban menyentuh permukaan jalan, menyalurkan daya dorong, pengereman, daya stir pada jalan. Untuk itu roda harus bersifat kuat, kaku/rigit dan ringan. Ada tiga bagian roda pada sepeda motor, yaitu bagian hub roda, bagian pelek roda (wheel rim), dan ban (tire). Pada hub roda terpasang bantalan peluru (bearing), sepatu rem, tromol dan komponen bantu lainnya. Hub dan pelek roda dihubungkan oleh jari-jari (spokes). Ada juga roda dengan model satu kesatuan dimana hub dan peleknya terbuat dari bahan yang ringan (seperti pada aluminium). Design roda/pelek tergantung dari tipe struktur, material dan metode pembuatan roda dari pabrik yaitu: a. Tipe roda jari-jari (wire spoke wheel) Gambar 8.11 Roda tipe jari-jari Tipe ini paling banyak digunakan pada sepeda motor. Dimana roda terbuat dari lembaran-lembaran baja atau alumunium alloy yang melingkar dan hub/tromol terpasang kaku oleh jari-jari.

381 Sistem Rem dan Roda (Brake System and Wheel) Grease seal 2 Bearing 3 Spacer 4 Hub casting 5 Brake disc bolt 6 Brake caliper 7 Speedometer cable 8 Axle 9 Speedometer drive unit 10 Speedometer drive gear 11 Bearing 12 Retaining plate 13 Hub cover 14 Collar 15 Axle nut Gambar 8.12 Potongan dan tinjauan setempat dari kekhasan Hub b. Tipe roda dari composit (composite wheel) Gambar 8.13 Roda tipe plat press Tipe ini paling banyak digunakan pada sepeda motor dengan roda kecil (tipe keluarga atau rekreasi). Rodanya/pelek dibuat dengan menyatukan rim dan hub dengan menggunakan baut dan mur.

382 Sistem Rem dan Roda (Brake System and Wheel) 357 c. Tipe roda dari paduan tuang (cast alloy wheel) Roda dan jari-jari menjadi satu disebut tipe Light alloy disk wheel. Regiditas dan kekuatannya sama dengan sebelumnya, tidak diperlukan penyetelan untuk balancinga roda (beda dengan jarijari yang perlu disetel untuk balancingnya). Designnya sangat trendi biasanya digunakan motor besar, kadang-kadang pada motor kecil dan motor-motor sport. Gambar 8.14 Tipe roda dari besi tuang

383 Sistem Rem dan Roda (Brake System and Wheel) 358 d. Roda tipe khusus ( dibentuk dari baja yang di press dan didalamnya terbagi dua) 1 Bolt 3 Rim half 5 Nut 7 Inner tube 2 Rim half 4 Spring washer 6 Tyre Gambar 8.15 Membelah susunan pelek roda 2. Ban (Tyre) Ban merupakan bagian roda yang langsung bersentuhan dengan jalan. Disaat sepeda motor berjalan dan berhenti akan terjadi gesekan antara ban dan permukaan jalan. Ban selain berfungsi untuk menopang berat motor dan pengendara pada area yang kecil dimana permukaan ban menyentuh permukaan jalan, menyalurkan gaya tekan pada saat pengendaraan dan pengereman, juga meredam kejutan secara simultan/terus menerus. Pada dasarnya ban yang digunakan pada sepeda motor, umumnya terdiri atas dua bagian utama yaitu ban luar dan ban dalam. Konstruksi ban pada umumnya sama, baik ban dengan ban dalam maupun ban tanpa ban dalam. Ban bagian luar disebut Tread terbuat dari karet yang keras karena bersentuhan langsung dengan tanah. Untuk itu tread harus memiliki ketahan aus yang tinggi dan cukup baik melindungi ban dalam. Sedangkan lapisan bagian dalam ban disebut Breaker, carcas dan tread fungsinya menjaga dan melindungi ban bagian dalam dari tekanan udara dan pukulan dari luar secara bersamaan. Carcas ini terbuat dari lapisan kain (fabric layer) dengan bahan nilon dan rayon yang dilapisi

384 Sistem Rem dan Roda (Brake System and Wheel) 359 karet dan kawat yang jumlah lapisannya menentukan kekuatan ban. Disamping itu ada lapisan bead yang mampu memegang dengan kuat pada pelek melalui tekanan udara selama berjalan. Lapisan yang berbeda dibagian dalam dari ban TUBLESS (tanpa ban dalam) yang bersifat elastis, jika tertusuk paku udara bagian dalam tidak bocor keluar. Ban tanpa mempunyai ban dalam disebut ban TUBELESS dengan konstruksi khusus agar udara bagian dalam tidak bocor keluar. Biasanya pada bagian luar ban terdapat tanda TUBELESS Gambar 8.16 Ban tipe radial

385 Sistem Rem dan Roda (Brake System and Wheel) 360 Gambar 8.17 Ciri-ciri umum sidewall dari ban (bentuk samping dari ban) Ban yang digunakan secara spesifik tidak sama antara ban depan dan ban belakang. Biasanya diameter ban yang digunakan sepeda motor telah dicantumkan dalam buku manual atau spesifikasi teknis motor tersebut. Ada dua macam ban, yaitu ban radial dan ban biasa. Ban radial lebih kuat, lebih stabil, bisa menghemat bensin, tetapi harganya relatif lebih mahal dari ban biasa. Ukuran dan jenis ban bisa diketahui dengan membaca kode ban. Kode ban memberikan informasi tentang ciri-ciri umum dan kerataan (flatness) dari ban. Ciri-Ciri Umum dari Ban Ciri-ciri umum dari ban antara lain: 1. Tanda ukuran ban dan lokasi 2. Lebar dari ban 3. Batas kecepatan 4. Diameter pelek 5. Kekuatan (jumlah lapisan/ply rating)

386 Sistem Rem dan Roda (Brake System and Wheel) 361 Tanda ukuran ban dan lokasi H 18 4PR menyatakan ukuran dari lebar ban, kode kecepatan, diameter pelek, tanda indikasi jumlah lapisan dan kekuatan ban lebar dari ban (inchi) H 18 4PR 4.60 Batas kecepatan Kecepatan maksimum yang diijinkan pada ban PR H Tanda Untuk scooter N S H V kecepatan maksimum 100 km/h 140 km/h 180 km/h 210 km/h 210 km/h over

387 Sistem Rem dan Roda (Brake System and Wheel) 362 Diameter pelek (inchi) 4.60 H 18 4PR Kekuatan (jumlah lapisan/ply rating 4.60-H-18 4PR Ban ini menggunakan lapisan kain dari bahan nilon didalam carcase. indikasi kekuatan dengan 4 lapisan (ply ranting) Kerataan (flatness) Kerataan (flatness) 1. Lebar dari ban (mm) 2. Flatness/kerataan (%) 3. Indikasi beban (load index) 130/ H Lebar dari ban (mm) 130 / H

388 Sistem Rem dan Roda (Brake System and Wheel) 363 Flatness/kerataan (%) 130/ H tinggiban Flatness (%) = x 100 lebarban Contoh : Hitung flatness (%) dari data yang ditunjukkan gambar dibawah ini: Diketahui: tinggi ban 117 lebar ban maka flatness= x = 0,9 x 100 = 90 %

389 Sistem Rem dan Roda (Brake System and Wheel) 364 Indikasi beban (load index) 130/90 16 H 67 Beban tertinggi untuk ban dari data pada gambar tersebut adalah: Tekanan angin beban maximum 67 2 kgf/cm kg

390 Sistem Rem dan Roda (Brake System and Wheel) 365 Berikut ini contoh lain dari kode ban dan cara membacanya: PR/42 P Kecepatan maksimal yang diizinkan sesuai table P=150 Km/jam Beban maksimal yang diizinkan Play rating atau lapisan kekuatan Garis tengah lingkaran ban (inci) Lebar ban dalam inci Kecepatan maksimal yang diizinkan sesuai table P= 210 Km/jam Beban maksimal yang dizinkan Garis tengah lingkaran ban Ban radial Perbandingan tinggi ban dengan lebar ban dalam (%) Ukuran lebar ban dalam mm 170/60.R 18 73H E. PEMERIKSAAN DAN PERBAIKAN SISTEM REM DAN RODA 1. Jadwal Perawatan Berkala Sistem Rem dan Roda Jadwal perawatan berkala sistem rem dan roda sepeda motor yang dibahas berikut ini adalah berdasarkan kondisi umum, artinya sepeda motor dioperasikan dalam keadaan biasa (normal). Pemeriksaan dan perawatan berkala sebaiknya rentang operasinya diperpendek

391 Sistem Rem dan Roda (Brake System and Wheel) 366 sampai 50% jika sepeda motor dioperasikan pada kondisi jalan yang berdebu dan pemakaian berat (diforsir). Tabel di bawah ini menunjukkan jadwal perawatan berkala sistem rem dan roda yang sebaiknya dilaksanakan demi kelancaran dan pemakaian yang hemat atas sepeda motor yang bersangkutan. Pelaksanaan servis dapat dilaksanakan dengan melihat jarak tempuh atau waktu, tinggal dipilih mana yang lebih dahulu dicapai. Tabel 1. Jadwal perawatan berkala (teratur) sistem rem dan roda No Bagian Yang Diservis Tindakan setiap dicapai jarak tempuh 1 Sepatu rem atau pad Periksa, bersihkan, dan stel bila perlu setiap km 2 Jarak main bebas rem 3 Selang rem (khusus rem hidrolis) 4 Minyak rem (khusus rem hidrolis) Periksa dan stel setelah 500 km, km, km dan selanjutnya setiap km Periksa setiap km dan ganti setiap 4 tahun sekali Periksa setiap km dan ganti setiap 2 tahun sekali 5 Ban dan roda Periksa setelah km dan selanjutnya setiap km 2. Sumber-Sumber Kerusakan Sistem Rem dan Roda Tabel di bawah ini menguraikan permasalahan atau kerusakan sistem rem dan roda yang umum terjadi pada sepeda motor, untuk diketahui kemungkinan penyebabnya dan menentukan jalan keluarnya atau penanganannya (solusinya).

392 Sistem Rem dan Roda (Brake System and Wheel) 367 Tabel 2. Sumber-sumber kerusakan sistem rem dan roda Permasalahan Daya rem kurang Rem berbunyi Gerak tuas rem kurang baik Minyak rem bocor Kemungkinan Penyebab 1. Minyak rem bocor pada sistem hidrolik 2. Kanvas rem hangus 3. Piringan rusak 4. Terdapat angin pada sistem hidrolik 5. Kanvas aus 6. Permukaan kanvas terdapat oli 7. Permukaan drum rusak/aus 8. Jarak main tuas rem terlalu banyak 1. Permukaan kanvas rem berkarbon 2. Pad set habis 3. Bearing roda rusak 4. As roda belakang atau depan kendor 5. Pad set hangus 6. Terdapat benda asing pada minyak rem 7. Lubang master cylinder tersumbat 8. Permukaan kanvas rem licin 9. Kanvas rem aus 1. Ada udara pada sistem hidrolik 2. Minyak rem kurang 3. Kualitas minyak rem kurang baik 4. As tuas rem aus 5. Drum dan kanvas rem aus 1. Sambungan kurang kencang 2. Selang retak 3. Piston atau cup aus Solusi (Jalan Keluar) 1. Perbaiki atau ganti 2. Ganti 3. Ganti 4. Buang angin 5. Ganti 6. Ganti 7. Ganti 8. Setel 1. Perbaiki permukaan kanvas dengan amplas 2. Ganti 3. Ganti 4. Kencangkan sesuai petunjuk 5. Ganti 6. Ganti minyak rem 7. Bongkar dan bersihkan master cylinder 8. Bersdihkan dengan amplas 9. Ganti 1. Buang angin 2. Isi minyak rem sampai batas, buang udara 3. Ganti dengan minyak rem yang tepat 4. Ganti 5. Ganti 1. Kencangkan sesuai petunjuk 2. Ganti 3. Ganti piston dan/ atau cup

393 Sistem Rem dan Roda (Brake System and Wheel) 368 Sistem Pengereman Jarak Main Bebas Handel Rem Ukur jarak main bebas handel rem depan pada ujung handel. Jarak main bebas: mm. Jika diperlukan penyetelan ulang, putar mur penyetelan rem depan sampai diperoleh jarak main bebas yang tepat Catatan: Pastikan bahwa potongan pada mur penyetel duduk dengan benar pada pin lengan rem, setelah melakukan penyetelan terakhir jarak main bebas. Jarak Main Bebas Pedal Rem Ukur jarak main bebas pedal rem belakang pada ujung pedal rem. Jarak main bebas: mm.jika perlu disetel ulang, putar mur penyetel rem belakang sampai diperoleh jarak main bebas yang ditentukan. Catatan: Pastikan bahwa potongan pada mur penyetel duduk dengan benar pada pin lengan rem, setelah melakukan penyetelan terakhir jarak main bebas. Mengeluarkan Udara dari Saluran Minyak Rem Udara yang terkurung pada saluran minyak rem dapat menjadi penghalang yang menyerap sebagaian besar tekanan yang berasal dari master cylinder, berarti mengganggu kemampuan pengereman dari disc brake. Keberadaan udara ditandai dengan kekosongan pada saat menarik tuas rem dan juga lemahnya daya pengereman.mengingat bahaya yang mungkin terjadi terhadap mesin dan pengemudi akibat udara yang terkurung tersebut, sangat diperlukan mengeluarkan udara saluran minyak rem setelah pemasangan kembali sistem pengereman dengan cara sebagai berikut: 1. Isi tabung reservoir master cylinder hingga mencapai tepi batas lubang pemeriksaan. Ganti tutup reservoir agar tidak kemasukan kotoran. 2. Pasang selang pada katup pembuangan caliper, dan masukan ujung yang satunya pada tempat penampungan. 3. Tarik dan lepas tuas rem beberapa kali dengan cepat dan kemudian tarik tuas rem tersebut dan jangan dilepas. Longgarakan klep pembuangan udara dengan memutarnya seperempat putaran agar minyak rem mengalir ketempat penampungan, hal ini akan menghilangkan ketegangan dari tuas rem sehingga dapat menyentuh handel gas. Kemudian tutup klep pembungan udara, pompa dan mainkan tuas, dan buka klep

394 Sistem Rem dan Roda (Brake System and Wheel) 369 pembuangan udara. Ulangi proses ini beberapa kali sampai kemudian minyak rem mengalir dengan gelembung-gelembung udara ke tempat penampungannya. 4. Tutup katup pembuangan dan lepaskan sambungan selang. Isi tabung reservoir di atas garis lower limit. Catatan: Isi terus minyak rem pada tabung reservoir begitu diperlukan sementera pembuanngan udara dari sistem pengereman dilakukan. Jaga agar minyak rem tetap ada pada reservoir. Hati-hati dengan minyak rem, cairan ini bereaksi kimia terhadap bahan-bahan cat, plastik dan karet. Pemeriksaan Jarak Main Bebas Rantai Roda 1. Putar kunci kontak ke posisi off dan masukan gigi transmisi ke dalam neutral, letakkan sepeda motor di atas standar utamanya. 2. Periksa jarak main bebas rantai roda yaitu: mm. 3. Jangan memeriksa atau menyetel rantai roda sementara mesin dalam keadaan hidup. 4. Jarak main bebas rantai roda yang berlebihan dapat mengakibatkan kerusakan pada bagian rangka sepeda motor. Penyetelan 1. Longgarakan Mur poros roda belakang dan mur selongsong (sleeve nut) 2. Setel tegangan rantai roda dengan memutar kedua mur penyetelan. 3. Perhatikan bahwa posisi tanda penyesuaian pada penyetel rantai pada skala memberikan penunjukan yang sama untuk kedua sisi dari pada lengan ayun. 4. Kencangkan mur selongsong roda belakang sesuai dengan torsi yang ditentukan yaitu: 4,5 kg-m. 5. Kencangkan mur poros roda belakang sesuai dengan torsi yang ditentukan yaitu: 5,0 kg-m. 6. Kencangkan kedua mur-mur penyetelan. 7. Periksa kembali jarak main bebas rantai roda dan kebebasan perputaran roda. 8. Periksa jarak main bebas pedal rem belakang dan setel kembali bila diperlukan. 9. Lepaskan baut-baut pemasangan rumah rantai roda dan lepaskan rumah rantai roda. 10. Lumasi rantai roda dengan minyak pelumas transmisi.seka kelebihan minyak pelumas dari rantai roda

395 Sistem Rem dan Roda (Brake System and Wheel) 370 Pembersihan dan Pelumasan 1. Jika rantai roda menjadi kotor sekali, rantai roda harus segera dibuka dan dibersihkan sebelum dilumasi. 2. Buka penutup bak mesin kiri belakang 3. Lepaskan klip pemasangan, mata penyambung rantai utama dan rantai roda 4. Bersihkan rantai roda dengan minyak solar atau minyak pembersih lain yang tidak mudah terbakar dan keringkan. Pastikan bahwa rantai roda telah diseka dengan kering sebelum melumasinya dengan minyak pelumas 5. Lumasi rantai roda dengan minyak pelumas transmisi (SAE 80-90). Seka kelebihan minyak pelumas. 6. Periksa rantai roda terhadap kerusakan atau keausan. 7. Gantilah roda yang telah mengalami kerusakan pada penggelinding-penggelindingnya atau yang telah kendor sambungan-sambungannya. 8. Ukur panjang rantai roda dengan cara memegangnya sehingga semua sambungan-sambungan lurus. Panjang rantai roda 41 pm 46 sambungan, standar 508, batas servis Pemeriksaan Sproket 1. Memasang rantai roda baru pada sproket yang aus akan mengakibatkan rantai roda yang baru tersebut akan mengalami keausan dengan cepat. 2. Periksa rantai roda dan gigi-gigi sproket terhadap keausan atau kerusakan, gantilah bila perlu. 3. Jangan memasang rantai roda baru pada sproket yang telah aus. 4. Baik rantai roda maupun sproket harus dalam kondisi yang baik, jika tidak maka rantai roda yang baru akan cepat aus. 5. Periksa baut dan mur pemasangan rantai roda dan sproket, kencangkan bila ada yang longgar. 6. Pasang rantai roda pada sproket. 7. Pasang mata rantai penyambung utama dan lempeng mata rantai. 8. Bagian belakang klip pemasangan yang terbuka harus menunjuk ke arah berlawanan dari pada arah perputaran rantai.

396 Sistem Rem dan Roda (Brake System and Wheel) 371 SOAL-SOAL LATIHAN BAB VIII 1. Jelaskan perbedaan antara rem tromol dan rem cakram! 2. jelaskan cara kerja rem cakram 3. Ada 4 keuntungan rem cakram, terangkan masing-masingnya! 4. Dibawah ini gambar konstruksi apa, berikan nama dari tiap-tiap nomor yang dicantumkan, terangkan fungsinya! 5. Berdasarkan cara pengoperasian sepatu rem, sistem rem tipe tromol pada sepeda motor diklasifikaskan menjadi dua, sebutkan dan jelaskan 6. Cara kerja rem cakram ditunjukkan oleh gambar dibawah ini, betulkan urutan gambar sesuai tahapannya dan berikan keterangan dari masing-masing tahapan tersebut! 1 2

397 Sistem Rem dan Roda (Brake System and Wheel) Ada 4 tipe roda yang biasa kita kenal, sebutkan masingmasingnya dan apa perbedaan diatara tiap tipe tersebut! 8. Jelaskan mana yang termasuk ciri-ciri umum dari ban. Diketahui tanda ukuran ban adalah: 4.60 H 18 4PR Terangkan cara membacanya! 9. Sumber-Sumber Kerusakan Sistem Rem dan Roda ada beberapa macam, sebutkan 2 diantaranya dan terangkan!

398 Sistem Pelumasan dan Pendinginan 373 BAB IX SISTEM PELUMASAN DAN PENDINGINAN A. PELUMASAN Pelumasan adalah proses memberikan lapisan minyak pelumas di antara dua permukaan yang bergesek. Semua permukaan komponen motor yang bergerak seharusnya selalu dalam keadaan basah oleh bahan pelumas. Fungsi utama pelumasan ada dua yaitu mengurangi gesekan (friksi) dan sebagai pendingin. Bila terjadi suatu keadaan luar biasa, dimana sistem pelumasan tidak bekerja, maka akan terjadi gesekan langsung antara dua permukaan yang mengakibatkan timbulnya keausan dan panas yang tinggi. Bahan pelumas di dalam mesin bagaikan lapisan tipis (film) yang memisahkan antara permukaan logam dengan permukaan logam lainnya yang saling meluncur sehingga antara logam-logam tersebut tidak kontak langsung. Selain seperti yang diterangkan diatas, bahan pelumas juga berfungsi sebagai sekat (seal) pada cincin torak yang dapat menolong memperbesar kompresi motor. Gambar 9.1 Pendinginan dan pelumasan pada mesin sepeda motor

399 Sistem Pelumasan dan Pendinginan 374 Kegagalan pada sistem pelumasan tidak hanya berakibat rusaknya sepeda motor tetapi juga dapat menimbulkan kebakaran dan kecelakaan pengemudi. Kebakaran akan terjadi disebabkan oleh bagian yang panas dapat melelehkan pembalut kabel dan karenanya akan segera terjadi hubungan singkat dan percikan api. Bahan bakar bensin menyambar percikan api dan akan terjadi kebakaran. Pelumasan dinding silinder merupakan bagian yang penting untuk diperhatikan. Fungsi pelumasan disini sebagaimana dikatakan bukan saja untuk mengurangi gesekan tetapi juga untuk perapat. Dengan adanya minyak pelumas antara ring piston dan dinding silinder maka diharapkan kebocoran kompresi dari langkah usaha dapat dihindarkan. Untuk menjamin pelumasan dinding silinder maka dipasang ring oli. Ring oli tidak dapat bekerja dengan baik jika pelumas terlalu kental, atau bila terjadi lumpur (sludge) pada celah ring. Begitu pentingnya fungsi dan peran minyak pelumas, maka diperlukan sistem pelumasan yang bekerja dengan pasti, mudah dikontrol dan dipelihara. Fungsi minyak pelumas secara keseluruhan ialah untuk mencegah atau mengurangi: 1. Gesekan 2. Persentuhan bidang kerja 3. Pemanasan yang berlebihan 4. Keausan 5. Karatan 6. Pengendapan kotoran Jika sistem pelumasan pada suatu mesin tidak dilakukan maka akan mengakibatkan hal-hal berikut ini: Bagian peralatan yang bergesekan akan cepat aus. Timbulnya panas yang berlebihan; Tenaga mesin berkurang; Timbul karat/korosi; Umur pemakaian berkurang. Sehingga pelumasan yang teratur dan selalu memperhatikan mutu minyak pelumas dapat memperpanjang usia motor bakar terhadap kerusakan, karena terhindar dari: 1. Keausan silinder 2. Terbakarnya bantalan 3. Pengotoran busi 4. Kemacetan cincin-cincin torak 5. Pelumpuran 6. Deposit 7. Pemborosan bahan bakar

400 Sistem Pelumasan dan Pendinginan 375 B. PELUMASAN PADA SEPEDA MOTOR EMPAT LANGKAH Bahan pelumas harus dapat didistribusikan secara meyakinkan ke semua bagian yang memerlukan. Ada tiga jenis pelumasan pada motor empat langkah: a. Boundary lubrication, yaitu bila permukaan bearing dilapisi dengan lapisan halus minyak pelumas. Lapisan minyak pelumas ini mempunyai keterbatasan. Bila kekuatan atau berat komponen melebihi batas kemampuannya, maka lapisan tersebut dengan mudah hancur dan akan terjadi keausan. b. Pelumasan tekan (thin film lubrication), yaitu pelumasan antara dua permukaan juga, tetapi minyak pelumas dialirkan dengan pompa minyak pelumas (tekanan) untuk penggantian dengan minyak pelumas yang baru. c. Hydrodynamic lubrication yaitu pelumasan yang mampu menahan beban berat seperti batang penggerak dan pada pelumasan roda gigi. Minyak pelumas dengan kekentalan yang lebih tinggi dialirkan sehingga dapat memelihara sistem pelumasan dengan baik. Gambar 9.2 Jenis pelumasan: Film, Thick Film dan Hydrodynamic

401 Sistem Pelumasan dan Pendinginan 376 C. SISTIM PELUMASAN SEPEDA MOTOR EMPAT LANGKAH Pada Motor empat langkah bak engkol merupakan satu kesatuan, baik untuk bagian motor bakar ataupun untuk kopling dan gigi transmisi. 1 Sump (oil pump) 8 Oil feed to con-rod journals 15 Oil feed to cylinder head 2 Oil strainer 9 Starter clutch gear 16 Camshaft caps 3 Oil pump 10 Alternator rotor 17 Camshaft 4 Pressure relief valve 11 Oil feed to starter clutch 18 Oil gallery 5 Oil filter 12 Gearbox input shaft 19 Oil pipes 6 Oil cooler 13 Gearbox output shaft 20 Oil drain plug 7 Crankshaft 14 Oil pressure switch 21 Oil jets (nozzles) Gambar 9.3 Resirkulasi system pelumasan (Kawasaki ZX-6R)

402 Sistem Pelumasan dan Pendinginan 377 Sepeda motor empat langkah pelumasannya hanya ada satu macam, yaitu dari bak engkol. Minyak pelumas diisikan pada bak engkol. Dari bak engkol minyak pelumas dipercikkan ke dinding silinder untuk melumasi dinding silinder motor. Ring oli yang dipasang pada piston bertugas meratakan dan membersihkan oli pada dinding silinder tersebut. Oleh karena itu pada sepeda motor empat langkah dilengkapi dengan ring oli. Gambar 8.3 menunjukkan sistem resirkulasi pelumasan pada mesin empat langkah. Penyimpanan Pelumas Dasar dari pekerjaan sistim resirkulasi pada mesin empat langkah adalah terletak pada perbedaan dalam cara oli disimpan pada mesin. Ada dua sistem: 1. Sistem Tempat Oli Kering (Dry-Sump System) Oli ditampung terpisah dalam tangki oli dan diberikan tekanan pompa melalui saluran yang sama dalam sistem wet sump. Setelah melumasi oli kembali ke crankcase dan disalurkan kembali ke tangki oleh pompa. Kopling dan transmisi dilumasi oleh cipratan oli dari pompa ke tangki oli. Gambar 9.4 Sistem dry-sump

403 Sistem Pelumasan dan Pendinginan 378 Gambar 9.5 Sistem dry-sump dengan penggunananya pada rangka 2. Sistem Tempat Oli Basah (Wet sump system) Minyak pelumas berada diruang oli yang ditempatkan dibawah crankcase, dari ruangannya oli naik dan diberikan menurut tekanan. Sebagian oli diberikan ke poros engkol dan sebagian ke pengerak katup. Sebagian oli pelumas dalam crankcase digunakan untuk melumasi dinding silinder. oli melumasi silinder piston dan ring piston dan kelebihan oli disapu kebawah oleh ring dan kemudian kembali ke crankcase. Kopling dan trasmisi dilumasi dengan cipratan oli dari bak oli atau tekanan pompa oli. Keuntungan Sistem Wet sump : a. Konstuksi sangat sederhana b. Memanasi mesin tidak terlalu lama. c. Jika oil dalam bak berkurang mudah mehambah. d. Sirkulasi oil lebih cepat dan cepat mencuci. e. Efficiensi pendinginan lebih rendah.

404 Sistem Pelumasan dan Pendinginan 379 Keterangan gambar: 1 Oil delivery pipe to 4 Oil filter 7 Oil strainer cylinder head 2 Inlet camshaft 5 Bypass valve 8 Oil pump 3 Exhaust camshaft 6 Pressure relief valve 9 Sump (oil pan) Gambar 9.6 Pelumasan sistem basah (wet sump) dari mesin 4 silinder

405 Sistem Pelumasan dan Pendinginan 380 Gambar 9.7 Pelumasan sistem basah dari mesin satu silinder Oli dibagian bawah crankcase dipompa keatas dengan pompa trochoid dengan sistim tekan dan disaring oleh filter sebelum di alirkan ke semua komponen yang perlu pelumasan. Kebersihan Sistem pelumasan mempunyai sistem saringan oli untuk membersihkan debu, metal dan carbon pembakaran. Jika komponen menjadi sangat kotor, akan menghasilkan efisiensi saringan yang rendah sehingga tidak bagus untuk membersihkan oli yang sudah dipakai. Untuk itu elemen filter oli harus dibersihkan atau diganti secara periodik.

406 Sistem Pelumasan dan Pendinginan 381 Gambar 9.8 Spin-on type filter Pompa Oli untuk sistem pelumasan mesin empat langkah Pompa oli pada sepeda motor berfungsi untuk menyemprotkan oli agar bercampur dengan gas baru dan masuk ke dalam ruang bakar. Jumlah oli yang disemprotkan ke dalam ruang bakar tersebut harus sesuai dengan ketentuan. Oli yang disemprotkan tidak boleh terlalu banyak tetapi juga tidak boleh kurang. Jika oli yang disemprotkan terlalu banyak mengakibatkan ruang bakar menjadi cepat kotor oleh kerak/arang karbon dan polusi yang ditimbulkan oleh asap gas buang. Jika oli yang disemprotkan kurang maka akan mengakibatkan motor menjadi cepat panas. Hal ini akan memungkinkan piston macet di dalam silindernya. Untuk mendapatkan penyemprotan yang sesuai pompa oli harus disetel. Karena jenis dan macam pompa oli cukup banyak maka cara penyetelannya juga berbeda-beda.

407 Sistem Pelumasan dan Pendinginan 382 Berikut ini beberapa tipe pompa oli yang sering digunakan: 1. Pompa oli tipe plunger Pompa oli tipe plunger sering ditemukan digunakan pada mesin kuno dengan pelumasan sistem kering. 2. Pompa oli tipe gear Oleh putaran 2 gigi didalam rumah pompa, oli ditarik kedalam melalui lubang pemasukan dan keluar melalui lubang pengeluaran. 3. Pompa oli tipe trochoid Disini dua rotor berputar pada kecepatan yang berbeda, sehingga menyebabkan perbedaan volume diantara dua rotor tersebut, karena adanya perbedaan volume tadi menyebabkan oli mengalir keluar dan kedalam. Gambar pompa oli tipe plunger

408 Sistem Pelumasan dan Pendinginan 383 Outlet Inlet Gambar pompa oli tipe gear Inlet Outlet Gambar pompa oli type Trochoid Gambar 9.9 Tipe-tipe pompa oli Penyetelan pompa oli Amati tanda penyetelan pompa oli. Tanda penyetelan tersebut biasanya adalah sebagai berikut: Pada waktu gas tangan diputar penuh maka tanda pada tuas pompa dan tanda pada rumah pompa segaris. Jika tanda tersebut tidak segaris maka perlu penyetelan pada kabel pompa. Pada sepeda motor Kawasaki penyetelan pompa oli dilakukan setelah mesin mencapai suhu kerja. Setelah mesin hidup pada putaran stasioner gas tangan diputar sampai putaran mesin mulai bertambah. Pada posisi ini tanda dari pompa oli harus segaris. Pada sepeda motor Yamaha bebek lama penyetelan dilakukan dengan mengendorkan mur pengunci kemudian baut penyetel diputar hingga tanda yang terdapat pada puli lurus dengan baut yang terdapat pada plat penyetel. Penyetelan dilakukan dalam keadaan katup gas menutup. Pada salah satu sepeda motor jenis bebek yang baru penyetelan dilakukan dengan mengendurkan mur pengunci kemudian mur penyetel diputar sehingga tanda pada puli penyetel sejajar di tengah-tengah mur pilip atau terletak pada jarak 1 mm dari mur tengah. Kemudian mur pengunci dikeraskan.

409 Sistem Pelumasan dan Pendinginan 384 D. SISTEM PELUMASAN SEPEDA MOTOR DUA LANGKAH Sistem pelumasan pada sepeda motor dua langkah tidak sama dengan dengan sepeda motor empat langkah. Pada sepeda motor dua langkah transmisi nya diberi pelumasan tersendiri terpisah dengan poros engkol. Hal ini dikarenakan terpisahnya ruang transmisi dengan ruang engkol, makanya mesin dua langkah harus menggunakan dua macam minyak pelumas. Seperti kita ketahui bahwa kontruksi bak engkol motor dua langkah terbagi ke dalam dua bagian antara lain bak engkol untuk perangkat motor bakar dan bak engkol untuk perangkat kopling, dan gigi transmisi. Gambar 9.10 Lokasi yang membutuhkan pelumasan pada mesin dua langkah

410 Sistem Pelumasan dan Pendinginan 385 Sistem pelumasan sepeda motor dua langkah dibedakan menjadi dua, yaitu: 1. Sistem Pelumasan Campur. Pada sistem ini oli dicampurkan dengan bahan bakar (bensin) pada tangki. Contohnya adalah pada sepeda motor vespa. Gambar 9.11 Pelumasan dengan sistem campur pada mesin dua langkah Sistem campur langsung banyak digunakan pada sepeda motor lama seperti Vespa. Pada sistem ini oli sebagai pelumas dicampurkan langsung ke dalam tangki bensin. Perbandingan antara oli dengan bensin antara 1: 20 sampai dengan 1: 50, tergantung pada keperluannya. Besarnya oli yang dicampur ke dalam bensin tersebut didasarkan pada kebutuhan pelumasan pada putaran tinggi, agar mutu pelumas dan perbandingannya memenuhi syarat sebaiknya pencampurannya

411 Sistem Pelumasan dan Pendinginan 386 dilakukan sendiri dengan memperhatikan mutu oli pelumas dan prosentase perbandingannya. Oli yang digunakan untuk mesin tidak sama dengan oli yang digunakan untuk transmisi. Oli mesin lebih encer. Kekentalan oli tersebut ditandai dengan bilangan SAE (The Society Of Automotive Engineer). Semakin besar SAE-nya semakin kental minyak pelumas tersebut. Cara mencampur oli dengan bensin adalah sebagai berikut: Siapkan satu tempat bensin dalam ukuran liter yang sudah diketahui dengan pasti volumenya. Isikan bensin ke dalam tempat penampungan tersebut sampai penuh atau sesuai dengan kebutuhan. Ingat volume bensin yang diisikan harus diketahui. Isikan oli ke dalam bensin dengan perbandingan sesuai dengan ketentuannya. Aduk dengan batang yang bersih atau kocok agar bensin dan oli benar-benar bercampur. Isikan campuran bensin dan oli tersebut ke dalam tangki bensin kendaraan. 2. Pelumasan sistem terpisah (untuk produk Yamaha dinamakan dengan Auto lube). Pada sistem ini oli ditampung pada tempat tersendiri. Oleh karena itu digunakan dua jenis minyak pelumas, yaitu pelumasan untuk bak engkol dan pelumasan untuk motornya. Untuk menjalankan tugas tersebut, sistem ini dilengkapi dengan pompa oli. Gambar 9.12 Sistem pelumasan auto lube

412 Sistem Pelumasan dan Pendinginan 387 Contoh lainnya adalah Sistem pelumasan CCI yang digunakan pada sepeda motor Suzuki. CCI itu sendiri singkatan dari Crankshaft, Cylinder oil Injection yang artinya oli pelumas disuntikkan pada bagian poros engkol dan silinder. Gambar 9.13 Sistem injeksi dengan menyuplai oli ke bermacam-macam pipa Cara kerja sistem CCI adalah sebagai berikut, oli pelumas ditempatkan pada tangki khusus dan biasanya ditempatkan disebelah bawah jok tempat duduk. Bila mesinnya kita hidupkan berarti pompa oli dapat bekerja dan mengalirlah oli pelumas yang ada pada tangki menuju pompa oli setelah masuk pada pompa oli kemudian disebar dengan bantuan gaya sentrifugal yang dihasilkan oleh pompa oli tersebut, oli yang disebar ini disalurkan kemasing-masing pipa salurannya. Salah satu dari saluran oli pelumas dihubungkan pada lubang di atas bak engkol, di mana lubang tersebut tembus sampai ke bagian bantalan peluru yang menunjang poros engkol, oli pelumas yang masuk: pada lubang ini akan diteruskan sampai ke bagian ujung besar batang piston guna melumasi bantalan-peluru yang ada pada ujung besar batang piston tersebut.

413 Sistem Pelumasan dan Pendinginan 388 Sedangkan saluran yang satu lagi dihubungkan dengan sebuah lubang yang ada dibagian atas bak engkol, kemudian lubang ini tembus pada lubang yang terdapat di dalam blok silinder, ujung dari saluran oli ini berakhir pada lubang masuk (inlet port). Oli pelumas yang ke luar dari tengah lubang masuk (inlet port) ini akan turut terbawa bersama campuran bensin dan udara ke dalam bak engkol berupa kabut, kabut oli ini akan digunakan untuk melumasi lubang silinder, bantalan peluru pada ujung kecil batang piston dan bantalanbantalan peluru penopang poros engkol. Perjalanan oli pelumas yang tidak hanya sampai pada bagian bak engkol saja, akan tetapi terus turut terbawa bersama bahan bakar menuju proses pembakaran dan oli pelumas tersebut habis terbakar. Oleh sebab itu sistern pelumasan semacam ini, baik itu yang menggunakan sistem CCI, Autolub atau sistem campur langsung dengan bensin pada tangki (vespa), kesemuanya itu dapat disebut menggunakan sistem TOTAL LOSS. Untuk melumasi perangkat kopling (clutch) atau gigi-gigi transmisi digunakan oli pelumas tersendiri, yang mana oli pelumas ini tidak boleh turut masuk atau terhisap pada bagian motor bakarnya. Agar oli pelumas ini tidak turut masuk pada bak engkol, maka pada bagian poros engkolnya selalu dilengkapi dengan sekat oil (oil seal). E. JENIS PELUMAS Minyak pelumas yang digunakan pada sepeda motor adalah oli karena oli mempunyai syarat-syarat yang diperlukan dalam pelumasan, yaitu: 1. Daya lekatnya baik 2. Titik nyala tinggi 3. Tidak mudah menguap 4. Titik beku rendah 5. Mudah memindahkan panas Ada tiga macam oli pelumas yang diproduksi, antara lain oli mineral, oli synthetic dan oli yang dibuat dari tumbuh-tumbuhan atau hewani (castor oil), dan pabrik-pabrik kendaraan hampir semuanya menganjurkan untuk menggunakan oli mineral, yang telah distandarisasi oleh SAE dan API. Oli yang dibuat dari tumbuh-tumbuhan (vegetable) banyak digunakan pada motor-motor balap, karena kwalitasnya melebihi oli mineral. Oli synthetic banyak digunakan pada pesawat-pesawat terbang.

414 Sistem Pelumasan dan Pendinginan 389 Oli dapat juga digolong-golongkan sesuai dengan penggunaan kendaraan yang bersangkutan guna mendapatkan hasil pelumasan yang baik, seperti contohnya: 1. Jenis ML Digunakan pada mesin-mesin bensin dengan kerja yang ringan, oli ini tidak mengandung bahan-bahan tambahan (additives). 2. Jenis MM Jenis ini digunakan pada mesin-mesin bensin dengan kerja yang sedang dan olinya mengandung additive yang dapat mencegah karat pada mesin. 3. Jenis MS Digunakan pada mesin-mesin bensin yang kerjanya cukup berat. 4. Jenis DG Digunakan pada mesin diesel dan mesin bensin, oli ini mengandung zat anti karat dan juga mengandung detergent guna mencegah pembentukan karbon/arang pada ruang bakar atau bagian mesin lainnya. 5. Jenis DM Digunakan untuk mesin diesel dan mesin bensin yang bekerja berat, oli ini mengandung zat yang terdapat pada DG ditambah dengan Pour poit depressant yang dapat membuat oli ini tahan akan temperatur yang tinggi. Oli ini dapat juga disebut oli yang bermutu tinggi (High grade oil) 6. Jenis DS Oli ini khusus untuk mesin diesel dan mengandung bermacammacam zat tambahan sehingga mutunya baik sekali dan harganya cukup mahal. Selain standard-standard oli ini dikeluarkan oleh SAE, ada juga standard yang dikeluarkan oleh API, di mana kode-kode yang dikeluarkan oleh API ini adalah SA, SB, SC, SD, SE dan SF, kemudian untuk mesin diesel dengan kode CA, CB, CC, CD. Oli yang dilengkapi dengan standard terakhir, contohnya SE atau SF atau SD mengandung zat-zat tambahan yang lengkap seperti mengandung zat penetralisir belerang, zat anti pelumpuran, zat anti busa dan sebagainya serta oli tersebut dibuat dari oli mineral murni. Temperatur pada katup buang motor empat langkah sangatlah tinggi, pada kondisi seperti ini oli pelumas akan mencapai temperatur sekitar 100 C, pada temperatur 100 C kekentalan oli akan pecah (menjadi cair) dan daya lumasnya menjadi hilang, oleh sebab itu memilih oli yang bermutu baik untuk kendaraan kita sangatlah penting.

415 Sistem Pelumasan dan Pendinginan 390 F. VISKOSITAS MINYAK PELUMAS Untuk minyak pelumas motor, seperti diketahui ada delapan tingkat kekentalan minyak pelumas. Yang dimaksud dengan kekentalan itu sebenarnya tidak lain dari tahanan aliran yang tergantung dari kental atau encernya minyak tersebut. Semua minyak pelumas jika dipanaskan akan menjadi lebih encer dan pada temperatur yang lebih rendah akan menjadi lebih kental. Karena itu, kekentalan minyak pelumas diukur pada temperatur tertentu. The Society of Automotive Engineers (SAE) merupakan organisasi yang beranggotakan para ahli pengolahan minyak bumi dan ahli perencana motor telah menetapkan standar kekentalan minyak pelumas. Angka kekentalan yang pertama ditetapkan pada tahun 1911 dan sesudah itu telah mengalami beberapa kali perubahan berhubung dengan adanya kemajuan dalam teknologi dan perencanaan motor serta kemajuan dalam bidang pengolahan minyak bumi. Angka kekentalan minyak pelumas yang banyak digunakan sekarang terdiri dari: 5W; 10W; 20W ;20 ;30; 40; 50; 60 dan 90. Dulu pernah diproduksi minyak pelumas dengan kekentalan 90, dan 140 tapi saat ini untuk motor yang modern sudah dipakai lagi. Kekentalan yang lebih kecil menunjukkan minyak yang lebih encer dan sebaliknya angka yang lebih besar menunjukkan minyak yang lebih kental. Huruf W di belakang angka kekentalan maksudnya adalah Winter yaitu untuk minyak pelumas yang khusus digunakan untuk waktu musim dingin dan pengukuran dilakukan pada temperatur 0 F. jenis demikian tentu saja tidak diperlukan di Indonesia. Setiap merek sepeda motor di Indonesia merekomendasikan minyak pelumas yang digunakan. Misalnya Honda merekomendasi minyak pelumas dengan viskositas SAE 10 W-30. Pengukuran kekentalan minyak pelumas dengan standard SAE, ditetapkan pada temperatur 210 F atau 2 F dibawah temperatur mendidihnya air murni. Caranya dengan menghitung waktu yang dibutuhkan oleh 60 ml minyak tersebut untuk melalui suatu saluran sempit pada temperatur 210 F. Minyak pelumas harus diganti secara teratur sesuai dengan pedoman yang dikeluarkan oleh pabrik pembuat. Minyak pelumas yang sudah aus ditunjukkan dengan menurunnya kekentalan dan warnanya menjadi hitam. Perubahan ini disebabkan oleh temperatur pemakaian yang tinggi.

416 Sistem Pelumasan dan Pendinginan 391 Gambar 9.14 Pemeriksaan jumlah oli pada bak engkol (karter) bisa dilihat dengan batang pengukurnya (1). Jumlah oli harus ada di antara batas atas (2) dan batas bawah (3) G. SISTEM PENDINGINAN Setiap motor bakar memerlukan pendinginan. Untuk itu dikenal adanya sistem pendinginan pada sepeda motor. Secara umum sistem pendinginan berfungsi sebagai berikut: 1. Mencegah terbakarnya lapisan pelumas pada dinding silinder. 2. Meningkatkan efisiensi/daya guna thermis. 3. Mereduksi tegangan-tegangan thermis pada bagian-bagian silinder, torak, cincin torak dan katup-katup. Pembakaran campuran bahan bakar dan udara di dalam silinder menghasilkan panas yang tinggi. Pada motor bakar hasil pembakaran menjadi tenaga mekanis hanya sekitar 23 sampai dengan 28 %. Sebagian panas keluar bersama gas bekas dan sebagian lain hilang melalui pendinginan. Meskipun pendinginan merupakan suatu kerugian jika ditinjau dari segi pemanfaatan energi, tetapi mesin harus didinginkan untuk menjamin kerja secara optimal. Selain itu pendinginan juga mutlak diperlukan guna menjaga kestabilan temperatur kerja motor. Jika dilihat dari diagram panas, sistem pendingin merupakan suatu bentuk kerugian energi, lebih dari 32% energi panas hilang akibat pendinginan. Di mana panas akan diserap oleh fluida pendingin. Panas yang terjadi tidak menyebabkan perubahan bentuk komponen akibat memuai. Pedinginan dilakukan untuk mencegah terjadinya kelebihan panas (overheating), pemuaian dan kerusakan minyak pelumas.

417 Sistem Pelumasan dan Pendinginan 392 Sistem Pendinginan Udara Pada umumnya mesin sepeda motor didinginkan dengan sistem pendinginan udara. Gambar 9.15 Pendinginan pada mesin sepeda motor Dalam sistem pendinginan udara, sekeliling silinder dan kepala silinder diberi sirip-sirip pendingin guna memperbesar luas permukaan yang bersinggungan dengan udara pendingin yang dialirkan ke sekelilingnya. Panas yang timbul dari hasil pembakaran akan diambil oleh udara pendingin yang mengalir melalui sirip-sirip tersebut. Sirip-sirip pada kepala silinder bisa disebut sebagai penghantar panas dari dalam mesin. Agar pemindahan panas dari sirip ke udara pendingin berlangsung dengan baik maka sirip-sirip harus dalam keadaan bersih dan tidak dilapisi kotoran yang akan mengurangi efek pendinginan. Untuk itu sebaiknya bersihkan kotoran-kotoran yang menempel pada sirip pendingin tersebut secara berkala. Gunakan skrap untuk melepas kotoran kotoran yang menempel tersebut. Jika terdapat karet pada celah-celah sirip pendingin periksa kondisinya apakah karet tersebut masih baik digunakan,jika sudah rusak ganti dengan yang baru. Karet tersebut berfungsi untuk meredam getaran mesin akibat sirip-sirip pendingin tersebut.

418 Sistem Pelumasan dan Pendinginan 393 Sistem pendinginan udara ada dua macam: 1. Sistem pendinginan udara alamiah Merupakan sistem pendinginan dengan menggunakan aliran udara yang berembus melewati mesin sewaktu sepeda motor berjalan dengan laju. Gambar 9.16 Kepala silinder yang memiliki sirip-sirip untuk pendinginan udara 2. Sistem pendinginan udara tekan Merupakan sistem pendinginan dengan menggunakan suatu alat semacam kipas angin, putaran kipas akan menekan angin, sehingga angin bersikulasi melalui sirip-sirip. Sistem ini tetap bisa digunakan walaupun sepeda motor dalam keadaan berhenti. Gambar Sistem pendinginan udara tekan

419 Sistem Pelumasan dan Pendinginan 394 Sistem pendingin cairan Selain sistem pendinginan udara juga ada sistem pendinginan dengan cairan. Sistem ini terdiri dari : - Radiator (yang digunakan dengan kipas elektric) - Thermostaat - Pompa air - Tali kipas dan kipas radiator Gambar 9.18 Radiator Keterangan gambar radiator: 1. Tangki atas 2. Tangki bawah 3. Blok radiator 4. Lubang pengisi 5. Saluran air 6. Saluran air 7. Pipa uap 8. Ram penguat 9. Karet pegas untuk menahan baut radiator

420 Sistem Pelumasan dan Pendinginan 395 Gambar 9.19 Sistem pendingin cair pada mesin dua langkah

421 Sistem Pelumasan dan Pendinginan 396 Thermostaat Bila mesin terlalu panas atau terlalu dingin, maka mesin sepeda motor akan mengalami bermacam-macam gangguan. Gangguan yang diakibatkan karena terjadinya kelebihan panas (overheating) pada mesin adalah sebagai berikut: a. Bagian atas piston dapat berubah bentuk apabila suhunya terlalu tinggi dan kehilangan kekuatannya. Sebagai contoh pada aluminium. Kekuatannya akan hilang kira-kira sepertiganya pada suhu C bila dibandingkan pada suhu normal. b. Gerakan komponen-komponen engine akan terhalang karena ruang bebas (clearence) semakin kecil disebabkan pemuaian dari komponen mesin yang menerima panas berlebihan. c. Akan timbul tegangan thermal yang dihasilkan oleh panas karena perubahan suhu dari suatu tempat ketempat lain. Sehingga silinder menjadi tidak bulat akibat deformasi thermal. Hal ini menyebabkan ring piston patah dan piston macet. d. Berpengaruh terhadap thermal resistence bahan pelumas. Jika suhu naik sampai C pada alur ring piston, pelumas berusaha menjadi karbon dan ring piston akan macet (Ring stick) sehingga tidak berfungsi sebagaimana mestinya. Pada suhu C pelumas cepat berubah menjadi hitam dan sifat pelumasnya turun, piston akan macet sekalipun masih mempuyai clereance. e. Terjadinya pembakaran yang tidak normal. Motor bensin cendrung untuk knock. Jika knock terjadi suhu naik pada piston dan terjadi pembakaran dini (Pre Ignition mudah terjadi). Sebaliknya bila mesin terlalu dingin, gangguan yang terjadi yaitu: a. Pada motor bensin bahan bakar agak sukar menguap dan campuran udara bahan bakar-udara menjadi gemuk. Hal ini menyebabkan pembakaran menjadi tidak sempurna. b. Kalau pelumas terlalu kental, akan mengakibatkan mesin mendapat tambahan tekanan. c. Uap yang terkandung dalam gas pembakaran akan berkondensi pada suhu kira-kira 50 0 C pada tekanan atmosfir. Titik air akan menempel pada dinding silinder, hal ini akan mempercepat keausan silinder dan ring torak. Ini disebut sebagai keausan karena korosi pada suhu rendah. Untuk mengatasi gangguan-gangguan yang disebutkan tadi, digunakanlah thermostaat yang dirancang untuk mempertahankan temperatur cairan pendingin dalam batas yang diizinkan. Antara lain dari cara memeriksa thermostaat yaitu: dengan cara memperhatikan sirkulasi air pendinginnya atau dengan menguji thermostaat dalam air panas.

422 Sistem Pelumasan dan Pendinginan 397 Cara memeriksa thermostaat dengan memperhatikan sirkulasi air pendinginnya yaitu: Hidupkan mesin: 1. Buka tutup radiator sebelum mesin mencapai suhu kerja. Perhatikan: Hati-hati membuka tutup radiator sebab kemungkinan udara pada radiator sudah bertekanan sehingga air dapat tersemprot keluar bersamaan dengan dibukanya tutup radiator. 2. Perhatikan bahwa pada saat mesin dingin belum terjadi aliran air radiator. 3. Amati terus aliran air. Jika mesin sudah panas seharusnya terjadi gerakan air mengalir. Jika tidak berarti thermostaatnya tidak bekerja. Perbaiki atau ganti thermostaatnya. Gambar 9.20 Sistem pendingin cairan pada mesin empat langkah

423 Sistem Pelumasan dan Pendinginan 398 Pompa air Pompa air pada sistem pendinginan cair berfungsi untuk mengalirkan air dari radiator ke mantel-mantel pendingin pada blok mesin. Bekerjanya pompa air adalah oleh putaran mesin. Bekerja dan tidaknya pornpa air dapat dilihat dari aliran air pada radiator. Caranya: - Buka tutup distributor - Hidupkan mesin - Perhatikan apakah ada gerakan aliran air dalam radiator. Jika ada gerakan aliran air dalarn radiator berarti pompa air bekerja. Jika putaran mesin dipercepat seharusnya aliran air tersebut semakin deras. Jika diperlukan membongkar dan memeriksa pompa air lakukan dengan langkah sebagai berikut: - Keluarkan air pendingin sampai habis. - Lepas baut baut pengikat pompa air, pemegang pompa air dan gasketnya. - Lepas plat dudukan pompa air dan gasketnya. - Lepas dudukan puli pompa air - Keluarkan bantalan pompa, rotor dan perapat poros. - Cuci semua bagian pompa kecuali bantalan dan perapat porosnya. - Periksa seluruh komponen pompa air yang berkemungkinan berkarat, retak atau aus. - Ukur kelonggaran antara sisi rotor dengan badan pompa. Besarnya lihat pada spesifikasi pabrik pembuatnya. - Ganti gasket jika tegangan tali kipas antara 7-10 mm. - Rakit kembali pompa air. Jangan sampai ada yang tertinggal sekecil apapun. Tali kipas dan Kipas radiator Kipas radiator sangat penting artinya bagi sistem pendinginan cair. Sebab pada kondisi di mana mesin bekerja pada beban berat pendinginan cair oleh udara tidak mencukupi. Kipas radiator membantu mengalirkan udara ke dalam sirip-sirip radiator. Putaran kipas radiator dipengaruhi oleh tegangan tali kipasnya. Tali kipas yang kendor mudah selip sehingga putaran kipas kurang. Tali kipas yang terlalu tegang menyebabkan bantalan cepat rusak dan tali mudah putus. Baik sistem pendinginan udara maupun sistem pendinginan cairan mempunyai kelebihan dan kekurangan.

424 Sistem Pelumasan dan Pendinginan 399 Kelebihan sistem pendinginan udara: - Tidak perlu disediakan secara khusus - Tidak perlu komponen tambahan seperti radiator dan thermostaat - Mudah perawatannya - Tahan lama Kekurangan sistem pendinginan udara: - Kurang dapat mengendalikan panas - Pada kondisi jalan mendaki pendinginan kurang Kelebihan sistem pendinginan cairan: - Dapat mengendalian panas dengan baik - Pendinginan lebih efektif - Dapat mengurangi kebisingan suara mesin Kekurangan sistem pendinginan cairan: - Bobot mesin bertambah - Perlu komponen tambahan - Perawatan lebih rumit

425 Sistem Pelumasan dan Pendinginan 400 SOAL SOAL LATIHAN BAB VIII 1. Apa yang dimaksud dengan pelumasan dan sebutkan fungsi pelumasan bagi sepeda motor! 2. Beri nama nomor-nomor yang tercamtum pada bagian gambar dibawah ini:

426 Sistem Pelumasan dan Pendinginan Ada 2 sistem penyimpanan pelumas pada sepeda motor empat langkah, sebutkan dan jelaskan keduanya! 4. Sebutkan sekurang-kurangnya 3 tipe dari pompa oli yang menekan oli pada sistim resirkulasi pelumasan apa beda diantara ke tiganya? 5. Berapa macam sistem pelumasan untuk sepeda motor dua langkah? Terangkan! 6. Sebutkan bagian-bagian dari mesin sepeda motor dua langkah yang memerlukan pelumasan, gambarkan sketsanya! 7. Beri nama bagian yang ditunjukkan oleh nomer-nomer yang tercantum pada gambar dibawah ini: 8. Apa fungsi sistem pendinginan pada mesin sepeda motor? 9. Sebutkan macam-macam sistem pendinginan pada sepeda motor dan jelaskan! 10. Apa keuntungan dan kelebihan dari masing-masing sistem pendinginan?

427 Sistem Pelumasan dan Pendinginan Beri nama bagian yang ditunjukkan oleh nomer-nomer yang tercantum pada gambar dibawah ini:

428 Kemudi, Suspensi dan Rangka 403 BAB X KEMUDI, SUSPENSI DAN RANGKA A. SYSTEM KEMUDI (STEERING SYSTEM) Sistem kemudi befungsi sebagai pengarah dan pengendali jalannya kendaraan sepeda motor. Sistem kemudi terdiri dari setang kemudi (handle bar/steering handle), kepala kemudi (steering head), batang kemudi (steering stem/steering tube), dan komponen-komponen pendukung lainnya. Gambar 10.1 Tipe susunan steering head

429 Kemudi, Suspensi dan Rangka 404 Selain penampilan, panjang pendeknya stang kemudi merupakan unsur lain yang harus diperhatikan. Batang kemudi yang panjang akan ringan digerakkan, namun kendaraan menjadi tidak lincah. Sebaliknya batang kemudi yang pendek membuat gerakan kendaraan jadi lincah, namun berat untuk dikendalikan. Gambar 10.2 Contoh kontruksi batang kemudi B. SYSTEM SUSPENSI (SUSPENSION SYSTEM) Sistem suspensi dirancang untuk menahan getaran akibat benturan roda dengan kondisi jalan. Selain itu, sistem suspensi diharapkan mampu untuk membuat "lembut" saat sepeda motor menikung, sehingga mudah dikendalikan. Dengan sistem suspensi juga, getaran akibat kerja mesin dapat diredam. Semua peran dan kegunaan sistem suspensi tadi, pada akhirnya dapat diambil kesimpulan bahwa dengan bekerjanya sistem suspensi, pada dasarnya adalah agar diperoleh kenyamanan dalam berkendara sepeda motor. Dengan demikian, gangguan pada sistem suspensi akan berpengaruh langsung apada kenyamanan berkendara. Suspensi pada sepeda motor biasanya bersatu dengan garpu (fork), baik untuk bagian depan maupun bagian belakang. Tetapi ada juga sebagian motor, suspensi belakang bukan sekaligus sebagai garpu belakang dan biasanya disebut sebagai monoshock (peredam kejut tunggal).

430 Kemudi, Suspensi dan Rangka Suspensi Bagian Depan (Front Suspension) Suspensi depan yang terdapat pada sepeda motor pada umumnya terbagi dua, yaitu: a. Garpu batang bawah (bottom link fork); jenis ini biasanya dipasang pada sepeda motor bebek model lama, vespa atau scooter. b. Garpu teleskopik (telescopic fork); merupakan jenis suspensi yang paling banyak digunakan pada sepeda motor. Suspensi teleskopik terdiri dari dua garpu (fork) yang dijepitkan pada steering yoke. Gambar 10.3 Salah satu jenis dari susunan fork telescopic Garpu teleskopik menggunakan penahan getaran pegas dan oli (minyak pelumas) garpu. Pegas menampung getaran dad benturan roda dengan permukaan jalan dan oli garpu mencegah getaran diteruskan ke batang kemudi. Garpu depan dari sistem kemudi (yang termasuk kedalam suspensi depan) fungsinya untuk menopang goncangan jalan melalui roda depan dan berat mesin serta penumpang. Oleh karenanya garpu depan harus mempunyai kekuatan, kekerasan yang tinggi, selain caster dan trail (kesejajaran roda depan) yang berpengaruh besar pada kestabilan mesin.

431 Kemudi, Suspensi dan Rangka 406 Gambar 10.4 Caster, trail dan offset dari tipe susunan steering head Caster adalah sudut yang dibentuk pada pertemuan garis pipa Steering Head dan garis vertical melalui pusat As roda depan, sudutnya antara Sementara trail merupakan jarak antara pertemuan garis vertical melalui pusat as roda depan dengan tanah dan pertemuan garis melalui pipa steering head dengan tanah, jaraknya antara mm. Caster dan trail harus ditentukan dengan memperhitungkan tujuan dan sifat-sifat sepeda motor dan suspensinya. Sedangkan garpu dengan batang bawah mengandalkan kerja pegas, karet penahan, dan lengan ungkit untuk menahan getaran akibat benturan roda dan permukaan jalan. Gambar 10.5 Suspensi depan jenis bottom link dan telescopic

432 Kemudi, Suspensi dan Rangka Suspensi Bagian Belakang (Rear suspension) Generasi awal suspensi belakang pada sepeda motor adalah jenis plunger unit. Tipe ini tidak mampu mengontrol dengan nyaman roda belakang. Tidak seperti suspensi depan, suspensi belakang tidak mempunyai sistem steering (kemudi). Sistem ini hanya menopang roda belakang dan menahan goncangan akibat permukaan kondisi jalan. Tipe suspensi belakang saat ini yang banyak digunakan adalah: a. Tipe Swing Arm b. Tipe Unit Swing Konstruksi suspensi tipe swing arm adalah dua buah lengan yang digantung pada rangka dan ujung yanga lain dari suspensi tersebut menopang roda belakang. Rancangan suspensi belakang tipe swing arm ditunjukkan oleh gambar 10.6 berikut. Gambar 10.6 Disain suspensi belakang tipe swing arm dari paduan Aluminium

433 Kemudi, Suspensi dan Rangka 408 Cushion unit/shock absorber (peredam kejut) diletakkan antara ujung belakang dari lengan dan rangka (frame). Keterangan gambar: 1. Upper mounting eye 2. Nut 3. Rubber stop 4. Shroud (decorative only) 5. Damper rod 6. Spring 7. Oil seal 8. Inner spring 9. Damper valve 10. Damper piston 11. Spring seat 12. Damper body 13. Compression valve 14. Lower mounting eye Gambar 10.7 Bagian dari komponen shock absorber

434 Kemudi, Suspensi dan Rangka 409 Getaran pada sepeda motor yang disebabkan oleh permukaan jalan yang tidak rata perlu diredam untuk mengurangi kejutan-kejutan akibat gerak pegas. Komponen yang berfungsi sebagai peredam kejut tersebut adalah sok breker. Oleh sok breker gerak ayun naik turun badan sepeda motor diperlambat sehingga menjadi lembut dan tidak mengejut. Itulah sebabnya sok breker disebut juga sebagai peredam kejut. Sok breker terdiri atas sebuah tabung yang berisi oli. Di dalam tabung tersebut terdapat sebuah katup yang berfungsi untuk mengatur aliran oli. Perlambatan gerak ayun badan sepeda motor terjadi karena aliran oli di dalam tabung sok breker terhambat oleh katup. Hal ini disebabkan karena lubang katup yang sempit. Jika jumlah oli dalam tabung kurang maka kerja sok breker menjadi tidak baik. Dalam hal ini sok breker tidak bisa meredam kejutan. Apabila kerja sok breker sudah tidak baik maka sebaiknya sok breker tersebut diganti. Penggantian sok breker dianjurkan sepasang sekaligus meskipun sok breker yang satunya tidak rusak. Hal ini dimaksudkan untuk menyamakan tekanan sehingga sepeda motor tetap seimbang, tidak seperti berat sebelah/miring. Untuk menentukan apakah sok breker bekerja dengan baik atau tidak bukanlah hal yang sulit. Biasanya sepeda motor yang sok brekernya sudah rusak menjadi tidak enak dikendarai. Kerusakan sok breker umumnya disebabkan oleh kebocoran oli. Hal ini bisa dilihat pada tabung sok brekernya. Jika tabung sok breker selalu basah oleh rembesan oli maka hal itu berarti sok breker telah bocor. Sok breker harus diganti jika sudah tidak baik kerjanya. Pemeriksaan dan perawatan: 1. Jika selama sepeda motor dikendarai dan kadang sepeda motor oleng kesalah satu sisi tanpa sebab yang jelas maka ada kemungkinan salah satu dari sok brekernya rusak. Periksalah keadaan sok brekernya. Jika terdapat rembesan oli pada tabungnya maka hal itu berarti bahwa sok breker bocor sehingga tekanannya tidak sama. Kedua sok breker harus diganti. 2. Jika selama sepeda motor dikendarai pemegasannya terasa tidak nyaman tetapi tekanan ban normal, tidak terlalu keras, mungkin disebabkan oleh sok brekernya yang tidak bekerja. Periksa semua sok brekernya. Jika salah satu sok breker rusak, ganti keduanya. Untuk pemeriksaan sok breker, tekanlah sepeda motor tersebut ke bawah dan kemudian lepaskan tekanan tersebut secara mendadak. Jika sepeda motor melenting dengan cepat bagian badannya dan berayun-ayun maka kemungkinan besar sok brekernya sudah tidak bekerja. Sok breker sepeda motor tersebut harus diganti. 3. Periksa keadaan pegas suspensinya. Ukur panjang pegas dalam keadaan pegas terlepas. Jika panjang pegas melebihi ketentuan, pegas harus diganti.

435 Kemudi, Suspensi dan Rangka 410 Gambar 10.8 Susunan dasar dari swingarm dan shock absorber Kontruksi tipe unit swing adalah mesin itu sendiri yang bereaksi seperti lengan yang berayun. Jadi mesin tersebut yang berayun. Umumnya suspensi tipe unit swing dipakai pada sepeda motor yang mempunyai penggerak akhirnya (final drive) memakai sistem poros penggerak. Gambar 10.9 Suspensi jenis unit swing dan swing arm

436 Kemudi, Suspensi dan Rangka 411 C. RANGKA (FRAME) Ditinjau dari segi struktur atau bentuk rangka mempunyai fungsi antara lain harus mampu menempatkan dan menopang mesin, transmisi, suspensi dan sistem kelistrikan, serta komponen-komponen lain yang ada dalam sepeda motor. Oleh karena itu rangka sebaiknya kuat dan kaku tapi ringan. Sedangkan jika ditinjau dad segi geometri, rangka harus sesuai dengan geometri yang diinginkan sistem kemudi dan suspensi. Rangka juga harus mampu menjaga roda tetap sejajar lurus antara depan dan belakang. Bahan utama rangka sepeda motor adalah plastik dan logam. Bagian rangka yang terbuat dari plastik misalnya penahan angin, penutup rangka dan pelindung roda. Sedangkan bagian utama yang terbuat dari logam, misalnya rangka utama, kemudi, lengan ayun dan dudukan mesin. Teknologi rangka sepeda motor dapat dikatakan tidak mengalami perkembangan yang pesat. Sejak dulu konstruksi rangka relatif sama. Bentuk komponen rangka pada dasarnya ada tiga macam, yaitu silinder (contohnya penghubung rangka dan poros kemudi), persegi (contohnya lengan ayun), dan plat (contohnya dudukan jok). Rangka berkaitan erat dengan bodi. Oleh karena itu bentuk rangka mempengaruhi bentuk bodi motor. Kalau terjadi kerusakan pada rangka, maka akan menimbulkan kerusakan pada bodi juga karena bodi menempel pada rangka. Tipe-tipe rangka antara lain: 1. Rangka bak (cradle frames) 2. Rangka tipe trellis (terali) 3. Rangka tipe balok penyeimbang (beam) 4. Rangka tipe spine Ke empat tipe rangka diatas di tunjukkan oleh gambar berikut ini: Tipe Rangka cradle Tipe rangka cradle yang rangkap

437 Kemudi, Suspensi dan Rangka 412 Rangka tipe trellis Tipe rangka beam Tipe rangka b

438 Kemudi, Suspensi dan Rangka 413 Rangka tipe spine berbentuk pipa Gambar 9.10 contoh-contoh tipe rangka Tipe rangka spine dari pabrik Gambar Tipe-tipe rangka sepeda motor

439 Kemudi, Suspensi dan Rangka 414 SOAL SOAL LATIHAN BAB X 1. Sebutkan fungsi dari system kemudi! 2. System suspensi terbagi berapa, jelaskan masing-masingnya! 3. Sebutkan tipe suspensi bagian depan dan berikan penjelasan masing-masingnya! 4. Sebutkan tipe suspensi bagian belakang dan terangkan masingmasingnya! 5. Sebutkan perbedaan dari masing-masing jenis rangka yang anda kenal, sekurang-kurangnya 4 jenis rangka!

440 Peralatan Bengkel 415 BAB XI PERALATAN BENGKEL Bagi lulusan sekolah SMK adalah menjadi keharusan untuk mampu bekerja atau malah bisa menciptakan peluang kerja sendiri. Setelah membaca, mempelajari, memahami, mendalami dan mempraktekkan apa isi dari buku teknologi sepeda motor ini, dengan didampingi oleh guru praktek, instruktur praktek saat prakerin (praktek kerja industri) diharapkan peserta didik mampu mengaplikasikannya berupa kemampuan kerja. Banyak macam pekerjaan yang bisa timbul dari bidang ini, antara lain bekerja menjadi: 1. Teknisi pencucian pemasangan asesoris sepeda motor Dengan area kemampuan seperti: Kompeten untuk melepas dan memasang asesoris sepeda motor Kompeten untuk mencuci sepeda motor Kompeten untuk menyalon sepeda motor 2. Teknisi bengkel tune-up sepeda motor/perusahaan Dengan area kemampuan seperti: Kompeten untuk melepas kepala silinder, menilai komponenkomponennya serta merakit kepala silinder. Kompeten merakit dan memasang sistem rem berikut komponen-komponennya. Kompeten untuk mengganti rantai Kompeten untuk memperbaiki sistim start 3. Teknisi bengkel tambal ban Dengan area kemampuan seperti: Kompeten untuk mengidentifikasi kontruksi jenis roda dan system pemasanganya Kompeten untuk melepas roda-roda Kompeten untuk pemeriksaan roda dan pemasangannya Kompeten untuk memasang roda Kompeten untuk membongkar, memasang dan mengganti ban dalam dan ban luar Kompeten untuk memeriksa ban dalam dan luar untuk menentukan perbaikan Kompeten untuk melaksanakan perbaikan ban dalam.

441 Peralatan Bengkel Teknisi dealer sepeda motor/bengkel besar/perusahaan Dengan area kemampuan seperti: Kompeten untuk menentukan mana sepeda motor yang punya performance baik dan motor yang performancenya tidak baik Kompeten untuk menggunakan dan memelihara alat ukur Kompeten untuk melepas kepala silinder, menilai komponenkomponenya serta merakit kepala silinder Kompeten untuk memperbaiki dan melakukan overhaul komponen sistem bahan bakar bensin Kompeten untuk melakukan overhaul engine dan menilai komponen-komponennya, memeriksa toleransi serta melakukan prosedur pengujian yang sesuai Kompeten untuk melakukan overhaul kopling manual dan otomatis berikut komponen-komponennya Kompeten melakukan overhaul sistem transmisi manual Kompeten merakit dan memasang sistem rem berikut komponen-komponennya Kompeten untuk memeriksa sistem kemudi Kompeten untuk memeriksa sistem suspensi Kompeten untuk mengganti rantai/chain Kompeten untuk memperbaiki instrumen dan sistem pengapian Kompeten untuk memperbaiki sistem pengisian Kompeten untuk memasang, menguji dan memperbaiki sistem penerangan dan wiring Untuk memulai suatu pekerjaan perbengkelan sepeda motor, baik itu bengkel skala kecil ataupun sedang, bahkan mungkin besar, perlu kiranya setiap orang mengenal dan menyiapkan kunci-kunci yang dibutuhkan untuk memberi pelayanan pada perbengkelan. Selain keterampilan berbengkel, menentukan kunci yang mana yang pas dipakai untuk pelayanan di perbengkelan adalah juga suatu keahlian yang dibutuhkan seorang montir bengkel, keahlian ini bisa didapat dari teori ilmu dan pengetahuan yang didapat dari sekolah dan adalah penting untuk mendapatkan ilmu pengetahuan melalui pengalaman kerja bagi seorang calon pekerja bengkel. Berikut ini beberapa kunci dan peralatan yang biasa dipakai dan dibutuhkan di bengkel sepeda motor:

442 Peralatan Bengkel Peralatan untuk Keselamatan Kerja Safety pendengaran: Di bengkel yang bising, alat ini diperlukan agar telinga tidak mengalami polusi suara (mengatasi suara bising) Bike life: digunakan untuk mengangkat sepeda motor yang akan di perbaiki atau diperiksa, dengan adanya bike life ini, akan lebih memudahkan pekerja untuk mengerjakan bagian-bagian bawah dari sepeda motor dan sikap tubuh pekerja juga akan lebih baik, sehingga pekerja tidak mudah lelah ataupun sakit leher dan punggungnya.

443 Peralatan Bengkel 418 Sepatu pengaman: Untuk safety dalam bekerja 2. Alat Bantu Pekerjaan Hydraulic press: Alat untuk mempress blok piston, press klahar.

444 Peralatan Bengkel 419 Compressor udara: digunakan untuk menghasilkan udara yang bertekanan, udara ini bisa untuk angin sepeda motor ataupun untuk proses pembersihan knalpot sepeda motor 2 langkah. Ragum: untuk membuka baut yang doll, atau untuk pegangangan ketika akan memotong suatu bahan

445 Peralatan Bengkel 420 Trolley untuk letak kunci atau rak kunci: dipakai untuk meletakkan kunci-kunci atau peralatan bengkel lainnya yang mungkin diletakkan disini, terutama yang rutin dipakai. Kotak kunci dari plastic 17 : merupakan kotak plastic untuk meletakkan kunci-kunci yang sirkulasi pemakaiannya lebih sering atau kunci-kunci yang sering dipakai dan tidak berupa set kunci seperti tang, obeng, dsb Palu: digunakan untuk memukul seperti memukul bagian sepeda motor yang sudah susah untuk dibuka secara normal, hal ini bisa terjadi bila bagian tersebut sudah aus bautnya.

446 Peralatan Bengkel 421 Alat untuk mengukur pengapian Kaleng penyemprot oli pelumas: digunakan untuk menyemprotkan loli pelumas seperti pada bagian rantai, bagian mesin yang harus dilumasi. Gergaji besi kecil: digunakan untuk meotong, seperti memotong bagian yang sulit dibuka secara normal sehingga akhirnya harus dipotong Sikat besi: untuk membersihkan kotoran yang menempel pada mesin motor

447 Peralatan Bengkel 422 Alat pemompa dan pengurangan tekanan angina di ban: terdiri dari manometer sebagai pengukur tekanan angin ban yang dipompakan serta bisa dipakai untuk mengurangi tekanan kebatas yang diinginkan (kebatas maximal tekanan ban) Air duster: kegunaanya untuk membersihkan kotoran pada bagian mesin, seperti kotoran pada mesin yang telah dibongkar dan akan dipasang, terutama digunakan untuk membersihkan bagian mesin dari pasir, debu, partikel yang mungkin menempel

448 Peralatan Bengkel Kunci-kunci Tang: untuk membuka baut yang longgar dan untuk memegang baut yang panas Combination wrench set (kunci pas): digunakan untuk membuka baut dan memasang baut Feeler : untuk mengukur (menstel klep), pengukur kerenggangan klep dan busi

449 Peralatan Bengkel 424 1/4 Drive sockets set (kunci socket): Digunakan untuk membuka baut-baut yang sukar di buka dengan kunci pas atau kunci wrench Pahat: digunakan untuk membuka baut yang telah aus dan sulit untuk dibuka dengan kunci yang semestinya. Obeng pukul: digunakan untuk membuka baut yang sangat keras dan untuk mengencangkan pemasangan baut

450 Peralatan Bengkel 425 Puller: digunakan untuk mencabut benda yang susah untuk dikeluarkan, seperti klahar, bagian-bagian yang di press. Puller dengan 2 gigi penjepit Puller dengan 3 gigi penjepit Kunci wrench untuk mengatasi gangguan: digunakan untuk membuka baut yang jauh jangkauan karenanya sulit dijangkau dengan kunci pas

451 Peralatan Bengkel 426 Tang pengunci: digunakan untuk menjepit ataupun membelokkan benda yang sedang di pegangnya Tang ini digunakan untuk memasang spie Tang potong: digunakan untuk memotong kabel 4. Perawatan Dan Pemeliharaan Peralatan Perbengkelan Peralatan perbengkelan baik itu peralatan keselamatan kerja maupun alat bantu yang digunakan serta kunci-kuncinya penting untuk dipelihara dan dirawat. Pemeliharaan diperlukan untuk mencegah kerusak-an dari alat. Pemeliharaan bisa berupa: 1. Pembersihan setelah alat dipakai 2. Meletakkannya di tempat yang semestinya (terlindung dari air hujan dan cahaya matahari yang terik)

TEKNIK SEPEDA MOTOR JILID 2

TEKNIK SEPEDA MOTOR JILID 2 Jalius Jama, dkk. TEKNIK SEPEDA MOTOR JILID 2 SMK Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional Hak Cipta pada

Lebih terperinci

MAKALAH TEKNOLOGI SEPEDA MOTOR TENTANG KESELAMATAN DAN KESEHATAN KERJA DI BENGKEL SEPEDA MOTOR

MAKALAH TEKNOLOGI SEPEDA MOTOR TENTANG KESELAMATAN DAN KESEHATAN KERJA DI BENGKEL SEPEDA MOTOR MAKALAH TEKNOLOGI SEPEDA MOTOR TENTANG KESELAMATAN DAN KESEHATAN KERJA DI BENGKEL SEPEDA MOTOR Disusun oleh : 1. KRISNA DEWANTARA 13504241045 2. KRISWANTORO 13504241046 3. RAHMAT FAUZI GUNAWAN 13504241047

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II PENDAHULUAN BAB II LANDASAN TEORI 2.1 Motor Bakar Bensin Motor bakar bensin adalah mesin untuk membangkitkan tenaga. Motor bakar bensin berfungsi untuk mengubah energi kimia yang diperoleh dari

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL. i. HALAMAN LEMBAR PERSOALAN... ii. HALAMAN LEMBAR PENGESAHAN... iii. HALAMAN PERSEMBAHAN. iv. HALAMAN MOTTO..

DAFTAR ISI. HALAMAN JUDUL. i. HALAMAN LEMBAR PERSOALAN... ii. HALAMAN LEMBAR PENGESAHAN... iii. HALAMAN PERSEMBAHAN. iv. HALAMAN MOTTO.. DAFTAR ISI HALAMAN JUDUL. i HALAMAN LEMBAR PERSOALAN...... ii HALAMAN LEMBAR PENGESAHAN...... iii HALAMAN PERSEMBAHAN. iv HALAMAN MOTTO..v KATA PENGANTAR.vi ABSTRACT viii DAFTAR ISI ix DAFTAR NAMA SIMBOL..

Lebih terperinci

SISTEM BAHAN BAKAR INJEKSI PADA SEPEDA MOTOR HONDA (HONDA PGM-FI)

SISTEM BAHAN BAKAR INJEKSI PADA SEPEDA MOTOR HONDA (HONDA PGM-FI) SISTEM BAHAN BAKAR INJEKSI PADA SEPEDA MOTOR HONDA (HONDA PGM-FI) Gambar Komponen sistem EFI pada sepeda mesin Honda Supra X 125 A. Sistem Bahan Bakar Komponen-komponen yang digunakan untuk menyalurkan

Lebih terperinci

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis

Lebih terperinci

Petunjuk : Berilah Tanda Silang (X) pada salah satu jawaban yang paling tepat

Petunjuk : Berilah Tanda Silang (X) pada salah satu jawaban yang paling tepat Petunjuk : Berilah Tanda Silang (X) pada salah satu jawaban yang paling tepat 1. Menurut gambar di bawah ini jaket air (water jacket) ditunjukkan oleh 1 5 7 2 8 9 6 3 4 a. No. 1 b. No. 2 c. No. 3 d. No.

Lebih terperinci

BAB IV GAMBARAN UMUM OBJEK PENELITIAN. 125 pada tahun 2005 untuk menggantikan Honda Karisma. Honda Supra X

BAB IV GAMBARAN UMUM OBJEK PENELITIAN. 125 pada tahun 2005 untuk menggantikan Honda Karisma. Honda Supra X BAB IV GAMBARAN UMUM OBJEK PENELITIAN 4.1. HONDA SUPRA X 125 PGM-FI Honda Supra X adalah salah satu merk dagang sepeda motor bebek yang di produksi oleh Astra Honda Motor. Sepeda motor ini diluncurkan

Lebih terperinci

TROUBLE SHOOTING PADA SISTEM PENGAPIAN CDI - AC SEPEDA MOTOR HONDA ASTREA GRAND TAHUN Abstrak

TROUBLE SHOOTING PADA SISTEM PENGAPIAN CDI - AC SEPEDA MOTOR HONDA ASTREA GRAND TAHUN Abstrak TROUBLE SHOOTING PADA SISTEM PENGAPIAN CDI - AC SEPEDA MOTOR HONDA ASTREA GRAND TAHUN 1997 Indra Joko Sumarjo 1, Agus Suprihadi 2, Muh. Nuryasin 3 DIII Teknik Mesin Politeknik Harapan Bersama Jln. Mataram

Lebih terperinci

BAB 12 INSTRUMEN DAN SISTEM PERINGATAN

BAB 12 INSTRUMEN DAN SISTEM PERINGATAN BAB 12 INSTRUMEN DAN SISTEM PERINGATAN 12.1. Pendahuluan Bab ini berisi sistem kelistrikan bodi yang berhubungan dengan suatu pengukur bagi pengemudi yang sebagian atau keseluruhannya berada pada panel

Lebih terperinci

PRINSIP KERJA MOTOR DAN PENGAPIAN

PRINSIP KERJA MOTOR DAN PENGAPIAN PRINSIP KERJA MOTOR DAN PENGAPIAN KOMPETENSI 1. Menjelaskan prinsip kerja motor 2 tak dan motor 4 tak. 2. Menjelaskan proses pembakaran pada motor bensin 3. Menjelaskan dampak saat pengapian yang tidak

Lebih terperinci

SILABUS KURIKULUM KEAHLIAN MOTOR

SILABUS KURIKULUM KEAHLIAN MOTOR SILABUS KURIKULUM KEAHLIAN MOTOR BULAN 4 Materi : Pengenalan alat kerja dan sparepart mesin, dan bongkar pasang mesin peraga. Target : Siswa dapat memahami nama dan fungsi alat kerja, mengenal sparepart

Lebih terperinci

LAPORAN PRAKTIKUM TEKNOLOGI MOTOR DIESEL PERAWATAN MESIN DIESEL 1 SILINDER

LAPORAN PRAKTIKUM TEKNOLOGI MOTOR DIESEL PERAWATAN MESIN DIESEL 1 SILINDER LAPORAN PRAKTIKUM TEKNOLOGI MOTOR DIESEL PERAWATAN MESIN DIESEL 1 SILINDER Di susun oleh : Cahya Hurip B.W 11504244016 Pendidikan Teknik Otomotif Fakultas Teknik Universitas Negeri Yogyakarta 2012 Dasar

Lebih terperinci

DAFTAR ISI. Nama Barang Halaman Nama Barang Halaman

DAFTAR ISI. Nama Barang Halaman Nama Barang Halaman DAFTAR ISI Nama Barang Halaman Nama Barang Halaman 420 ( Rantai ) 01 Colboster Set 18 428 ( Rantai ) 01 Clutch One Way 18 520 ( Rantai ) 01 Cop Busi 18-19 Advenser 01 Cop CDI 19 Angker Dinamo Stater 01-02

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Rekondisi dan modifikasi

BAB II DASAR TEORI. 2.1 Pengertian Rekondisi dan modifikasi BAB II DASAR TEORI Pendekatan pemecahan masalah dapat digunakan untuk merekondisi sepeda motor Honda C86 tahun 1986. Salah satu hal yang menyangkut pendekatan pemecahan masalah adalah dasar teori. Dasar

Lebih terperinci

1. EMISI GAS BUANG EURO2

1. EMISI GAS BUANG EURO2 1. EMISI GAS BUANG EURO2 b c a Kendaraan Anda menggunakan mesin spesifikasi Euro2, didukung oleh: a. Turbocharger 4J 4H Turbocharger mensuplai udara dalam jumlah yang besar ke dalam cylinder sehingga output

Lebih terperinci

Pembakaran. Dibutuhkan 3 unsur atau kompoenen agar terjadi proses pembakaran pada tipe motor pembakaran didalam yaitu:

Pembakaran. Dibutuhkan 3 unsur atau kompoenen agar terjadi proses pembakaran pada tipe motor pembakaran didalam yaitu: JPTM FPTK 2006 KONSENTRASI OTOMOTIF JURUSAN PENDIDIKAN TEKIK MOTOR FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA BUKU AJAR NO 2 Motor Bensin TANGGAL : KOMPETENSI Mendeskripsikan

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... HALAMAN LEMBAR PERSOALAN... HALAMAN LEMBAR PENGESAHAN... SURAT PERNYATAAN... iv HALAMAN PERSEMBAHAN. HALAMAN MOTTO..

DAFTAR ISI HALAMAN JUDUL... HALAMAN LEMBAR PERSOALAN... HALAMAN LEMBAR PENGESAHAN... SURAT PERNYATAAN... iv HALAMAN PERSEMBAHAN. HALAMAN MOTTO.. DAFTAR ISI HALAMAN JUDUL... HALAMAN LEMBAR PERSOALAN..... HALAMAN LEMBAR PENGESAHAN...... i ii iii SURAT PERNYATAAN... iv HALAMAN PERSEMBAHAN. HALAMAN MOTTO.. KATA PENGANTAR. v vi vii INTISARI... ix ABSTRACT..

Lebih terperinci

Sistem Pengapian CDI AC pada Sepeda Motor Honda Astrea Grand Tahun 1997 ABSTRAK

Sistem Pengapian CDI AC pada Sepeda Motor Honda Astrea Grand Tahun 1997 ABSTRAK Sistem Pengapian CDI AC pada Sepeda Motor Honda Astrea Grand Tahun 1997 Kusnadi D-III Teknik Mesin Politeknik Harapan Bersama Tegal. ABSTRAK Sistem pengapian merupakan sistem yang menghasilkan tegangan

Lebih terperinci

TEKNIK SEPEDA MOTOR JILID 1

TEKNIK SEPEDA MOTOR JILID 1 Jalius Jama, dkk. TEKNIK SEPEDA MOTOR JILID 1 SMK Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional Hak Cipta pada

Lebih terperinci

SISTIM PENGAPIAN. Jadi sistim pengapian berfungsi untuk campuran udara dan bensin di dalam ruang bakar pada.

SISTIM PENGAPIAN. Jadi sistim pengapian berfungsi untuk campuran udara dan bensin di dalam ruang bakar pada. SISTIM PENGAPIAN Pada motor bensin, campuran bahan bakar dan udara yang dikompresikan di dalam silinder harus untuk menghasilkan tenaga. Jadi sistim pengapian berfungsi untuk campuran udara dan bensin

Lebih terperinci

KONSENTRASI OTOMOTIF JURUSAN PENDIDIKAN TEKIK MOTOR

KONSENTRASI OTOMOTIF JURUSAN PENDIDIKAN TEKIK MOTOR JPTM FPTK 2006 KONSENTRASI OTOMOTIF JURUSAN PENDIDIKAN TEKIK MOTOR FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA BAHAN AJAR NO 2 Motor TANGGAL : KOMPETENSI Komponen Utama

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. SEJARAH MOTOR DIESEL Pada tahun 1893 Dr. Rudolf Diesel memulai karier mengadakan eksperimen sebuah motor percobaan. Setelah banyak mengalami kegagalan dan kesukaran, mak akhirnya

Lebih terperinci

Lampiran. Struktur Pohon Keputusan K0010 K0060

Lampiran. Struktur Pohon Keputusan K0010 K0060 Lampiran Struktur Pohon Keputusan K0010 K0060 A0010 B0010 C0010 C0020 C0030 C0040 C0050 C0060 K0010 K0020 K0030 K0040 K0050 K0060 Mesin motor mati Tidak ada api pada busi Ujung elektroda rata dengan keramik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Definisi Motor Bakar Motor bakar adalah mesin atau peswat tenaga yang merupakan mesin kalor dengan menggunakan energi thermal dan potensial untuk melakukan kerja mekanik dengan

Lebih terperinci

PELATIHAN SERVIS SEPEDA MOTOR UNTUK PEMUDA GAMPONG MEUNASAH MESJID PUENTEUT KECAMATAN BLANG MANGAT PEMERINTAH KOTA LHOKSEUMAWE

PELATIHAN SERVIS SEPEDA MOTOR UNTUK PEMUDA GAMPONG MEUNASAH MESJID PUENTEUT KECAMATAN BLANG MANGAT PEMERINTAH KOTA LHOKSEUMAWE PELATIHAN SERVIS SEPEDA MOTOR UNTUK PEMUDA GAMPONG MEUNASAH MESJID PUENTEUT KECAMATAN BLANG MANGAT PEMERINTAH KOTA LHOKSEUMAWE Fakhriza 1, Muhd. Haiyum 2, Adi Saputra Ismy 2, Zuhaimi 2 1 Ketua Pelaksana,

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Nurdianto dan Ansori, (2015), meneliti pengaruh variasi tingkat panas busi terhadap performa mesin dan emisi gas buang sepeda motor 4 tak.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tempat Penelitian Tempat penelitian yang digunakan dalam penelitian ini berada di Motocourse Technology (Mototech) Jl. Ringroad Selatan, Kemasan, Singosaren, Banguntapan,

Lebih terperinci

Cara Kerja Sistem Pengapian Magnet Pada Sepeda Motor

Cara Kerja Sistem Pengapian Magnet Pada Sepeda Motor NAMA : MUHAMMAD ABID ALBAR KELAS : IX E Cara Kerja Sistem Pengapian Magnet Pada Sepeda Motor Sistem pengapian pada sepeda motor berfungsi untuk mengatur proses terjadinya pembakaran campuran udara dan

Lebih terperinci

MODIFIKASI MESIN KENDARAAN MENJADI MESIN KENDARAAN HEMAT BAHAN BAKAR DENGAN TARGET JARAK TEMPUH 100 Km/Liter

MODIFIKASI MESIN KENDARAAN MENJADI MESIN KENDARAAN HEMAT BAHAN BAKAR DENGAN TARGET JARAK TEMPUH 100 Km/Liter MODIFIKASI MESIN KENDARAAN MENJADI MESIN KENDARAAN HEMAT BAHAN BAKAR DENGAN TARGET JARAK TEMPUH 100 Km/Liter PROYEK AKHIR Disusun untuk memenuhi sebagian persyaratan Mencapai derajat Ahli Madya Disusun

Lebih terperinci

PRAKTEK KERJA INDUSTRI DI BENGKEL SLENDRO MEKANIK TAHUN 2012/2013

PRAKTEK KERJA INDUSTRI DI BENGKEL SLENDRO MEKANIK TAHUN 2012/2013 LAPORAN PRAKTEK KERJA INDUSTRI DI BENGKEL SLENDRO MEKANIK TAHUN 2012/2013 Disusun oleh : N a ma : MUHAMMAD DEDI S.R No. Induk : 9045 Kelas Prog.Keahlian : XII MOB : Teknik Mekanik Otomotif SMK PETRUS KANISIUS

Lebih terperinci

UJIAN NASIONAL Tahun Pelajaran 2011/2012 SOAL TEORI KEJURUAN

UJIAN NASIONAL Tahun Pelajaran 2011/2012 SOAL TEORI KEJURUAN DOKUMEN NEGARA UJIAN NASIONAL Tahun Pelajaran 2011/2012 SOAL TEORI KEJURUAN Satuan Pendidikan : Sekolah Menengah Kejuruan (SMK) Kompetensi Keahlian : Teknik Sepeda Motor Kode Soal : 1316 Alokasi Waktu

Lebih terperinci

MODIFIKASI SISTEM BAHAN BAKAR KARBURATOR MENJADI SISTEM BAHAN BAKAR INJEKSI PADA HONDA LEGENDA (TINJAUAN SISTEM PENGAPIAN) PROYEK AKHIR

MODIFIKASI SISTEM BAHAN BAKAR KARBURATOR MENJADI SISTEM BAHAN BAKAR INJEKSI PADA HONDA LEGENDA (TINJAUAN SISTEM PENGAPIAN) PROYEK AKHIR MODIFIKASI SISTEM BAHAN BAKAR KARBURATOR MENJADI SISTEM BAHAN BAKAR INJEKSI PADA HONDA LEGENDA (TINJAUAN SISTEM PENGAPIAN) PROYEK AKHIR Diajukan Kepada Fakultas Teknik Universitas Negeri Yogyakarta Untuk

Lebih terperinci

BAB III METODE PENELITIAN. Lab Pratikum Teknik Mesin Vokasi, Universitas Muhammadiyah. Tempat Pengambilan Data dan Pengujian :

BAB III METODE PENELITIAN. Lab Pratikum Teknik Mesin Vokasi, Universitas Muhammadiyah. Tempat Pengambilan Data dan Pengujian : 36 BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Pelaksanaan Waktu dan tempat untuk pelaksanaan pengujian dan analisis proyek akhir sebagai berikut : 1. Tempat Analisis dan Trobleshooting Mesin : Lab

Lebih terperinci

PT ASTRA INTERNATIONAL Tbk

PT ASTRA INTERNATIONAL Tbk PT ASTRA INTERNATIONAL Tbk HONDA SALES OPERATION TECHNICAL SERVICE DIVISION TRAINING DEVELOPMENT ASTRA HONDA TRAINING CENTRE PELATIHAN MEKANIK TINGKAT - I BONGKAR & PASANG MESIN MENURUNKAN MESIN SEPEDA

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Bahan Penelitian Pada penelitian ini, terdapat beberapa bahan yang digunakan dalam proses penelitian diantaranya adalah : 3.1.1. Sepeda Motor Sepeda motor yang digunakan

Lebih terperinci

Fungsi katup Katup masuk Katup buang

Fungsi katup Katup masuk Katup buang MEKANISME KATUP FUNGSI KATUP Fungsi katup Secara umum fungsi katup pada motor otto 4 langkah adalah untuk mengatur masuknya campuran bahan bakar dan udara dan mengatur keluarnya gas sisa pembakaran. Pada

Lebih terperinci

BAHAN PELATIHAN NASIONAL OTOMOTIF PERBAIKAN KENDARAAN RINGAN

BAHAN PELATIHAN NASIONAL OTOMOTIF PERBAIKAN KENDARAAN RINGAN BAHAN PELATIHAN NASIONAL OTOMOTIF PERBAIKAN KENDARAAN RINGAN GENERAL SISTEM UTAMA KENDARAAN RINGAN DAN FUNGSINYA 10 001 1 BUKU INFORMASI Daftar Isi Halaman Bagian - 1 2 Pendahuluan 2 Definisi Pelatih,

Lebih terperinci

BAB IV PEMBAHASAAN 4.1 PENGERTIAN DAN FUNGSI KOPLING Kopling adalah satu bagian yang mutlak diperlukan pada truk dan jenis lainnya dimana penggerak utamanya diperoleh dari hasil pembakaran di dalam silinder

Lebih terperinci

BAB IV PENGUJIAN ALAT

BAB IV PENGUJIAN ALAT 25 BAB IV PENGUJIAN ALAT Pembuatan alat pengukur sudut derajat saat pengapian pada mobil bensin ini diharapkan nantinya bisa digunakan bagi para mekanik untuk mempermudah dalam pengecekan saat pengapian

Lebih terperinci

BAB 9 MENGIDENTIFIKASI MESIN PENGGERAK UTAMA

BAB 9 MENGIDENTIFIKASI MESIN PENGGERAK UTAMA BAB 9 MENGIDENTIFIKASI MESIN PENGGERAK UTAMA 9.1. MESIN PENGGERAK UTAMA KAPAL PERIKANAN Mesin penggerak utama harus dalam kondisi yang prima apabila kapal perikanan akan memulai perjalanannya. Konstruksi

Lebih terperinci

UJIAN NASIONAL Tahun Pelajaran 2010/2011 SOAL TEORI KEJURUAN

UJIAN NASIONAL Tahun Pelajaran 2010/2011 SOAL TEORI KEJURUAN DOKUMEN NEGARA UJIAN NASIONAL Tahun Pelajaran 2010/2011 SOAL TEORI KEJURUAN Satuan Pendidikan Kompetensi Keahlian Kode Soal Waktu Tanggal Bentuk Soal Jumlah Soal Paket Soal : Sekolah Menengah Kejuruan

Lebih terperinci

BAB III METODE PELAKSANAAN. Yamaha Mio di Laboratorium, Program Vokasi Universitas Muhammadiyah

BAB III METODE PELAKSANAAN. Yamaha Mio di Laboratorium, Program Vokasi Universitas Muhammadiyah BAB III METODE PELAKSANAAN 1.1 Tempat Pelaksanaan Dalam pelaksanaan serta pengujian tugas akhir ini, penulis melakukan pengerjaan merangkai dan menguji sistem pengapian dan pengisian sepeda motor Yamaha

Lebih terperinci

BAB II TINJAUAN LITERATUR

BAB II TINJAUAN LITERATUR BAB II TINJAUAN LITERATUR Motor bakar merupakan motor penggerak yang banyak digunakan untuk menggerakan kendaraan-kendaraan bermotor di jalan raya. Motor bakar adalah suatu mesin yang mengubah energi panas

Lebih terperinci

PEMERINTAH KOTA DENPASAR DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA PANITIA PELAKSANA LOMBA KOMPETENSI SISWA SEKRETARIAT : SMK NEGERI 1 DENPASAR

PEMERINTAH KOTA DENPASAR DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA PANITIA PELAKSANA LOMBA KOMPETENSI SISWA SEKRETARIAT : SMK NEGERI 1 DENPASAR TUGAS : ENGINE TUNE UP NO ASPEK PENILAIAN YES NO ACTUAL COMMENT 1 PERSIAPAN 1.1 Periksa semua perlengkapan yang ada 10 0 1.2 Periksa semua instruksi 10 0 1.3 Pilih peralatan pengetesan yang benar 20 0

Lebih terperinci

Gambar 7.1. Sistem starter pada kendaraan

Gambar 7.1. Sistem starter pada kendaraan BAB 7 SISTEM STARTER (STARTING SYSTEM) 7.1. Pendahuluan Saat mesin dalam keadaan mati, tidak ada tenaga yang dihasilkannya. Karena itu mesin tidak dapat memutarkan dirinya sediri pada saat akan dihidupkan.

Lebih terperinci

Mesin Diesel. Mesin Diesel

Mesin Diesel. Mesin Diesel Mesin Diesel Mesin Diesel Mesin diesel menggunakan bahan bakar diesel. Ia membangkitkan tenaga yang tinggi pada kecepatan rendah dan memiliki konstruksi yang solid. Efisiensi bahan bakarnya lebih baik

Lebih terperinci

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang 7 BAB II LANDASAN TEORI A. LANDASAN TEORI 1. Pembebanan Suatu mobil dalam memenuhi kebutuhan tenaga listrik selalu dilengkapi dengan alat pembangkit listrik berupa generator yang berfungsi memberikan tenaga

Lebih terperinci

PENINGKATKAN KEMAMPUAN ANAK PUTUS SEKOLAH DI KECAMATAN GEBOG KABUPATEN KUDUS MELALUI PELATIHAN OTOMOTIF

PENINGKATKAN KEMAMPUAN ANAK PUTUS SEKOLAH DI KECAMATAN GEBOG KABUPATEN KUDUS MELALUI PELATIHAN OTOMOTIF PENINGKATKAN KEMAMPUAN ANAK PUTUS SEKOLAH DI KECAMATAN GEBOG KABUPATEN KUDUS MELALUI PELATIHAN OTOMOTIF Supriyono 1*, Muh.Arifin 1, Qomaruddin 2 1 Program Studi Sistem Informasi, Fakultas Teknik, Universitas

Lebih terperinci

PANDUAN PELAKSANAAN KURIKULUM PENDIDIKAN KHUSUS

PANDUAN PELAKSANAAN KURIKULUM PENDIDIKAN KHUSUS PANDUAN PELAKSANAAN KURIKULUM PENDIDIKAN KHUSUS Mata Pelajaran : Keterampilan Vokasional Paket Keterampilan :Teknologi Industri Jenis Keterampilan : Otomotip SEKOLAH MENENGAH ATAS LUAR BIASA TUNA GRAHITA

Lebih terperinci

MODUL PRAKTEK SISTEM KELISTRIKAN BODI

MODUL PRAKTEK SISTEM KELISTRIKAN BODI 2010 MODUL PRAKTEK SISTEM KELISTRIKAN BODI 1 P a g e Budi Waluyo, ST MESIN OTOMOTIF FT UM MAGELANG 1/1/2010 BAB I PENDAHULUAN Modul praktek ini merupakan salah satu materi pengajaran praktek kelistrikan

Lebih terperinci

Proses Memperbaiki Gangguan Motor Starter pada Sepeda Motor Honda Astrea Grand Tahun Suprihadi Agus

Proses Memperbaiki Gangguan Motor Starter pada Sepeda Motor Honda Astrea Grand Tahun Suprihadi Agus Proses Memperbaiki Gangguan Motor Starter pada Sepeda Motor Honda Astrea Grand Tahun 1997 Suprihadi Agus Teknik Mesin D3. Politeknik Harapan Bersama Tegal. ABSTRAK Suatu mesin tidak dapat hidup dengan

Lebih terperinci

PERAWATAN FORKLIFT FD20ST-3

PERAWATAN FORKLIFT FD20ST-3 PERAWATAN FORKLIFT FD20ST-3 PERAWATAN FORKLIFT Oleh FD20ST-3 Ady Prasetya (210345025) Hasan Basri (210345035) Muhamad Maulana (210345039) Apa itu forklift??? Forklift adalah sebuah alat bantu berupa kendaraan

Lebih terperinci

Prosedur Pengetesan Injektor

Prosedur Pengetesan Injektor Prosedur Servis, Pengetesan dan Perbaikan Injektor Diesel Menentukan Kerusakan Injektor Sesuai penjelasan dalam buku yang ditulis oleh May and Crouse, sebuah kesalahan pada injektor akan dapat di identifikasikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 PRINSIP PEMINDAHAN TENAGA Sepeda motor dituntut bisa dioperasikan atau dijalankan pada berbagai kondisi jalan. Namun demikian, mesin yang berfungsi sebagai penggerak utama pada

Lebih terperinci

DAFTAR ISI DAFTAR ISI

DAFTAR ISI DAFTAR ISI DAFTAR ISI DAFTAR ISI HALAMAN JUDUL... i HALAMAN NOMOR PERSOALAN... ii HALAMAN PENGESAHAN... iii HALAMAN PERSEMBAHAN... iv HALAMAN MOTTO... v KATA PENGANTAR... vi ABSTRACT... viii DAFTAR ISI... ix DAFTAR

Lebih terperinci

KISI-KISI MATERI PLPG MATA PELAJARAN TEKNIK SEPEDA MOTOR. Kompetensi Guru Mata Pelajaran (KD)

KISI-KISI MATERI PLPG MATA PELAJARAN TEKNIK SEPEDA MOTOR. Kompetensi Guru Mata Pelajaran (KD) KISI-KISI MATERI PLPG MATA PELAJARAN TEKNIK SEPEDA MOTOR No Standar Guru (SKG) Inti Guru Guru Mata 1 Pedagogik Menguasai karakteristik peserta didik dari aspek fisik, moral, spiritual, sosial, kultural,

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Observasi terhadap analisis mesin dan transmisis vespa P150X telah mencari referensi dari beberapa sumber yang berkaitan dengan judul yang

Lebih terperinci

PEMERINTAH PROVINSI BALI DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA PANITIA PELAKSANA LOMBA KOMPETENSI SISWA SEKRETARIAT : SMK NEGERI 1 DENPASAR

PEMERINTAH PROVINSI BALI DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA PANITIA PELAKSANA LOMBA KOMPETENSI SISWA SEKRETARIAT : SMK NEGERI 1 DENPASAR TUGAS : ENGINE TUNE UP NO ASPEK PENILAIAN YES NO ACTUAL COMMENT 1 PERSIAPAN 1.1 Periksa semua perlengkapan yang ada 10 0 1.2 Periksa semua instruksi 10 0 1.3 Pilih peralatan pengetesan yang benar 20 0

Lebih terperinci

MEMPERBAIKI GANGGUAN MOTOR STARTER ELEKTRIK SEPEDA MOTOR HONDA ASTREA GRAND 100 CC TAHUN 1997

MEMPERBAIKI GANGGUAN MOTOR STARTER ELEKTRIK SEPEDA MOTOR HONDA ASTREA GRAND 100 CC TAHUN 1997 MEMPERBAIKI GANGGUAN MOTOR STARTER ELEKTRIK SEPEDA MOTOR HONDA ASTREA GRAND 100 CC TAHUN 1997 Ari Meicipto 1, Agus Suprihadi 2, Muh. Nuryasin 3 DIII Teknik Mesin Politeknik Harapan Bersama Jln. Mataram

Lebih terperinci

LEMBAR KERJA SISWA TUNE UP MESIN 4 Tak 4 SILINDER

LEMBAR KERJA SISWA TUNE UP MESIN 4 Tak 4 SILINDER LEMBAR KERJA SISWA TUNE UP MESIN 4 Tak 4 SILINDER Petunjuk Lembar Kerja Siswa Ikuti prosedur Tune Up seperti pada video yang anda saksikan Tayangan dan petunjuk di video adalah terbatas, tetapi prosedur

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. Sebuah modifikasi dan aplikasi suatu sistem tentunya membutuhkan

BAB II PENDEKATAN PEMECAHAN MASALAH. Sebuah modifikasi dan aplikasi suatu sistem tentunya membutuhkan BAB II PENDEKATAN PEMECAHAN MASALAH A. Aspek Perancangan Dalam Modifikasi Sebuah modifikasi dan aplikasi suatu sistem tentunya membutuhkan perencanaan, pemasangan dan pengujian. Dalam hal tersebut timbul

Lebih terperinci

LAMPIRAN A Pohon Keputusan

LAMPIRAN A Pohon Keputusan 72 LAMPIRAN A Pohon Keputusan Identifikasi Kerusakan pada motor Yamaha V-ixion B010 B020 B030 B040 B050 B060 B070 B080 B090 B100 B110 B120 B130 B140 B010 B020 B030 B040 B050 B060 B070 B080 B090 B100 B110

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL. i. HALAMAN LEMBAR PERSOALAN... ii. HALAMAN LEMBAR PENGESAHAN... iii. HALAMAN PERSEMBAHAN. iv. HALAMAN MOTTO..

DAFTAR ISI. HALAMAN JUDUL. i. HALAMAN LEMBAR PERSOALAN... ii. HALAMAN LEMBAR PENGESAHAN... iii. HALAMAN PERSEMBAHAN. iv. HALAMAN MOTTO.. DAFTAR ISI HALAMAN JUDUL. i HALAMAN LEMBAR PERSOALAN...... ii HALAMAN LEMBAR PENGESAHAN...... iii HALAMAN PERSEMBAHAN. iv HALAMAN MOTTO.. v KATA PENGANTAR. vi ABSTRACT viii DAFTAR ISI ix DAFTAR NAMA SIMBOL..

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Bahan dan Alat 3.1.1. Bahan Penelitian a. Bahan uji yang digunakan dalam penelitian ini adalah sepeda motor 4 langkah 110 cc seperti dalam gambar 3.1 : Gambar 3.1. Sepeda

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI. 2.1 Konsep Dasar Sistem Pengisian Sepeda Motor

BAB II KAJIAN PUSTAKA DAN DASAR TEORI. 2.1 Konsep Dasar Sistem Pengisian Sepeda Motor BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Konsep Dasar Sistem Pengisian Sepeda Motor Sistem pengisian adalah gabungan dari beberapa komponen pengisian seperti generator (alternator), regulator dan baterai

Lebih terperinci

Gambar Lampu kepala

Gambar Lampu kepala BAB 10 SISTEM PENERANGAN (LIGHTING SYSTEM) 10.1. Pendahuluan Penerangan yang digunakan di kendaraan diklasifikasikan berdasarkan tujuannya: untuk penerangan, untuk tanda atau informasi. Contoh, lampu depan

Lebih terperinci

JURUSAN PENDIDIKAN TEKNIK MESIN

JURUSAN PENDIDIKAN TEKNIK MESIN DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS PENDIDIKAN INDONESIA FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN JURUSAN PENDIDIKAN TEKNIK MESIN Jl. Dr. Setiabudhi No. 207 Bandung UJIAN TEORI PRAKTEK ENGINE

Lebih terperinci

TEKNIK ALAT JILID 2 SMK. Budi Tri Siswanto

TEKNIK ALAT JILID 2 SMK. Budi Tri Siswanto Budi Tri Siswanto TEKNIK ALAT BERAT JILID 2 SMK Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional Hak Cipta pada

Lebih terperinci

BAB II LANDASAN TEORI. mekanik berupa gerakan translasi piston (connecting rods) menjadi gerak rotasi

BAB II LANDASAN TEORI. mekanik berupa gerakan translasi piston (connecting rods) menjadi gerak rotasi BAB II LANDASAN TEORI 2.1 Pengertian Motor Bakar Motor bakar torak merupakan salah satu mesin pembangkit tenaga yang mengubah energi panas (energi termal) menjadi energi mekanik melalui proses pembakaran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Motor Bakar Torak Salah satu jenis penggerak mula yang banyak dipakai adalah mesin kalor, yaitu mesin yang menggunakan energi termal untuk melakukan kerja mekanik atau mengubah

Lebih terperinci

: Memelihara/servis engine dan komponen-komponenya(engine. (Engine Tune Up)

: Memelihara/servis engine dan komponen-komponenya(engine. (Engine Tune Up) SMK MA ARIF SALAM KABUPATEN MAGELANG JOBSHEET (LEMBAR KERJA) KODE : /PMO/VIII/12 Mata Pelajaran : Motor Otomotif (PMO) Guru : Edi Purwanto Memelihara/servis engine dan komponen-komponenya (Engine Tune

Lebih terperinci

Tabel 4.1. Komponen dan Simbol-Simbol dalam Kelistrikan. No Nama Simbol Keterangan Meter analog. 1 Baterai Sumber arus

Tabel 4.1. Komponen dan Simbol-Simbol dalam Kelistrikan. No Nama Simbol Keterangan Meter analog. 1 Baterai Sumber arus BAB 4 RANGKAIAN LISTRIK DAN PERBAIKANNYA 4.1. Pendahuluan Rangkaian listrik merupakan satu sistem yang terdiri dari beberapa komponen kelistrikan dan kabel-kabel penghantar yang menghubungkan satu komponen

Lebih terperinci

BAB III PROSES OVERHAUL ENGINE YAMAHA VIXION. Proses Overhoul Engine Yamaha Vixion ini dilakukan di Lab. Mesin,

BAB III PROSES OVERHAUL ENGINE YAMAHA VIXION. Proses Overhoul Engine Yamaha Vixion ini dilakukan di Lab. Mesin, BAB III PROSES OVERHAUL ENGINE YAMAHA VIXION 3.1. Tempat Pelaksanaan Tugas Akhir Proses Overhoul Engine Yamaha Vixion ini dilakukan di Lab. Mesin, Politenik Muhammadiyah Yogyakarta. Pelaksanaan dilakukan

Lebih terperinci

BAB III METODE PENELITIAN. Bahan yang digunakan dalam penelitian ditunjukkan pada gambar berikut :

BAB III METODE PENELITIAN. Bahan yang digunakan dalam penelitian ditunjukkan pada gambar berikut : BAB III METODE PENELITIAN 3.1.Bahan dan Alat 3.1.1. Bahan Bahan yang digunakan dalam penelitian ditunjukkan pada gambar berikut : a. Yamaha Jupiter MX 135 1) Sepesifikasi Gambar 3.1 Yamaha Jupiter MX 135

Lebih terperinci

Fungsi katup Katup masuk Katup buang

Fungsi katup Katup masuk Katup buang MEKANISME KATUP FUNGSI KATUP Fungsi katup Secara umum fungsi katup pada motor otto 4 langkah adalah untuk mengatur masuknya campuran bahan bakar dan udara dan mengatur keluarnya gas sisa pembakaran. Pada

Lebih terperinci

Rencana Pembelajaran Kegiatan Mingguan (RPKPM)

Rencana Pembelajaran Kegiatan Mingguan (RPKPM) Rencana Pembelajaran Kegiatan Mingguan (RPKPM) Pertemuan ke Capaian Pembelajaran Topik (pokok, subpokok bahasan, alokasi waktu) Teks Presentasi Media Ajar Gambar Audio/Video Soal-tugas Web Metode Evaluasi

Lebih terperinci

TINJAUAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap sistem kerja CVT, dan troubeshooting serta mencari

TINJAUAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap sistem kerja CVT, dan troubeshooting serta mencari BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Observasi terhadap sistem kerja CVT, dan troubeshooting serta mencari referensi dari beberapa sumber yang berkaitan dengan judul yang di

Lebih terperinci

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator.

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator. BAB III METODOLOGI 3.1 Desain Peralatan Desain genset bermula dari genset awal yaitu berbahan bakar bensin dimana diubah atau dimodifikasi dengan cara fungsi karburator yang mencampur bensin dan udara

Lebih terperinci

BAB III ANALISIS MASALAH. 3.1 Cara Kerja Sisten Starter Pada Kijang Innova. yang diamati pada Toyota Kijang Innova Engine 1 TR-FE masih bekerja

BAB III ANALISIS MASALAH. 3.1 Cara Kerja Sisten Starter Pada Kijang Innova. yang diamati pada Toyota Kijang Innova Engine 1 TR-FE masih bekerja BAB III ANALISIS MASALAH 3.1 Cara Kerja Sisten Starter Pada Kijang Innova Setelah melakukan pengamatan di pada objek cara kerja sistem starter yang diamati pada Toyota Kijang Innova Engine 1 TR-FE masih

Lebih terperinci

PENGGUNAAN IGNITION BOOSTER

PENGGUNAAN IGNITION BOOSTER PENGGUNAAN IGNITION BOOSTER DAN VARIASI JENIS BUSI TERHADAP TORSI DAN DAYA MESIN PADA YAMAHA MIO SOUL TAHUN 2010 Ilham Fahrudin, Husin Bugis, dan Ngatou Rohman Fakultas Keguruan dan Ilmu Pendidikan Universitas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Mesin mesin dan Alat Uji Pengujian kendaraan bermotor menggunakan bermacam macam jenis standarisasi diantaranya BSN, ISO, IEC, DIN, NISO, ASTM dll. Sebelum melakukan pengujian

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Identifikasi Kendaraan Gambar 4.1 Yamaha RX Z Spesifikasi Yamaha RX Z Mesin : - Tipe : 2 Langkah, satu silinder - Jenis karburator : karburator jenis piston - Sistem Pelumasan

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Semakin bertambahnya waktu maka ilmu pengetahuan dan teknologi yang ada semakin berkembang. Untuk itu manusia harus mampu mengimbanginya dengan menciptakan penemuan-penemuan

Lebih terperinci

BAB III PROSES PERAWATAN DAN PERBAIKAN

BAB III PROSES PERAWATAN DAN PERBAIKAN DAFTAR ISI HALAMAN JUDUL... i HALAMAN NOMOR PERSOALAN... ii LEMBAR PENGESAHAN... iii LEMBAR PERNYATAAN... iv LEMBAR PERSEMBAHAN... v MOTTO... vi KATA PENGANTAR... vii ABSTRACT... ix INTISARI... x DAFTAR

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Studi Pustaka. Persiapan Dan Pengesetan Mesin. Kondisi Baik. Persiapan Pengujian. Pemasangan Alat Ukur

BAB III METODOLOGI PENELITIAN. Studi Pustaka. Persiapan Dan Pengesetan Mesin. Kondisi Baik. Persiapan Pengujian. Pemasangan Alat Ukur BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Metodologi Penelitian Didalam melakukan pengujian diperlukan beberapa tahapan agar dapat berjalan lancar, sistematis dan sesuai dengan prosedur dan literatur

Lebih terperinci

MODUL SISTEM KEMUDI DPKJ OLEH : KHUSNIADI PROGRAM STUDI TEKNIK KENDARAAN RINGAN JURUSAN TEKNIK MEKANIK OTOMOTIF SMK NEGERI 1 BUKITTINGGI 2011

MODUL SISTEM KEMUDI DPKJ OLEH : KHUSNIADI PROGRAM STUDI TEKNIK KENDARAAN RINGAN JURUSAN TEKNIK MEKANIK OTOMOTIF SMK NEGERI 1 BUKITTINGGI 2011 1 MODUL SISTEM KEMUDI DPKJ OLEH : KHUSNIADI PROGRAM STUDI TEKNIK KENDARAAN RINGAN JURUSAN TEKNIK MEKANIK OTOMOTIF SMK NEGERI 1 BUKITTINGGI 2011 2 SISTEM KEMUDI Kompetensi : Menjelaskan pengertian prinsip

Lebih terperinci

BAB 13 SISTEM KELISTRIKAN TAMBAHAN (ASESORIS)

BAB 13 SISTEM KELISTRIKAN TAMBAHAN (ASESORIS) BAB 13 SISTEM KELISTRIKAN TAMBAHAN (ASESORIS) 13.1. Pendahuluan Sistem kelistrikan tambahan merupakan sistem di luar sistem utama namun memiliki fungsi yang tidak kalah penting. Faktor keamanan dan kenyamanan

Lebih terperinci

BAB III PROSES ANALISIS SISTEM EFI YAMAHA VIXION. Mulai. Pembuatan Engine Stand. Proses Perbaikan. Pengujian Engine Stand.

BAB III PROSES ANALISIS SISTEM EFI YAMAHA VIXION. Mulai. Pembuatan Engine Stand. Proses Perbaikan. Pengujian Engine Stand. BAB III PROSES ANALISIS SISTEM EFI YAMAHA VIXION 3.1. Tempat Pelaksanaan Tugas Akhir Proses analisis sistem EFI Yamaha Vixion ini dilakukan di Lab. Mesin, Universitas Muhammadiyah Yogyakarta.. 3.2. Diagram

Lebih terperinci

BAB II DASAR TEORI. Menurut Wiranto Arismunandar (1988) Energi diperoleh dengan proses

BAB II DASAR TEORI. Menurut Wiranto Arismunandar (1988) Energi diperoleh dengan proses BAB II DASAR TEORI 2.1. Definisi Motor Bakar Menurut Wiranto Arismunandar (1988) Energi diperoleh dengan proses pembakaran. Ditinjau dari cara memperoleh energi termal ini mesin kalor dibagi menjadi 2

Lebih terperinci

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI Motor penggerak mula adalah suatu alat yang merubah tenaga primer menjadi tenaga sekunder, yang tidak diwujudkan dalam bentuk aslinya, tetapi diwujudkan dalam

Lebih terperinci

PROSEDUR PENYETELAN AWAL PADA SEPEDA MOTOR Oleh : Bambang Sulistyo, S.Pd.

PROSEDUR PENYETELAN AWAL PADA SEPEDA MOTOR Oleh : Bambang Sulistyo, S.Pd. PROSEDUR PENYETELAN AWAL PADA SEPEDA MOTOR Oleh : Bambang Sulistyo, S.Pd. Pendahuluan Operasi sepeda motor yang tanpa kerusakan dan aman, dan juga umur yang panjang adalah idaman dari setiap pemilik sepeda

Lebih terperinci

TUGAS AKHIR. PENGARUH PENGGUNAAN BAHAN BAKAR GAS LPG TERHADAP UNJUK KERJA MOTOR 4 LANGKAH 100cc

TUGAS AKHIR. PENGARUH PENGGUNAAN BAHAN BAKAR GAS LPG TERHADAP UNJUK KERJA MOTOR 4 LANGKAH 100cc TUGAS AKHIR PENGARUH PENGGUNAAN BAHAN BAKAR GAS LPG TERHADAP UNJUK KERJA MOTOR 4 LANGKAH 100cc Diajukan Guna Memenuhi Persyaratan untuk Memperoleh Gelar Sarjana Pada Fakultas Teknik Program Studi Teknik

Lebih terperinci

Tune Up Mesin Bensin TUNE UP MOTOR BENSIN

Tune Up Mesin Bensin TUNE UP MOTOR BENSIN TUNE UP MOTOR BENSIN 1 Membersihkan Saringan Udara Ganti bila sudah kotor belebihan Semprot dengan udara tekan dari arah berlawanan dengan arah aliran udara masuk 2 Periksa Oli Mesin Periksa : Jumlah Oli

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL HALAMAN PERSETUJUAN. HALAMAN PENGESAHAN. HALAMAN PERSEMBAHAN. KATA PENGANTAR. DAFTAR GAMBAR. BAB I PENDAHULUAN 1

DAFTAR ISI HALAMAN JUDUL HALAMAN PERSETUJUAN. HALAMAN PENGESAHAN. HALAMAN PERSEMBAHAN. KATA PENGANTAR. DAFTAR GAMBAR. BAB I PENDAHULUAN 1 DAFTAR ISI Halaman HALAMAN JUDUL HALAMAN PERSETUJUAN. HALAMAN PENGESAHAN. KEASLIAAN MOTTO HALAMAN PERSEMBAHAN. ABSTRAK KATA PENGANTAR. DAFTAR ISI DAFTAR GAMBAR. DAFTAR TABEL.. i ii iii iv v vi vii viii

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Bahan Penelitian 3.1.1. Sepeda Motor Untuk penelitian ini sepeda motor yang digunakan YAMAHA mio sporty 113 cc tahun 2007 berikut spesifikasinya : 1. Spesifikasi Mesin

Lebih terperinci

Dua orang berkebangsaan Jerman mempatenkan engine pembakaran dalam pertama di tahun 1875.

Dua orang berkebangsaan Jerman mempatenkan engine pembakaran dalam pertama di tahun 1875. ABSIC ENGINE Dua orang berkebangsaan Jerman mempatenkan engine pembakaran dalam pertama di tahun 1875. Pada pertengahan era 30-an, Volvo menggunakan engine yang serupa dengan engine Diesel. Yaitu engine

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tempat Penelitian Tempat penelitian yang digunakan dalam penelitian ini berada di Motocourse Technology (Mototech) Jl. Ringroad Selatan, Kemasan, Singosaren, Banguntapan,

Lebih terperinci

Gambar 6.2 Kran bensin tipe standar

Gambar 6.2 Kran bensin tipe standar Struktur tangki terdiri dari; a. Tank cap (penutup tangki); berfungsi sebagai lubang masuknya bensin, pelindung debu dan air, lubang pernafasan udara, dan mejaga agar bensin tidak tumpah jika sepeda mesin

Lebih terperinci

Oleh: Nuryanto K BAB I PENDAHULUAN

Oleh: Nuryanto K BAB I PENDAHULUAN Pengaruh penggantian koil pengapian sepeda motor dengan koil mobil dan variasi putaran mesin terhadap konsumsi bahan bakar pada sepeda motor Honda Supra x tahun 2002 Oleh: Nuryanto K. 2599038 BAB I PENDAHULUAN

Lebih terperinci