II TINJAUAN PUSTAKA. 2.1 Gelombang

Ukuran: px
Mulai penontonan dengan halaman:

Download "II TINJAUAN PUSTAKA. 2.1 Gelombang"

Transkripsi

1 II TINJAUAN PUSTAKA 2.1 Gelombang Dinamika yang terjadi di pantai dipengaruhi oleh beberapa faktor diantaranya adalah gelombang, suplai sedimen dan aktifitas manusia (Sorensen 1993). Mula-mula angin membangkitkan gelombang di laut lepas, kemudian gelombang merambat menuju ke pantai. Selama penjalaran gelombang menuju pantai terjadi transformasi gelombang dan membangkitkan arus menyusuri pantai (longshore current) atau arus tegak lurus pantai (rip current) yang dapat mengubah bentuk garis pantai. Gelombang yang dominan terjadi di laut adalah gelombang yang dibangkitkan oleh angin. Angin yang berhembus di atas permukaan laut mentransfer energi ke permukaan air sehingga dapat membangkitkan gelombang yang merambat menjauhi daerah asal terbentuknya. Tinggi dan periode gelombang yang terbentuk tergatung pada kecepatan angin, lama hembusan angin dan jarak hembusan angin tanpa rintangan (Komar 1976 dan Massel 1989). Jika suatu muka barisan gelombang datang dengan membentuk sudut terhadap garis pantai yang mempunyai kedalaman dasar pantai dangkal, maka gelombang tersebut akan mengalami refraksi. Dalam hal ini arah perambatan gelombang berangsur-angsur berubah dengan berkurangnya kedalaman, sehingga muka gelombang cenderung sejajar dengan kontur kedalaman laut. Proses pembiasan gelombang ini disebabkan oleh perubahan kedalaman yang mengakibatkan perubahan kecepatan dan amplitudo gelombang (Carter 1988 dan Dean & Dalrymple 1984). Beberapa model transformasi gelombang telah dibuat untuk melihat perubahan tinggi dan arah gelombang yang merambat dari laut lepas ke garis pantai. Misalnya, model yang dibuat oleh Thornton dan Guza (1983) untuk mengamati transformasi gelombang dengan menggunakan persamaan distribusi Rayleigh dalam menjelaskan distribusi tinggi gelombang yaitu: (1)

2 12 p(h) = distribusi tinggi gelombang H 0 = Tinggi gelombang laut lepas K s = koefisien soaling H h = tinggi gelombang pada kedalaman h Hasil ini menunjukkan bahwa metode distribusi Rayleigh memprediksi gelombang secara detail sedikit lebih tinggi dari hasil pengukuran lapangan, walaupun demikian metode ini mampu memprediksi H 1/3 dan H 1/10 dengan baik. Selain itu, metode distribusi Rayleigh mampu meramalkan peningkatan tinggi gelombang rata-rata akibat shoaling dan penurunan tinggi gelombang akibat gelombang pecah. Perhitungan tinggi gelombang pada surf zone dilakukan dengan menggunakan koefisien gesekan dasar C f = 0.01 dan menghasilkan penurunan tinggi gelombang maksimum sebesar 3%. Maa dan Wang (1995) mengamati transformasi gelombang di pantai Virginia dengan menggunakan model RCPWAVE. Dalam model ini perhitungan transformasi gelombang dilakukan dengan memasukkan pengaruh shoaling, refraksi dan difraksi menggunakan persamaan mild slope. Hasil perhitungan metode ini menunjukkan bahwa gesekan dasar merupakan suatu faktor penting yang mempengaruhi transpormasi gelombang. Jika efek gesekan dasar dikeluarkan dalam perhitungan, hasil perhitungan spectra gelombang di dekat pantai akan menjadi sangat lebih besar dari pada hasil pengukuran. Dengan menggunakan konstanta faktor gesekan dasar yang kecil (f w = 0,01 untuk frekuensi 0,07 Hz, f w = 0,02 untuk 0,07 < frekuensi < 0,08 Hz, dan f w = 0,03 untuk frekuensi 0,08 Hz), maka diperoleh spectra gelombang yang baik pada stasiun dekat pantai. Hung et al. (2008) membuat model transformasi gelombang dengan menggunakan persamaan mild slope bergantung waktu yang dinyatakan sebagai berikut: (2) (3)

3 13 adalah operator gradien horizontal η = elevasi permukaan air laut (m) C = kecepatan gelombang (m/s) = percepatan gravitasi (m/det 2 ) h = kedalaman air laut (m) d b = ketebalan medium pemecah gelombang (m) k = bilangan gelombang ε b = Porositas medium pemecah gelombang C r = Koefisien energi aliran f = Faktor gesekan Untuk keperluan penentuan tinggi gelombang pecah, maka model ini menggunakan kriteria gelombang pecah dari Goda (1975) yaitu: (4) H b = Tinggi gelombang pecah (m) L 0 = Panjang gelombang di laut lepas (m) tan β = Kelerengan pantai h = kedalaman laut (m) Perubahan tinggi dan panjang gelombang berhubungan dengan berkurangnya kedalaman air. Hubungan antara tinggi gelombang dan kedalaman air pada saat gelombang pecah telah banyak diteliti. Dari beberapa hasil eksperimen memberikan perbandingan antara tinggi gelombang pecah (H b ) dan

4 14 kedalaman air di mana gelombang pecah (h b ) berkisar antara 0.7 sampai 1.2 (Messel 1988). Beberapa hasil penelitian telah dibuat untuk memformulasikan hubungan antara tinggi gelombang pecah dengan tinggi gelombang laut lepas (H b /H o ) yaitu Komar dan Gaughan (1972) dalam Sunamura (1992) menggunakan hubungan fluks energi dalam teori gelombang linier untuk mendapatkan persamaan semiempiris. Le Mehaute dan Koh (1967) dalam Sunamura (1992) menurunkan hubungan H b /H o dengan memasukkan efek kemiringan dasar pantai. Kriteria gelombang pecah telah diformulasikan oleh beberapa penulis seperti diperlihatkan pada Tabel 1. Tabel 1 Kriteria gelombang pecah (Thornton & Guza 1983) Penulis Collins (1970) Sifat Shoaling Linier Kriteria Gelombang Pecah Battjes (1972) Kuo & Kuo (1974) Goda (1975) Linier Linier Nonlinier 2.2 Kecepatan Arus Menyusur Pantai Salah satu aspek penting dari gelombang yang berambat menuju pantai adalah terbentuknya arus menyusur pantai dan arus tegak lurus pantai yang akan mempengaruhi pergerakan material sedimen sepanjang pantai (Ippen 1966). Apabila garis puncak gelombang sejajar dengan garis pantai, maka akan terjadi arus tegak lurus pantai yang menuju ke laut. Selain itu, apabila gelombang yang datang membentuk sudut terhadap garis pantai akan membangkitkan arus menyusur pantai (Horikawa 1988). Longuet-Higgins (1970) dalam Horikawa (1988) menganalisis proses pembangkitan arus menyusur pantai dengan menggunakan konsep tekanan radiasi (radiation stress). Jika garis puncak gelombang datang miring terhadap garis

5 15 pantai, maka tekanan radiasi akan timbul di sepanjang pantai. Setelah gelombang pecah, maka komponen geser tekanan radiasi semakin berkurang dan akan menghasilkan suatu tenaga pembangkit (driving force) untuk membangkitkan arus menyusur pantai. Kecepatan arus menyusur pantai (V) dapat ditentukan dengan menggunakan persamaan : (5) tan β * = 1+ tan β 2 ( 3 / 8) γ b tan β = kelerengan pantai = percepatan gravitasi (m/det 2 ) = sudut gelombang pecah (derajat) C f = koefisien gesekan dasar pantai γ b = indeks gelombang pecah Suriamihardja (2005) meneliti kecepatan arus menyusur pantai di delta Sungai Jeneberang untuk mengestimasi angkutan sedimen menyusur pantai dan kecenderungan perubahan garis pantai sepanjang delta Sungai Jeneberang. Gelombang yang datang miring terhadap garis normal pantai setelah pecah akan membangkitkan arus menyusuri pantai. Berdasarkan arah dan tinggi gelombang pecah serta kedalaman air, maka kecepatan arus menyusuri pantai di sepanjang pantai delta Sungai Jeneberang sebagian besar berada pada interval sampai 0.10 m/det (76.79%), kemudian pada interval 0.11 m/det sampai 0.15 m/det (22.32%) dan sebagian kecil terjadi pada kecepatan lebih besar dari 0.2 m/det (15.6%). Di sepanjang pantai delta Sungai Jeneberang kecepatan arus menyusuri pantai ke arah utara lebih besar dari pada ke arah selatan. Arah arus menyusuri pantai di sepanjang delta Sungai Jeneberang tergantung dari arah gelombang yang dibangkitkan oleh angin. Berdasarkan pola arah gelombang, mengindikasikan bahwa gelombang yang datang dari arah barat dan barat daya akan membangkitkan arus menyusuri pantai di sepanjang pantai delta Sungai

6 16 Jeneberang kearah utara, sedangkan gelombang yang datang dari arah barat laut membangkitkan arus menyusuri pantai ke arah selatan. 2.3 Angkutan Sedimen di Pantai Laju angkutan sedimen sejajar pantai merupakan faktor utama dalam mengevaluasi perubahan garis pantai (Hung et al dan Elfrink & Baldock 2002). Untuk mempelajari angkutan sedimen akibat gelombang, maka daerah dekat pantai dapat dibagi dalam tiga wilayah yaitu daerah offshore zone, surf zone dan wash zone (Horikawa 1988). Offshore zone adalah daerah yang terbentang dari garis dimana gelombang pecah sampai laut lepas. Surf zone adalah daerah yang terbentang antara bagian dalam dari gelombang pecah dan batas naikturunnya gelombang di pantai. Dalam daerah ini angkutan sedimen terutama disebabkan oleh gelombang pecah dan arus yang diinduksi oleh gelombang. Wash zone adalah daerah yang dibatasi oleh garis batas tertinggi naiknya gelombang dan batas terendah turunnya gelombang di pantai. Arah angkutan sedimen di sepanjang pantai dapat berupa angkutan sedimen dari pantai ke laut atau dari laut ke pantai yang dapat terjadi oleh gerakan gelombang dan arus balik dasar serta arus tegak lurus pantai. Angkutan sedimen sejajar pantai (Long shore transport) yaitu angkutan sedimen sepanjang pantai atau biasa disebut angkutan sedimen sejajar pantai yang berkaitan erat dengan arus menyusuri pantai. Dalam mengestimasi perubahan garis pantai, maka diperlukan suatu evaluasi kuantitatif laju angkutan sedimen pada setiap titik di grid horizontal dua dimensi. Untuk tujuan ini, angkutan sedimen yang terjadi di daerah pantai dibagi menjadi angkutan sedimen lintas pantai (cross-shore transport) dan angkutan sedimen sejajar pantai (longshore transport). Mekanisme angkutan sedimen dibagi dalam dua tipe yaitu (Horikawa 1988): Angkutan sedimen dasar (bed load transport) adalah gerakan material sedimen pada dasar perairan yang terseret oleh arus secara menggelinding, bergeser dan saltasi. Angkutan sedimen suspensi (suspended load transport) adalah gerak material sedimen melayang yang terhanyut oleh aliran.

7 17 Madsen dan Grant (1976) dalam Horikawa (1988) membuat hubungan antara besar angkutan sedimen lintas pantai yang tak berdimensi dengan parameter shields dengan mengembangkan hasil yang diperoleh oleh Brown (1950) dalam kasus aliran searah. Pendekatan ini menghasilkan laju transpor sedimen rata-rata terhadap setengah periode gelombang, tanpa arah transpor sedimen ke pantai atau ke lepas pantai dan nilai laju transpor pada setiap fase satu periode gelombang, yaitu : (6) Q l = angkutan sedimen menyusur pantai (m 3 /det) = Amplitudo dari = Parameter shield u m = kecepatan maksimum orbital gelombang (m/det) u = kecepatan orbital gelombang (m/det) C f = koefisien gesekan dasar pantai ρ s = Massa jenis sedimen (kg/m 3 ) = percepatan gravitasi (m/det 2 ) d 50 = diameter sedimen rata-rata (mm) Ozasa dan Brampton (1980) merumuskan angkutan sedimen menyusuri pantai untuk digunakan dalam mengamati perubahan garis pantai dengan menggunakan metode one-line. Metode one-line adalah model dua dimensi yang menghitung perubahan garis pantai dengan cara mengamati pergerakan posisi garis pantai dengan asumsi bahwa profil pantai tidak berubah. Laju angkutan sedimen menyusuri pantai didasarkan pada komponen fluks energi gelombang pada daerah gelombang pecah. Persamaan angkutan sedimen menyusur pantai dinyatakan sebagai: (7) H bs = tinggi gelombang signifikan pada saat pecah (m) C gb = kecepatan group gelombang pada saat pecah (m/s)

8 18 A d = koefisien kalibrasi = Koefisien empiris = kelerengan pantai Shibutani et al. (2007) menghitung laju angkutan sedimen sejajar pantai untuk mengamati perubahan garis pantai dengan menggunakan persamaan Ozasa dan Brampton (1980). Hung et al. (2008) menggunakan persamaan angkutan sedimen sejajar pantai yang dibuat oleh Komar dan Inman (1970) untuk mengamati perubahan garis pantai di sekitar pemecah gelombang. Persamaan angkutan sedimen ini didasarkan pada flux energi gelombang yang dinyatakan sebagai berikut: (8) Q l = angkutan sedimen menyusur pantai (m 3 /det) = flux energi gelombang pada saat gelombang pecah = Koefisien empiris n = porositas sedimen = percepatan gravitasi (m/det 2 ) θ b ρ s = sudut gelombang pecah (derajat) = Massa jenis sedimen (kg/m3) ρ = Massa jenis air (kg/m 3 ) 2.4 Perubahan Garis Pantai Perubahan garis pantai dapat diprediksi dengan membuat model matematik atau numerik yang didasarkan pada imbangan sedimen pantai pada daerah pantai yang ditinjau (Ebersole et al. 1986; Hanson & Kraus 1989). Perubahan garis

9 19 pantai dipengaruhi oleh angkutan sedimen sejajar pantai dan angkutan sedimen tegak lurus pantai. Gelombang badai yang terjadi dalam waktu singkat dapat menyebabkan terjadinya erosi pantai. Selanjutnya gelombang biasa yang terjadi sehari-hari akan membentuk kembali pantai yang tererosi sebelumnya. Dengan demikian dalam satu siklus yang tidak terlalu lama profil pantai kembali pada bentuk semula, atau dalam satu siklus pantai dalam kondisi stabil. Sebaliknya, akibat pengaruh transpor sedimen sejajar pantai, sedimen dapat terangkut sampai jauh dan menyebabkan perubahan garis pantai. Untuk mengembalikan perubahan garis pantai pada kondisi semula diperlukan waktu cukup lama. Dengan demikian, maka transpor sedimen sejajar pantai merupakan penyebab utama terjadinya perubahan garis pantai (USACE 2003b). Dinamika lautan atau proses-proses yang berasal dari laut dapat mengakibatkan perubahan pada pantai, baik karena proses abrasi maupun sedimentasi. Kemudian karena adanya perubahan garis pantai tersebut, maka dinamika laut, seperti arah datang gelombang, atau pembiasan gelombang akan mengalami perubahan. Jika arah arus mengalami perubahan, maka arah transpor sedimen juga berubah, sehingga bentuk pantai juga berubah. Jadi perubahan bentuk pantai dan arah gelombang saling mempengaruhi. Berbagai penelitian tentang perubahan garis pantai telah dilakukan baik secara analitik maupun secara numerik, seperti: Komar (1973), membuat model numerik perubahan garis pantai dengan menggunakan metode one-line yang mengamati evolusi delta yang didominasi gelombang. Model ini menggunakan sumber sedimen yang berlokasi tetap dan gelombang yang merambat ke pantai hanya dari satu arah dengan puncak gelombang sejajar garis pantai. Model Komar menghasilkan delta yang tumbuh dengan bentuk melengkung berhubungan dengan delta tipe Nile. Gelombang dengan sudut miring, menunjukkan sedikit asimetri di samping arah angkutan sedimen. Leont yev (1997) membuat model numerik perubahan garis pantai untuk waktu singkat di sekitar struktur tegak lurus pantai dengan menggunakan metode one-line. Dalam studi ini ditinjau dampak groin atau struktur tipe dermaga dan pipa dibawah air yang berorientasi tegak lurus terhadap pantai. Pendekatan ini

10 20 telah dipakai untuk mengestimasi perubahan garis pantai selama musim panas di pantai Yamal, Teluk Baidara (Laut Kara). Dampak gabungan dari pipa dan dermaga terlihat jelas setelah 70 hari. Durasi total kondisi gelombang ketika tinggi gelombang rms melebihi 0.7 adalah sekitar 500 jam, periode gelombang adalah 4-7 detik dan sudut gelombang dari -40 sampai +45. Material dasar pantai adalah pasir halus dengan ukuran rata-rata mm dan kemiringan dasar pantai landai dengan kontur kedalaman paralel terhadap garis pantai. Fluks sedimen sejajar pantai bergerak ke arah utara atau selatan tergantung pada situasi gelombang. Pengaruh nyata groin ditinjau pada jarak sekitar 10 km. Hasil simulasi diperoleh bahwa perubahan garis pantai yang tertinggi melebihi 4 m. Jumlah total material sedimen yang terangkut adalah 25 x 10 3 m 3 untuk daerah sebelah utara groin dan 12 x 10 3 m 3 untuk daerah sebelah selatan groin. Dabees dan Kamphuis (2000) membuat model perubahan kontur kedalaman pantai dalam skala spasial dan temporal dengan metode NLine. Model ini mensimulasikan transformasi gelombang pada kondisi batimetri yang tidak teratur dan menghitung hubungan antara transformasi sedimen dengan perubahan morfologi pantai serta pengaruh pemecah gelombang terhadap perubahan morfologi pantai. Hasil simulasi model ini memperlihatkan perubahan profil pantai berdasarkan perubahan musim, yaitu pada musim panas terjadi sedimentasi pada pantai depan sedangkan pada musim dingin terjadi abrasi pada pantai depan dan terjadi bar (gundukan pasir) bagian bawah. Model ini dicoba diterapkan di pantai Pulau Gasparilla di sebelah barat daya pantai Florida di Teluk Meksiko. Panjang pantai yang digunakan dalam model adalah m dengan jumlah grid tegak lurus pantai 100 dan sejajar pantai 11 (dari kedalaman 1.5 sampai -9 m). model disimulasikan selama 20 tahun ( ) dengan menggunakan data gelombang interval 3 jam dari U.S Army Corps of Engineers Wave Information Study. Hasil simulasi memperlihatkan adanya lokasi yang mengalami abrasi dan akresi. Daerah yang mengalami erosi menunjukkan adanya peningkatan angkutan sedimen sedangkan yang mengalami akresi menunjukkan adanya penurunan angkutan sedimen. Makota et al. (2004) meneliti perubahan garis pantai di pantai utara dan selatan Kunduchi, Tanzania dengan menggunakan photo udara, tahun 1981, 1992

11 21 dan Hasil penelitian ini menunjukkan bahwa pada tahun pantai utara telah mengalami abrasi seluas 2.02 ha dan akresi seluas 0.11 ha dan pada tahun telah mengalami abrasi seluas 0.68 ha. Perubahan garis pantai pada tahun dipengaruhi oleh adanya konstruksi bagunan pengaman pantai sehingga abrasinya lebih kecil. Pada pantai selatan telah mengalami abrasi seluas 1.13 ha dan akresi seluas 0.04 ha pada tahun , sedangkan pada tahun mengalami abrasi seluas 0.12 ha dan akresi seluas 2.81 ha. Purba dan Jaya (2004) melakukan penelitian tentang perubahan garis pantai dan penutupan lahan di pesisir Lampung timur dengan menggunakan citra Landsat-TM tahun 1991, 1999, 2001 dan Hasil yang diperoleh menunjukkan bahwa perubahan garis pantai dan karakteristik gelombang tergantung pada kekuatan angin yang terjadi. Bagian pantai yang berbentuk tonjolan, disisi hilir dari arah arus menyusuri pantai umumnya angkutan sedimen dominan ke utara menyebabkan terjadinya erosi. Hasil gerusan sedimen tersebut diangkut ke sisi utara dalam proses littoral drift kemudian diendapkan pada bagian tertentu sehingga terjadi proses sedimentasi. Ashton dan Murray (2006) membuat model perubahan garis pantai dengan menggunakan metode one-line. Penggunaan model ini memasukkan suatu penghalang hempasan gelombang sederhana, untuk menyelidiki implikasi sudut gelombang yang dapat mengakibatkan perubahan garis pantai. Dalam model ini diasumsikan bahwa delta didominasi oleh gelombang, ada sumber sedimen dari sungai yang berlokasi tetap. Perhitungan angkutan sedimen dilakukan dengan menggunakan persamaan CERC (USACE 1984) dan mengasumsikan bahwa kontur kedalaman parallel dengan garis pantai, bentuk profil lintas pantai konstan dan evolusi garis pantai terjadi akibat gradien angkutan sedimen sejajar pantai. Dalam model ini satu sumber sedimen dimasukkan ke dalam model: setiap step waktu 0.1 hari dengan jumlah sedimen yang sama ditambahkan ke pantai pada lokasi yang tetap. Hasil simulasi menunjukkan bahwa interaksi antara input sedimen, pembentukan kembali gelombang dan hempasan gelombang mengakibatkan sifat yang komplek, dengan garis pantai menyerupai bentuk delta Nile dan bentuk yang lebih komplek seperti Delta Ebro atau Danube.

12 22 Shibutani et al. (2007) menggunakan persamaan kontinuitas sedimen untuk membuat model perubahan garis pantai dengan metode one-line. Model ini diaplikasikan di pantai Yumigahama Jepang sepanjang 4 km sejajar pantai. Hasil simulasi model setelah 2 tahun menunjukkan terjadinya abrasi pada pantai bagian atas dan pada sisi lain yaitu pantai bagian bawah mengalami sedimentasi. Model ini juga melihat pengaruh ukuran butiran sedimen terhadap perubahan garis pantai. Hasil simulasi menunjukkan bahwa ukuran butiran sedimen yang terdapat di pantai mempunyai pengaruh terhadap besarnya perubahan garis pantai. Semakin kecil ukuran butiran, maka semakin besar jarak perubahan garis pantai yang terjadi. Hung et al. (2008) membuat model perubahan garis pantai akibat adanya pemecah gelombang di sekitar pantai. Model perubahan garis pantai dibuat berdasarkan perhitungan dari persamaan kontinuitas sedimen yang menggunakan metode one-line yaitu: (9) Q = laju angkutan sedimen h s = Kedalaman kritis Persamaan (8) dapat ditulis dalam bentuk beda hingga (finite-difference) yaitu: (10) Hasil simulasi model ini menunjukkan adanya perubahan garis pantai yaitu terjadi bentuk garis pantai menonjol yang terbentuk di belakang pemecah gelombang. Hasil simulasi model perubahan garis pantai menunjukkan kecenderungan yang sesuai dengan hasil eksperimen. Triwahyuni et al. (2010) membuat pemodelan perubahan garis pantai di sepanjang pantai Timur Tarakan, Kalimantan Timur. Model perubahan garis pantai ini menggunakan metode one-line, dan perhitungan angkutan sedimen dilakukan dengan menggunakan persamaan yang dibagun oleh Komar (1983). Model ini tidak mengamati transformasi gelombang, sehingga proses transformasi

13 23 gelombang harus dihitung di luar model yang kemudian digunakan sebagai input dalam model. Hasil simulasi model ini menunjukkan bahwa selama 10 tahun ( ) telah terjadi kemajuan garis pantai (sedimentasi) yang lebih intensif di bagian utara dibandingkan pada pantai bagian selatan. Secara umum profil garis pantai hasil akhir model menunjukkan kemiripan dengan garis pantai hasil citra. Sejumlah penelitian dalam aspek oseanografi telah dilakukan pada kawasan perairan Kota Makassar. Lokasi penelitian dipusatkan di sekitar muara Sungai Jeneberang, karena wilayah ini merupakan wilayah yang sangat dinamik dan mempunyai arti strategis. Seperti, Departemen PU (1989) memfokuskan penelitian tentang hidrologi, perubahan garis pantai dan batimetri di Sekitar muara Sungai Jeneberang. Suriamiharja (2005) telah melakukan telaah pasang surut, gelombang, arus dan angkutan sedimen dalam kaitannya dengan sedimentasi dan abrasi pantai Tanjung Bunga.

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang I PENDAHULUAN 1.1 Latar Belakang Wilayah pantai merupakan suatu zona yang sangat dinamik karena merupakan zona persinggungan dan interaksi antara udara, daratan dan lautan. Zona pantai senantiasa memiliki

Lebih terperinci

II TINJAUAN PUSTAKA. 2.1 Pembangkitan Gelombang oleh Angin

II TINJAUAN PUSTAKA. 2.1 Pembangkitan Gelombang oleh Angin II TINJAUAN PUSTAKA 2.1 Pembangkitan Gelombang oleh Angin Proses pembentukan gelombang oleh angin Menurut Komar (1976) bahwa angin mentransfer energi ke partikel air sesuai dengan arah hembusan angin.

Lebih terperinci

MODEL PERUBAHAN GARIS PANTAI DI SEKITAR DELTA SUNGAI JENEBERANG, MAKASSAR, SULAWESI SELATAN S A K K A

MODEL PERUBAHAN GARIS PANTAI DI SEKITAR DELTA SUNGAI JENEBERANG, MAKASSAR, SULAWESI SELATAN S A K K A MODEL PERUBAHAN GARIS PANTAI DI SEKITAR DELTA SUNGAI JENEBERANG, MAKASSAR, SULAWESI SELATAN S A K K A SEKOLAH PASCA SARJANA INSTITUT PERTANIAN BOGOR 2012 PERNYATAAN MENGENAI DISERTASI DAN SUMBER INFORMASI

Lebih terperinci

Gambar 15 Mawar angin (a) dan histogram distribusi frekuensi (b) kecepatan angin dari angin bulanan rata-rata tahun

Gambar 15 Mawar angin (a) dan histogram distribusi frekuensi (b) kecepatan angin dari angin bulanan rata-rata tahun IV HASIL DAN PEMBAHASAN 4.1 Karakter Angin Angin merupakan salah satu faktor penting dalam membangkitkan gelombang di laut lepas. Mawar angin dari data angin bulanan rata-rata selama tahun 2000-2007 diperlihatkan

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN IV HASIL DAN PEMBAHASAN 4.1 Kecepatan Dan Arah Angin Untuk mengetahui perubahan garis pantai diperlukan data gelombang dan angkutan sedimen dalam periode yang panjang. Data pengukuran lapangan tinggi gelombang

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 : Definisi visual dari penampang pantai (Sumber : SPM volume 1, 1984) I-1

BAB I PENDAHULUAN. Gambar 1.1 : Definisi visual dari penampang pantai (Sumber : SPM volume 1, 1984) I-1 BAB I PENDAHULUAN Pantai merupakan suatu sistem yang sangat dinamis dimana morfologi pantai berubah-ubah dalam skala ruang dan waktu baik secara lateral maupun vertikal yang dapat dilihat dari proses akresi

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN Hasil simulasi model penjalaran gelombang ST-Wave berupa gradien stress radiasi yang timbul sebagai akibat dari adanya perubahan parameter gelombang yang menjalar memasuki perairan

Lebih terperinci

SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT

SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT Jundana Akhyar 1 dan Muslim Muin 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi

Lebih terperinci

BAB II TEORI TERKAIT

BAB II TEORI TERKAIT II. TEORI TERKAIT BAB II TEORI TERKAIT 2.1 Pemodelan Penjalaran dan Transformasi Gelombang 2.1.1 Persamaan Pengatur Berkenaan dengan persamaan dasar yang digunakan model MIKE, baik deskripsi dari suku-suku

Lebih terperinci

DINAMIKA PANTAI (Abrasi dan Sedimentasi) Makalah Gelombang Yudha Arie Wibowo

DINAMIKA PANTAI (Abrasi dan Sedimentasi) Makalah Gelombang Yudha Arie Wibowo DINAMIKA PANTAI (Abrasi dan Sedimentasi) Makalah Gelombang Yudha Arie Wibowo 09.02.4.0011 PROGRAM STUDI / JURUSAN OSEANOGRAFI FAKULTAS TEKNIK DAN ILMU KELAUTAN UNIVERSITAS HANG TUAH SURABAYA 2012 0 BAB

Lebih terperinci

ANALISIS TRANSPOR SEDIMEN MENYUSUR PANTAI DENGAN MENGGUNAKAN METODE GRAFIS PADA PELABUHAN PERIKANAN TANJUNG ADIKARTA

ANALISIS TRANSPOR SEDIMEN MENYUSUR PANTAI DENGAN MENGGUNAKAN METODE GRAFIS PADA PELABUHAN PERIKANAN TANJUNG ADIKARTA ANALISIS TRANSPOR SEDIMEN MENYUSUR PANTAI DENGAN MENGGUNAKAN METODE GRAFIS PADA PELABUHAN PERIKANAN TANJUNG ADIKARTA Irnovia Berliana Pakpahan 1) 1) Staff Pengajar Jurusan Teknik Sipil, Fakultas Teknik

Lebih terperinci

BAB V Analisa Peramalan Garis Pantai

BAB V Analisa Peramalan Garis Pantai 155 BAB V ANALISA PERAMALAN GARIS PANTAI. 5.1 Bentuk Pantai. Pantai selalu menyesuaikan bentuk profilnya sedemikian sehingga mampu menghancurkan energi gelombang yang datang. Penyesuaian bentuk tersebut

Lebih terperinci

Kajian Hidro-Oseanografi untuk Deteksi Proses-Proses Dinamika Pantai (Abrasi dan Sedimentasi)

Kajian Hidro-Oseanografi untuk Deteksi Proses-Proses Dinamika Pantai (Abrasi dan Sedimentasi) Kajian Hidro-Oseanografi untuk Deteksi Proses-Proses Dinamika Pantai (Abrasi dan Sedimentasi) Mario P. Suhana * * Mahasiswa Pascasarjana Ilmu Kelautan, Institut Pertanian Bogor Email: msdciyoo@gmail.com

Lebih terperinci

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan...

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan... DAFTAR ISI Halaman HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERSEMBAHAN... ii PERNYATAAN... iv PRAKATA... v DAFTAR ISI...viii DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv DAFTAR

Lebih terperinci

III METODE PENELITIAN

III METODE PENELITIAN III METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan di perairan Pantai Teritip hingga Pantai Ambarawang kurang lebih 9.5 km dengan koordinat x = 116 o 59 56.4 117 o 8 31.2

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Dalam perkembangan teknologi perangkat keras yang semakin maju, saat ini sudah mampu mensimulasikan fenomena alam dan membuat prediksinya. Beberapa tahun terakhir sudah

Lebih terperinci

DAFTAR ISI Hasil Uji Model Hidraulik UWS di Pelabuhan PT. Pertamina RU VI

DAFTAR ISI Hasil Uji Model Hidraulik UWS di Pelabuhan PT. Pertamina RU VI DAFTAR ISI ALAMAN JUDUL... i ALAMAN PENGESAAN... ii PERSEMBAAN... iii ALAMAN PERNYATAAN... iv KATA PENGANTAR... v DAFTAR ISI... vi DAFTAR TABEL... x DAFTAR GAMBAR... xi DAFTAR LAMBANG... xiii INTISARI...

Lebih terperinci

Oleh: Darius Arkwright. Abstrak

Oleh: Darius Arkwright. Abstrak STUDI KOMPARATIF METODE ANALISIS LONG-SHORE SEDIMENT TRANSPORT DAN MODEL PERUBAHAN GARIS PANTAI Oleh: Darius Arkwright Abstrak Perubahan garis pantai merupakan implikasi dari proses-proses hidro-oseanografi

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Pantai adalah daerah di tepi perairan yang dipengaruhi oleh air pasang tertinggi dan air surut terendah. Garis pantai adalah garis batas pertemuan antara daratan dan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Erosi Erosi adalah lepasnya material dasar dari tebing sungai, erosi yang dilakukan oleh air dapat dilakukan dengan berbagai cara, yaitu : a. Quarrying, yaitu pendongkelan batuan

Lebih terperinci

BAB V ANALISIS PERAMALAN GARIS PANTAI

BAB V ANALISIS PERAMALAN GARIS PANTAI 79 BAB V ANALISIS PERAMALAN GARIS PANTAI 5.1 Penggunaan Program GENESIS Model yang digunakan untuk mengevaluasi perubahan morfologi pantai adalah program GENESIS (Generalized Model for Simulating Shoreline

Lebih terperinci

TINJAUAN PUSTAKA Gelombang

TINJAUAN PUSTAKA Gelombang TINJAUAN PUSTAKA Gelombang Gelombang merupakan salah satu fenomena laut yang paling nyata karena langsung bisa dilihat dan dirasakan. Gelombang adalah gerakan dari setiap partikel air laut yang berupa

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA 5 BAB II 2.1 TINJAUAN UMUM Dalam suatu perencanaan dibutuhkan pustaka yang dijadikan sebagai dasar perencanaan agar terwujud spesifikasi yang menjadi acuan dalam perhitungan dan pelaksanaan pekerjaan di

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Studi Daerah yang menjadi objek dalam penulisan Tugas Akhir ini adalah pesisir Kecamatan Muara Gembong yang terletak di kawasan pantai utara Jawa Barat. Posisi geografisnya

Lebih terperinci

KONDISI GELOMBANG DI WILAYAH PERAIRAN PANTAI LABUHAN HAJI The Wave Conditions in Labuhan Haji Beach Coastal Territory

KONDISI GELOMBANG DI WILAYAH PERAIRAN PANTAI LABUHAN HAJI The Wave Conditions in Labuhan Haji Beach Coastal Territory Spektrum Sipil, ISSN 1858-4896 55 Vol. 1, No. 1 : 55-72, Maret 2014 KONDISI GELOMBANG DI WILAYAH PERAIRAN PANTAI LABUHAN HAJI The Wave Conditions in Labuhan Haji Beach Coastal Territory Baiq Septiarini

Lebih terperinci

KETIDAKSTABILAN PANTAI SEBAGAI KENDALA PENGEMBANGAN DAERAH PERUNTUKAN DI PERAIRAN LASEM JAWA TENGAH

KETIDAKSTABILAN PANTAI SEBAGAI KENDALA PENGEMBANGAN DAERAH PERUNTUKAN DI PERAIRAN LASEM JAWA TENGAH KETIDAKSTABILAN PANTAI SEBAGAI KENDALA PENGEMBANGAN DAERAH PERUNTUKAN DI PERAIRAN LASEM JAWA TENGAH Oleh : D. Ilahude 1) dan E. Usman 1) 1) Puslitbang Geologi Kelautan, Jl. Dr. Junjunan No.236, Bandung

Lebih terperinci

KAJIAN PENGARUH GELOMBANG TERHADAP KERUSAKAN PANTAI MATANG DANAU KABUPATEN SAMBAS

KAJIAN PENGARUH GELOMBANG TERHADAP KERUSAKAN PANTAI MATANG DANAU KABUPATEN SAMBAS Abstrak KAJIAN PENGARUH GELOMBANG TERHADAP KERUSAKAN PANTAI MATANG DANAU KABUPATEN SAMBAS Umar 1) Pantai Desa Matang Danau adalah pantai yang berhadapan langsung dengan Laut Natuna. Laut Natuna memang

Lebih terperinci

I. PENDAHULUAN Permasalahan

I. PENDAHULUAN Permasalahan I. PENDAHULUAN 1.1. Permasalahan Sedimentasi di pelabuhan merupakan permasalahan yang perlu mendapatkan perhatian. Hal tersebut menjadi penting karena pelabuhan adalah unsur terpenting dari jaringan moda

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 4 II. TINJAUAN PUSTAKA A. Garis Pantai Garis pantai merupakan batas pertemuan antara daratan dengan bagian laut saat terjadi air laut pasang tertinggi. Garis ini bisa berubah karena beberapa hal seperti

Lebih terperinci

KAJIAN LAJU TRANSPOR SEDIMEN DI PANTAI AKKARENA

KAJIAN LAJU TRANSPOR SEDIMEN DI PANTAI AKKARENA Paper Riset Singkat Edisi 1 No. 1, Jan Mar 2014, p.10-18 KAJIAN LAJU TRANSPOR SEDIMEN DI PANTAI AKKARENA Fikri Aris Munandar dan Achmad Yasir Baeda Lab. Teknik Pantai dan Lingkungan, Prodi Teknik Kelautan

Lebih terperinci

BAB 6 MODEL TRANSPOR SEDIMEN DUA DIMENSI

BAB 6 MODEL TRANSPOR SEDIMEN DUA DIMENSI BAB 6 MODEL TRANSPOR SEDIMEN DUA DIMENSI Transpor sedimen pada bagian ini dipelajari dengan menggunakan model transpor sedimen tersuspensi dua dimensi horizontal. Dimana sedimen yang dimodelkan pada penelitian

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS 4.1 Uji Sensitifitas Sensitifitas parameter diuji dengan melakukan pemodelan pada domain C selama rentang waktu 3 hari dan menggunakan 3 titik sampel di pesisir. (Tabel 4.1 dan

Lebih terperinci

BAB I PENDAHULUAN. Negara Republik Indonesia merupakan suatu negara kepulauan terbesar di

BAB I PENDAHULUAN. Negara Republik Indonesia merupakan suatu negara kepulauan terbesar di BAB I PENDAHULUAN 1.1 Latar Belakang Negara Republik Indonesia merupakan suatu negara kepulauan terbesar di dunia dengan jumlah pulau mencapai 17.508 pulau besar dan kecil dengan garis pantai sangat panjang

Lebih terperinci

POLA ARUS DAN TRANSPOR SEDIMEN PADA KASUS PEMBENTUKAN TANAH TIMBUL PULAU PUTERI KABUPATEN KARAWANG

POLA ARUS DAN TRANSPOR SEDIMEN PADA KASUS PEMBENTUKAN TANAH TIMBUL PULAU PUTERI KABUPATEN KARAWANG POLA ARUS DAN TRANSPOR SEDIMEN PADA KASUS PEMBENTUKAN TANAH TIMBUL PULAU PUTERI KABUPATEN KARAWANG Andi W. Dwinanto, Noir P. Purba, Syawaludin A. Harahap, dan Mega L. Syamsudin Universitas Padjadjaran

Lebih terperinci

TRANSPORT SEDIMEN YANG DISEBABKAN OLEH LONGSHORE CURRENT DI PANTAI KECAMATAN TELUK SEGARA KOTA BENGKULU

TRANSPORT SEDIMEN YANG DISEBABKAN OLEH LONGSHORE CURRENT DI PANTAI KECAMATAN TELUK SEGARA KOTA BENGKULU DOI: doi.org/10.21009/0305020403 TRANSPORT SEDIMEN YANG DISEBABKAN OLEH LONGSHORE CURRENT DI PANTAI KECAMATAN TELUK SEGARA KOTA BENGKULU Supiyati 1,a), Deddy Bakhtiar 2,b, Siti Fatimah 3,c 1,3 Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Kondisi Fisik Daerah Penelitian II.1.1 Kondisi Geografi Gambar 2.1. Daerah Penelitian Kabupaten Indramayu secara geografis berada pada 107 52-108 36 BT dan 6 15-6 40 LS. Berdasarkan

Lebih terperinci

III METODOLOGI. 3.1 Waktu dan Lokasi Penelitian

III METODOLOGI. 3.1 Waktu dan Lokasi Penelitian III METODOLOGI 3.1 Waktu dan Lokasi Penelitian Pengambilan data lapangan seperti pengukuran batimetri, pasang surut dan sedimen dilakukan pada bulan Maret 2008 di pesisir sekitar muara Sungai Jeneberang,

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN ANGIN Berdasarkan analisis data angin stasiun meteorologi Amamapare selama 15 tahun, dalam satu tahun terdapat pengertian dua musim, yaitu musim timur dan musim barat diselingi dengan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pantai adalah daerah di tepi perairan yang dipengaruhi oleh air pasang tertinggi dan air surut terendah (Bambang Triatmojo, Teknik Pantai ). Garis

Lebih terperinci

SIMULASI SEBARAN SEDIMEN TERHADAP KETINGGIAN GELOMBANG DAN SUDUT DATANG GELOMBANG PECAH DI PESISIR PANTAI. Dian Savitri *)

SIMULASI SEBARAN SEDIMEN TERHADAP KETINGGIAN GELOMBANG DAN SUDUT DATANG GELOMBANG PECAH DI PESISIR PANTAI. Dian Savitri *) SIMULASI SEBARAN SEDIMEN TERHADAP KETINGGIAN GELOMBANG DAN SUDUT DATANG GELOMBANG PECAH DI PESISIR PANTAI Dian Savitri *) Abstrak Gerakan air di daerah pesisir pantai merupakan kombinasi dari gelombang

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 21 BAB III LANDASAN TEORI 3.1 Erosi Secara umum erosi dapat dikatakan sebagai proses terlepasnya buturan tanah dari induknya di suatu tempat dan terangkutnya material tersebut oleh gerakan air atau angin

Lebih terperinci

ANALISA PERUBAHAN GARIS PANTAI TUBAN, JAWA TIMUR DENGAN MENGGUNAKAN EMPIRICAL ORTHOGONAL FUNCTION (EOF)

ANALISA PERUBAHAN GARIS PANTAI TUBAN, JAWA TIMUR DENGAN MENGGUNAKAN EMPIRICAL ORTHOGONAL FUNCTION (EOF) ANALISA PERUBAHAN GARIS PANTAI TUBAN, JAWA TIMUR DENGAN MENGGUNAKAN EMPIRICAL ORTHOGONAL FUNCTION (EOF) Moch. Rizal Azhar 4306 100 105 Institut Teknologi Sepuluh Nopember Surabaya 2012 DOSEN PEMBIMBING

Lebih terperinci

KAJIAN MORFODINAMIKA PESISIR KABUPATEN KENDAL MENGGUNAKAN TEKNOLOGI PENGINDERAAN JAUH MULTI SPEKTRAL DAN MULTI WAKTU

KAJIAN MORFODINAMIKA PESISIR KABUPATEN KENDAL MENGGUNAKAN TEKNOLOGI PENGINDERAAN JAUH MULTI SPEKTRAL DAN MULTI WAKTU KAJIAN MORFODINAMIKA PESISIR KABUPATEN KENDAL MENGGUNAKAN TEKNOLOGI PENGINDERAAN JAUH MULTI SPEKTRAL DAN MULTI WAKTU Tjaturahono Budi Sanjoto Mahasiswa Program Doktor Manajemen Sumberdaya Pantai UNDIP

Lebih terperinci

Seminar Nasional : Menggagas Kebangkitan Komoditas Unggulan Lokal Pertanian dan Kelautan Fakultas Pertanian Universitas Trunojoyo Madura

Seminar Nasional : Menggagas Kebangkitan Komoditas Unggulan Lokal Pertanian dan Kelautan Fakultas Pertanian Universitas Trunojoyo Madura Seminar Nasional : Menggagas Kebangkitan Juni, 2013 PENGARUH GELOMBANG TERHADAP TRANSPOR SEDIMEN DI SEPANJANG PANTAI UTARA PERAIRAN BANGKALAN Dina Faradinka, Aries Dwi Siswanto, dan Zainul Hidayah Jurusan

Lebih terperinci

LEMBARAN NEGARA REPUBLIK INDONESIA

LEMBARAN NEGARA REPUBLIK INDONESIA No.113, 2016 LEMBARAN NEGARA REPUBLIK INDONESIA PEMERINTAHAN. WILAYAH. NASIONAL. Pantai. Batas Sempadan. PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 51 TAHUN 2016 TENTANG BATAS SEMPADAN PANTAI DENGAN RAHMAT

Lebih terperinci

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 51 TAHUN 2016 TENTANG BATAS SEMPADAN PANTAI DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA,

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 51 TAHUN 2016 TENTANG BATAS SEMPADAN PANTAI DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA, PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 51 TAHUN 2016 TENTANG BATAS SEMPADAN PANTAI DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA, Menimbang: bahwa untuk melaksanakan ketentuan Pasal

Lebih terperinci

Gb 2.5. Mekanisme Tsunami

Gb 2.5. Mekanisme Tsunami TSUNAMI Karakteristik Tsunami berasal dari bahasa Jepang yaitu dari kata tsu dan nami. Tsu berarti pelabuhan dan nami berarti gelombang. Istilah tersebut kemudian dipakai oleh masyarakat untuk menunjukkan

Lebih terperinci

STUDI JUMLAH ANGKUTAN SEDIMEN SEPANJANG GARIS PANTAI PADA LOKASI PANTAI BERLUMPUR ( Studi Kasus Di Pantai Bunga Batubara, Sumatera Utara) TUGAS AKHIR

STUDI JUMLAH ANGKUTAN SEDIMEN SEPANJANG GARIS PANTAI PADA LOKASI PANTAI BERLUMPUR ( Studi Kasus Di Pantai Bunga Batubara, Sumatera Utara) TUGAS AKHIR STUDI JUMLAH ANGKUTAN SEDIMEN SEPANJANG GARIS PANTAI PADA LOKASI PANTAI BERLUMPUR ( Studi Kasus Di Pantai Bunga Batubara, Sumatera Utara) TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan

Lebih terperinci

BAB VI PEMILIHAN ALTERNATIF BANGUNAN PELINDUNG MUARA KALI SILANDAK

BAB VI PEMILIHAN ALTERNATIF BANGUNAN PELINDUNG MUARA KALI SILANDAK 96 BAB VI PEMILIHAN ALTERNATIF BANGUNAN PELINDUNG MUARA KALI SILANDAK 6.1 Perlindungan Muara Pantai Secara alami pantai telah mempunyai perlindungan alami, tetapi seiring perkembangan waktu garis pantai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai

BAB II TINJAUAN PUSTAKA. rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai BAB II TINJAUAN PUSTAKA 2.1. Definisi Pantai Ada dua istilah tentang kepantaian dalam bahasa indonesia yang sering rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai kepantaian

Lebih terperinci

PENGARUH FASILITAS PELABUHAN TERHADAP PANTAI LABUHAN HAJI The Effect of Port Structure on Labuhan Haji Beach

PENGARUH FASILITAS PELABUHAN TERHADAP PANTAI LABUHAN HAJI The Effect of Port Structure on Labuhan Haji Beach 68 Spektrum Sipil, ISSN 1858-4896 Vol. 2, No. 1 : 68-78, Maret 2015 PENGARUH FASILITAS PELABUHAN TERHADAP PANTAI LABUHAN HAJI The Effect of Port Structure on Labuhan Haji Beach Eko Pradjoko*, Haris Prayoga*,

Lebih terperinci

KERANGKA RAPERMEN TENTANG TATA CARA PENGHITUNGAN BATAS SEMPADAN PANTAI

KERANGKA RAPERMEN TENTANG TATA CARA PENGHITUNGAN BATAS SEMPADAN PANTAI KERANGKA RAPERMEN TENTANG TATA CARA PENGHITUNGAN BATAS SEMPADAN PANTAI BAB I BAB II BAB III BAB IV BAB V : KETENTUAN UMUM : PENGHITUNGAN BATAS SEMPADAN PANTAI Bagian Kesatu Indeks Ancaman dan Indeks Kerentanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 13 BAB II TINJAUAN PUSTAKA 2. 1 Pantai 2.1.1. Pengertian Pantai Pengertian pantai berbeda dengan pesisir. Tidak sedikit yang mengira bahwa kedua istilah tersebut memiliki arti yang sama, karena banyak

Lebih terperinci

BAB IV PEMODELAN DAN ANALISIS

BAB IV PEMODELAN DAN ANALISIS BAB IV PEMODELAN DAN ANALISIS Pemodelan dilakukan dengan menggunakan kontur eksperimen yang sudah ada, artificial dan studi kasus Aceh. Skenario dan persamaan pengatur yang digunakan adalah: Eksperimental

Lebih terperinci

GAMBARAN UMUM LOKASI STUDI. KL 4099 Tugas Akhir. Bab 2

GAMBARAN UMUM LOKASI STUDI. KL 4099 Tugas Akhir. Bab 2 Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara Bab 2 GAMBARAN UMUM LOKASI STUDI Bab 2 GAMBARAN UMUM LOKASI STUDI Desain Pengamanan Pantai Pulau Karakelang

Lebih terperinci

PEMODELAN ARUS SEJAJAR PANTAI STUDI KASUS PANTAI ERETAN, KABUPATEN INDRAMAYU, JAWA BARAT

PEMODELAN ARUS SEJAJAR PANTAI STUDI KASUS PANTAI ERETAN, KABUPATEN INDRAMAYU, JAWA BARAT PEMODELAN ARUS SEJAJAR PANTAI STUDI KASUS PANTAI ERETAN, KABUPATEN INDRAMAYU, JAWA BARAT TUGAS AKHIR Disusun untuk memenuhi salah satu syarat kurikuler Program Sarjana Oseanografi Oleh : FRANSISKO A. K.

Lebih terperinci

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa G174 Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa Muhammad Ghilman Minarrohman, dan Danar Guruh Pratomo Departemen Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan,

Lebih terperinci

BAB I PENDAHULUAN. dengan yang lain, yaitu masing-masing wilayah masih dipengaruhi oleh aktivitas

BAB I PENDAHULUAN. dengan yang lain, yaitu masing-masing wilayah masih dipengaruhi oleh aktivitas BAB I PENDAHULUAN 1.1. Latar Belakang Pesisir (coast) dan pantai (shore) merupakan bagian dari wilayah kepesisiran (Gunawan et al. 2005). Sedangkan menurut Kodoatie (2010) pesisir (coast) dan pantai (shore)

Lebih terperinci

Gambar 2.1. Definisi Daerah Pantai Sumber: Triatmodjo (1999)

Gambar 2.1. Definisi Daerah Pantai Sumber: Triatmodjo (1999) BAB II TINJAUAN PUSTAKA 2.1 Morfologi Pantai Daerah daratan adalah daerah yang terletak di atas dan dibawah permukaan darat dimulai dari batas garis pasang tertinggi. Daerah lautan adalah daerah yang terletak

Lebih terperinci

PRISMA FISIKA, Vol. V, No. 3 (2014), Hal ISSN :

PRISMA FISIKA, Vol. V, No. 3 (2014), Hal ISSN : Studi Faktor Penentu Akresi dan Abrasi Pantai Akibat Gelombang Laut di Perairan Pesisir Sungai Duri Ghesta Nuari Wiratama a, Muh. Ishak Jumarang a *, Muliadi a a Prodi Fisika, FMIPA Universitas Tanjungpura,

Lebih terperinci

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1)

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1) DAFTAR NOTASI A : sebuah konstanta, pada Persamaan (5.1) a c a m1 / 3 a m /k s B : Koefisien-koefisien yang membentuk elemen matrik tridiagonal dan dapat diselesaikan dengan metode eliminasi Gauss : amplitudo

Lebih terperinci

BAB V ANALISIS PERAMALAN GARIS PANTAI

BAB V ANALISIS PERAMALAN GARIS PANTAI 80 BAB V ANALISIS PERAMALAN GARIS PANTAI 5.1 Tinjauan Umum Bagian hilir muara Kali Silandak mengalami relokasi dan menjadi satu dengan Kali Jumbleng yang menyebabkan debit hilirnya menjadi lebih besar

Lebih terperinci

PEMODELAN POLA ARUS DI SEPANJANG PANTAI DELTA MUARA SUNGAI SADDANG

PEMODELAN POLA ARUS DI SEPANJANG PANTAI DELTA MUARA SUNGAI SADDANG PEMODELAN POLA ARUS DI SEPANJANG PANTAI DELTA MUARA SUNGAI SADDANG Chaeril Anwar* Amiruddin, Sakka Program Studi Geofisika, Jurusan Fisika, FMIPA, Universitas Hasanuddin *E-Mail : chaerilanwar881@gmail.com

Lebih terperinci

Pengaruh Perubahan Layout Breakwater Terhadap Kondisi Tinggi Gelombang di Pelabuhan Perikanan Nusantara Brondong

Pengaruh Perubahan Layout Breakwater Terhadap Kondisi Tinggi Gelombang di Pelabuhan Perikanan Nusantara Brondong Pengaruh Perubahan Layout Breakwater Terhadap Kondisi Tinggi Gelombang di Pelabuhan Perikanan Nusantara Brondong Faddillah Prahmadana R. (NRP. 4308 100 050) Dosen Pembimbing: Haryo Dwito Armono, S.T.,

Lebih terperinci

ANALISIS TRANSPORT SEDIMEN DI MUARA SUNGAI SERUT KOTA BENGKULU ANALYSIS OF SEDIMENT TRANSPORT AT SERUT ESTUARY IN BENGKULU CITY

ANALISIS TRANSPORT SEDIMEN DI MUARA SUNGAI SERUT KOTA BENGKULU ANALYSIS OF SEDIMENT TRANSPORT AT SERUT ESTUARY IN BENGKULU CITY ANALISIS TRANSPORT SEDIMEN DI MUARA SUNGAI SERUT KOTA BENGKULU ANALYSIS OF SEDIMENT TRANSPORT AT SERUT ESTUARY IN BENGKULU CITY Oleh Supiyati 1, Suwarsono 2, dan Mica Asteriqa 3 (1,2,3) Jurusan Fisika,

Lebih terperinci

STUDI ANGKUTAN SEDIMEN SEJAJAR PANTAI DI PANTAI PONDOK PERMAI SERDANG BEDAGAI SUMATERA UTARA

STUDI ANGKUTAN SEDIMEN SEJAJAR PANTAI DI PANTAI PONDOK PERMAI SERDANG BEDAGAI SUMATERA UTARA STUDI ANGKUTAN SEDIMEN SEJAJAR PANTAI DI PANTAI PONDOK PERMAI SERDANG BEDAGAI SUMATERA UTARA TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh Colloqium Doqtum/Ujian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Penelitian Pada pemodelan gelombang ini, yang menjadi daerah pemodelannya adalah wilayah pesisir Kabupaten dan Kota Cirebon. Terkait dengan wilayah pesisir ini, akan

Lebih terperinci

Jurnal Fusi ISSN: Vol.7 No.2 STUDI KARAKTERISTIK PANTAI TANJUNG ALAM KOTA MAKASSAR

Jurnal Fusi ISSN: Vol.7 No.2 STUDI KARAKTERISTIK PANTAI TANJUNG ALAM KOTA MAKASSAR STUDI KARAKTERISTIK PANTAI TANJUNG ALAM KOTA MAKASSAR Muh. Altin Massinai Abstract : Tanjung Alam seashore are direct face with Makassar strait and front of island zone constrain, such as: Lae-lae island,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Wilayah pantai adalah suatu wilayah yang mengalami kontak langsung dengan aktivitas manusia dan kontak dengan fenomena alam terutama yang berasal dari laut. Fenomena

Lebih terperinci

Deteksi Perubahan Garis Pantai Pulau Gili Ketapang Kabupaten Probolinggo

Deteksi Perubahan Garis Pantai Pulau Gili Ketapang Kabupaten Probolinggo Deteksi Perubahan Garis Pantai Pulau Gili Ketapang Kabupaten Probolinggo Nurin Hidayati 1, Hery Setiawan Purnawali 2 1 Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya Malang Email: nurin_hiday@ub.ac.id

Lebih terperinci

Gambar 4.11 Lokasi 1 Mala (Zoom).

Gambar 4.11 Lokasi 1 Mala (Zoom). 4.2 Coastal Cell Pada ilmu teknik pantai terdapat istilah Coastal Cell. Coastal Cell merupakan sebuah bentang pantai yang dibatasi oleh tanjung yang berada di kanan dan kirinya. a) Lokasi 1 (Mala) MALA

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sedimen merupakan unsur pembentuk dasar perairan. Interaksi antara arus dengan dasar perairan berpengaruh terhadap laju angkutan sedimen. Laju angkutan sedimen tersebut

Lebih terperinci

DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG

DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG Fathu Rofi 1 dan Dr.Ir. Syawaluddin Hutahaean, MT. 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan,

Lebih terperinci

BAB VI ALTERNATIF PENANGGULANGAN ABRASI

BAB VI ALTERNATIF PENANGGULANGAN ABRASI 87 BAB VI ALTERNATIF PENANGGULANGAN ABRASI 6.1 Perlindungan Pantai Secara alami pantai telah mempunyai perlindungan alami, tetapi seiring perkembangan waktu garis pantai selalu berubah. Perubahan garis

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS IV.1 Uji Sensitifitas Model Uji sensitifitas dilakukan dengan menggunakan 3 parameter masukan, yaitu angin (wind), kekasaran dasar laut (bottom roughness), serta langkah waktu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. SUNGAI Sungai merupakan salah satu bagian dari siklus hidrologi. Air dalam sungai umumnya terkumpul dari presipitasi, seperti hujan, embun, mata air, limpasan bawah tanah, dan

Lebih terperinci

PEMODELAN GENESIS. KL 4099 Tugas Akhir. Bab 5. Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara

PEMODELAN GENESIS. KL 4099 Tugas Akhir. Bab 5. Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara Bab 5 PEMODELAN GENESIS Bab 5 PEMODELAN GENESIS Desain Pengamanan Pantai Pulau Karakelang Kabupaten Kepulauan

Lebih terperinci

ANALISIS ARUS DAN GELOMBANG PERAIRAN BATU BELANDE GILI ASAHAN DESA BATU PUTIH KECAMATAN SEKOTONG LOMBOK BARAT

ANALISIS ARUS DAN GELOMBANG PERAIRAN BATU BELANDE GILI ASAHAN DESA BATU PUTIH KECAMATAN SEKOTONG LOMBOK BARAT 1 ANALISIS ARUS DAN GELOMBANG PERAIRAN BATU BELANDE GILI ASAHAN DESA BATU PUTIH KECAMATAN SEKOTONG LOMBOK BARAT Sukuryadi Dosen Program Studi Pendidikan Geografi, Universitas Muhammadiyah Mataram Email

Lebih terperinci

Studi Laju Sedimentasi Akibat Dampak Reklamasi Di Teluk Lamong Gresik

Studi Laju Sedimentasi Akibat Dampak Reklamasi Di Teluk Lamong Gresik JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 Studi Laju Sedimentasi Akibat Dampak Reklamasi Di Teluk Lamong Gresik Fiqyh Trisnawan W 1), Widi A. Pratikto 2), dan Suntoyo

Lebih terperinci

PERUBAHAN GARIS PANTAI DARI PANTAI TERITIP BALIKPAPAN SAMPAI PANTAI AMBARAWANG KUTAI KERTANEGARA KALIMANTAN TIMUR IRA PUSPITA DEWI

PERUBAHAN GARIS PANTAI DARI PANTAI TERITIP BALIKPAPAN SAMPAI PANTAI AMBARAWANG KUTAI KERTANEGARA KALIMANTAN TIMUR IRA PUSPITA DEWI PERUBAHAN GARIS PANTAI DARI PANTAI TERITIP BALIKPAPAN SAMPAI PANTAI AMBARAWANG KUTAI KERTANEGARA KALIMANTAN TIMUR IRA PUSPITA DEWI SEKOLAH PASCA SARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Secara umum pantai didefenisikan sebagai daerah di tepi perairan (laut) sebatas antara surut terendah dengan pasang tertinggi, sedangkan daerah pesisir adalah daratan

Lebih terperinci

POLA TRANFORMASI GELOMBANG DENGAN MENGGUNAKAN MODEL RCPWave PADA PANTAI BAU-BAU, PROVINSI SULAWESI TENGGARA

POLA TRANFORMASI GELOMBANG DENGAN MENGGUNAKAN MODEL RCPWave PADA PANTAI BAU-BAU, PROVINSI SULAWESI TENGGARA E-Jurnal Ilmu dan Teknologi Kelautan Tropis, Vol. 1, No. 2, Hal. 60-71, Desember 2009 POLA TRANFORMASI GELOMBANG DENGAN MENGGUNAKAN MODEL RCPWave PADA PANTAI BAU-BAU, PROVINSI SULAWESI TENGGARA THE PATTERN

Lebih terperinci

BAB II TINJAUAN PUSTAKA A.

BAB II TINJAUAN PUSTAKA A. BAB II TINJAUAN PUSTAKA A. Sungai Sungai merupakan torehan di permukaan bumi yang merupakan penampung dan penyalur alamiah aliran air, material yang dibawanya dari bagian hulu ke bagian hilir suatu daerah

Lebih terperinci

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa JURNAL TEKNIK ITS Vol. 6 No. 2, (2017) ISSN: 2337-3539 (2301-9271 Print) G-172 Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa Muhammad Ghilman Minarrohman, dan Danar Guruh

Lebih terperinci

PREDIKSI PERUBAHAN GARIS PANTAI PULAU GILI KETAPANG PROBOLINGGO DENGAN MENGGUNAKAN ONE-LINE MODEL

PREDIKSI PERUBAHAN GARIS PANTAI PULAU GILI KETAPANG PROBOLINGGO DENGAN MENGGUNAKAN ONE-LINE MODEL PREDIKSI PERUBAHAN GARIS PANTAI PULAU GILI KETAPANG PROBOLINGGO DENGAN MENGGUNAKAN ONE-LINE MODEL Nurin Hidayati 1,2*, Hery Setiawan Purnawali 3, dan Desiana W. Kusumawati 1 1 Fakultas Perikanan dan Ilmu

Lebih terperinci

I. PENDAHULUAN 1.1. Latar Belakang

I. PENDAHULUAN 1.1. Latar Belakang I. PENDAHULUAN 1.1. Latar Belakang Secara umum pantai didefenisikan sebagai daerah di tepi perairan (laut) sebatas antara surut terendah dengan pasang tertinggi, sedangkan daerah pesisir adalah daratan

Lebih terperinci

07. Bentangalam Fluvial

07. Bentangalam Fluvial TKG 123 Geomorfologi untuk Teknik Geologi 07. Bentangalam Fluvial Salahuddin Husein Jurusan Teknik Geologi Fakultas Teknik Universitas Gadjah Mada 2010 Pendahuluan Diantara planet-planet sekitarnya, Bumi

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Pembuatan algoritma empiris klorofil-a Tabel 8, Tabel 9, dan Tabel 10 dibawah ini adalah percobaan pembuatan algoritma empiris dibuat dari data stasiun nomor ganjil, sedangkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Daerah Studi Kecamatan Muara Gembong merupakan kecamatan di Kabupaten Bekasi yang terletak pada posisi 06 0 00 06 0 05 lintang selatan dan 106 0 57-107 0 02 bujur timur. Secara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pantai Seperti yang telah disampaikan pada bagian pendahuluan, pantai disebut sebagai daerah di tepi perairan yang dipengaruhi oleh air pasang tertinggi dan air surut terendah.

Lebih terperinci

(a). Vektor kecepatan arus pada saat pasang, time-step 95.

(a). Vektor kecepatan arus pada saat pasang, time-step 95. Tabel 4.4 Debit Bulanan Sungai Jenggalu Year/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 3.57 3.92 58.51 25.35 11.83 18.51 35.48 1.78 13.1 6.5 25.4 18.75 1996 19.19 25.16 13.42 13.21 7.13

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Penelitian Kecamatan Muara Gembong merupakan daerah pesisir di Kabupaten Bekasi yang berada pada zona 48 M (5 0 59 12,8 LS ; 107 0 02 43,36 BT), dikelilingi oleh perairan

Lebih terperinci

BAB II. Tinjauan Pustaka

BAB II. Tinjauan Pustaka BAB II Tinjauan Pustaka A. Sungai Sungai merupakan jalan air alami dimana aliranya mengalir menuju samudera, danau, laut, atau ke sungai yang lain. Menurut Soewarno (1991) dalam Ramadhan (2016) sungai

Lebih terperinci

ANALISIS SEDIMENTASI DI MUARA SUNGAI PANASEN

ANALISIS SEDIMENTASI DI MUARA SUNGAI PANASEN ANALISIS SEDIMENTASI DI MUARA SUNGAI PANASEN Amelia Ester Sembiring T. Mananoma, F. Halim, E. M. Wuisan Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi Manado Email: ame910@gmail.com ABSTRAK Danau

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Wilayah pesisir merupakan transisi ekosistem terestrial dan laut yang ditandai oleh gradien perubahan ekosistem yang tajam (Pariwono, 1992). Kawasan pantai merupakan

Lebih terperinci

(a) Profil kecepatan arus IM03. (b) Profil arah arus IM03. Gambar III.19 Perekaman profil arus dan pasut stasiun IM03 III-17

(a) Profil kecepatan arus IM03. (b) Profil arah arus IM03. Gambar III.19 Perekaman profil arus dan pasut stasiun IM03 III-17 (a) Profil kecepatan arus IM3 (b) Profil arah arus IM3 Gambar III.19 Perekaman profil arus dan pasut stasiun IM3 III-17 Gambar III.2 Spektrum daya komponen vektor arus stasiun IM2 Gambar III.21 Spektrum

Lebih terperinci

Gambar 2.7 Foto di lokasi Mala.

Gambar 2.7 Foto di lokasi Mala. Tumpukan pasir di sisi kiri lebih rendah Tumpukan pasir di sisi kanan lebih tinggi Arah transpor sedimen sejajar pantai Gambar 2.7 Foto di lokasi Mala. Dari foto di Gambar 2.7 dapat dilihat ada batang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. A. Sungai

BAB II TINJAUAN PUSTAKA. A. Sungai BAB II TINJAUAN PUSTAKA A. Sungai Sungai merupakan torehan di permukaan bumi yang merupakan penampung dan penyalur alamiah aliran air, material yang dibawanya dari bagian Hulu ke bagian Hilir suatu daerah

Lebih terperinci

BAB I PENDAHULUAN 1.1 Tinjauan Umum

BAB I PENDAHULUAN 1.1 Tinjauan Umum A I PENDAHULUAN 1.1 Tinjauan Umum Sebagai negara kepulauan Indonesia memiliki potensi wilayah pantai yang sangat besar. agi masyarakat Indonesia pantai sudah tidak asing karena sebagian besar penduduk

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Perbandingan Hasil Model dengan DISHIDROS Komponen gelombang pasang surut M2 dan K1 yang dipilih untuk dianalisis lebih lanjut, disebabkan kedua komponen ini yang paling dominan

Lebih terperinci