ANALISIS MEKANISME FOKUS GEMPA DI BLITAR-JAWA TIMUR 17 MEI 2011

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS MEKANISME FOKUS GEMPA DI BLITAR-JAWA TIMUR 17 MEI 2011"

Transkripsi

1 ANALISIS MEKANISME FOKUS GEMPA DI BLITAR-JAWA TIMUR 17 MEI 2011 Skripsi Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Sains pada Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta Oleh DAVID HARMADHONI NIM : PROGRAM STUDI FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2011 M / 1433 H

2

3

4 LEMBAR KEASLIAN SKRIPSI Dengan ini saya menyatakan bahwa Skripsi ini merupakan karya tulis saya sendiri dan bukan merupakan tiruan, salinan atau duplikat dari Skripsi yang telah dipergunakan untuk mendapatkan gelar kesarjanaan baik dilingkungan Universitas Islam Negeri Syarif Hidayatullah Jakarta maupun diperguruan tinggi lain, serta belum pernah dipublikasikan. Pernyataan ini dibuat dengan penuh kesadaran dan rasa tanggung jawab serta bersedia menerima segala resikonya jika ternyata pernyataan diatas tidak benar. Jakarta, 05 Desember 2011 DAVID HARMADHONI NIM: iii

5 ABSTRAK Indonesia merupakan daerah yang dilalui oleh pertemuan tiga lempeng besar dunia yaitu Indo-Australia bergerak ke Utara, Asia Pasifik ke Timur dan Eurasia ke Selatan. Kondisi inilah yang menyebabkan Indonesia sering terjadi gempa. Metode fokal mekanisme salah satu metode yang sering digunakan untuk mengetahui mekanisme pusat gempa. Pada penelitian ini digunakan Analisis data polaritas awal gelombang P yang dihasilkan oleh gempa tektonik Blitar, Jawa Timur pada tanggal 17 Mei 2011 dengan Magnitude 6.1 SR untuk mendapatkan parameter sesar yaitu Strike, Dip dan Rake. Sehingga dapat ditentukan orientasi bidang sesar atau patahan dan mengetahui jenis patahan yang terjadi berdasarkan data arah gerakan awal gelombang P. Penentuan mekanisme pusat gempa dapat ditentukan dengan data polaritas gelombang P dengan program komputer AZMTAK. Hasil dari solusi mekanisme pusat gempa Blitar, Jawa Timur menunjukkan bahwa sesar yang terjadi sesar turun dengan nilai bidang nodal pertama Strike 122º, Dip 60º dan Rake -78º. Sedangkan pada bidang nodal kedua memiliki Strike 279º, Dip 32º dan Rake -109º. Hasil dari penampang melintang zona Blitar yaitu segmen B-B Penyebaran Hiposenter mencapai kurang lebih 151km, penyebaran Shallow Dip membentuk sudut sekitar 26º terhadap Horisontal sampai kedalaman kurang lebih 110km. Kata Kunci : fokal mekanisme, Strike, Dip, dan Rake, AZMTAK, Shallow Dip. iv

6 ABSTRACT Indonesia is an area that is traversed by the confluence of three major plates of the world is the Indo-Australian move to the North, East Asia Pacific and Eurasia to the South. This condition often causes the Indonesia earthquake. Method of focal mechanisms is often one of the methods used to determine the mechanism of the epicenter. In this study used analysis of the initial P wave polarity data generated by tectonic earthquake Blitar, East Java on 17 May 2011 with Magnitude 1.6 SR to get the parameters section of Strike, Dip and Rake. So it can be determined the orientation of the field of fault or faults, and know what type of fracture that occurs based on the data direction of movement of the early wave of P. Determination of the mechanism of the epicenter can be determined by the P wave polarity data with computer programs AZMTAK. The results of the solution mechanism epicenter Blitar, East Java showed that the fault that occurred fault down to the value field of the first Nodal 122 º Strike, Dip and Rake 60 º -78 º. While in the second nodal areas have 279 º Strike, Dip and Rake 32 º -109 º. The results of the cross section of segment Blitar zone B-B 'Spread hypocenter reached more than 151km, the spread of Shallow Dip to form an angle of about 26 º to the horizontal to a depth of approximately 110km. Keyword: focal mechanisms, Strike, Dip, and Rake, AZMTAK, Shallow Dip. v

7 KATA PENGANTAR Bismillahirahmanirrahim, Puji syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-nya sehingga saya dapat menyelesaikan Skripsi yang berjudul ANALISA MEKANISME FOKUS GEMPA DI BLITAR-JAWA TIMUR 17 MEI 2011 dengan baik. Skripsi ini merupakan salah satu syarat kelulusan menempuh perkuliahan jenjang Sarjana (S1) di Program Studi Fisika, Jurusan Geofisika - Universitas Islam Negeri Syarif Hidayatullah Jakarta. Penyusunan skripsi ini tidak terlepas dari bantuan dan dukungan dari berbagai pihak. Oleh karena itu pada kesempatan ini saya menyampaikan terima kasih kepada: 1. Bapak DR. Syopiansyah Jaya Putra, M.Sis Selaku Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah - yang telah memberikan izin penulisan skripsi. 2. Bapak Drs. Sutrisno, M.Si. selaku Ketua Jurusan Program Studi Fisika Universitas Islam Negeri Syarif Hidayatullah yang telah memberikan izin, bimbingan dan arahan kepada penulis. 3. Ibu Tati Zera, M.Si. Selaku Dosen Pembimbing II yang dengan sabar membimbing, mengarahkan, memberikan saran kepada penulis sampai selesai penulisan skripsi ini. 4. Orang tua dan beserta keluarga atas do a dan dukunganya yang tak terhingga sehingga terselesaikanya skripsi dan kuliah di UIN Syarif Hidayatullah Jakarta. 5. Mas Bayu,S.Si yang telah membimbing di BMKG sehingga skripsi ini dapat selesai. 6. Sahabat-sahabat setia Satria, andri,fajar,tio,pangki, romi,pendi,away,adam,ozy atar, Qolby, dan Destri yang bersama - sama dalam suka duka menjalani kuliah di UIN Syarif Hidayatullah Jakarta. 7. Bapak Wahyudi Yang telah memberikan ruangan untuk mengerjakan skripsi vi

8 8. Teman - teman Fisika UIN angkatan 2006, 2007 dan 2008 yang tidak bisa disebutkan disini yang dengan kebersamaan dan kekompakanya selama dalam menjalani perkuliahan di UIN Syarif Hidayatullah Jakarta. Penulis berharap semoga pihak yang telah membantu dalam penyusunan skripsi ini mendapatkan balasan kebaikan dari Allah Subhanahu Wa Ta ala. Penulis menyadari bahwa tulisan ini masih jauh dari sempurna karena keterbatasan kemampuan dan pengetahuan saya sendiri. Penulis hanya berharap semoga karya kecil ini dapat memberikan kemanfaatan bagi kehidupan, dan menambah kebaikan ketika menghadapi hari pembalasan. Untuk perbaikan skripsi ini, penulis mengharapkan kritik, saran dan pendapat yang membangun. Jakarta, 05 Desember 2011 David Harmadhoni vii

9 DAFTAR ISI LEMBAR PERSETUJUAN PEMBIMBING.. LEMBAR PENGESAHAN UJIAN... LEMBAR PERNYATAAN... ABSTRAK... ABSTRACT. KATA PENGANTAR. DAFTAR ISI DAFTAR GAMBAR... i ii iii iv v vi viii x BAB 1 PENDAHULUAN Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Penelitian Manfaat Penelitian Sistematika Penulisan... 5 BAB II DASAR TEORI Teori Gempa Bumi Macam-Macam Gempa Bumi Gelombang Seismik Teori Pegas Elastis Teori Dasar Mekanisme Fokus Teori Kopel Ganda Diagram Mekanisme Pusat Gempa Teori Mekanisme Dengan Metode Impuls Pertama Gelombang Primer (P) Penentuan Tipe Sesar 28 viii

10 2.8 Kondisi Seismotektonik Blitar, Jawa Timur Dan Sekitarnya BAB III METODE PENELITIAN Waktu Dan Tempat Penelitian Alat Dan Bahan Pengolahan Dan Analisa Data Prosedur Kerja.. 37 BAB IV HASIL DAN PEMBAHASAN Penyebaran Pusat Gempa Bumi Penampang Melintang Solusi Mekanisme Sumber Gempa Bumi 43 BAB V KESIMPULAN DAN SARAN Kesimpulan Saran 48 DAFTAR PUSTAKA. 49 LAMPIRAN ix

11 DAFTAR GAMBAR Gambar 1.1 Pola TektonikKepulauan Indonesia 1 Gambar 2.1 Batas-Batas Lempeng Tektonik.. 8 Gambar 2.2 Skematik Dari Proses Terjadinya Gempa Bumi Tektonik.. 9 Gambar 2.3 Sifat Penjalaran Gelombang Seismik.. 12 Gambar 2.4 Penjalaran Gelombang P & S Didalam Bumi. 13 Gambar 2.5 Mekanisme Gempa Bumi Yang Menjadi Sumber Gempa.. 14 Gambar 2.6 Sistem Gaya Kopel Ganda.. 16 Gambar 2.7 Bola Pusat Gempa Yang Menggambarkan Hiposenter Gambar 2.8 Gambar Tiga Dimensi Radiasi Gelombang Gempa Model Kopel Ganda Gambar 2.9 Proyeksi Bola Pusat Gempa di Bidang Equatorial. 19 Gambar 2.10 Orthogonalitas Dua Bidang Nodal Gambar 2.11 Bidang Proyeksi Luasan Sama (Stereografis) Gambar 2.12 Pengukuran Strike dan Dip Pada Diagram 22 Gambar 2.13 Penentuan Sumbu P dan T 45 Dua Kutub Pada Garis. 23 Gambar 2.14 Penentuan Sudut Rake Pada Reverse Fault (Kiri) dan Normal Fault (Kanan). 25 Gambar 2.15 Sistem Gaya Kopel Ganda. 26 Gambar 2.16 Impuls Gelombang P dan Bola Fokus 26 Gambar 2.17 Parameter Orientasi Bidang Sesar.. 29 Gambar 2.18 Sesar Turun. 29 Gambar 2.19 Sesar Naik Gambar 2.20 Sesar Mendatar Gambar 2.21 Sesar Obliq. 30 Gambar 2.22 Peta Seismotektonik Pulau Jawa 32 Gambar 3.1 Diagram Alir Pembuatan Peta Seismisitas dan Penampang Melintang. 37 x

12 Gambar 3.2 Diagram Alir Penentuan Solusi Mekanisme Sumber Gempa Bumi. 38 Gambar 4.1 Penyebaran Pusat Gempa Bumi di Blitar, Jawa Timur dan Sekitarnya 39 Gambar 4.2 Irisan Penampang Melintang Gambar 4.3 Penampang Melintang Segmen A-A. 42 Gambar 4.4 Penampang Melintang Segmen B-B.. 42 Gambar 4.5 Penampang Melintang Segmen C-C.. 43 Gambar 4.6 Solusi Mekanisme Sumber Gempa Bumi Blitar,Jawa Timur.. 44 Gambar 4.7 Hasil Solusi Mekanisme Dari USGS.. 45 xi

13 BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Indonesia dikenal sebagai wilayah yang mempunyai tatanan geologi unik dan rumit. Hal ini dikarenakan, Indonesia merupakan jalur pertemuan tiga lempeng besar yaitu lempeng Indo-Australia yang relative bergerak ke Utara, lempeng Eurasia yang relative bergerak ke Selatan,dan lempeng Pasifik yang relative bergerak ke Barat. Pertemuan antar lempeng menyebabkan sering terjadi gempa bumi karena tumbukan atau pergeseran lempeng. Oleh karena itu, Indonesia merupakan daerah yang secara tektonik bersifat labil dan merupakan kawasan pinggir benua yang paling aktif didunia. Gambar 1.1 Pola tektonik kepulauan Indonesia 1

14 Kompleksnya proses tektonik dan tingginya tingkat seismisitas di Blitar, Jawa Timur maka perlu dilakukan penelitian. Penelitian yang dilakukan adalah menganalisis seismotektonik di Blitar, Jawa Timur dan sekitarnya berdasarkan pola penyebaran hiposenter dan mekanisme sumber gempa bumi. Bentuk atau pola penunjaman serta mekanisme dari lempeng dapat diestimasi dari penyebaran hiposenter dan analisis mekanisme sumber gempa bumi. Data gempa bumi yang digunakan diperoleh dari USGS ( United States Geological Survey). Metode yang dilakukan adalah mengeplot hiposenter dan membuat penampang melintang ( Cross Section ) hiposenter yang arahnya tegak lurus trench, dari rangkaian penampang melintang akan diketahui pola penyebaran hiposenter dan gambaran model tektonik serta penunjamannya. Penentuan mekanisme sumber gempa bumi menggunakan polaritas gerakan pertama gelombang P. Mekanisme sumber gempa bumi merupakan metode yang digunakan untuk mengidentifikasi sesar dan pergerakannya dengan cara menentukan parameter-parameter sesar berupa strike, dip, dan rake. Salah satu zona yang mempunyai aktifitas gempa bumi di Indonesia adalah Jawa Timur, hal ini karena Jawa Timur merupakan salah satu daerah dengan kondisi tektonik yang sangat kompleks. Propinsi Jawa Timur yang terletak di 111 derajat derajat 4 Bujur Timur dan 70 derajat derajat 48 Lintang Selatan, memang berada di daerah rawan terjadi gempa salah satunya adalah jalur tumbukan lempengan Eurasia dan 2

15 Indo-Australia di bagian Selatan Jawa Timur dan pergeseran lempeng inilah yang menyebabkan gempa tektonik. Gempa Blitar terjadi karena tumbukan lempeng Indo Australia dan lempeng Eurasia, tubrukan antar lempeng itu karena lempeng Indo - Australia bergerak menuju ke utara mengarah ke lempeng Eurasia yang bergerak dari timur ke barat. 1.2 Rumusan Permasalahan Berdasarkan uraian latar belakang diatas maka dapat dirumuskan masalah sebagai berikut: 1. Bagaimana mengetahui cara penentuan mekanisme fokal gempa di Blitar, Jawa Timur? 2. Bagaimana mengetahui karateristik (pola dan tipe patahan) gempa berdasarkan mekanisme fokal gempa di Blitar, Jawa Timur pada tanggal 17 mei 2011 gempa bumi kedalaman < 25km? 3. Bagaimana mengetahui sebaran (seismisitas) gempa dangkal (25 km) di Blitar, Jawa Timur pada tanggal 17 mei 2011? 4. Bagaimana mengetahui kemiringan (dip) dari penampang melintang seismisitas untuk gempa dangkal di daerah Blitar, Jawa Timur? 1.3 Batasan Masalah Penelitian ini dilakukan dengan membatasi permasalahan pada: 1. Parameter-parameter bidang sesar / patahan yang dicari berupa nilai strike, dip, dan rake dengan menggunakan polaritas awal gelombang P. 3

16 2. Masalah pendugaan pola sesar / mekanisme fokal dari gempa kuat di Blitar, Jawa Timur dengan magnitudo 6,1 Skala Ritcher dan kedalaman 25 km dengan metode polarisasi pertama gelombang P pada tanggal 17 mei Daerah penelitian di Blitar, Jawa Timur khususnya pada laut Selatan dari koordinat 9.55 Lintang Selatan Bujur Timur. 1.4 Tujuan Penelitian Tujuan dari penelitian tugas akhir ini adalah: 1. Mengetahui cara penentuan mekanisme fokal gempa di Blitar, Jawa Timur. 2. Mengetahui karateristik (pola tipe patahan ) gempa berdasarkan mekanisme fokal gempa di Blitar, Jawa Timur sehingga dapat diketahui parameter-parameter pola bidang sesar dari gempa tersebut antara lain arah jenis sesar (strike), besar kemiringan (dip), besar sudut pergeserannya (rake) sehingga dengan parameter tersebut dapat disimpulkan jenis patahan / pola sesarnya. 3. Menganalisis seismotektonik zona Blitar, Jawa Timur dan sekitarnya berdasarkan penampang melintang seismisitas dan mekanisme sumber gempa bumi. 1.5 Manfaat Penelitian 1. Mengetahui potensi dan kekuatan gempa yang terjadi di daerah penelitian, sebagai langkah awal untuk pengembangan lebih lanjut. 4

17 2. Merevisi pemetaan tektonik dari suatu daerah dengan informasi mekanisme sumber gempa. 3. Mitigasi terhadap bencana gempa bumi di zona subduksi dan sesar yang ada di Blitar, Jawa timur. 4. Sebagai rujukan dalam perencanaan pembangunan daerah di Blitar, Jawa Timur dan sekitarnya. 1.6 Sistematika Penulisan Tugas akhir ini terdiri dari lima bab dengan rincian sebagai berikut: BAB I : Pendahuluan Merupakan pendahuluan yang menjelaskan latar belakang penulisan, tujuan, manfaat, perumusan masalah, dan sistematika penulisan. BAB II : Landasan Teori Menjelaskan teori dasar yang menunjang pembahasan atau interpretasi data yang di dapat dari lapangan. BAB III : Metode Penelitian Menjelaskan tentang waktu dan tempat penelitian, alat dan bahan, prosedur pengambilan dan pengolahan data. BAB IV : Hasil dan Pembahasan Berisi tentang hasil pengolahan data, pemodelan, dan pembahasan interpretasi data. BAB V : Kesimpulan dan Saran Mengenai kesimpulan dan saran untuk pengembangan penelitian berikutnya. 5

18 BAB II DASAR TEORI 2.1 Teori Gempa Bumi Di Indonesia gempabumi yang sering menimbulkan kerugian dan korban adalah gempa bumi tektonik. Gempa bumi tektonik disebabkan oleh pergeseran lempeng-lempeng tektonik. Menurut teori lempeng tektonik kerak bumi terpecahpecah menjadi bagian yang disebut lempeng bumi (plate). Lempeng-lempeng tersebut bergerak dengan arah dan kecepatan berbeda. Menurut teori konveksi pergerakan ini disebabkan oleh arus konveksi. Maksudnya bumi yang terdiri dari lithosfer dan Asthenosfer yang bersuhu tinggi timbul arus yang disebut arus konveksi. Teori tektonik lempeng menyatakan bahwa kerak bumi tersusun atas beberapa lempeng tektonik besar. lempeng tektonik adalah litosfer bumi yang terdiri dari mantel dan kerak bumi yang mengapung diatas asthenosfer yang cair dan panas. Adanya gaya tektonik yang timbul akibat arus konveksi di dalam mantel bumi, maka lempeng tektonik akan saling bergerak, bertumbukan serta bergeser satu sama lain. Oleh karena itu timbul tekanan yang menyebabkan lempeng-lempeng tersebut terpecah-pecah atau patah menjadi lempeng-lempeng tektonik yang lebih kecil. 6

19 Batas-batas lempeng merupakan suatu daerah yang secara tektonik sangat aktif. Secara umum batas-batas lempeng terdiri dari tiga jenis: 1. Zona Konvergen Zona ini ditandai dengan adanya dua lempeng yang berbatasan, bergerak dengan arah yang saling mendekati. Zona konvergen dapat dibedakan menjadi dua jenis yaitu: a. Zona Tumbukan Pada zona ini kedua lempeng bergerak saling mendekati sehingga pada batas-batas kedua lempeng cenderung melipat ke atas dan membentuk pegunungan lipatan. b. Zona Subduksi Pada zona ini ke dua lempeng saling bertumbukan (lempeng benua dan lempeng samudera). Lempeng yang lebih berat (lempeng samudera) akan menunjam di bawah lempeng yanglebih ringan (lempeng benua). Hasil aktifitas tektonik semacam ini berupa rangkaian gunung api. 2. Zona Divergen Zona ini ditandai dengan adanya dua lempeng yang berbatasan bergerak dengan arah saling menjauhi sehingga membentuk pegunungan (ridge) yang terdapat di tengah samudera. Zona ini ditandai dengan pembentukan materi-materi lempeng. 3. Zona Singgungan Zona ini ditandai dengan dua lempeng yang saling bergerak relatif sejajar satu dengan yang lain sehingga terjadi gesekan pada bidang batas 7

20 lempeng. Akibat gesekan ini akan timbul gempa-gempa dangkal yang dapat membawa bencana. Gambar 2.1 Batas-batas lempeng Tektonik 2.2 Macam- Macam Gempa Bumi Gempabumi adalah hentakan atau gerakan tanah tiba-tiba akibat pelepasan energi yang terakumulasi atau tersimpan dalam bentuk gelombang seismik. Pada tahun 1978 di Jerman, R.Hoernes mengemukakan pembagian macam-macam gempabumi yang sampai sekarang masih tetap berlaku yaitu : 1. Gempabumi Tektonik Gempabumi ini terjadi akibat adanya pergeseran-pergeseran atau patahan dari lapisan batuan secara tiba-tiba di dalam bumi. Menurut penyelidikan 90% dari jumlah gempabumi yang ada di dunia akibat dari gempabumi tektonik. Gempabumi tektonik yang kuat sering mengakibatkan kerusakan fisik diatas kulit bumi. Getaran gempabumi yang kuat mampu menjalar keseluruh bagian bumi dan dapat tercatat oleh Seismograf di seluruh dunia. 8

21 Gambar 2.2 Skematik dari proses terjadinya gempabumi tektonik. 2. Gempabumi Vulkanik atau Gempabumi Gunung Api Gempabumi ini terjadi akibat adanya aktivitas magma gas di dalam dapur magma (batholite), dan jika gejala vulkanis tersebut meningkat maka dapat menyebabkan timbulnya ledakan yang juga diikuti dengan gempabumi. Gempabumi ini hanya dirasakan pada daerah sekitar gunung berapi itu saja. 3. Gempa Runtuhan atau Tanah Longsor Gempabumi ini terjadi karena adanya pergerakan permukaan tanah (longsor), gua runtuh dan lain sebagainya yang menimbulkan getaran-getaran. Pada umumnya terjadi pada daerah-daerah dimana terdapat runtuhan-runtuhan di dalam tanah, misalnya di daerah kapur atau daerah pertambangan. Seperti yang diketahui, batuan kapur mudah larut dalam air sehingga akan terjadi rongga-rongga (gua) di dalam tanah yang menyebabkan runtuhnya bagian atas dari gua ini, juga di daerah-daerah dimana terdapat endapan garam, gejala ini terjadi karena sifat garam yang mudah larut. 9

22 Ada juga jenis gempa yang lain, namun sangat jarang terjadi diantaranya : 1. Gempa karena Tumbukan Meteor. 2. Gempa Buatan, misalnya karena ledakan dinamit atau nuklir. Berdasarkan kedalaman sumber gempa bumi, gempa bumi dibedakan menjadi: Gempa bumi dangkal (kedalaman 0 60 km) Gempa bumi dangkal menimbulkan efek goncangan yang lebih dahsyat di bandingkan gempa bumi dalam, karena letak fokus lebih dekat ke permukaan. Gempa bumi menengah (kedalaman km) Gempa bumi menengah terletak pada kedalaman di bawah kerak bumi, sehingga digolongkan sebagai gempa bumi yang tidak berasosiasi dengan penampakan retakan atau patahan di permukaan, namun gempa bumi ini masih dapat diperkirakan mekanisme terjadinya. Gempa bumi dalam (kedalaman > 300 km) Gempa bumi dalam ini sebenarnya relatif sering terjadi, namun karena berada pada kedalaman lebih dari 300 km maka manusia tidak merasakan getarannya. Berdasarkan parameter, parameter sumber gempa bumi antara lain: Waktu terjadinya gempa bumi (origin time) adalah waktu terlepasnya akumulasi tekanan (stress) yang berbentuk penjalaran gelombanggempa bumi. 10

23 Hiposenter yaitu lokasi terjadinya gempa bumi (pusat gempa bumi) Episenter yaitu proyeksi hiposenter ke permukaan bumi (lintang, bujur) Magnitudo (kekuatan gempa bumi) yaitu ukuran energi yang terpancarkan oleh sumber gempa bumi, biasanya dinyatakan dalam Skala Richter (SR) Intensitas yaitu skala dampak kerusakan yang dialami di permukaan bumi akibat gempa bumi, biasanya dinyatakan dalam skala MMI (Modified Mercally Intencity) dengan skala terendah I dan akala tertinggi VII. 2.3 Gelombang Seismik Mekanisme gempabumi dikontrol oleh pola penjalaran gelombang seismik di dalam bumi. Pola mekanisme ini tergantung pada medium penjalaran atau keadaan struktur kulit bumi serta distribusi gaya atau stress yang terjadi. Gelombang seismik adalah gelombang elastis yang menjalar di dalam bumi. Gelombang seismik dapat diklasifikasikan menjadi dua kelompok yaitu gelombang badan (body wave) dan gelombang permukaan (surface wave). 1. Gelombang badan (body wave) adalah gelombang yang merambat melalui lapisan dalam bumi. Gelombang ini terdiri dari 2 macam gelombang yaitu : a. Gelombang Longitudinal (P) yaitu gelombang yang arah rambatnya searah dengan arah getar partikel medium yang dilewatinya. 11

24 b. Gelombang Transversal (S) yaitu gelombang yang arah rambatnya tegak lurus terhadap arah gerak partikel medium yang dilewatinya. 2. Gelombang Permukaan yaitu gelombang yang menjalar sepanjang permukaan atau pada suatu lapisan dalam bumi, gelombang ini terdiri dari: a. Gelombang Love (LQ) dan gelombang Rayleigh (LR) yaitu gelombang yang menjalar melalui permukaan yang bebas dari bumi. b. Gelombang Stonely, seperti gelombang Rayleigh (LR) tetapi menjalarnya melalui batas dua lapisan di dalam bumi. c. Gelombang Channel, yang menjalar melalui lapisan yang berkecepatan rendah di dalam bumi. Gambar 2.3 Sifat penjalaran gelombang seismik Gelombang primer merupakan gelombang longitudinal atau gelombang kompresional, gerakan partikelnya sejajar dengan arah perambatannya. Sedang gelombang sekunder merupakan gelombang transversal atau gelombang shear, gerakan partikelnya terletak pada suatu bidang yang tegak lurus dengan arah penjalarannya. 12

25 Gelombang kompresional disebut gelombang primer (P) karena kecepatannya paling tinggi diantara gelombang yang lain dan tiba pertama kali. Sedang gelombang shear disebut gelombang sekunder (S) karena tiba yang kedua setelah gelombang P. Gelombang sekunder terdiri dari dua komponen, yaitu gelombang SH dengan gerakan partikel horizontal dan gelombang SV dengan gerakan partikel vertikal. Sifat penjalaran gelombang P yang langsung adalah bahwa gelombang ini akan menjadi hilang pada jarak lebih besar dari 130º, dan tidak terlihat sampai dengan jarak kurang dari 140º. Hal tersebut disebabkan karena adanya inti bumi. Gelombang langsung P akan menyinggung permukaan inti bumi pada jarak 103º dan pada jarak yang akan mengenai inti bumi pada jarak 144º. Gelombang P akan timbul kembali yaitu gelombang yang menembus inti bumi dengan dua kali mengalami refraksi. Menghilangnya gelombang P pada jarak 103º memungkinkan untuk menghitung kedalaman lapisan inti bumi. Gambar 2.4 Penjalaran Gelombang P & S di dalam bumi Walaupun gelombang body dapat menjalar ke segala arah di permukaan bumi, namun tetap tidak dapat menembus inti bumi sebagai gelombang transversal. Keadaan ini membuktikan bahwa inti luar bumi berupa fluida. Untuk 13

26 penelitian tetap diasumsikan keadaan homogen, yaitu bagian luar bumi dan inti bumi (dua media homogen yang berbeda). 2.4 Teori Pegas Elastis Proses terjadinya gempabumi tektonik dapat didefinisikan sebagai berikut. Misalkan dua lempeng yang saling bergerak relatif terhadap sesamanya, pergerakan ini menimbulkan gesekan di sepanjang bidang batas kedua lempeng tersebut. Gesekan kedua lempeng tersebut diasumsikan bersifat elastis, dapat menimbulkan suatu energi yang disebut energi elastis. Kalau hal ini terjadi terus menerus, maka terjadi akumulasi energi yang besar, pada saat kondisi tertentu dimana batuan tersebut tidak mampu menahan lagi stress/tekanan/gaya yang ditimbulkan oleh gerakan relatif tersebut, energi elastis yang terakumulasi akan dilepaskan secara tiba-tiba dalam bentuk gelombang elastis yang menjalar ke segala arah. maka gempabumi tersebut terjadi dan dirasakan sebagai suatu getaran. Terjadinya gempabumi dapat dijelaskan dengan teori pegas elastis (Elastic Rebond Theory) pada gambar 2.2. Gambar 2.5 Mekanisme gempabumi yang menjadi sumber gempa tektonik. Garis tebal vertikal menunjukan pecahan atau sesar pada bagian bumi yang padat. Pada keadaan I menunjukan suatu lapisan yang belum terjadi perubahan bentuk geologi. Karena di dalam bumi terjadi gerakan yang terus-menerus, maka 14

27 akan terdapat stress yang lama kelamaan akan terakumulasi dan mampu merubah bentuk geologi dari lapisan batuan. Keadaan II menunjukan suatu lapisan batuan telah mendapat dan mengandung stress dimana telah terjadi perubahan bentuk geologi. Untuk daerah A mendapat stress ke atas, sedang daerah B mendapat stress ke bawah. Proses ini berjalan terus sampai stress yang terjadi (dikandung) di daerah ini cukup besar untuk merubahnya menjadi gesekan antara daerah A dan daerah B. Lama kelamaan karena lapisan batuan sudah tidak mampu lagi untuk menahan stress, maka akan terjadi suatu pergerakan atau perpindahan yang tiba-tiba sehingga terjadilah patahan. Peristiwa pergerakan secara tiba-tiba ini disebut gempabumi. Pada keadaan III menunjukan lapisan batuan yang sudah patah, karena adanya pergerakan yang tiba-tiba dari batuan tersebut. Gerakan perlahan-lahan sesar ini akan berjalan terus, sehingga seluruh proses diatas akan diulangi lagi dan sebuah gempa akan terjadi lagi setelah beberapa waktu lamanya, demikian seterusnya. 2.5 Teori Dasar Mekanisme Fokus Teori Kopel Ganda Gaya kopel ganda menyatakan sumber gempa bekerja empat gaya sama besar dan berlawanan arah yang berlaku sebagai sepasang momen gaya yang saling tegak lurus. Sistem ini dapat menerangkan posisi gaya yang bekerja pada akhir proses patahnya atau bergesernya suatu lapisan sesuai teori pegas elastis (Elastis Rebound Theory). Teori ini dapat juga menerangkan polaritas gelombang P dari tempat gempa bumi alami. 15

28 Model kopel ganda Model equivalen force Sumber sesar sebenarnya Pola radiasi gelombang S Gambar 2.6 Sistem gaya Kopel ganda Karakteristik model kopel ganda : a. Asumsi sumber titik : Dengan asumsi bahwa sumber gempa adalah sebuah titik. Hal ini cocok apabila jarak hyposenter dan stasiun lebih besar dari ukuran sesar. b. Konfigurasi sistem gaya kopel ganda : Model ini mempunyai dua pasang gaya yang masing-masing mempunyai magnitude yang sama dan berlawanan arah. c. Ekuivalen sistem gaya kopel ganda dengan dislokasi geser (gerak sesar): Sistem gaya kopel ganda menghasilkan medan perpindahan yang sama terhadap sumber gempa seperti yang sama berkenaan dengan dislokasi geser (shear dislocation) disepanjang sesar. 16

29 Salah satu dari dua orientasi kopel ganda merupakan orientasi dari sesar, sehingga kopel ganda menghasilkan dua orientasi bidang sesar yang mungkin terjadi Diagram Mekanisme Pusat Gempa Studi mekanisme pusat gempa bertujuan untuk menentukan model sesar gempa berdasarkan bidang nodal dari hasil pengamatan polaritas gelombang P yang dipancarkan oleh hiposenter. Jika stasiun seismograf yang melingkupi pusat gempa cukup banyak maka dengan mudah dapat dipisahkan antara kelompok stasiun yang merekam kompresi dan kelompok stasiun yang merekam dilatasi. Kadang-kadang jumlah stasiun tidak cukup sehingga tidak semua gempa dapat ditentukan solusi mekanisme pergerakan pusat gempanya. Untuk menggambarkan distribusi polaritas gerakan awal gelombang P secara global dapat digunakan prosedur grafik untuk menentukan dua bidang nodal. Hiposenter diasumsikan sebagai bola dengan radius sangat kecil yang disebut bola pusat gempa (gambar 2.7). Gelombang gempa mencapai stasiun seismograf S meninggalkan bola pusat gempa dengan sudut elevasi i dan azimuth Ф. Ditentukan S pada bola pusat gempa dengan polaritas gelombang P kompresi atau dilatasi yang diamati di stasiun seismograf S. Prosedur ini dilakukan untuk semua stasiun yang merekam getaran gempa sehingga diperoleh polaritas gelombang P secara global yang yang dipancarkan dari hiposenter. Metode ini didasarkan pada kenyataan bahwa polaritas gerakan awal gelombang langsung P tidak berubah selama penjalarannya sehingga polaritas pada bola pusat gempa masih sama dengan polaritas pada hiposenter. 17

30 Untuk kasus gelombang seismik refleksi seperti gelombang P, polaritas gerakan awal akan berubah sebaliknya setelah meninggalkan bidang refleksi. Karena bola pusat gempa merupakan bentuk dimensi ruang maka polaritas gerakan awal gelombang P akan terdistribusi dalam tiga dimensi. Hal ini sangat sulit untuk diinterpretasikan secara visual (gambar 2.8). Untuk mengatasi masalah tersebut perlu dibuat proyeksi dari bentuk tiga dimensi ke bentuk dua dimensi yang disebut sebagai diagram mekanisme pusat gempa yang lebih mudah dibuat interpretasinya secara visual (gambar 2.9). Δ = Sudut yang dibentuk dari Episenter searah jarum jam ( º ) I = Sudut keberangkatan sinar atau take off ( º ) S = Hiposenter gempa Gambar 2.7 Bola pusat gempa yang menggambarkan hiposenter 18

31 Gambar 2.8 gambaran tiga dimensi radiasi gelombang gempa model kopel ganda. Gambar 2.9 Proyeksi bola pusat gempa ke bidang equatorial. Sebelum membuat diagram mekanisme pusat gempa perlu ditentukan lebih dahulu bagaimana cara menginterpretasikannya. Gambar 2.9 menunjukkan cara memproyeksikan dari bola pusat gempa ke diagram pusat gempa. Pada model 19

32 kopel ganda pola radiasi gelombang seismik simetri dengan hiposenter sehingga yang dapat diproyeksikan hanya setengah bola pusat gempa. Bola pusat gempa dibelah menjadi dua (bagian atas dan bawah) oleh bidang horizontal yang melalui hiposenter. Polaritas data S (kompresi atau dilatasi) pada belahan bola bagian bawah diproyeksikan ke titik pada diagram. Polaritas data pada belahan bola bagian atas simetri dengan data yang ada di belahan bola bagian bawah. Dua bidang nodal dinyatakan pada diagram sebagai dua garis (gambar 2.10) Karena dua bidang tersebut tegak lurus satu sama lain maka masing-masing bidang saling berpotongan melalui pusatnya. Pusat ini merupakan vektor yang tegak lurus bidang. Arah vektor yang menjauhi hiposenter ditandai dengan titik potong antara vektor dan bola pusat gempa yang dinyatakan titik pada diagram. Gambar 2.10 menunjukkan titik potong tersebut sebagai titik A dan B pada garis nodal b dan a. Gambar 2.10 Orthogonalitas dua bidang nodal. 20

33 Dua garis nodal membagi diagram ke dalam empat kuadran kompresi dan dilatasi gelombang seismik. Kuadran kompresi biasanya dinyatakan dengan gambar arsiran. Pada diagram dapat dibaca parameter bidang nodal yang terdiri dari sudut strike, dip, dan rake (slip). Penting untuk diketahui bahwa salah satu dari bidang nodal merupakan sesar/patahan gempa. Gambar 2.11 Bidang proyeksi luasan sama (bidang stereografis). Gambar 2.11 digunakan untuk menentukan parameter bidang sesar/patahan dari diagram mekanisme pusat gempa. Bagian kanan gambar tersebut digunakan untuk menggambar garis nodal. Sedangkan bagian kiri digunakan untuk menentukan azimuth dan sudut busur pada garis nodal. Garis horizontal 21

34 digunakan untuk menentukan sudut atau bidang nodal yang diukur dari garis vertikal. Gambar 2.12 ; 2.13 dan 2.14 menunjukkan cara bagaimana menentukan strike, dip, rake, lokasi (plunge dan azimuth) sumbu P dan T pada diagram yang merupakan parameter bidang sesar. Prosedur untuk menentukan parameter bidang sesar dapat dijelaskan sebagai berikut : 1. Untuk menentukan strike, posisi hanging wall di sebelah kanan arah strike dan diukur searah jarum jam dari arah utara (gambar 2.12). 2. Dip diukur dengan menggunakan setengah lingkaran bagian kanan (gambar 2.12). Gambar 2.12 Pengukuran sudut strike dan dip pada diagram. 22

35 3. Sumbu tekanan P dan sumbu tarikan T terletak pada titik 45 0 dari dua titik A dan B (gambar 2.13). Sumbu P di kuadran dilatasi dan sumbu T di kuadran kompresi dengan gambar arsiran. Perpotongan antara dua garis nodal disebut sumbu N (null) yang merupakan arah stress nol. Sumbu P, T, dan N ditentukan oleh azimuth (diukur searah jarum jam dari arah utara) dan plunge (diukur ke arah bawah dari horizontal). Kedua sudut tersebut diukur dengan menggunakan kertas stereografis. Tekanan dan tarikan menunjukkan arah gaya yang bekerja pada hiposenter, sedangkan kompresi dan dilatasi merupakan arah gerakan awal gelombang P seismogram. Gambar 2.13 Penentuan sumbu P dan T 45 0 dari dua kutub pada garis nodal. 23

36 Jika pusat diagram (hiposenter) berada di kuadran kompresi (arsiran) maka sesar gempa disebut reverse fault dan jika berada di kuadran dilatasi maka disebut normal fault. Dengan kata lain bila sumbu T berada pada satu kuadran dengan pusat diagram akan diperoleh reverse fault. Sebaliknya bila sumbu P berada dalam kuadran yang sama dengan hiposenter maka akan dihasilkan normal fault. Jika pusat diagram berada pada atau dekat dua garis nodal maka akan dihasilkan strike slip fault. 4. Vektor slip untuk satu bidang nodal tegak lurus pada bidang nodal lainnya sehingga vektor slip untuk bidang nodal berhubungan dengan kutub vektor bidang nodal lainnya. Rake dari vektor slip didefinisikan dengan sudut antara arah strike dan vektor slip (kutub vektor) (gambar 2.14). Atau dengan kata lain : i. Untuk normal fault, rake dari bidang nodal ditandai dengan [sudut antara strike bidang dan kutub bidang yang lain]. ii. Untuk reverse fault rake bidang nodal diperoleh dengan [sudut antara strike bidang dan kutub bidang yang lain]. Sudut rake diukur menggunakan setengah lingkaran bagian gambar stereografis. Sudut rake negatif untuk normal fault karena sudut rake negatif menunjukkan bahwa hangingwall block bergerak turun secara relatif terhadap footwall block. Untuk reverse fault bila vektor slip menunjuk ke arah atas dan diukur sudut antara arah strike dan kutub pada setengah lingkaran bagian atas. Untuk membuat diagram mekanisme pusat gempa digunakan setengah bola 24

37 bagian bawah kemudian mengkonversi sudut yang telah diukur pada setengah bola bagian bawah ke sudut rake dengan mengurangkan sudut tersebut dari Gambar 2.14 Penentuan sudut rake pada reverse fault (kiri) dan normal fault (kanan). 2.6 Teori Mekanisme Dengan Metode Impuls Pertama Gelombang Primer (P) Ketika gempabumi terjadi maka gelombang gempa bumi akan terpancarkan ke segala arah berbentuk phase gelombang. Fase awal yang tercatat lebih dahulu ialah gelombang P, karena memiliki kecepatan terbesar dari pada gelombang yang lainnya. Arah gerakan pertama impuls dari gelombang P inilah yang kemudian di amati untuk mempelajari fokal mekanisme. Hal ini dapat disebabkan karena gelombang P yang paling jelas pembacaannya. dan alat yang digunakan pada umumnya ialah seismograf tipe vertikal sehingga pembacaan gelombang S menjadi sulit. Selain untuk menetukan gerakan awal gempa dan studi solusi 25

38 bidang sesar, metode ini penting untuk menetukan gerakan dari plate tektonik dan penting untuk menetukan gerakan relative dari Lithiosfer. Solusi untuk menentukan arah dan orientasi menyebabkan terjadinya bidang sesar yang disebut sebagai Fault Plane Solution. Ada beberapa ketentuan dalam mempelajari solusi bidang sesar ini.: a. Arah gerak awal gelombang P harus dianggap sama atau sesuai dengan arah gaya kopel yang bekerja di sumber gempa Teori kopel ganda menyatakan bahwa pada sumber gempa bekerja empat gaya yang sama besar dan berlaku sebagai pasangan momen gaya yang saling tegak lurus. Sistem radiasi sistem kopel ganda Gambar 2.15 Sistem gaya kopel ganda b. Fokus harus dianggap berbentuk bola didalam bumi dimana bumi dianggap homogen isotropis. Earth surface P P P P Impuls pertama gelombang P Gambar 2.16 Impuls gelombang P dan bola fokus 26

39 Pada dasarnya solusi bidang sesar adalah mencari dua bidang nodal orthogonal (orthogonal nodal plane) yang memisahkan gerakan pertama gelombang dalam kuadran kompresi dan dilatasi pada bola fokusnya. Bola fokus adalah suatu ilustrasi dari sebuah bola yang berpusat di sumber gempa. Bola fokus meliputi jejak seismik yang menjalar dari sumber gempa sampai ke stasiun penerima. Untuk menetukan posisi suatu titik pada bola fokus yang memuat informasi impuls pertama gelombang primer (P) kompresi atau dilatasi, maka yang dipergunakan koordinat sudut sinar (i, ), I menyatakan sudut keberangkatan gelombang yang lazim disebut incident angel. Dapat dihitung dari persamaan : Dimana : P = Parameter Gelombang Gempa (detik) V(h) = Kecepatan gelombang pada kedalaman h (met/det) R = Jari-jari bumi (m) h = Kedalaman Sumber Gempa (m) i = Sudut Keberangkatan Gelombang ( º ) adalah azimuth stasiun penerima yang diukur dari titik utara episenter ke stasiun penerima searah jarum jam. Dari hasil pengukuran dan i serta penentuan fase gelombang P, kemudian diplot pada bola fokus. 27

40 2.7 Penentuan Tipe Sesar Sebuah sesar merupakan batas yang menghubungkan dua blok tektonik yang berdekatan. Sesar biasanya dipresentasikan secara geometri seperti pada gambar. Bidang sesar (fault plane) adalah sebuah bidang yang merupakan bidang tektonik antara dua blok tektonik. Sudut kemiringan sesar (Dip Angel) adalah sudut yang dibentuk antara bidang sesar dengan bidang horizontal. Vektor kemiringan (Dip Vektor) adalah vektor yang searah dengan kemiringan bidang sesar, sedangkan Vektor strike (Strike vector) adalah vektor yang sejajar dengan arah strike sesar. Arah pergerakan sesar secara umum dapat dibedakan menjadi 3 jenis, yaitu : 1. Dip Slip Movement : Pergerakan sesar terjadi dalam arah sejajar dengan sudut kemiringan sesar. Pergerakan yang dominan adalah arah vertical. 2. Strike Slip Movement : Pergerakan dasar terjadi dalam arah sejajar dengan sudut strike sesar. Pergerakan yang dominan adalah arah horizontal. 3. Kombinasi antara Dip Slip Movement dan Strike Slip Movement. Orientasi sesar ditentukan oleh parameter bidang sesar yang terdiri dari : 1. Strike : Adalah sudut yang dibentuk oleh jurus sesar dengan arah utara. Strike diukur dari arah utara kearah timur searah dengan jarum jam hingga jurus patahan Dip : Adalah sudut yang dibentuk oleh bidang sesar dengan bidang horisontal dan diukur pada bidang vertical dengan arahnya tegak lurus jurus patahan

41 3. Rake : Adalah sudut yang dibentuk arah slip dan jurus patahan. Rake berharga positif pada patahan naik (Thrust Fault) dan negative pada patahan turun (Normal Fault).( ). utara strike jurus slip Rake Gambar 2.17 Parameter orientasi bidang sesar Klasifikasi sesar berdasarkan gerak relatifnya sepanjang bidang batas sesar adalah : 1. Sesar turun atau (normal fault), bila hanging wall pada sesar tersebut relatif turun terhadap foot wall. Parameter sesar jenis ini akan memenuhi nilai δ = 0 dan δ = π/2 (π = radian / 180º) serta nilai λ terletak dalam rentang (-π - 0) Gambar 2.18 Sesar turun 29

42 2. Sesar naik (thrust fault), bila hanging wall pada sesar tersebut relatif naik terhadap foot wall parameter jenis ini memiliki nilai δ = 0 dan δ =π/2 dan λ terletak dalam rentang (π - 0) Gambar 2.19 Sesar naik 3. Sesar mendatar (strike slip fault) bila arah gerakan relatif masing-masing blok pada sesar tersebut sejajar dengan jurus (strike). Parameter jenis ini memiliki nilai δ =π/2 dan λ = 0 atau π. Sesar jenis ini dapat dibagi lagi menjadi dua jenis yaitu left-lateral slip fault bila nilai λ = 0 dan rightlateral slip fault bila nilai λ= π, Gambar 2.20 Sesar mendatar 4. Gerakan kombinasi antara sesar mendatar dengan sesar naik atau turun disebut oblique fault, Gambar 2.21 Sesar Obliq 30

43 Dalam menentukan solusi bidang sesar, dasar yang di gunakan adalah mencari dua bidang nodal orthogonal yang memisahkan gerakan-gerakan awal gelombang P dalam kuadran kuadran kompresi dan dilatasi pada bola fokus. Pada gambar, daerah yang diarsir merupakan daerah kompresi dan yang tidak diarsir adalah daerah dilatasi. Untuk menentukan tipe sesar dilakukan dengan cara mengamati dimana letak pusat lingkaran, di daerah yang diarsir atau tidak 2.8 Kondisi Seismotektonik Blitar, Jawa Timur dan Sekitarnya Zona Blitar dan sekitanya termasuk mempunyai aktifitas gempa bumi yang tinggi, yaitu tumbukan lempeng Indo-Australia dan Eurasia. Tumbukan antar lempeng tersebut lempeng Indo-Australia bergerak menuju utara mengarah ke lempeng Eurasia yang bergerak dari timur ke barat. Pesisir selatan Jatim dan Bali masuk dalam zona bahaya gempa yang berpotensi tsunami sebab di wilayah selatan Jatim terdapat patahan panjang mulai dari sebelah barat Sumatra, Selatan Jawa, Selatan NTT, sampai ke Papua. Tektonik Jawa di dominasi oleh tunjaman ke utara lempeng Australia di bawah lempeng Sunda yang relatif diam, lempeng Australia menunjam dengan kecepatan km di bawah pulau Jawa, jadi konsekuensi tunjaman lempeng tersebut mengakibatkan kegempaan yang tinggi. 31

44 Gambar 2.22 Peta Seismotektonik Pulau Jawa Di pulau Jawa terdapat tiga patahan besar yakni sesar di Cimandiri (Jawa Barat), sesar Opak ( Daerah Istimewa Yogyakarta), dan sesar Grindulu (Pacitan, Jawa Timur). Sesar Grindulu yaitu patahan yang membelah Kabupaten Pacitan dan Kabupaten Ponorogo, sesar Grindulu merupakan jalur patahan lempeng benua yang membentuk pulau Jawa membentang di lima Kecamatan, yakni Kecamatan Bandar, Nawangan, Punung Arjosari, serta Donorojo. Salah satu sesar utama di pulau Jawa ini searah dengan jalur sungai Grindulu yang memanjang dari pantai selatan hingga daerah hulu di Kecamatan Bandar, jalur sesar ini sangat rawan karena menjadi area rambatan gempa apabila terjadi tumbukan antara lempeng Benua di pulau Jawa dengan lempeng Samudra di laut selatan. 32

45 BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dimulai pada tanggal 1 Juni 2011 sampai dengan 15 Agustus 2011 bertempat di Badan Meteorologi Klimatologi dan Geofisika (BMKG) Pusat Jakarta khususnya di bidang Informasi Dini Gempa dan Tsunami. Pengolahan dan Interpretasi data dilakukan di BMKG Kemayoran Jakarta Pusat. Daerah penelitian adalah gempa Blitar, Jawa Timur 17 Mei 2011 dengan koordinat (9.55 LS BT) kedalaman (hiposentrum) 25 km, Magnitude 6.1 SR, 170 km Tenggara Blitar, Jawa Timur. 3.2 Alat dan Bahan Pada penelitian ini alat dan bahan yang digunakan dalam analisis mekanisme sumber gempa bumi zona Blitar, Jawa Timur berdasarkan seismisitas dan mekanisme sumber gempa bumi. Alat yang digunakan dalam proses pengolahan data adalah: 1) Komputer personal Pentium 4 2) Software WinITDB 3) Microsoft Office 4) Note pad 5) Software Arc View GIS Ver ) Program AZMTAK dalam bahasa pemrograman FORTRAN 7) Program PMAN dalam bahasa pemrograman FORTRAN 33

46 Bahan yang digunakan dalam penelitian ini adalah: 1) Data gempa bumi Blitar, Jawa Timur dari USGS pada tanggal 17 Mei ) Data polaritas gerakan pertama gelombang P gempa bumi Blitar, Jawa Timur 17 Mei Pengolahan dan Analisa Data Tahapan awal penelitian ini adalah membuat peta seismisitas atau pengeplotan data gempabumi Blitar, Jawa Timur menggunakan software WinITDB. Data yang dipakai dalam penelitian ini adalah data gempabumi pada koordinat (-8 o LS) (-12 o LS) dan (111 o BT )- (114 o BT). Data gempabumi tersebut diperoleh dari rekaman United State Geological Survey (USGS) pada tanggal 17 Mei 2011 melalui jaringan internet. Data gempabumi yang digunakan meliputi waktu kejadian gempabumi, posisi lintang-bujur, kedalaman dan magnitudo. Magnitudo yang digunakan adalah 6.1 SR. Data gempabumi yang diperoleh dari rekaman USGS tidak dapat langsung diproses menggunakan software WinITDB, karena format data USGS berbeda dengan format data yang dapat diproses software WinITDB. Oleh karena itu, format data USGS harus dikonversi terlebih dahulu ke format data software WinITDB secara manual dengan program notepad. Data USGS yang telah dikonversi kemudian diproses menggunakan software WinITDB dan menghasilkan sebaran pusat gempabumi atau peta seismisitas. Data USGS yang telah dikonversi menjadi format data software WinITDB. 34

47 Langkah selanjutnya adalah membuat penampang melintang seismisitas untuk mengetahui bentuk atau pola penunjaman lempeng tektonik. Daerah penelitian dibagi menjadi beberapa segmen atau penampang melintang. Tahapan dalam pengeplotan hiposenter pada penampang melintang adalah sebagai berikut: 1. Menentukan batas daerah pengeplotan hiposenter pada penampang melintang dengan memperhatikan hasil penyebaran hiposenternya. 2. Menentukan garis penampang melintangnya yang memilih beberapa bagian daerah yang diteliti. Penentuan garis penampang melintang tegak lurus trench. 3. Membuat proyeksi masing-masing garis penampang melintang yang tegak lurus trench agar dapat ditentukan proyeksi penampang melintang hiposenternya. Proses berikutnya adalah menentukan solusi mekanisme sumber gempabumi menggunakan polaritas gerakan pertama gelombang P yang dinyatakan dalam kompresi (c) dan dilatasi (d). Data yang digunakan diperoleh dari hasil rekaman melalui jaringan internet. Data yang digunakan meliputi posisi lintang-bujur, magnitudo, kedalaman, nama stasiun dan data polaritas gerakan pertama gelombang P (kompresi atau dilatasi) yang dicatat oleh masing-masing stasiun. Data yang terkumpul selanjutnya diproses dengan langkah-langkah sebagai berikut: 1. Menyusun format data input dengan urutan lintang, bujur, kedalaman, jumlah stasiun yang merekam, nama stasiun dan polaritas gerakan pertama gelombang P, notasi kompresi diubah menjadi 1 sedangkan notasi dilatasi 35

48 diubah menjadi -1. Data input yang sudah disusun disimpan dengan nama file (nama file.dat). 2. Membuka program AZMTAK, kemudian menuliskan nama file data input yang sesuai, nama file database stasiun yang digunakan dan nama file output. Dalam hal ini nama file database stasiun yang digunakan dinyatakan sebagai file BMG_ALL.STA. Nama file output ber-ektention.out (nama file output.out). File output memuat data nama stasiun, gerak kompresi atau dilatasi, data Azimuth dan take off hasil perhitungan. 3. Membuka program PMAN, hasil output dari program AZMTAK digunakan sebagai data input dan menghasilkan gambaran proyeksi sebaran data kompresi dan dilatasi pada bola fokus. 4. Menentukan parameter mekanisme sumber gempabumi dengan menentukan dua buah bidang nodal secara manual yang memisahkan antara daerah kompresi dan dilatasi pada bola fokus. 5. Menentukan akurasi hasil parameter mekanisme sumber gempabumi dengan meminimalkan kesalahan data atau inkonsisten data. Hasil yang diambil adalah solusi mekanisme sumber gempabumi yang mempunyai tingkat kebenaran atau konsisten data 25%. Jika tingkat konsisten datanya < 25% maka dilakukan verifikasi data kompresi dan dilatasi. 6. Menentukan jenis mekanisme sumber gempabumi dengan parameter bidang sesarnya berupa strike, dip dan rake. Hasil solusi mekanisme sumber gempabumi kemudian diplot menggunakan software ArcView Gis ver 3.3. Dalam bentuk diagram alir (flowchart). 36

49 3.4 Prosedur Kerja mulai Data gempa bumi Blitar, Jawa Timur dari USGS pada tanggal 17 Mei 2011 pada koordinat (-8 LS) (-12 LS) dan (111 BT)- (114 BT), semua kedalaman dan magnitudo Konversi format data gempa bumi USGS ke format data software Win ITDB Proses data gempa bumi yang sudah di konversi dengan software Win ITDB Peta seismisitas Membuat penampang melintang ( Cross section ) seismisitas tegak lurus trench Menganalisis seismotektonik zona penunjaman berdasarkan penampang melintang seismisitas Hasil analisis Selesai Gambar 3.1 Diagram alir pembuatan peta seismisitas dan penampang melintang 37

50 Mulai Data gempa bumi Blitar, Jawa Timur meliputi : nama stasiun, kompresi (c), dilatasi (d), pada koordinat (-8 LS)-(-12 LS) dan (111 BT- 114 BT, semua kedalaman dan magnitudo Menyusun format data input dengan urutan lintang, bujur, kedalaman, jumlah stasiun, nama stasiun, dan kompresi (1) atau dilatasi (-1) Menentukan sudut Azimuth dan take off menggunakan program AZMTAK Ploting sudut Azimuth dan take off menggunakan program PMAN Menentukan parameter mekanisme sumber gempa bumi dengan menentukan dua buah bidang nodal Konsisten data 25 %? Tidak ya Solusi mekanisme sumber gempa bumi menggunakan software Arc View GIS Ver. 3.3 Peta seismotektonik Menganalisis seismotektonik berdasarkan mekanisme sumber gempa bumi Hasil analisis seimotektonik berdasarkan mekanisme sumber gempa bumi Selesai Gambar 3.2 Diagram alir penentuan solusi mekanisme sumber gempabumi. 38

51 BAB IV HASIL DAN PEMBAHASAN 4.1 Penyebaran Pusat Gempa Bumi Zona Blitar Blitar, Jawa Timur dan sekitarnya merupakan zona yang mempunyai tingkat seismisitas tinggi. Hasil pemetaan data gempa bumi Blitar, Jawa Timur dan sekitarnya menggunakan software Win ITDB yang mencakup batas koordinat (-8 LS)-(-12 LS) dan (111 BT)-(114 BT) dapat dilihat pada gambar 4.1 atau disebut peta seismisitas. Penyebaran pusat gempa bumi dibedakan menjadi tiga variasi kedalaman yaitu gempa bumi dangkal (0-60km) yang ditandai dengan warna merah, gempa bumi menengah (61-300km) ditandai dengan warna kuning dan gempa bumi dalam (>300km) ditandai dengan warna hijau. Pacitan Blitar Lumajang Jember Pusat gempa Gambar 4.1 Penyebaran pusat gempa bumi di Blitar, Jawa Timur dan sekitarnya 39

52 Peta di atas menunjukkan bahwa zona Blitar, Jawa Timur dan sekitarnya mempunyai aktivitas gempa bumi yang tinggi. Aktivitas gempa bumi yang tinggi berhubungan dengan aktivitas lempeng tektoniknya, terutama zona subduksi. Aktivitas tektonik zona Blitar, Jawa Timur adalah tumbukan lempeng Indo Australia dan Eurasia, tabrakan antar lempeng itu karena lempeng Indo Australia bergerak menuju utara mengarah ke lempeng Eurasia yang bergerak dari timur ke barat. Pesisir selatan Jatim dan Bali masuk dalam zona bahaya gempa yang berpotensi tsunami sebab diwilayah selatan Jatim terdapat patahan panjang mulai dari sebelah barat Sumatra,selatan Jawa, selatan NTT, sampai ke Papua. 40

53 4.2 Penampang Melintang Untuk mempermudah melihat struktur subduksi yang terjadi di Blitar, Jawa Timur dan sekitarnya maka zona penelitian ini dibagi menjadi beberapa penampang melintang, hasil penentuan batas melintang dapat dilihat pada gambar 4.2. Dalam penelitian ini dibuat 3 penampang melintang yang diproyeksikan pada bidang AA, BB, dan CC. Penampang melintang tersebut dibuat secara vertikal dengan masing-masing penampang melintang melalui batas koordinat yang berbeda. A B C A B C Gambar 4.2 Irisan penampang melintang 41

ANALISIS MEKANISME PUSAT GEMPA BUMI DI CILACAP JAWA TENGAH PADA TANGGAL 04 APRIL 2011

ANALISIS MEKANISME PUSAT GEMPA BUMI DI CILACAP JAWA TENGAH PADA TANGGAL 04 APRIL 2011 ANALISIS MEKANISME PUSAT GEMPA BUMI DI CILACAP JAWA TENGAH PADA TANGGAL 04 APRIL 2011 Skripsi Diajukan Untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana Sains ( S.Si ) Disusun Oleh : Ahmad Zawawi 107097000233

Lebih terperinci

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS. Bayu Baskara

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS. Bayu Baskara PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS Bayu Baskara ABSTRAK Bali merupakan salah satu daerah rawan bencana gempa bumi dan tsunami karena berada di wilayah pertemuan

Lebih terperinci

Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010

Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Emilia Kurniawati 1 dan Supriyanto 2,* 1 Laboratorium Geofisika Program Studi Fisika FMIPA Universitas Mulawarman 2 Program

Lebih terperinci

Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun

Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun 1977 2010 Fitri Puspasari 1, Wahyudi 2 1 Metrologi dan Instrumentasi Departemen Teknik Elektro dan Informatika

Lebih terperinci

ANALISA SESAR AKTIF MENGGUNAKAN METODE FOCAL MECHANISM (STUDI KASUS DATA GEMPA SEPANJANG CINCIN API ZONA SELATAN WILAYAH JAWA BARAT PADA TAHUN

ANALISA SESAR AKTIF MENGGUNAKAN METODE FOCAL MECHANISM (STUDI KASUS DATA GEMPA SEPANJANG CINCIN API ZONA SELATAN WILAYAH JAWA BARAT PADA TAHUN ANALISA SESAR AKTIF MENGGUNAKAN METODE FOCAL MECHANISM (STUDI KASUS DATA GEMPA SEPANJANG CINCIN API ZONA SELATAN WILAYAH JAWA BARAT PADA TAHUN 1999-2009) Oleh: Siti Rahmatul Aslamiah Roemaf ABSTRAK: Daerah

Lebih terperinci

KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN

KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN 1950-2013 Samodra, S.B. & Chandra, V. R. Diterima tanggal : 15 November 2013 Abstrak Pulau Sumatera dan Pulau Jawa merupakan tempat yang sering

Lebih terperinci

Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda?

Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda? Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda? Supriyanto Rohadi, Bambang Sunardi, Rasmid Pusat Penelitian dan Pengembangan BMKG

Lebih terperinci

MEKANISME FOKUS GEMPA BUMI MENTAWAI 25 OKTOBER Skripsi

MEKANISME FOKUS GEMPA BUMI MENTAWAI 25 OKTOBER Skripsi MEKANISME FOKUS GEMPA BUMI MENTAWAI 25 OKTOBER 2010 Skripsi TITIN ISMAWATI 107097003095 PROGRAM STUDI FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2011 MEKANISME

Lebih terperinci

batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik.

batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik. BAB I PENDAHULUAN 1.1 Latar Belakang Gempa bumi merupakan peristiwa bergetarnya bumi karena pergeseran batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik. Pergerakan tiba-tiba

Lebih terperinci

BAB II GEMPA BUMI DAN GELOMBANG SEISMIK

BAB II GEMPA BUMI DAN GELOMBANG SEISMIK BAB II GEMPA BUMI DAN GELOMBANG SEISMIK II.1 GEMPA BUMI Seperti kita ketahui bahwa bumi yang kita pijak bersifat dinamis. Artinya bumi selalu bergerak setiap saat, baik itu pergerakan akibat gaya tarik

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Permukaan bumi mempunyai beberapa lapisan pada bagian bawahnya, masing masing lapisan memiliki perbedaan densitas antara lapisan yang satu dengan yang lainnya, sehingga

Lebih terperinci

S e l a m a t m e m p e r h a t i k a n!!!

S e l a m a t m e m p e r h a t i k a n!!! S e l a m a t m e m p e r h a t i k a n!!! 14 Mei 2011 1. Jawa Rawan Gempa: Dalam lima tahun terakhir IRIS mencatat lebih dari 300 gempa besar di Indonesia, 30 di antaranya terjadi di Jawa. Gempa Sukabumi

Lebih terperinci

BAB I PENDAHULUAN Latar belakang

BAB I PENDAHULUAN Latar belakang BAB I PENDAHULUAN 1.1. Latar belakang Indonesia merupakan salah satu negara dimana terdapat pertemuan 3 lempeng tektonik utama bumi. Lempeng tersebut meliputi lempeng Eurasia, lempeng Indo-Australia, dan

Lebih terperinci

ANALISIS MEKANISME FOKUS GEMPA BUMI DI MEULABOH (NANGGROE ACEH DARUSSALAM) 9 MEI 2010

ANALISIS MEKANISME FOKUS GEMPA BUMI DI MEULABOH (NANGGROE ACEH DARUSSALAM) 9 MEI 2010 ANALISIS MEKANISME FOKUS GEMPA BUMI DI MEULABOH (NANGGROE ACEH DARUSSALAM) 9 MEI 2010 SKRIPSI Diajukan untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana Sains (S.Si) pada Fakultas Sains dan Teknologi

Lebih terperinci

KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI DESEMBER 2017

KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI DESEMBER 2017 KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI 2016 15 DESEMBER 2017 Oleh ZULHAM. S, S.Tr 1, RILZA NUR AKBAR, ST 1, LORI AGUNG SATRIA, A.Md 1

Lebih terperinci

BAB I PENDAHULUAN. menyebabkan Indonesia termasuk dalam daerah rawan bencana gempabumi

BAB I PENDAHULUAN. menyebabkan Indonesia termasuk dalam daerah rawan bencana gempabumi BAB I PENDAHULUAN A. Latar Belakang Kepulauan Indonesia terletak pada pertemuan tiga lempeng tektonik utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian Utara, dan lempeng

Lebih terperinci

GEMPA BUMI DAN AKTIVITASNYA DI INDONESIA

GEMPA BUMI DAN AKTIVITASNYA DI INDONESIA GEMPA BUMI DAN AKTIVITASNYA DI INDONESIA Disusun Oleh: Josina Christina DAFTAR ISI Kata Pengantar... 2 BAB I... 3 1.1 Latar Belakang... 3 1.2 Tujuan... 3 1.3 Rumusan Masalah... 4 BAB II... 5 2.1 Pengertian

Lebih terperinci

Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan.

Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan. 1.1 Apakah Gempa Itu? Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan. Getaran tersebut disebabkan oleh pergerakan

Lebih terperinci

BAB I PENDAHULUAN. Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng

BAB I PENDAHULUAN. Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng BAB I PENDAHULUAN A. Latar Belakang Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng Eurasia, Indo-Australia dan Pasifik. Konsekuensi tumbukkan lempeng tersebut mengakibatkan negara

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Sebaran episenter gempa di wilayah Indonesia (Irsyam dkk, 2010). P. Lombok

BAB I PENDAHULUAN. Gambar 1.1 Sebaran episenter gempa di wilayah Indonesia (Irsyam dkk, 2010). P. Lombok 2 BAB I PENDAHULUAN 1.1 Latar Belakang Gempabumi sangat sering terjadi di daerah sekitar pertemuan lempeng, dalam hal ini antara lempeng benua dan lempeng samudra akibat dari tumbukan antar lempeng tersebut.

Lebih terperinci

INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA

INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG Rasmid 1, Muhamad Imam Ramdhan 2 1 Stasiun Geofisika klas I BMKG Bandung, INDONESIA 2 Fisika Fakultas Sains dan Teknologi UIN SGD Bandung, INDONESIA

Lebih terperinci

Analisis Kejadian Rangkaian Gempa Bumi Morotai November 2017

Analisis Kejadian Rangkaian Gempa Bumi Morotai November 2017 Analisis Kejadian Rangkaian Gempa Bumi Morotai 18 27 November 2017 Sesar Prabu Dwi Sriyanto Stasiun Geofisika Kelas I Winangun, Manado Pada hari Sabtu, 18 November 2017 pukul 23:07:02 WIB telah terjadi

Lebih terperinci

UNIT X: Bumi dan Dinamikanya

UNIT X: Bumi dan Dinamikanya MATERI KULIAH IPA-1 JURUSAN PENDIDIKAN IPA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM FOTO YANG RELEVAN UNIT X: Bumi dan Dinamikanya I Introduction 5 Latar Belakang Pada K-13 Kelas VII terdapat KD sebagai

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang subduksi Gempabumi Bengkulu 12 September 2007 magnitud gempa utama 8.5

BAB I PENDAHULUAN I.1. Latar Belakang subduksi Gempabumi Bengkulu 12 September 2007 magnitud gempa utama 8.5 BAB I PENDAHULUAN I.1. Latar Belakang Indonesia terletak pada pertemuan antara lempeng Australia, Eurasia, dan Pasifik. Lempeng Australia dan lempeng Pasifik merupakan jenis lempeng samudera dan bersifat

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Sistematika Penulisan...

DAFTAR ISI. BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Sistematika Penulisan... DAFTAR ISI HALAMAN JUDUL... LEMBAR KEASLIAN SKRIPSI... ii LEMBAR PERSETUJUAN... iii LEMBAR PENGESAHAN... iv LEMBAR PERSEMBAHAN... v ABSTRAK... vi ABSTRACT... vii KATA PENGANTAR... viii DAFTAR ISI... x

Lebih terperinci

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu 364 Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu Rahmad Aperus 1,*, Dwi Pujiastuti 1, Rachmad Billyanto 2 Jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Lempeng tektonik kepulauan Indonesia terletak di pertemuan tiga lempeng utama yaitu lempeng Indo-Australia, Eurasia dan Pasifik. Interaksi dari ke tiga lempeng tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Gempabumi Gempabumi adalah peristiwa bergetarnya bumi akibat pelepasan energi di dalam bumi secara tiba-tiba yang ditandai dengan patahnya lapisan batuan pada kerak

Lebih terperinci

DAFTAR ISI. BAB III. DASAR TEORI 3.1. Seismisitas Gelombang Seismik Gelombang Badan... 16

DAFTAR ISI. BAB III. DASAR TEORI 3.1. Seismisitas Gelombang Seismik Gelombang Badan... 16 DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii PERNYATAAN KEASLIAN KARYA ILMIAH... iii KATA PENGANTAR... iv ABSTRAK... v ABSTRACT... vi DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xv DAFTAR

Lebih terperinci

BAB I PENDAHULUAN. Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. lempeng tektonik, yaitu Lempeng Eurasia, Lempeng Indo Australia, dan

BAB I PENDAHULUAN. Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. lempeng tektonik, yaitu Lempeng Eurasia, Lempeng Indo Australia, dan BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian ini berjudul Analisa Sudut Penunjaman Lempeng Tektonik Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. I.2. Latar Belakang Indonesia merupakan negara

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Indonesia termasuk daerah yang rawan terjadi gempabumi karena berada pada pertemuan tiga lempeng, yaitu lempeng Indo-Australia, Eurasia, dan Pasifik. Aktivitas kegempaan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Secara tektonik, Indonesia terletak pada pertemuan lempeng Eurasia, lempeng Indo-Australia, lempeng Pasifik, dan lempeng mikro Filipina. Interaksi antar lempeng mengakibatkan

Lebih terperinci

Pengembangan Program Analisis Seismic Hazard dengan Teorema Probabilitas Total Bab I Pendahuluan BAB I PENDAHULUAN

Pengembangan Program Analisis Seismic Hazard dengan Teorema Probabilitas Total Bab I Pendahuluan BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Umum Gempa bumi adalah peristiwa bergeraknya permukaan bumi atau permukaan tanah secara tiba-tiba yang diakibatkan oleh pergerakan dari lempenglempeng bumi. Menurut M.T. Zein gempa

Lebih terperinci

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian BAB I PENDAHULUAN A. Latar Belakang Masalah Kepulauan Indonesia terletak pada pertemuan tiga lempeng tektonik utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian Utara, dan

Lebih terperinci

ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON

ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON Hapsoro Agung Nugroho Stasiun Geofisika Sanglah Denpasar soro_dnp@yahoo.co.id ABSTRACT Bali is located on the boundaries of the two

Lebih terperinci

MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH

MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH Oleh Abdi Jihad dan Vrieslend Haris Banyunegoro PMG Stasiun Geofisika Mata Ie Banda Aceh disampaikan dalam Workshop II Tsunami Drill Aceh 2017 Ditinjau

Lebih terperinci

BAB I PENDAHULUAN. komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar

BAB I PENDAHULUAN. komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar BAB I PENDAHULUAN I.1. Latar Belakang Indonesia merupakan Negara yang memiliki tatanan geologi yang cukup komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar I.1). Indonesia dibatasi

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI BARAT LAUT KEP. SANGIHE SULAWESI UTARA Oleh Artadi Pria Sakti*, Robby Wallansha*, Ariska

Lebih terperinci

IDENTIFIKASI JALUR SESAR MINOR GRINDULU BERDASARKAN DATA ANOMALI MEDAN MAGNET

IDENTIFIKASI JALUR SESAR MINOR GRINDULU BERDASARKAN DATA ANOMALI MEDAN MAGNET Identifikasi Jalur Sesar Minor Grindulu (Aryo Seno Nurrohman) 116 IDENTIFIKASI JALUR SESAR MINOR GRINDULU BERDASARKAN DATA ANOMALI MEDAN MAGNET IDENTIFICATION OF GRINDULU MINOR FAULT LINES BASED ON MAGNETIC

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1. Subduksi antara Lempeng Samudera dan Lempeng Benua [Katili, 1995]

BAB II DASAR TEORI. Gambar 2.1. Subduksi antara Lempeng Samudera dan Lempeng Benua [Katili, 1995] BAB II DASAR TEORI II. 1. Gempabumi II. 1.1. Proses Terjadinya Gempabumi Dinamika bumi memungkinkan terjadinya Gempabumi. Di seluruh dunia tidak kurang dari 8000 kejadian Gempabumi terjadi tiap hari, dengan

Lebih terperinci

Kelompok VI Karakteristik Lempeng Tektonik ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N

Kelompok VI Karakteristik Lempeng Tektonik ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N Kelompok VI Karakteristik Lempeng Tektonik Created By: ASRAWAN TENRIANGKA ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N 1. JENIS LEMPENG Berdasarkan jenis bahan batuan pembentuknya,

Lebih terperinci

BAB I PENDAHULUAN I.1. Judul Penelitian I.2. Latar Belakang Masalah

BAB I PENDAHULUAN I.1. Judul Penelitian I.2. Latar Belakang Masalah BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian ini berjudul Hubungan Persebaran Episenter Gempa Dangkal dan Kelurusan Berdasarkan Digital Elevation Model di Wilayah Daerah Istimewa Yogyakarta I.2.

Lebih terperinci

Studi Analisis Parameter Gempa Bengkulu Berdasarkan Data Single-Station dan Multi-Station serta Pola Sebarannya

Studi Analisis Parameter Gempa Bengkulu Berdasarkan Data Single-Station dan Multi-Station serta Pola Sebarannya Berkala Fisika ISSN : 1410-9662 Vol. 13, No. 4, Oktober 2010, hal 105 112 Studi Analisis Parameter Gempa Bengkulu Berdasarkan Data Single-Station dan Multi-Station serta Pola Sebarannya Arif Ismul Hadi,

Lebih terperinci

tektonik utama yaitu Lempeng Eurasia di sebelah Utara, Lempeng Pasifik di

tektonik utama yaitu Lempeng Eurasia di sebelah Utara, Lempeng Pasifik di BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan suatu wilayah yang sangat aktif kegempaannya. Hal ini disebabkan oleh letak Indonesia yang berada pada pertemuan tiga lempeng tektonik utama yaitu

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Peta Tektonik Indonesia (Bock, dkk., 2003)

BAB I PENDAHULUAN. Gambar 1.1 Peta Tektonik Indonesia (Bock, dkk., 2003) 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada tiga pertemuan lempeng besar dunia yaitu Lempeng Indo-Australia di bagian selatan, Lempeng Pasifik di bagian timur, dan Lempeng Eurasia di

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA DAFTAR ISI HALAMAN JUDUL.... i HALAMAN PENGESAHAN.... ii PERNYATAAN KEASLIAN KARYA ILMIAH.... iii KATA PENGANTAR.... iv ABSTRAK.... v ABSTRACT.... vi DAFTAR ISI.... vii DAFTAR GAMBAR.... ix DAFTAR TABEL....

Lebih terperinci

POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA. Oleh : Hendro Murtianto*)

POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA. Oleh : Hendro Murtianto*) POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA Oleh : Hendro Murtianto*) Abstrak Aktivitas zona patahan Sumatera bagian tengah patut mendapatkan perhatian,

Lebih terperinci

Tes Kemampuan Kognitif Materi Pokok Gempa Bumi

Tes Kemampuan Kognitif Materi Pokok Gempa Bumi Tes Kemampuan Kognitif Materi Pokok Gempa Bumi Berilah tanda silang (X) pada huruf a, b, c, d atau e dengan benar di lembar jawaban yang telah disediakan! 1. Pergerakan tiba-tiba dari kerak bumi dan menyebabkan

Lebih terperinci

BAB I PENDAHULUAN. bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan

BAB I PENDAHULUAN. bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan 1 BAB I PENDAHULUAN A. Latar Belakang Penelitian Mitigasi bencana merupakan serangkaian upaya untuk mengurangi resiko bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan kemampuan

Lebih terperinci

BAB I PENDAHULUAN. tatanan tektonik terletak pada zona pertemuan lempeng lempeng tektonik. Indonesia

BAB I PENDAHULUAN. tatanan tektonik terletak pada zona pertemuan lempeng lempeng tektonik. Indonesia BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian ini berjudul Analisis Sudut Penunjaman Lempeng Tektonik Berdasarkan Data Gempa di Pulau Seram dan Pulau Buru. I.2. Latar Belakang Fenomena gempabumi merupakan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. dari katalog gempa BMKG Bandung, tetapi dikarenakan data gempa yang

BAB III METODOLOGI PENELITIAN. dari katalog gempa BMKG Bandung, tetapi dikarenakan data gempa yang BAB III METODOLOGI PENELITIAN 3.1 Metode Penelitian Metode penelitian yang dilakukan adalah deskripsi analitik dari data gempa yang diperoleh. Pada awalnya data gempa yang akan digunakan berasal dari katalog

Lebih terperinci

Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014)

Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014) Jurnal Fisika Unand Vol. 5, No. 1, Januari 2016 ISSN 2302-8491 Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014) Marlisa 1,*, Dwi Pujiastuti

Lebih terperinci

BAB I PENDAHULUAN. lempeng Indo-Australia dan lempeng Pasifik, serta lempeng mikro yakni lempeng

BAB I PENDAHULUAN. lempeng Indo-Australia dan lempeng Pasifik, serta lempeng mikro yakni lempeng 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada kerangka tektonik yang didominasi oleh interaksi dari tiga lempeng utama (kerak samudera dan kerak benua) yaitu lempeng Eurasia, lempeng Indo-Australia

Lebih terperinci

STUDI AWAL HUBUNGAN GEMPA LAUT DAN GEMPA DARAT SUMATERA DAN SEKITARNYA

STUDI AWAL HUBUNGAN GEMPA LAUT DAN GEMPA DARAT SUMATERA DAN SEKITARNYA STUDI AWAL HUBUNGAN GEMPA LAUT DAN GEMPA DARAT SUMATERA DAN SEKITARNYA Listya Dewi Rifai 1, I Putu Pudja 2 1 Akademi Meteorologi dan Geofisika 2 Puslitbang BMKG ABSTRAK Secara umum, wilayah Sumatera di

Lebih terperinci

ANALISIS ANOMALI UDARA BEBAS DAN ANOMALI BOUGUER DI WILAYAH NUSA TENGGARA TIMUR

ANALISIS ANOMALI UDARA BEBAS DAN ANOMALI BOUGUER DI WILAYAH NUSA TENGGARA TIMUR ANALISIS ANOMALI UDARA BEBAS DAN ANOMALI BOUGUER DI WILAYAH NUSA TENGGARA TIMUR Aswin 1*), Gunawan Ibrahim 1, Mahmud Yusuf 2 1 Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Tangerang Selatan 2

Lebih terperinci

TEORI TEKTONIK LEMPENG

TEORI TEKTONIK LEMPENG Pengenalan Gempabumi BUMI BENTUK DAN UKURAN Bumi berbentuk bulat seperti bola, namun rata di kutub-kutubnya. jari-jari Khatulistiwa = 6.378 km, jari-jari kutub=6.356 km. Lebih dari 70 % permukaan bumi

Lebih terperinci

ANALISIS RELOKASI HIPOSENTER GEMPABUMI MENGGUNAKAN ALGORITMA DOUBLE DIFFERENCE WILAYAH SULAWESI TENGAH (Periode Januari-April 2018)

ANALISIS RELOKASI HIPOSENTER GEMPABUMI MENGGUNAKAN ALGORITMA DOUBLE DIFFERENCE WILAYAH SULAWESI TENGAH (Periode Januari-April 2018) ANALISIS RELOKASI HIPOSENTER GEMPABUMI MENGGUNAKAN ALGORITMA DOUBLE DIFFERENCE WILAYAH SULAWESI TENGAH (Periode Januari-April 2018) Oleh Mariska N. Rande 1, Emi Ulfiana 2 1 Stasiun Geofisika Kelas I Palu

Lebih terperinci

ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1

ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1 ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1 1 PMG Stasiun Geofisika Mata Ie Banda Aceh Pendahuluan Aceh merupakan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 15 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada pertemuan tiga lempeng utama dunia yaitu lempeng India-Australia, Eurasia, dan Pasifik. Ketiga lempeng tersebut bergerak dan saling bertumbukan

Lebih terperinci

ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR

ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR Daz Edwiza Laboratorium Geofisika Jurusan Teknik Sipil Unand ABSTRAK Sehubungan semakin meningkatnya frekuensi gempa bebrapa tahun

Lebih terperinci

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga Bab Teori Gelombang Elastik Metode seismik secara refleksi didasarkan pada perambatan gelombang seismik dari sumber getar ke dalam lapisan-lapisan bumi kemudian menerima kembali pantulan atau refleksi

Lebih terperinci

BAB I PENDAHULUAN. yaitu Lempeng Euro-Asia dibagian Utara, Lempeng Indo-Australia. dibagian Selatan dan Lempeng Samudera Pasifik dibagian Timur.

BAB I PENDAHULUAN. yaitu Lempeng Euro-Asia dibagian Utara, Lempeng Indo-Australia. dibagian Selatan dan Lempeng Samudera Pasifik dibagian Timur. BAB I PENDAHULUAN A. Latar Belakang Masalah Penelitian Kepulauan Indonesia secara astronomis terletak pada titik koordinat 6 LU - 11 LS 95 BT - 141 BT dan merupakan Negara kepulauan yang terletak pada

Lebih terperinci

Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun Dengan Menggunakan Rumusan Mcguire

Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun Dengan Menggunakan Rumusan Mcguire Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun 1976 2016 Dengan Menggunakan Rumusan Mcguire Rido Nofaslah *, Dwi Pujiastuti Laboratorium Fisika Bumi, Jurusan

Lebih terperinci

ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU

ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU Yeza Febriani, Ika Daruwati, Rindi Genesa Hatika Program

Lebih terperinci

Bab III Kondisi Seismotektonik Wilayah Sumatera

Bab III Kondisi Seismotektonik Wilayah Sumatera Bab III Kondisi Seismotektonik Wilayah Sumatera III.1 Seismotektonik Indonesia Aktifitas kegempaan di Indonesia dipengaruhi oleh letak Indonesia yang berada pada pertemuan empat lempeng tektonik dunia.

Lebih terperinci

DISKRIPSI GEOLOGI STRUKTUR SESAR DAN LIPATAN

DISKRIPSI GEOLOGI STRUKTUR SESAR DAN LIPATAN DISKRIPSI GEOLOGI STRUKTUR SESAR DAN LIPATAN Mekanisme Sesar 1. Pengenalan a) Sesar merupakan retakan yang mempunyai pergerakan searah dengan arah retakan. Ukuran pergerakan ini adalah bersifat relatif

Lebih terperinci

DISKRIPSI GEOLOGI STRUKTUR SESAR DAN LIPATAN

DISKRIPSI GEOLOGI STRUKTUR SESAR DAN LIPATAN DISKRIPSI GEOLOGI STRUKTUR SESAR DAN LIPATAN DISKRIPSI GEOLOGI STRUKTUR SESAR DAN LIPATAN Mekanisme Sesar 1. Pengenalan a) Sesar merupakan retakan yang mempunyai pergerakan searah dengan arah retakan.

Lebih terperinci

BAB 1 PENDAHULUAN. manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi

BAB 1 PENDAHULUAN. manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi BAB 1 PENDAHULUAN 1.1. Latar Belakang Rekayasa gempa berhubungan dengan pengaruh gempa bumi terhadap manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi pengaruhnya. Gempa bumi merupakan

Lebih terperinci

DISTRIBUSI DAN POLA SESAR DAERAH KEPALA BURUNG (PAPUA BARAT)

DISTRIBUSI DAN POLA SESAR DAERAH KEPALA BURUNG (PAPUA BARAT) DISTRIBUSI DAN POLA SESAR DAERAH KEPALA BURUNG (PAPUA BARAT) Oleh: Imarotul Muflihah 1 4 ABSTRAK : Pergerakan tiga lempeng di Indonesia, yakni lempeng Asia, lempeng Indo-Australia dan lempeng Pasifik menimbulkan

Lebih terperinci

PENENTUAN JENIS SESAR PADA GEMPABUMI SUKABUMI 2 SEPTEMBER 2009 BERDASARKAN GERAK AWAL GELOMBANG P

PENENTUAN JENIS SESAR PADA GEMPABUMI SUKABUMI 2 SEPTEMBER 2009 BERDASARKAN GERAK AWAL GELOMBANG P PENENTUAN JENIS SESAR PADA GEMPABUMI SUKABUMI 2 SEPTEMBER 2009 BERDASARKAN GERAK AWAL GELOMBANG P Merdiani Rahmania 1, Thaqibul Fikri Niyartama 2 dan Ari Sungkowo 3 1, 2 Program Studi Fisika, Fakultas

Lebih terperinci

PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI Oleh ZULHAM SUGITO 1

PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI Oleh ZULHAM SUGITO 1 PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI 2018 Oleh ZULHAM SUGITO 1 1 PMG Stasiun Geofisika Mata Ie Banda Aceh Pendahuluan Aktifitas tektonik di Provinsi Aceh dipengaruhi

Lebih terperinci

RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2

RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2 RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET 2018 Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2 1 Stasiun Geofisika Mata Ie Banda Aceh 2 Bidang Mitigasi Gempabumi dan Tsunami Pendahuluan

Lebih terperinci

ANCAMAN GEMPABUMI DI SUMATERA TIDAK HANYA BERSUMBER DARI MENTAWAI MEGATHRUST

ANCAMAN GEMPABUMI DI SUMATERA TIDAK HANYA BERSUMBER DARI MENTAWAI MEGATHRUST ANCAMAN GEMPABUMI DI SUMATERA TIDAK HANYA BERSUMBER DARI MENTAWAI MEGATHRUST Oleh : Rahmat Triyono,ST,MSc Kepala Stasiun Geofisika Klas I Padang Panjang Email : rahmat.triyono@bmkg.go.id Sejak Gempabumi

Lebih terperinci

BAB II Studi Potensi Gempa Bumi dengan GPS

BAB II Studi Potensi Gempa Bumi dengan GPS BAB II Studi Potensi Gempa Bumi dengan GPS 2.1 Definisi Gempa Bumi Gempa bumi didefinisikan sebagai getaran pada kerak bumi yang terjadi akibat pelepasan energi secara tiba-tiba. Gempa bumi, dalam hal

Lebih terperinci

LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010

LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010 LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010 BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA JAKARTA 2010 1 OUTLINE I. LOKASI GEMPABUMI MENTAWAI SUMATERA BARAT II. 1. TIME LINE GEMPABUMI MENTAWAI SUMATERA BARAT.

Lebih terperinci

BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini

BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini BAB III METODE PENELITIAN 3.1 METODE SEISMIK Metode geofisika yang digunakan adalah metode seimik. Metode ini memanfaatkan perambatan gelombang yang melewati bumi. Gelombang yang dirambatkannya berasal

Lebih terperinci

Analisis Dinamik Struktur dan Teknik Gempa

Analisis Dinamik Struktur dan Teknik Gempa Analisis Dinamik Struktur dan Teknik Gempa Pertemuan ke-2 http://civilengstudent.blogspot.co.id/2016/06/dynamic-analysis-of-building-using-ibc.html 7 lempeng/plate besar Regional Asia Regional Asia http://smartgeografi.blogspot.co.id/2015/12/tektonik-lempeng.html

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Dzikri Wahdan Hakiki, 2015

BAB I PENDAHULUAN 1.1 Latar Belakang Dzikri Wahdan Hakiki, 2015 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terdiri dari 3 lempeng tektonik yang bergerak aktif, yaitu lempeng Eurasia diutara, lempeng Indo-Australia yang menujam dibawah lempeng Eurasia dari selatan,

Lebih terperinci

Keywords: circle method, intensity scale, P wave velocity

Keywords: circle method, intensity scale, P wave velocity JURNAL SAINS DAN PENDIDIKAN FISIKA (JSPF) Jilid Nomor, Desember ISSN 88-X STUDI TENTANG PERGERAKAN TANAH BERDASARKAN POLA KECEPATAN TANAH MAKSIMUM (PEAK GROUND VELOCITY) AKIBAT GEMPA BUMI (STUDI KASUS

Lebih terperinci

Laporan Tugas Akhir Pemodelan Numerik Respons Benturan Tiga Struktur Akibat Gempa BAB I PENDAHULUAN

Laporan Tugas Akhir Pemodelan Numerik Respons Benturan Tiga Struktur Akibat Gempa BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 LATAR BELAKANG Saat ini lahan untuk pembangunan gedung yang tersedia semakin lama semakin sedikit sejalan dengan bertambahnya waktu. Untuk itu, pembangunan gedung berlantai banyak

Lebih terperinci

I. PENDAHULUAN. semakin kuat gempa yang terjadi. Penyebab gempa bumi dapat berupa dinamika

I. PENDAHULUAN. semakin kuat gempa yang terjadi. Penyebab gempa bumi dapat berupa dinamika 1 I. PENDAHULUAN 1.1 Latar Belakang Gempa bumi adalah peristiwa pelepasan energi regangan elastis batuan dalam bentuk patahan atau pergeseran lempeng bumi. Semakin besar energi yang dilepas semakin kuat

Lebih terperinci

STUDI POLA KEGEMPAAN PADA ZONA SUBDUKSI SELATAN JAWA BARAT DENGAN METODE SEGMEN IRISAN VERTIKAL

STUDI POLA KEGEMPAAN PADA ZONA SUBDUKSI SELATAN JAWA BARAT DENGAN METODE SEGMEN IRISAN VERTIKAL Jurnal Fisika. Volume 03 Nomor 02 Tahun 2014, hal 11-20 STUDI POLA KEGEMPAAN PADA ZONA SUBDUKSI SELATAN JAWA BARAT DENGAN METODE SEGMEN IRISAN VERTIKAL Anis Yulia Amanati Jurusan Fisika, Fakultas Matematika

Lebih terperinci

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SEISMISITAS

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SEISMISITAS PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SEISMISITAS Bayu Baskara 1, I Ketut Sukarasa 1, Ardhianto Septiadhi 1 1 Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN. dan dikepung oleh tiga lempeng utama (Eurasia, Indo-Australia dan Pasifik),

BAB I PENDAHULUAN. dan dikepung oleh tiga lempeng utama (Eurasia, Indo-Australia dan Pasifik), BAB I PENDAHULUAN A. Latar Belakang Masalah Secara geografis, posisi Indonesia yang dikelilingi oleh ring of fire dan dikepung oleh tiga lempeng utama (Eurasia, Indo-Australia dan Pasifik), lempeng eura-asia

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Indonesia merupakan Negara kepulauan yang letak geografis berada pada 94-141 BT dan 6 LU - 11 LS. Letak geografisnya, menjadikan Indonesia sebagai negara yang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bencana merupakan suatu peristiwa atau rangkaian peristiwa yang mengancam dan mengganggu kehidupan dan penghidupan masyarakat yang disebabkan, baik oleh faktor alam

Lebih terperinci

BAB 1 PENDAHULUAN. tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah

BAB 1 PENDAHULUAN. tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Permasalahan Negara Kesatuan Republik Indonesia adalah negara kepulauan dengan tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah penduduk lebih

Lebih terperinci

Note : Kenapa Lempeng bergerak?

Note : Kenapa Lempeng bergerak? Note : Kenapa Lempeng bergerak? Lapisan paling atas bumi, kerak bumi (litosfir), merupakan batuan yang relatif dingin dan bagian paling atas berada pada kondisi padat dan kaku. Di bawah lapisan ini terdapat

Lebih terperinci

PENGIDENTIFIKASIAN DAERAH SESAR MENGGUNAKAN METODE SEISMIK REFRAKSI DI KECAMATAN PANTI KABUPATEN JEMBER SKRIPSI. Oleh:

PENGIDENTIFIKASIAN DAERAH SESAR MENGGUNAKAN METODE SEISMIK REFRAKSI DI KECAMATAN PANTI KABUPATEN JEMBER SKRIPSI. Oleh: PENGIDENTIFIKASIAN DAERAH SESAR MENGGUNAKAN METODE SEISMIK REFRAKSI DI KECAMATAN PANTI KABUPATEN JEMBER SKRIPSI Oleh: Firdha Kusuma Ayu Anggraeni NIM 091810201001 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

PENGENALAN. Irman Sonjaya, SE

PENGENALAN. Irman Sonjaya, SE PENGENALAN Irman Sonjaya, SE PENGERTIAN Gempa bumi adalah suatu gangguan dalam bumi jauh di bawah permukaan yang dapat menimbulkan korban jiwa dan harta benda di permukaan. Gempa bumi datangnya sekonyong-konyong

Lebih terperinci

PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA

PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA GEMPA BUMI 1. PENGERTIAN GEMPA Gempa adalah pergeseran tiba-tiba dari lapisan tanah di bawah permukaan bumi. Ketika pergeseran ini terjadi, timbul getaran yang disebut

Lebih terperinci

Bab I Pendahuluan. I.1 Latar Belakang

Bab I Pendahuluan. I.1 Latar Belakang Bab I Pendahuluan I.1 Latar Belakang Selama peradaban manusia, gempa bumi telah dikenal sebagai fenomena alam yang menimbulkan efek bencana yang terbesar, baik secara moril maupun materiil. Suatu gempa

Lebih terperinci

Gb 2.5. Mekanisme Tsunami

Gb 2.5. Mekanisme Tsunami TSUNAMI Karakteristik Tsunami berasal dari bahasa Jepang yaitu dari kata tsu dan nami. Tsu berarti pelabuhan dan nami berarti gelombang. Istilah tersebut kemudian dipakai oleh masyarakat untuk menunjukkan

Lebih terperinci

Untuk mengetahui klasifikasi sesar, maka kita harus mengenal unsur-unsur struktur (Gambar 2.1) sebagai berikut :

Untuk mengetahui klasifikasi sesar, maka kita harus mengenal unsur-unsur struktur (Gambar 2.1) sebagai berikut : Landasan Teori Geologi Struktur Geologi struktur adalah bagian dari ilmu geologi yang mempelajari tentang bentuk (arsitektur) batuan akibat proses deformasi serta menjelaskan proses pembentukannya. Proses

Lebih terperinci

Pengertian Dinamika Geologi. Dinamika Geologi. Proses Endogen. 10/05/2015 Ribka Asokawaty,

Pengertian Dinamika Geologi. Dinamika Geologi. Proses Endogen. 10/05/2015 Ribka Asokawaty, Pengertian Dinamika Geologi Dinamika Geologi Dinamika Geologi merupakan semua perubahan geologi yang terus-menerus terjadi di bumi, baik karena proses eksogen maupun proses endogen. Ribka F. Asokawaty

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA A ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI DELISERDANG SUMATRA UTARA Oleh Fajar Budi Utomo*, Trisnawati*, Nur Hidayati Oktavia*, Ariska Rudyanto*,

Lebih terperinci

ANALISIS MEKANISME PUSATGEMPASOROAKO 15 FEBRUARI 2011

ANALISIS MEKANISME PUSATGEMPASOROAKO 15 FEBRUARI 2011 ANALISIS MEKANISME PUSATGEMPASOROAKO 15 FEBRUARI 2011 Skripsi MEGA UTAMI 107097000167 PROGRAM STUDI FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2011 ANALISIS

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN 52 V. HASIL DAN PEMBAHASAN 5.1. Distribusi Hiposenter Gempa dan Mekanisme Vulkanik Pada persebaran hiposenter Gunung Sinabung (gambar 31), persebaran hiposenter untuk gempa vulkanik sangat terlihat adanya

Lebih terperinci

Trench. Indo- Australia. 5 cm/thn. 2 cm/thn

Trench. Indo- Australia. 5 cm/thn. 2 cm/thn Setelah mengekstrak efek pergerakan Sunda block, dengan cara mereduksi velocity rate dengan velocity rate Sunda block-nya, maka dihasilkan vektor pergeseran titik-titik GPS kontinyu SuGAr seperti pada

Lebih terperinci

BAB I PENDAHULUAN. Gayaberat merupakan salah satu metode dalam geofisika. Nilai Gayaberat di

BAB I PENDAHULUAN. Gayaberat merupakan salah satu metode dalam geofisika. Nilai Gayaberat di BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Gayaberat merupakan salah satu metode dalam geofisika. Nilai Gayaberat di setiap tempat di permukaan bumi berbeda-beda, disebabkan oleh beberapa faktor seperti

Lebih terperinci