BAB II DASAR TEORI PERENCANAAN STRUKTUR BANGUNAN GEDUNG SISTEM KOMPOSIT. mendesain serta menganalisa struktur tersebut. Peraturan-peraturan yang akan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II DASAR TEORI PERENCANAAN STRUKTUR BANGUNAN GEDUNG SISTEM KOMPOSIT. mendesain serta menganalisa struktur tersebut. Peraturan-peraturan yang akan"

Transkripsi

1 BAB II DASAR TEORI PERENCANAAN STRUKTUR BANGUNAN GEDUNG SISTEM KOMPOSIT 2.1 Umum Desain dan analisis struktur merupakan bagian terpenting dalam perancangan suatu struktur gedung. Untuk itu perlu adanya acuan-acuan untuk mendesain serta menganalisa struktur tersebut. Peraturan-peraturan yang akan diambil untuk menjadi acuan dan berlaku di Indonesia yaitu merujuk pada Standar Nasional Indonesia (SNI). Salah satunya SNI tentang Tata Cara Perencanaan Struktur Beton untuk Bangunan Gedung. Dalam perancangan struktur bangunan gedung, hal-hal yang perlu diperhatikan dan diperhitungkan antara lain : Struktur harus dirancang cukup kuat sesuai ketentuan yang dipersyaratkan dengan menggunakan faktor beban dan faktor reduksi kekuatan Φ. Struktur yang dirancang hendaknya disesuaikan pada ketersediaan anggaran biaya dan waktu pelaksanaan yang dikeluarkan oleh owner. Dalam tugas akhir kali ini struktur bangunan gedung yang akan di analisis adalah struktur bangunan gedung dengan sistem komposit dengan metode LRFD (load and Resistance Factor Design). Maka dari itulah dalam bab ini akan banyak membahas hal-hal yang berkaitan dengan sistem komposit. Juga serta berisi pula teori-teori struktur atas bangunan gedung yang digunakan,antara lain pelat,balok, dan kolom yang berkaitan langsung dengan tugas akhir ini. II-1

2 2.2 Pengertian Komposit Pada dasarnya penggunaan material komposit telah dikenal selama ribuan tahun pada alam sekitar kita. Pada zaman mesir kuno, jerami digunakan pada dinding untuk meningkatkan performa struktur. Material kayu merupakan komposit alami yang sering digunakan selama ini. Para pekerja kuno telah mengenal istilah komposit dengan menggunakan ter untuk mengikat alang2 juga untuk membuat kapal komposit 7000 tahun yang lalu. Kemudian seperti halnya beton, material yang digunakan oleh seluruh dunia dan juga material berbasis semen lainnya juga merupakan suatu komposit. Perilaku dan sifat dari beton dapat dimengerti dan direncanakan, diprediksi dengan lebih baik bila dilihat sebagai komposit. Material komposit akan bersinergi bila memiliki sebuah sistem yang mempersatukan material-material penunjang untuk mencapai sebuah sifat material baru tertentu. Seperti yang dikatakan oleh Aristotle pada 350SM The Whole is more than just the sum of components. Aristotle berkeyakinan bahwa skema konseptual secara keseluruhan dari alam perlu untuk dipersatukan dan tidak dapat ditinjau dari segi komponen yang terpisah-pisah. Hal ini yang penting untuk diperhatikan dalam perencanaan struktur oleh seorang engineer. Komposit adalah suatu jenis bahan baru hasil rekayasa yang terdiri dari dua atau lebih bahan dimana sifat masing-masing bahan berbeda satu sama lainnya baik itu sifat kimia maupun fisika nya dan tetap terpisah dalam hasil akhir bahan tersebut (bahan komposit yang menghasilkan suatu material baru). Dengan adanya perbedaan dari material penyusunnya maka komposit antar material harus berikatan dengan kuat. Berikut beberapa definisi komposit, antara lain : II-2

3 Tingkat dasar : pada molekul tunggal dan kisi kristal, bila material yang disusun dari dua atom atau lebih disebut komposit (contoh senyawa, paduan, polymer dan keramik) Mikrostruktur : pada kristal, phase dan senyawa, bila material disusun dari dua phase atau senyawa atau lebih disebut komposit (contoh paduan Fe dan C) Makrostruktur : material yang disusun dari campuran dua atau lebih penyusun makro yang berbeda dalam bentuk dan/atau komposisi dan tidak larut satu dengan yang lain disebut material komposit (definisi secara makro ini yang biasa dipakai) Komposit dalam tugas akhir disini bersifat makroskopik. Artinya penggabungan sifat-sifat unggul dari pembentuk masih terlihat nyata. Untuk mendesain struktur dilakukan pemilihan matriks dan penguat, hal ini dilakukan agar dapat memastikan kemampuan material sesuai dengan produk yang akan dihasilkan. Keterangan Gambar : Gambar 2.1. Gabungan Makroskopis Fasa-Fasa Pembentuk Komposit Matriks berfungsi sebagai penyokong, pengikat phasa, penguat. Penguat/serat merupakan unsur penguat kepada matriks. Komposit merupakan gabungan, campuran dua atau lebih bahan bahan yang terpisah II-3

4 Komposit dikenal sebagai bahan teknologi dan bukan bahan struktur konvensional melainkan bahan struktur yang artinya diperoleh dari hasil teknologi pemrosesan bahan. Kemajuan teknologi pemrosesan bahan dewasa ini telah menghasilkan bahan teknik yang dikenal sebagai bahan komposit. Perpaduan beton dengan baja juga dapat menjadi salah satu material konstruksi sistem komposit. Dengan asumsi bahwa baja dan beton bekerja secara bersamaan dalam memikul beban yang bekerja pada suatu struktur, sehingga diharapkan akan menghasilkan desain profil/elemen yang lebih ekonomis. Meskipun beton bertulang dan beton prategang juga termasuk dalam material komposit, tetapi keduanya tidak secara tegas dimasukkan dalam kelompok konstruksi komposit karena tulangan bajanya tidak secara struktur memikul beban. Lain halnya dengan konstruksi komposit balok-kolom-baja-beton komposit dimana balok dapat memikul berat sendiri. Oleh karenanya pembahasan material dikonsentrasikan kepada yang terakhir. Material yang digunakan dalam konstruksi balok-kolom komposit adalah: a. Balok baja dapat berupa: penampang I, balok castellated, balok tersusun dari rangka batang, balok berbentuk boks, penampang built-up dari pelat, dll. b. Pelat beton dari beton berongga prategang pracetak, termasuk pelat dengan penebalan (haunch), pelat prefab, pelat dengan sirip yang sejajar atau tegak lurus balok baja. c. Kolom komposit baja-beton termasuk didalamnya: baja tube dengan beton pengisi, kolom penampang I terbungkus beton, kolom komposit dengan metal tube sekililingnya untuk keperluan drainase dan pendukung struktur lainya. II-4

5 Berikut contoh bentuk-bentuk umum srtuktur komposit : (a) (b) (c) Gambar 2.2. Macam-macam Struktur Komposit Keterangan gambar : (a) Kolom baja terbungkus beton / balok baja terbungkus beton (b) Kolom baja berisi beton/tiang pancang (c) Balok baja yang menahan slab beton 2.3 Kelebihan dan Kekurangan Material Komposit Dalam prakteknya komposit terdiri dari suatu bahan utama (matrik-matrix) dan suatu jenis penguatan (reinforcement) yang ditambahkan untuk meningkatkan kekuatan dan kekakuan matrik. Penguatan ini biasanya dalam bentuk serat (fiber). Komposit merupakan teknologi rekayasa material yang banyak dikembangkan akhir-akhir ini karena material komposit mampu mengabungkan beberapa sifat material yang berbeda karakteristiknya menjadi sifat yang baru dan sesuai dengan disain yang direncanakan. II-5

6 Tentunya setiap senyawa atau sesuatu yang nyata terbentuk tidak luput dari adanya kekurangan maupun kelebihan tersendiri. Untuk itu berikut akan dijelaskan kelebihan serta kekurangan dari material komposit kelebihan menggunakan material komposit Bahan komposit mempunyai beberapa kelebihan berbanding dengan bahan konvensional seperti logam. Kelebihan tersebut pada umumnya dapat dilihat dari beberapa sudut yang penting seperti sifat-sifat mekanikal dan fisikal, keupayaan (reliability), proses dan biaya. Seperti yang diuraikan dibawah ini : a. Sifat-sifat mekanikal dan fisikal Pada umumnya pemilihan bahan matriks dan serat memainkan peranan penting dalam menentukan sifat-sifat mekanik dan sifat komposit. Gabungan matriks dan serat dapat menghasilkan komposit yang mempunyai kekuatan dan kekakuan yang lebih tinggi dari bahan konvensional. 1. Bahan komposit mempunyai density yang jauh lebih rendah berbanding dengan bahan konvensional. Ini memberikan implikasi yang penting dalam konteks penggunaan karena komposit akan mempunyai kekuatan dan kekakuan spesifik yang lebih tinggi dari bahan konvensional. Implikasi kedua ialah produk komposit yang dihasilkan akan mempunyai kerut yang lebih rendah dari logam. Pengurangan berat adalah satu aspek yang penting dalam industri pembuatan seperti automobile dan angkasa lepas. Ini karena berhubungan dengan penghematan bahan bakar. 2. Dalam industri angkasa lepas terdapat kecendrungan untuk menggantikan komponen yang diperbuat dari logam dengan komposit karena II-6

7 telah terbukti komposit mempunyai rintangan terhadap fatigue yang baik terutamanya komposit yang menggunakan serat karbon. 3. Kelemahan logam yang agak terlihat jelas ialah rintangan terhadap kakisa yang lemah terutama produk yang kebutuhan sehari-hari. Kecendrungan komponen logam untuk mengalami kakisan menyebabkan biaya pembuatan yang tinggi. Bahan komposit sebaiknya mempunyai rintangan terhadap kakisan yang baik. 4. Bahan komposit juga mempunyai kelebihan dari segi versatility (berdaya guna) yaitu produk yang mempunyai gabungan sifat-sifat yang menarik yang dapat dihasilkan dengan mengubah sesuai jenis matriks dan serat yang digunakan. Contoh dengan menggabungkan lebih dari satu serat dengan matriks untuk menghasilkan komposit hybrid. 5. Massa jenis rendah (ringan) 6. Lebih kuat dan lebih ringan 7. Perbandingan kekuatan dan berat yang menguntungkan 8. Lebih kuat (stiff), ulet (tough) dan tidak getas. 9. Koefisien pemuaian yang rendah 10. Tahan terhadap cuaca 11. Tahan terhadap korosi 12. Mudah diproses (dibentuk) 13. Lebih mudah dibanding metal 14. Biaya, Faktor biaya juga memainkan peranan yang sangat penting dalam membantu perkembangan industri komposit. Biaya yang berkaitan erat dengan penghasilan suatu produk yang seharusnya memperhitungkan II-7

8 beberapa aspek seperti biaya bahan mentah, pemrosesan, tenaga manusia, dan sebagainya. Untuk bahan komposit yang digunakan dalam dunia konstruksi biasanya relatif lebih ekonomis dibandingkan dengan bahan konvensional seperti halnya balok-kolom komposit dibandingkan dengan balo-kolom beton bertulang kekurangan menggunakan material komposit a. Tidak tahan terhadap beban shock (kejut) dan crash (tabrak) dibandingkan dengan metal. b. Kurang elastis c. Lebih sulit dibentuk secara plastis d. Untuk konstruksi yang menggunakan material komposit belum ada software/program komputer yang dapat membantu pengerjaan analisa dan desain. e. Perhitungan perencanaan menjadi kurang akurat. 2.4 Struktur Komposit dengan Metode LRFD Metode LRFD Metode Load and Resistance Factor Design (LRFD) sebenarnya merupakan suatu metode yang baru dan telah lama diperkenalkan, namun di Indonesia relatif masih jarang disentuh oleh kalangan akademisi maupun praktisi di lapangan, Oleh sebab itu pada makalah ini mencoba sedikit membahas penggunaan metode LRFD. II-8

9 Dalam perencanaan struktur baja dikenal dua macam filosofi desain yang sering digunakan, yaitu desain tegangan kerja (oleh AISC diacu sebagai Allowable Stress Design, ASD) dan desain keadaan batas (oleh AISC diacu sebagai LRFD). LRFD merupakan suatu perbaikan terhadap perencanaan sebelumnya, yang memperhitungkan secara jelas keadaan batas, aneka ragam faktor beban dan faktor resistensi, atau dengan kata lain LRFD menggunankan konsep memfaktorkan, baik beban maupun resistensi. Desain ASD telah lama dikenal dan digunakan sebagai filosofi utama dalam perencanaan struktur baja selama tahun. Dalam desain tegangan kerja, fokus perencanaan terletak pada kondisi-kondisi beban layanan (tegangantegangan unit yang mengasumsikan struktur elestis) yang memenuhi persyaratan keamanan (kekauatan yang cukup) bagi struktur tersebut. Dalam perkembangan selanjutnya, pada tahun 1986 di Amerika Serikat diperkenalkanlah suatu filososfi desain yang baru, yaitu desain keadaan batas yang disebut LRFD. Metode ini diperkenalkan oleh Amrican Institute of Steel Construction (AISC), dengan diterbitkannya dua buku Load and Resistance Factor Design Spesification for Structural Steel Buildings (yang dikenal sebagai LRFD spesification) dan Load and Resistance Factor Design of Steel Construction (LRFD manual) yang menjadi acuan utama perencanaan struktur baja dengan LRFD. LRFD adalah suatu metode perencanaan struktur baja yang mendasarkan perencaannya dengan membandingkan kekuatan struktur yang telah diberi suatu faktor resistensi ( ) terhadap kombinasi beban terfaktor yang direncanakan bekerja pada struktur tersebut ( iqi ). Faktor resistensi diperlukan untuk II-9

10 menjaga kemungkinan kurangnya kekuatan struktur, sedangkan faktor beban digunakan untuk mengantisipasi kemungkinan adanya kelebihan beban Metode Pelaksanaan Stuktur Komposit. Perancangan balok komposit disesuaikan dengan metode yang digunakan di lapangan. Ada dua metode yang biasanya digunakan dalam pelaksanaan dilapangan yaitu dengan pendukung (perancah) dan atau tanpa pendukung. Jika tanpa pendukung, balok baja akan mendukung beban mati primer selama beton belum mengeras. Beban mati sekunder serta beban-beban lain akan didukung oleh balok komposit yang akan berfungsi jika beton telah mengeras dan menyatu dengan baja. Dengan pendukung, selama beton belum mengeras beban mati primer akan dipikul oleh pendukung. Setelah beton mengeras dan penunjang dilepas maka seluruh beban akan didukung oleh balok komposit. b eff b eff b b 1 b 2 b 3 L 1 L 2 L 3 Gambar 2.3. Lebar Effektif Struktur Komposit II-10

11 Lebar Effektif Dalam struktur komposit, konsep lebar effektif slab dapat diterapkan sehingga akan memudahkan perencanaan. Spesifikasi AISC/LRFD telah menetapkan lebar effektif untuk slab beton yang bekerja secara komposit dengan balok baja, sebagai berikut : 1. Untuk gelagar luar (tepi). b eff < L/8 dengan L = Panjang bentang. b eff < L 1 /2 + b dengan b = jarak dari as balok ke tepi slab. 2. Untuk gelagar dalam. b eff < L/4 dengan L = Panjang bentang. b eff < (L 1 + L 2 )/2 L 1 = jarak antar as balok. Lebar effektif yang dipakai dipilih yang terkecil Kekuatan Batas Penampang Komposit Kekuatan batas penampang komposit bergantung pada kekuatan leleh dan sifat penampang balok baja, kekuatan slab beton dan kapasitas interaksi alat penyambung geser yang menghubungkan balok dengan slab. Kekuatan batas yang dinyatakan dalam kapasitas momen batas memberi pengertian yang lebih jelas tentang kelakuan komposit dan juga ukuran faktor keamanan yang tepat. Faktor keamanan yang sebenarnya adalah rasio kapasitas momen batas dengan momen yang sesungguhnya bekerja. II-11

12 b eff 0,85 f c 0,85 f c t a C g.n C c Cs g.n. d 1 d 2 d 2 d T T F y F y F y (a) (b) (c) Gambar 2.4. Distribusi tegangan pada kapasitas momen ultimit. Untuk menentukan besarnya kekuatan batas beton dianggap hanya menerima tegangan desak, walaupun sesungguhnya beton dapat menahan tegangan tarik yang terbatas. Prosedur untuk menentukan besarnya kapasitas momen ultimit, tergantung apakah garis netral yang terjadi jatuh pada slab beton atau jatuh pada gelagar bajanya. Jika jatuh pada slab dikatakan bahwa slab cukup untuk mendukung seluruh gaya desak, dan apabila garis netral jatuh pada gelagar baja dikatakan slab tidak cukup mendukung beban desak, atau dengan kata lain bahwa slab hanya menahan sebagian dari seluruh gaya desak dan sisanya didukung oleh gelagar baja. 1. Garis netral jatuh di irisan slab (Gambar 3.b). Harga gaya tekan batas : C = 0,85 f c. b eff. a Harga gaya tarik batas : T = A s. F y Dengan menyamakan antara harga C dan T maka didapat harga a, yaitu sebesar : II-12

13 a = A F s y 0, 85. f '. b c eff < t d 1 = d/2 + t - a/2 Dengan demikian didapat kapasitas Momen Batas M u = C. d 1 = T. d 1 dengan : C = gaya tekan pada balok baja. f c = tegangan ijin tekan beton b eff = lebar effektif plat. t = tebal plat Alat Penyambung Geser (Shear Connector) Gaya geser horisontal yang timbul antara slab beton dan balok baja selama pembebanan harus ditahan agar penampang komposit bekerja secara monolit, atau dengan kata lain agar terjadi interaksi antara slab beton dan balok baja. Untuk menjamin adanya lekatan antara beton dan balok baja maka harus dipasang alat penyambung geser mekanis (shear Connector) diatas balok yang berhubungan dengan slab beton. Disamping itu fungsi dari pada shear Connector adalah untuk menahan / menghindari terangkatnya slab beton sewaktu dibebani. a. Stud connector b. Channal connector c.spiral connector Gambar 2.5. Macam-macam Shear Connector dan bentuknya. II-13

14 Dalam merencanakan alat samabung geser dapat dilaksanakan berdasarkan : 1. Kuat desak beton : C max = 0,85 f c. b eff. t s 2. Kuat tarik baja : T max = A s F y dipilih yang terbesar sehingga menghasilkan jumlah alat sambung geser yang lebih banyak. Banyaknya alat sambung geser yang dibutuhkan dapat dihitung dengan rumus : N = C Q n max = T Q n max dengan Q n adalah kekuatan satu alat sambung geser. Macam-macam shear Connector yang ada dipasaran sampai dengan saat ini sangat banyak macam dan bentuknya, diantaranya adalah : 1. Connector dari Stud baja berkepala (Gambar a). Q n = 0,5 A sc f '. E < A sc F bu c c dengan, Q n = Kekuatan satu stud, kips. F bu = Kuat tarik stud, ksi A sc = Luas penampang stud, inci 2. f c = Kuat tekan beton, ksi. E c = Modulus Elastis Beton, ksi 2. Connector berbentuk Cannal (Gambar b). Q n = 0,3 (t f + 0,5 t w ) L c f '. E c c dengan, Q n = Kekuatan satu stud, kips. F bu = Kuat tarik stud, ksi L c = Panjang kanal, inci. f c = Kuat tekan beton, ksi. t f = Tebal flen kanal, inci. Ec = Modulus Elastis Beton, ksi t w = Tebal badan kanal, inci. 3. Connector berbentuk Spiral (Gambar c). II-14

15 Desain dengan LRFD (Load dan Resistance Factor Design) Untuk sebuah balok komposit berlaku M p > M u dengan = 0,85. Secara umum, desain harus dimulai dengan mengasumsikan letak garis netral berada pada slab beton, dengan demikian luas A s yang dibutuhkan untuk penampang baja tersebut adalah : A s = Mu F d a. y ts Pelat Lantai Beton Berongga Prategang Pracetak (HCS) Pelat beton berongga prategang pracetak (HCS) adalah struktur pelat lantai bertulang yang diproduksi secara komputerisasi yang dicetak terlebih dahulu sebelum dirakit yang dapat dipergunakan sebagai pengganti pelat lantai beton konvensional. Pelat lantai berongga prategang pracetak (HCS) memiliki banyak keunggulan jika dibandingkan dengan pelat lantai dengan beton konvensional. Selain keunggulan akibat penggunaan beton pracetak maupun beton prategang, penggunaan HCS dapat meningkatkan kemampuan memikul beban rencana dikarenakan adanya rongga pada pelat lantai HCS yang menjadikannya lebih ringan sampai dengan 42% jika dibandingkan pelat lantai beton konvensional. Untuk pembahasan materi pelat beton prategang pracetak (HCS) ini tidak di jelaskan secara mendalam dikarenakan dalam tugas akhir ini sudah memakai pelat beton prategang pracetak (HCS) tersebut berdasarkan atas studi yang telah dilakukan sebelumnya. Namun untuk spesifikasi pelat beton berongga prategang pracetak (HCS) produk PT.Beton Elemindo Perkasa yang digunakan dalam II-15

16 perencanaan struktur pada tugas akhir ini tetap akan disajikan berupa tabel pada lampiran Hubungan antara Pelat Pracetak dengan Balok Baja Gambar 2.6. Sistem konstruksi untuk struktur baja Gambar 2.7. Berbagai macam struktur komposit II-16

17 2.6. Perencanaan LRFD Komponen Struktur Balok Baja Perencanaan komponen struktur balok-kolom, diatur dalam SNI pasal 1 yang menyatakan bahwa suatu komponen struktur yang mengalami momen lentur. Gaya aksial harus direncanakan untuk memenuhi ketentuan sebagai berikut: Dengan : Dalam pembahasan di atas disebutkan bahwa besarnya momen lentur terfaktor suatu komponen struktur balok kolom dihitung dengan menggunakan analisis orde kedua SNI menyatakan bahwa pengaruh orde kedua harus diperhatikan melalui salah satu dari dua analisis berikut: 1. suatu analisis orde pertama dengan memperhitungkan perbesaran momen. II-17

18 2. analisis orde kedua menurut cara-cara yang telah brku ian telah diterima secara umum. Hal ini (orde kedua) berpengaruh untuk memperhitungkan perbesaran momen. 2.7 Perencanaan Kolom Komposit Ada dua tipe kolom komposit - Kolom komposit yang terbuat dari profil baja yang diberi selubung beton disekelilingnya (kolom baja berselubung beton) Gambar 2.8. Potongan kolom komposit - Kolom komposit yang terbuat dari penampang baja berongga (kolom baja berintikan beton) Gambar 2.9. Penampang baja komposit II-18

19 Batasan : - Luas penampang baja luas penampang komposit total - Kolom baja berselubung beton harus diberi tulangan longitudinal dan tulangan lateral minimum sebesar 0,18 mm²/mm spasi tulangan Mpa 55 Mpa - - Ketebalan minimum dinding penampang baja berongga : Penampang persegi Penampang bundar Kekuatan aksial rencana kolom komposit ( ) II-19

20 Untuk pipa baja yang diisi beton : = 1,0. = 0,85. = 0,4 Untuk profil baja yang diberi selubung beton : = 0,7. = 0,6. = 0,2 Pada persamaan diatas nilai diturunkan berdasarkan konsep kompatibilitas regangan antara bahan beton dan bahan baja, sedangkan nilai ditentukan dengan menggunakan nilai (modulud beton) yang direduksi. Penyauran beban Bagian kekuatan rencana kolom komposit penahan beban aksial yang dipikul oleh beton harus disalurkan melaui tumpuan langsung pada sambungan. Kekuatan maksimum rencana beton penumpu harus diambil sebesar 1,7 ( hanya berlaku untuk kondisi luas bidang penumpu lebih besar dari pada luas daerah pembebanan. Untuk kondisi yang berbeda gunakan 0,85 Kombinasi aksial dan lentur II-20

21 2.8 Tata Cara Perancangan Bangunan Gedung Prosedur dan ketentuan umum perancangan bangunan gedung merujuk pada SNI , SNI dengan memperhitungkan beberapa ketentuan umum Perancangan Kapasitas Struktur gedung yang terjadi harus memenuhi syarat strong column weak beam yang artinya ketika menerima pengaruh gempa hanya boleh terjadi sendi plastis di ujung-ujung balok, kaki kolom dan pada kaki dinding geser saja. 2.9 Pembebanan Faktor Pembebanan Struktur dan unsur-unsur pembebanan harus direncanakan untuk memikul beban cadangan diatas beban yang diharapkan. Ketidakpastian berkaitan dengan besar beban mati pada struktur lebih kecil daripada ketidakpastian akibat beban II-21

22 hidup. Hal demikian dapat menimbulkan perbedaan dari besar faktor pembebanan. Pada SNI Pasal 11.2, besar faktor pembesar pada beban adalah sebagai berikut : U = 1,4 D U = 1,2 D + 1,6 L + 0,5 (A atau R) U = 1,2 D + 1,0 L } 1,6 W + 0,5 (A atau R) U = 0,9 D } 1,6 W U = 1,2 D + 1,0 L } 1,0 E U = 0,9 D } 1,0 E Keterangan : U = kuat perlu akibat beban terfaktor D = beban mati L = beban hidup A = beban atap R = beban hujan W = beban angin E = beban gempa Pedoman Pembebanan Dalam perencanaan gedung bertingkat diharuskan memperhatikan penggunaan beban-beban yang diijinkan. Acuan besar pembebanan dapat diambil dari pedoman perencanaan pembebanan untuk rumah dan gedung SKBI Sesuai SKBI , besar nilai beban hidup untuk II-22

23 perancangan komponen gedung perkantoran / perkuliahan, gedung perparkiran yang digunakan adalah sebagai berikut : a. Lantai sekolah, ruang kuliah, kantor, toko, toserba, restoran, hotel, asrama, dan rumah sakit 250 kg/m2 b. Lantai gedung parkir bertingkat : - untuk lantai bawah 800 kg/m2 - untuk lantai tingkat lainnya 400 kg/m2 c. Beban hidup pada atap gedung - Atap yang dapat dicapai oleh orang 100 kg/m2 -Atap yang tidak dapat dicapai oleh orang adalah nilai maksimal dari beban hujan, 20 kg/m2 atau beban terpusat pekerja 100 kg 2.10 Faktor Reduksi Dalam menentukan kuat rencana suatu komponen struktur maka kekuatan nominalnya harus direduksikan dengan faktor reduksi kekuatan yang sesuai dengan sifat beban. Ketidakpastian kekuatan beban terhadap pembebanan dianggap sebagai faktor reduksi kekuatan o. Pada SNI Pasal 11.3, besar faktor reduksi kekuatan o adalah sebagai berikut : 1. Lentur, tanpa beban aksial 0,80 2. Beban aksial dan beban aksial dengan lentur 2.1. Aksial tarik dan aksial tarik dengan lentur 0, Aksial tekan dan aksial tekan dengan lentur - Komponen struktur dengan tulangan spiral 0,70 - Komponen struktur lainnya 0,65 II-23

24 3. Geser dan torsi 0,75 4. Tumpuan pada beton kecuali untuk daerah pengangkuran pasca tarik 0,65 5. Daerah pengangkuran pasca tarik 0, Karakteristik Resiko Wilayah Gempa Sesuai SNI wilayah gempa di Indonesia dikategorikan kedalam 6 wilayah gempa, dimana wilayah gempa 1 dan 2 adalah wilayah dengan resiko kegempaan rendah, wilayah gempa 3 dan 4 adalah wilayah dengan resiko kegempaan sedang dan wilayah gempa 5 dan 6 adalah wilayah dengan resiko kegempaan tinggi. Pembagian wilayah ini berdasarkan atas penempatan puncak batuan dasar akibat pengaruh gempa rencana dengan periode ulang 500 tahun. Gempa rencana ditetapkan mempunyai periode ulang 500 tahun sehingga probabilitas terjadinya terbatas pada 10 persen selama umur gedung 50 tahun tersebut. Pengaruh gempa rencana itu harus dikalikan oleh suatu faktor keutamaan gedung. Faktor keutamaan ini untuk menyesuaikan periode ulang. Gempa berkaitan dengan penyesuaian umur gedung. Faktor keutamaan ini bergantung pada berbagai kategori gedung dan bangunan yang telah diatur pada SNI Pasal Beban Gempa Mencangkup semua beban statik equivalen yang bekerja pada gedung atau bagian gedung yang menirukan pengaruh dari gerakan tanah akibat gempa tersebut (SNI ) Beban geser nominal statik equivalen yang terjadi di tekanan dasar dapat dihitung menurut persamaan: II-24

25 Dimana: C = nilai faktor respons gempa yang didapat dari spektrum respons gempa rencana. Lihat Gambar 2 SNI untuk waktu getar alami fundamental T. Wt = berat total gedung, termasuk beban hidup yang sesuai dalam hal ini beban hidup boleh direduksi sebesar 0,30. I = faktor keutamaan untuk kategori gedung dan bangunan didapat dalam Tabel 1 SNI R = faktor reduksi gempa, Tabel 3 SNI Distribusi Dari Beban Geser Dasar Nominal V Beban geser dasar nominal V dibagikan sepanjang tinggi struktur gedung tersebut dan menjadi beban-beban gempa nominal statik equivalen Fi yang menangkap pada pusat massa lantai tingkat ke-i menurut persamaan: Dimana: Wi = berat lantai tingkat ke-i, termasuk beban hidup yang sesuai. Zi = ketinggian lantai tingkat ke-i diukur dari taraf penjepitan lateral menurut SNI pasal n = nomor lantai tingkat paling atas. II-25

26 2.13. Waktu Getar Alami Fundamental T Waktu getar alami fundamental struktur gedung beraturan dalam arah masing-masing sumbu utama menggunakan rumus Rayleigh sebagai berikut: Dimana: di = simpangan horizontal lantai tingkat ke-i dinyatakan dalam mm. g = percepatan gravitasi (9,8 m/det2). Untuk mencegah penggunaan struktur bangunan gedung yang terlalu fleksibel, nilai waktu getar alami fundamental T1 dari struktur bangunan gedung harus dibatasi, bergantung pada koefisien ζ untuk wilayah gempa dan jenis struktur bangunan gedung, menurut persamaan: dimana H adalah tinggi total struktur dalam meter dan koefisien ζ ditetapkan menurut tabel 8 SNI Apabila waktu getar alami fundamental T1 struktur bangunan gedung ditentukan dengan rumus-rumus empirik atau didapat dari analisis vibrasi bebas tiga dimensi, nilainya tidak boleh menyimpang lebih dari 20 persen dari nilai yang dihitung menurut rumus Rayleigh di atas Pembatasan Penyimpangan Lateral Pada SNI Pasal 8, kinerja struktur gedung dibedakan menjadi dua macam yaitu : II-26

27 Kinerja Batas Layan (Δs), Kinerja batas layan (Δs) struktur gedung besarnya tidak melebihi 0,03/R kali tingkat yang bersangkutan atau maksimal 30mm. Kinerja Batas Ultimit (Δm), Nilai kinerja batas ultimit untuk struktur gedung beraturan adalah sebesar 0,7.R x Δs dimana persyaratan nilai kinerja batas ultimit (Δm) tidak boleh melebihi 0,02 kali tinggi tingkat yang bersangkutan. II-27

BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) beban dari balok. Kolom merupakan suatu elemen struktur tekan yang

BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) beban dari balok. Kolom merupakan suatu elemen struktur tekan yang BAB VIl TINJAUAN KHUSUS (KOLOM UTAMA) 7.1 Uraian umum Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang peranan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Komposit

BAB II DASAR TEORI. 2.1 Pengertian Komposit BAB II DASAR TEORI 2.1 Pengertian Komposit Komposit adalah suatu jenis bahan yang dihasilkan dari rekayasa yang terdiri dari dua atau lebih bahan dimana sifat masing-masing bahan berbeda satu sama lainnya

Lebih terperinci

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 Perencanaan Material Baja Perlu ditetapkan kriteria untuk menilai tercapai atau tidaknya penyelesaian optimum Biaya minimum Berat minimum Bahan minimum Waktu konstruksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

2- ELEMEN STRUKTUR KOMPOSIT

2- ELEMEN STRUKTUR KOMPOSIT 2- ELEMEN STRUKTUR KOMPOSIT Pendahuluan Elemen struktur komposit merupakan struktur yang terdiri dari 2 material atau lebih dengan sifat bahan yang berbeda dan membentuk satu kesatuan sehingga menghasilkan

Lebih terperinci

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencaaan struktur bangunan harus mengikuti peraturan pembebanan yang berlaku untuk mendapatkan struktur bangunan yang aman. Pengertian beban adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB III ANALISA PERENCANAAN STRUKTUR

BAB III ANALISA PERENCANAAN STRUKTUR BAB III ANALISA PERENCANAAN STRUKTUR 3.1. ANALISA PERENCANAAN STRUKTUR PELAT Struktur bangunan gedung pada umumnya tersusun atas komponen pelat lantai, balok anak, balok induk, dan kolom yang merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Pemilihan Struktur Desain struktur harus memperhatikan beberapa aspek, diantaranya : Aspek Struktural ( kekuatan dan kekakuan struktur) Aspek ini merupakan aspek yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Dalam perencanaan bangunan tinggi, struktur gedung harus direncanakan agar kuat menahan semua beban yang bekerja padanya. Berdasarkan Arah kerja

Lebih terperinci

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON BAB IV BALOK BETON 4.1. TEORI DASAR Balok beton adalah bagian dari struktur rumah yang berfungsi untuk menompang lantai diatasnya balok juga berfungsi sebagai penyalur momen menuju kolom-kolom. Balok dikenal

Lebih terperinci

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA Pendahuluan Permasalahan Yang Akan Diteliti 7

BAB II TINJAUAN PUSTAKA Pendahuluan Permasalahan Yang Akan Diteliti 7 DAFTAR ISI HALAMAN JUDUL LEMBAR PENGESAHAN KATA PENGANTAR LEMBAR MOTTO LEMBAR PERSEMBAHAN DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI ABSTRAKSI i ii iii v vi x xi xjv xv xjx BAB I PENDAHULUAN 1

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Beton Beton didefinisikan sebagai campuran antara sement portland atau semen hidraulik yang lain, agregat halus, agregat kasar dan air, dengan atau tanpa bahan tambahan yang

Lebih terperinci

BAB III METODOLOGI. 3.1 Dasar-dasar Perancangan

BAB III METODOLOGI. 3.1 Dasar-dasar Perancangan BAB III METODOLOGI 3.1 Dasar-dasar Perancangan Struktur gedung beton komposit masih jarang digunakan pada gedunggedung bertingkat tinggi terutama di indonesia karena material ini masih tergolong baru bila

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini BAB I PENDAHULUAN I.1 Latar Belakang Pada saat ini kolom bangunan tinggi banyak menggunakan material beton bertulang. Seiring dengan berkembangnya teknologi bahan konstruksi di beberapa negara, kini sudah

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan.

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. II. KONSEP DESAIN A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. Beban yang bekerja pada struktur bangunan dapat bersifat permanen (tetap)

Lebih terperinci

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus BAB III LANDASAN TEORI 3.1 Perencanaan Beban Gempa 3.1.1 Klasifikasi Situs Dalam perumusan kriteria desain seismik suatu bangunan di permukaan tanah atau penentuan amplifikasi besaran percepatan gempa

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS 2.1 Tinjauan Umum Secara umum struktur atas adalah elemen-elemen struktur bangunan yang biasanya di atas permukaan tanah yang berfungsi menerima dan menyalurkan

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM Pada Studi Pustaka ini akan membahas mengenai dasar-dasar dalam merencanakan struktur untuk bangunan bertingkat. Dasar-dasar perencanaan tersebut berdasarkan referensi-referensi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan BAB II TINJAUAN PUSTAKA 2.1 Umum Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan suatu kombinasi antara beton dan baja tulangan. Beton bertulang merupakan material yang kuat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Menurut Supriyadi (1997) jembatan adalah suatu bangunan yang memungkinkan suatu ajalan menyilang sungai/saluran air, lembah atau menyilang jalan lain yang tidak

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan ilmu pengetahuan dan teknologi sekarang ini semakin pesat. Hal ini terlihat pada aplikasi perkembangan ilmu pengetahuan dan teknologi dalam pembangunan

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

) DAN ANALISIS PERKUATAN KAYU GLULAM BANGKIRAI DENGAN PELAT BAJA

) DAN ANALISIS PERKUATAN KAYU GLULAM BANGKIRAI DENGAN PELAT BAJA ABSTRAK STUDI ANALISIS KINERJA BANGUNAN 2 LANTAI DAN 4 LANTAI DARI KAYU GLULAM BANGKIRAI TERHADAP BEBAN SEISMIC DENGAN ANALISIS STATIC NON LINEAR (STATIC PUSHOVER ANALYSIS) DAN ANALISIS PERKUATAN KAYU

Lebih terperinci

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA Laporan Tugas Akhir Sebagai salah satu sarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : Yusup Ruli Setiawan NPM :

Lebih terperinci

T I N J A U A N P U S T A K A

T I N J A U A N P U S T A K A B A B II T I N J A U A N P U S T A K A 2.1. Pembebanan Struktur Besarnya beban rencana struktur mengikuti ketentuan mengenai perencanaan dalam tata cara yang didasarkan pada asumsi bahwa struktur direncanakan

Lebih terperinci

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN ABSTRAK KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN i ii iii iv vii xiii xiv xvii xviii BAB

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Beban Struktur Pada suatu struktur bangunan, terdapat beberapa jenis beban yang bekerja. Struktur bangunan yang direncanakan harus mampu menahan beban-beban yang bekerja pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Perencanaan suatu struktur bangunan gedung didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Pengertian

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN (1) Maria Elizabeth, (2) Bambang Wuritno, (3) Agus Bambang Siswanto (1) Mahasiswa Teknik Sipil, (2)

Lebih terperinci

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI Halaman Judul... i Lembar Pengesahan... ii Kata Pengantar... iii Daftar Isi... iv Daftar Notasi... Daftar Tabel... Daftar Gambar... Abstraksi... BAB I PENDAHULUAN... 1 1.1 Latar Belakang Masalah...

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi berdasarkan

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB III PEMODELAN DAN ANALISIS STRUKTUR BAB III PEMODELAN DAN ANALISIS STRUKTUR 3.1. Pemodelan Struktur Pada tugas akhir ini, struktur dimodelkan tiga dimensi sebagai portal terbuka dengan penahan gaya lateral (gempa) menggunakan 2 tipe sistem

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : KEVIN IMMANUEL

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Surat Pernyataan iv Kata Pengantar v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiv DAFTAR NOTASI xviii DAFTAR LAMPIRAN xxiii ABSTRAK xxiv ABSTRACT

Lebih terperinci

DAFTAR ISI HALAMAN PERNYATAAN...

DAFTAR ISI HALAMAN PERNYATAAN... DAFTAR ISI HALAMAN PERNYATAAN... i SURAT KETERANGAN PEMBIMBING...ii ABSTRAK...iii UCAPAN TERIMAKASIH...iv DAFTAR ISI...v DAFTAR GAMBAR...vii DAFTAR TABEL...viii BAB I PENDAHULUAN Latar Belakang... 1 Rumusan

Lebih terperinci

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA II MODUL 6 S e s i 5 Struktur Jembatan Komposit Dosen Pengasuh : Materi Pembelajaran : 10. Penghubung Geser (Shear Connector). Contoh Soal. Tujuan Pembelajaran : Mahasiswa mengetahui, memahami

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri

Lebih terperinci

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON 03-2847-2002 DAN SNI GEMPA 03-1726-2002 Rinto D.S Nrp : 0021052 Pembimbing : Djoni Simanta,Ir.,MT FAKULTAS TEKNIK JURUSAN

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik

Lebih terperinci

BAB I PENDAHULUAN. struktur baja yang digunakan sebagai salah satu alternatif dalam pembangunan

BAB I PENDAHULUAN. struktur baja yang digunakan sebagai salah satu alternatif dalam pembangunan BAB I PENDAHULUAN 1.1.Latar Belakang Seiring kemajuan pada bidang konstruksi yang bertujuan untuk mendapatkan struktur yang efisien, kuat atau aman dan murah. Salah satunya adalah penggunaan struktur baja

Lebih terperinci

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL DAFTAR ISI HALAMAN JUDUL HALAMAN PERSETUJUAN DOSEN PEMBIMBING HALAMAN PENGESAHAN TIM PENGUJI LEMBAR PERYATAAN ORIGINALITAS LAPORAN LEMBAR PERSEMBAHAN INTISARI ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR

Lebih terperinci

ANALISIS PENGHUBUNG GESER (SHEAR CONNECTOR) PADA BALOK BAJA DAN PELAT BETON

ANALISIS PENGHUBUNG GESER (SHEAR CONNECTOR) PADA BALOK BAJA DAN PELAT BETON ANALISIS PENGHUBUNG GESER (SHEAR CONNECTOR) PADA BALOK BAJA DAN PELAT BETON Monika Eirine Tumimomor Servie O. Dapas, Mielke R. I. A. J. Mondoringin Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) 1 PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai S-1 Teknik Sipil diajukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolom Kolom beton murni dapat mendukung beban sangat kecil, tetapi kapasitas daya dukung bebannya akan meningkat cukup besar jika ditambahkan tulangan longitudinal. Peningkatan

Lebih terperinci

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan BAB II DASAR-DASAR DESAIN BETON BERTULANG. Umum Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan membuat suatu campuran yang mempunyai proporsi tertentudari semen, pasir, dan koral

Lebih terperinci

BAB II LANDASAN TEORI. kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya,

BAB II LANDASAN TEORI. kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya, BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka. Dalam merancang suatu struktur bangunan harus diperhatikan kekakuan, kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya, serta bagaimana

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

BAB I PENDAHULUAN. untuk mendapatkan struktur yang kuat, aman dan murah. Baja adalah salah satu

BAB I PENDAHULUAN. untuk mendapatkan struktur yang kuat, aman dan murah. Baja adalah salah satu BAB I PENDAHULUAN 1.1. Latar Belakang Berkembangnya teknologi pada bidang konstruksi yang mempunyai tujuan untuk mendapatkan struktur yang kuat, aman dan murah. Baja adalah salah satu struktur yang digunakan

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM. PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

BAB IV PEMODELAN STRUKTUR

BAB IV PEMODELAN STRUKTUR BAB IV PEMODELAN STRUKTUR Pada bagian ini akan dilakukan proses pemodelan struktur bangunan balok kolom dan flat slab dengan menggunakan acuan Peraturan SNI 03-2847-2002 dan dengan menggunakan bantuan

Lebih terperinci

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK Tugas Akhir ini diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata-1

Lebih terperinci

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) Tugas Akhir untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S 1 Teknik Sipil diajukan

Lebih terperinci

PERBANDINGAN PERENCANAAN SAMBUNGAN KAYU DENGAN BAUT DAN PAKU BERDASARKAN PKKI 1961 NI-5 DAN SNI 7973:2013

PERBANDINGAN PERENCANAAN SAMBUNGAN KAYU DENGAN BAUT DAN PAKU BERDASARKAN PKKI 1961 NI-5 DAN SNI 7973:2013 PERBANDINGAN PERENCANAAN SAMBUNGAN KAYU DENGAN BAUT DAN PAKU BERDASARKAN 1961 NI- DAN SNI 7973:213 Eman 1, Budisetyono 2 dan Ruslan 3 ABSTRAK : Seiring perkembangan teknologi, manusia mulai beralih menggunakan

Lebih terperinci

PERENCANAAN STRUKTUR BETON BERTULANG GEDUNG BERTINGKAT MENGGUNAKAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS (Studi Kasus : Gedung Laboratorium Bersama Universitas Udayana) Naratama 1, I Nyoman Sutarja 2 dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang sangat besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan

Lebih terperinci

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN Diajukan oleh : ABDUL MUIS 09.11.1001.7311.046 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

STRUKTUR JEMBATAN BAJA KOMPOSIT

STRUKTUR JEMBATAN BAJA KOMPOSIT STRUKTUR JEMBATAN BAJA KOMPOSIT WORKSHOP/PELATIHAN - 2015 Sebuah jembatan komposit dengan perletakan sederhana, mutu beton, K-300, panjang bentang, L = 12 meter. Tebal lantai beton hc = 20 cm, jarak antara

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut Supriyadi (1997) struktur pokok jembatan antara lain seperti

BAB II TINJAUAN PUSTAKA. Menurut Supriyadi (1997) struktur pokok jembatan antara lain seperti BAB II TINJAUAN PUSTAKA 2.1. Komponen Jembatan Menurut Supriyadi (1997) struktur pokok jembatan antara lain seperti dibawah ini. Gambar 2.1. Komponen Jembatan 1. Struktur jembatan atas Struktur jembatan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. basement dan Roof floor. Dimana pelat lantai yang digunakan dalam perencanaan

BAB III METODOLOGI PENELITIAN. basement dan Roof floor. Dimana pelat lantai yang digunakan dalam perencanaan BAB III METODOLOGI PENELITIAN 3.1 Umum Pada tugas akhir kali ini yang bertemakan struktur dengan sistem komposit pada balok dan kolom dengan struktur gedung 9 lantai berikut 1 lantai semi basement dan

Lebih terperinci

PENGARUH BRACING PADA PORTAL STRUKTUR BAJA

PENGARUH BRACING PADA PORTAL STRUKTUR BAJA PENGARUH BRACING PADA PORTAL STRUKTUR BAJA (Studi Literatur) TUGAS AKHIR Diajukan Untuk Melengkapi Tugas - Tugas dan Memenuhi Syarat Dalam Menempuh Ujian Sarjana Teknik Sipil Disusun Oleh : ADVENT HUTAGALUNG

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1)

LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1) LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1) PERENCANAAN STRUKTUR GEDUNG B POLITEKNIK KESEHATAN SEMARANG Oleh: Sonny Sucipto (04.12.0008) Robertus Karistama (04.12.0049) Telah diperiksa dan

Lebih terperinci

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK... DAFTAR ISI HALAMAN LEMBAR JUDUL... i KATA PENGANTAR...... ii UCAPAN TERIMA KASIH......... iii DAFTAR ISI...... iv DAFTAR TABEL...... v DAFTAR GAMBAR...... vi ABSTRAK...... vii BAB 1PENDAHULUAN... 9 1.1.Umum...

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

BAB I PENDAHULUAN. Dewasa ini seiring dengan berkembangnya pengetahuan dan teknologi,

BAB I PENDAHULUAN. Dewasa ini seiring dengan berkembangnya pengetahuan dan teknologi, BAB I PENDAHULUAN I. Umum Dewasa ini seiring dengan berkembangnya pengetahuan dan teknologi, pembangunan konstruksi sipil juga semakin meningkat. Hal ini terlihat dari semakin meningkatnya pembangunan

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci