Kisi kisi Soal Tes. Bentuk Nomor. Uraian 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kisi kisi Soal Tes. Bentuk Nomor. Uraian 1"

Transkripsi

1 44 Lampiran 1 : Kisi-kisi So_al Tes Kisi kisi Soal Tes No Materi Uraian Materi 1 Bangun Segi datar empat adalah bangu n datar yang dibatas i oleh empat sisi Indikator Soal Siswa dapat mengenal jenis jenis bangun segi empat Jenis Tahapan Pengenal an (Visualiza tion) Bentuk Nomor Soal Soal Uraian 1 Tipe Soal Perhatikan gambar rumah di bawah ini! Berdasarkan gambar rumah tersebut, bangun bangun apa saja yang terdapat pada rumah tersebut? 2 Berdasarkan gambar bangun-bangun di bawah ini sebutkan kelompok bangun nomor berapa saja yang termasuk bangun segi empat!

2 Sebutkan nama nama bangun di bawah ini dengan cara mengisi titik titik yang ada dibawahnya!!

3 46 2 Siswa dapat menetuka n sifatsifat bangun segi empat Analisis Uraian 4 5 Berdasarkan kelompok bangun segiempat yang telah kamu sebutkan pada soal nomor 2, berapa banyak sisi, diagonal dan simetri dari masing-masing bangun tersebut? kelompok persegipanjang persegipanjang kelompok jajargenjang jajargenjang kelompok segiempat trapesium persegi belah ketupat layang-layang kelompok belahketupat kelompok layang-layang Berapa banyak sisi, sudut, diagonal dan simetri dari kelompok bangun bangun di atas? 6 D C A B A D A B C D B C Dari masing-masing bangun tersebut, sebutkan sisi mana saja yang sama panjang dan sudut mana saja yang sama besar?

4 47 3 Siswa dapat memaha mi hubungan di antara bangunbangun geometri segi empat Deduksi informal Uraian 7 Perhatikan gambar bangun di atas. Berdasarkan sifatsifat bangun segi empat yang telah kamu ketahui mengapa persegi bisa dikatakan persegi panjang? mengapa persegi bisa dikatakan belah ketupat? dan mengapa persegi bisa dikatakan jajargenjang? 8 Perhatikan gambar tersebut! Berdasarkan sifat-sifat segi empat yang telah kamu ketahui, mengapa bangun belah ketupat bisa dikatakan jajar genjang?

5 48 9 kelompok jajargenjang kelompok persegipanjang persegipanjang jajargenjang kelompok segiempat trapesium persegi belah ketupat layang-layang kelompok belahketupat kelompok layang-layang 4 Siswa dapat membukti kan teorema dengan menggun akan pemikiran yang logis Deduksi Uraian 10 Perhatikan dengan seksama gambar tersebut! Berdasarkan hubungan antar bangun-bangun pada gambar tersebut, kesimpulan apa yang dapat kamu ambil? Jelaskan! Berdasarkan gambar tersebut, carilah persamaan rumus luas belah ketupat yang diturunkan dari persamaan rumus luas persegi panjang!

6 49 11 t 12 Perhatikan gambar diatas. Carilah persamaan rumus luas trapesium apabila persamaan rumus luas persegi panjang adalah : panjang x lebar! Berdasarkan gambar diatas, carilah persamaan rumus luas layang-layangnya!

7 50 5 Siswa dapat memaha mi mengapa sesuatu itu dijadikan postulat atau dalil Ketepata n (rigor) Uraian 13 Berdasarkan gambar bangun tersebut, bagaimana cara atau rumus untuk mencari luas segi empatnya? 14 B 2 1 E A Jika diketahui ABCD trapesium sama kaki, AD kongruen BC. Buktikan A kongruen B.

8 51 15 A D B C Diketahui AD kongruen BC, AB kongruen DC. Buktikan ABCD jajar genjang.

9 52 Lampiran 2 : Kisi-kisi Instrumen Wawancara Kisi-kisi Instrumen Wawancara No Jenis Tahapan Nomor Soal Pertanyaan Wawancara 1 Pengenalan (visualization) 1 Pada gambar rumah tersebut, bangun apa saja yang ada pada rumah tersebut? 2 Menurut kamu segiempat itu bangun yang bagaimana? Jika kamu memahami bangun segiempat, sebutkan didalam kotak ini nomor berapa saja yang termasuk kelompok bangun segiempat? 3 Pada pertanyaan nomor tiga itu merupakan gambar bangun apa saja? Nama-nama bangun yang telah kamu sebutkan tadi merupakan kelompok bangun apa saja? 2 Analisis 4 Setelah kamu mengerti jenis dna bentuk bangun-bangun segiempat, sebutkan berapa banyak sisi, sudut, diagonal dan simetri dari masing-masing bangun yang telah kamu sebutkan tadi? Garis simetrinya yang mana? 5 Di dalam kotak pada soal nomor lima ini terdapat banyak bangun. Sebutkan masingmasing sifat dari bangun tersebut? 6 Dari masing-masing bangun tersebut, sebutkan sisi mana saja yang sama panjang dan sudut mana saja yang sama besar? 3 Deduksi Informal 7 Kamu mengerti maksud dari gambar ini tidak? Kalau mengerti, berdasarkan sifat-sifat bangun segiempat yang telah kamu sebutkan tadi mengapa persegi bisa dikatakan persegi panjang? mengapa persegi bisa dikatakan belah ketupat? mengapa persegi bisa dikatakan jajargenjang? 8 Pertanyaan pada soal nomor delapan ini sejenis dengan tipe soal pada nomor tujuh. Mengapa belah ketupat bisa dikatakan jajargenjang?

10 53 9 Perhatikan dengan seksama gambar tersebut! Berdasarkan hubungan antar bangunbangun pada gambar tersebut, kesimpulan apa yang dapat kamu ambil? Jelaskan! 4 Deduksi 10 Setelah kamu melihat soal nomor sepuluh, ada berapa bangun pada soal tersebut? Bangun apa saja? Bagaimana cara kamu mencari persamaan rumus luas belah ketupatnya apabila diketahui persamaan rumus luas persegi panjang? 11 Kamu mengerti maksud gambar ini tidak? Menurut kamu, apa rumus luas trapesium itu? 12 Rumus luas layang-layang sudah pernah diajarkan belum? Jika sudah, masih ingat tidak kamu persamaan rumus luas layang-layang? 5 Ketepatan (rigor) 13 Kamu tahu nama bangun yang didalam persegi ini tidak? Kamu sudah tahu apa rumus luas persegi itu, kalau kamu disuruh mencari luas gambar yang diarsir bagaimana cara kamu? Tolong jelaskan kepada saya, kamu mempunyai pemikiran yang bagaimana? 14 Kongruen sudah pernah dijelaskan belum oleh guru kamu? Bagaimana cara kamu untuk membuktikan bahwa < A kongruen dengan < B? 15 Akhirnya kita sampai pada soal terakhir. Jelaskan apa maksud soal nomor 15 ini? Bagaimana cara kamu membuktikan bahwa ABCD jajargenjang?

11 Lampiran 4: Dokumentasi iii

12 iv

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

KISI-KISI PENULISAN SOAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS

KISI-KISI PENULISAN SOAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS KISI-KISI PENULISAN SAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS Mata Pelajaran : Matematika Materi Pokok : Segiempat dan Segitiga Kelas / semester : VII / 2 Standar Komptensi : Memahami konsep segi empat

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

SD kelas 5 - MATEMATIKA BAB 6. BANGUN DATAR DAN BANGUN RUANGLatihan Soal 6.2

SD kelas 5 - MATEMATIKA BAB 6. BANGUN DATAR DAN BANGUN RUANGLatihan Soal 6.2 1. Perhatikan gambar berikut ini! Image not readable or empty assets/js/plugins/kcfinder/upload/image/6.2%201.png SD kelas 5 - MATEMATIKA BAB 6. BANGUN DATAR DAN BANGUN RUANGLatihan Soal 6.2 Jajaran genjang

Lebih terperinci

SEGITIGA DAN SEGIEMPAT

SEGITIGA DAN SEGIEMPAT SEGITIGA DAN SEGIEMPAT A. Pengertian Segitiga Jika tiga buah titik A, B dan C yang tidak segaris saling di hubungkan,dimana titik A dihubungkan dengan B, titik B dihubungkan dengan titik C, dan titik C

Lebih terperinci

BELAJAR VAN HIELE. Oleh: Andi Ika Prasasti Abrar Prodi Pendidikan Matematika Jurusan Tarbiyah STAIN Papopo

BELAJAR VAN HIELE. Oleh: Andi Ika Prasasti Abrar Prodi Pendidikan Matematika Jurusan Tarbiyah STAIN Papopo BELAJAR VAN HIELE Oleh: Andi Ika Prasasti Abrar Prodi Pendidikan Matematika Jurusan Tarbiyah STAIN Papopo Abstrak: Dalam pembelajaran geometri terdapat teori belajar yang dikemukakan oleh Pierre Van Hiele,

Lebih terperinci

Oleh Nialismadya dan Nurbaiti, S. Si

Oleh Nialismadya dan Nurbaiti, S. Si Oleh Nialismadya dan Nurbaiti, S. Si Standar Kompetensi 6. Memahami konsep segi empat dan segitiga serta menentukan ukurannya. Kompetensi Dasar 6.3 Menghitung keliling dan luas bangun segitiga dan segi

Lebih terperinci

SILABUS MATEMATIKA KELAS VII. Menjelaskan jenis-jenis. segitiga. berdasarkan sisisisinya. berdasarkan besar. pengertian jajargenjang,

SILABUS MATEMATIKA KELAS VII. Menjelaskan jenis-jenis. segitiga. berdasarkan sisisisinya. berdasarkan besar. pengertian jajargenjang, LAMPIRAN 1. Silabus SILABUS MATEMATIKA KELAS VII Standar Kompetensi : GEOMETRI 4.Memahami konsep segi empat dan serta menentukan ukurannya Kompetensi 6.1 Segiempat dan Mengident i fikasi sifat-sifat berdasarka

Lebih terperinci

SIFAT-SIFAT PERSEGIPANJANG. Oleh Nialismadya & Nurbaiti, S. Si

SIFAT-SIFAT PERSEGIPANJANG. Oleh Nialismadya & Nurbaiti, S. Si SIFAT-SIFAT PERSEGIPANJANG Oleh Nialismadya & Nurbaiti, S. Si Standar Kompetensi 6. Memahami konsep segi empat dan segitiga serta menentukan ukurannya. Kompetensi Dasar 6.2 Mengidentifikasi sifat-sifat

Lebih terperinci

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 Satuan Pendidikan : SMP Mata Pelajaran : MATEMATIKA Kelas : VII (TUJUH) Jumlah : 40 Bentuk

Lebih terperinci

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang Jajaran genjang dapat dibentuk dari gabungan suatu segitiga dan bayangannya setelah diputar setengah putaran dengan pusat titik tengah salah

Lebih terperinci

SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI

SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Lampiran 1.1 45 Lampiran 1.2 46 47 Lampiran 2.1 SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

Sifat-Sifat Bangun Datar

Sifat-Sifat Bangun Datar Sifat-Sifat Bangun Datar Bangun datar merupakan sebuah bangun berupa bidang datar yang dibatasi oleh beberapa ruas garis. Jumlah dan model ruas garis yang membatasi bangun tersebut menentukan nama dan

Lebih terperinci

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan Definisi 1.1 Garis m dikatakan memotong garis k, jika kedua garis terletak pada satu bidang datar dan bertemu satu bidang datar dan bertemu pada satu titik Definisi 1.2 Garis m dikatakan sejajar dengan

Lebih terperinci

Kumpulan Soal dan Pembahasan Segi Empat Oleh: Angga Yudhistira

Kumpulan Soal dan Pembahasan Segi Empat Oleh: Angga Yudhistira Kumpulan Soal dan Pembahasan Segi Empat Oleh: Angga Yudhistira http://matematika100.blogspot.com/ Kumpulan Soal dan Pembahasan Matematika SMP dan SMA, Media Pembelajaran,RPP, dan masih banyak lagi Catatan

Lebih terperinci

Pemerintah Kota Semarang. Dinas Pendidikan MKKS Sub Rayon 05 Kota Semarang. JalanPatimura 9 (024) Kota Semarang 50123

Pemerintah Kota Semarang. Dinas Pendidikan MKKS Sub Rayon 05 Kota Semarang. JalanPatimura 9 (024) Kota Semarang 50123 Pemerintah Kota Semarang Dinas Pendidikan MKKS Sub Rayon 05 Kota Semarang JalanPatimura 9 (024)3544024 Kota Semarang 50123 KISI-KISI SOAL UKK MATEMATIKA SatuanPendidikan : SMP/MTs. Alokasi Waktu : 120

Lebih terperinci

TRY OUT MATEMATIKA SMP - 01

TRY OUT MATEMATIKA SMP - 01 1. Suhu udara di puncak gunung 1 C, karena hari hujan suhunya turun lagi 4 C, maka suhu udara di puncak gunung tersebut sekarang adalah a. 5 C b. 3 C c. 3 C d. 5 C 2. Dari 42 siswa kelas IA, 24 siswa mengikuti

Lebih terperinci

BAB UNSUR DAN SIFAT BANGUN DATAR SEDERHANA

BAB UNSUR DAN SIFAT BANGUN DATAR SEDERHANA BAB 8 UNSUR DAN SIFAT BANGUN DATAR SEDERHANA Dio sedang mengamati benda-benda dalam ruang kelasnya. Ada penggaris segitiga, buku tulis, kertas lipat, papan tulis, beberapa hiasan dinding, atap berbentuk

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 4 SEGIEMPAT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

Bab 6 - Segitiga dan Segi Empat

Bab 6 - Segitiga dan Segi Empat Gambar 6.1 Keindahan panorama yang diperlihatkan layar-layar perahu nelayan di bawah cerah matahari di Bali Sumber: Indonesia Untaian Manikam di Khatulistiwa Perhatikan gambar 6.1 di atas! Perahu layar

Lebih terperinci

LAMPIRAN 1. Surat Ijin Uji Coba Instrumen

LAMPIRAN 1. Surat Ijin Uji Coba Instrumen LAMPIRAN 1 Surat Ijin Uji Coba Instrumen LAMPIRAN 2 Surat Ijin Penelitian LAMPIRAN 3 Surat Keterangan Melakukan Uji Coba Instrumen LAMPIRAN 4 Surat Keterangan Melakukan Penelitian LAMPIRAN 5 Instrumen

Lebih terperinci

Segiempat. [Type the document subtitle]

Segiempat. [Type the document subtitle] Segiempat [Type the document subtitle] [Type the abstract of the document here. The abstract is typically a short summary of the contents of the document. Type the abstract of the document here. The abstract

Lebih terperinci

Silabus Matematika Kelas VII Semester Genap 44

Silabus Matematika Kelas VII Semester Genap  44 Indikator : 1. Menentukan banyaknya cara persegi panjang dapat menempati bingkainya. 2. Menggunakan sifat-sifat persegi panjang, sisi-sisi yang berhadapan sama panjang dalam perhitungan. 3. Menentukan

Lebih terperinci

LAMPIRAN 4. Kisi-kisi Soal dan Soal Tes

LAMPIRAN 4. Kisi-kisi Soal dan Soal Tes LAMPIRAN 4. Kisi-kisi Soal dan Soal Tes SOAL PRETEST Mata pelajaran : Nama : 1. Sebutkann jenis-jenis segitiga berdasarkan panjang sisinya? 2. Jika kedua sisi yang berhadapan dari suatu segiempat sejajar.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 1 KELOMPOK TTW

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 1 KELOMPOK TTW RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 1 KELOMPOK TTW Nama Sekolah : SMP N Berbah Mata Pelajaran : Matematika Kelas/Semester : VII/Genap Alokasi Waktu : x 40 menit ( jam pelajaran) Standar Kompetensi :

Lebih terperinci

CONTOH SOAL UAN/UN/UASBN SD 2012

CONTOH SOAL UAN/UN/UASBN SD 2012 CONTOH SOAL UAN/UN/UASBN SD 2012 DISESUAIKAN DENGAN KISI-KISI UASBN SD 2012 Kompetensi 3 : Memahami konsep, sifat, dan unsur-unsur bangun geometeri, dapat menghitung besar-besaran yang terkait dengan bangun

Lebih terperinci

INSTRUMEN PERANGKAT PEMBELAJARAN

INSTRUMEN PERANGKAT PEMBELAJARAN INSTRUMEN PERANGKAT PEMBELAJARAN Lampiran 1 : RPP Siklus I Pertemuan 1 dan 2 RENCANA PELAKSANAAN PEMBELAJARAN Sekolah Mata Pelajaran Kelas/Semester Alokasi Waktu : SDN Pekunden : Matematika : II (dua)

Lebih terperinci

- Segitiga dengan dua sisinya sama panjang dan terbentuk dari dua segitiga siku-siku yang kongruen disebut segitiga samakaki

- Segitiga dengan dua sisinya sama panjang dan terbentuk dari dua segitiga siku-siku yang kongruen disebut segitiga samakaki SEGITIG DN SEGIEMPT. SEGITIG 1. Mengenal Segitiga Jika persegi panjang PQRS dipotong melalui diagonal PR, maka akan didapat dua bangun yang berbentuk segitiga yang sama dan sebangun atau kongruen. Semua

Lebih terperinci

47

47 46 47 48 49 50 RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Sekolah Mata Pelajaran : SD Laboratorium Kristen Satya Wacana : Matematika Kelas / Semester : V/ 2 Materi Pokok : Sifat sifat bangun datar Waktu

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) SILABUS PEMELAJARAN ALJABAR Standar : 4. Menggunakan konsep dan diagram Venn dalam pemecahan masalah Kegiatan 4.1 Mema-hami

Lebih terperinci

Inisiasi 2 Geometri dan Pengukuran

Inisiasi 2 Geometri dan Pengukuran Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik

Lebih terperinci

TEORI BELAJAR VAN HIELE

TEORI BELAJAR VAN HIELE TEORI BELAJAR VAN HIELE A. Pendahuluan Banyak teori belajar yang berkembang yang dijadikan landasan proses belajar mengajar matematika. Dari berbagai teori tersebut, jarang yang membahas tentang pembelajaran

Lebih terperinci

Analisis Kemampuan Menyelesaikan Soal Cerita Matematika Tentang Bangun Datar Ditinjau Dari Teori Van Hiele ABSTRAK

Analisis Kemampuan Menyelesaikan Soal Cerita Matematika Tentang Bangun Datar Ditinjau Dari Teori Van Hiele ABSTRAK Analisis Kemampuan Menyelesaikan Soal Cerita Matematika Tentang Bangun Datar Ditinjau Dari Teori Van Hiele 1 Wahyudi, 2 Sutra Asoka Dewi 1 yudhisalatiga@gmail.com 2 sutrasoka@gmail.com ABSTRAK Penelitian

Lebih terperinci

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam MAKALAH GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam 1 BAB I PENDAHULUAN A. Latar Belakang Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu

Lebih terperinci

DAFTAR NILAI PRETEST DAN POSTTEST KELAS EKSPERIMEN

DAFTAR NILAI PRETEST DAN POSTTEST KELAS EKSPERIMEN 50 DAFTAR NILAI PRETEST DAN POSTTEST KELAS EKSPERIMEN No. Nama Siswa Nilai Pretest Nilai Posttest 1 B1 87 87 2 B2 63 93 3 B3 90 90 4 B4 73 87 5 B5 57 80 6 B6 63 83 7 B7 70 87 8 B8 77 90 9 B9 63 83 10 B10

Lebih terperinci

Lampiran A1. No Aspek Indikator No. Butir. a. Kejelasan dan kelengkapan identitas. 1. Identitas mata pelajaran 1, 2, 3. b. Ketepatan alokasi waktu 4

Lampiran A1. No Aspek Indikator No. Butir. a. Kejelasan dan kelengkapan identitas. 1. Identitas mata pelajaran 1, 2, 3. b. Ketepatan alokasi waktu 4 Lampiran A Lampiran A1. Kisi-kisi Instrumen Penilaian RPP Lampiran A2. Lembar Penilaian RPP Lampiran A3. Kisi-kisi Instrumen Penilaian Media untuk Ahli Materi Lampiran A4. Lembar Penilaian Media untuk

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 5 LINGKARAN A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 5. BANGUN DATAR DAN BANGUN RUANGLatihan Soal

SD kelas 6 - MATEMATIKA BAB 5. BANGUN DATAR DAN BANGUN RUANGLatihan Soal 1. Luas bangun di bawah ini adalah... cm 2. SD kelas 6 - MATEMATIKA BAB 5. BANGUN DATAR DAN BANGUN RUANGLatihan Soal 5.1 http://primemobile.co.id/assets/js/plugins/kcfinder/upload/image/mt48.png C. 1.092

Lebih terperinci

B A B I PENDAHULUAN A. Latar Belakang

B A B I PENDAHULUAN A. Latar Belakang B A B I PENDAHULUAN A. Latar Belakang Matematika adalah suatu alat untuk mengembangkan cara berpikir. Untuk menguasai dan mencipta teknologi di masa depan diperlukan penguasaan matematika yang kuat sejak

Lebih terperinci

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T.

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T. Geometri Bangun Datar Suprih Widodo, S.Si., M.T. Geometri Adalah pengukuran tentang bumi Merupakan cabang matematika yang mempelajari hubungan dalam ruang Mesir kuno & Yunani Euclid Geometri Aksioma /postulat

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Kajian teori 1. Konsep Secara umum konsep adalah suatu abstraksi yang menggambarkan ciri-ciri umum sekelompok objek, peristiwa atau fenomena lainnya. Wayan Memes (2000), mendefinisikan

Lebih terperinci

C. 9 orang B. 7 orang

C. 9 orang B. 7 orang 1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua

Lebih terperinci

ANALISIS KEMAMPUAN MENYELESAIKAN SOAL CERITA MATEMATIKA SISWA KELAS VIII SMP NEGERI 03 TUNTANG TENTANG BANGUN DATAR DITINJAU DARI TEORI VAN HIELE

ANALISIS KEMAMPUAN MENYELESAIKAN SOAL CERITA MATEMATIKA SISWA KELAS VIII SMP NEGERI 03 TUNTANG TENTANG BANGUN DATAR DITINJAU DARI TEORI VAN HIELE ANALISIS KEMAMPUAN MENYELESAIKAN SOAL CERITA MATEMATIKA SISWA KELAS VIII SMP NEGERI 03 TUNTANG TENTANG BANGUN DATAR DITINJAU DARI TEORI VAN HIELE JURNAL Disusun untuk memenuhi syarat guna mencapai Gelar

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah I PENDHULUN. Latar elakang Geometri (daribahasayunani, geo = bumi, metria = pengukuran) secaraharfiah berarti pengukuran tentang bumi, adalahcabangdarimatematika yang mempelajari hubungan di dalamruang.

Lebih terperinci

RINGKASAN MATERI MATA PELAJARAN MATEMATIKA KELAS III SEMESTER 2 PEMBELAJARAN 1 PECAHAN SEDERHANA

RINGKASAN MATERI MATA PELAJARAN MATEMATIKA KELAS III SEMESTER 2 PEMBELAJARAN 1 PECAHAN SEDERHANA MATA PELAJARAN MATEMATIKA KELAS III SEMESTER 2 PEMBELAJARAN PECAHAN SEDERHANA. Pecahan - Pecahan Daerah yang diarsir satu bagian dari lima bagian. Satu bagian dari lima bagian artinya satu dibagi lima

Lebih terperinci

BAB I PENDAHULUAN. kehidupannya akan selalu berkembang ke arah yang lebih baik. Oleh karena itu,

BAB I PENDAHULUAN. kehidupannya akan selalu berkembang ke arah yang lebih baik. Oleh karena itu, BAB I PENDAHULUAN 1.1 Latar Belakang Pendidikan merupakan aspek penting dalam perkembangan kehidupan masyarakat dan kemajuan bangsa. Manusia yang selalu diiringi pendidikan, kehidupannya akan selalu berkembang

Lebih terperinci

BAB XIII SIMETRI LIPAT, SIMETRI PUTAR dan PENCERMINAN

BAB XIII SIMETRI LIPAT, SIMETRI PUTAR dan PENCERMINAN XIII SIMETRI LIPT, SIMETRI PUTR dan PENERMINN I. Simetri Lipat Simetri lipat adalah jumlah lipatan yang membuat suatu bangun datar menjadi dua bagian yang sama besar. a. Simeti lipat pada ujur Sangkar

Lebih terperinci

Konsep Dasar Geometri

Konsep Dasar Geometri Konsep Dasar Geometri. Segitiga 1. Definisi Segitiga Segitiga merupakan model bangun ruang datar yang dibatasi oleh tiga ruas garis. 2. Klasifikasi Segitiga a) Segitiga menurut panjang sisinya 1) Segitiga

Lebih terperinci

LAMPIRAN LAMPIRAN 140

LAMPIRAN LAMPIRAN 140 LAMPIRAN LAMPIRAN 140 LAMPIRAN A Perangkat Pembelajaran Lampiran A.1 : RPP Kelas Eksperimen 1 (dengan model pembelajaran CORE) Lampiran A.2 : RPP Kelas Eksperimen 2 (dengan model pembelajaran STAD) Lampiran

Lebih terperinci

BAB I PENDAHULUAN. Matematika, menurut Ruseffendi adalah bahasa simbol; ilmu deduktif

BAB I PENDAHULUAN. Matematika, menurut Ruseffendi adalah bahasa simbol; ilmu deduktif BAB I PENDAHULUAN A.Latar Belakang Masalah Matematika, menurut Ruseffendi adalah bahasa simbol; ilmu deduktif yang tidak menerima pembuktiaan secara induktif; ilmu tentang pola keteraturan, dan struktur

Lebih terperinci

TRY OUT MATEMATIKA SMP - 02

TRY OUT MATEMATIKA SMP - 02 1. Dalam suatu kelas terdapat 25 anak gemar melukis, 21 anak gemar menyanyi, serta 14 anak gemar melukis dan menyanyi, maka jumlah siswa dalam kelas tersebut adalah a. 60 anak b. 46 anak c. 32 anak d.

Lebih terperinci

LAMPIRAN-LAMPIRAN 33

LAMPIRAN-LAMPIRAN 33 LAMPIRAN-LAMPIRAN 33 34 PERANGKAT PEMBELAJARAN (SILABUS DAN RPP) 35 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6.

Lebih terperinci

Pendahuluan. 1.1 Latar Belakang

Pendahuluan. 1.1 Latar Belakang Pendahuluan 1.1 Latar elakang Geometri datar, merupakan studi tentang titik, garis, sudut, dan bangun-bangun geometri yang terletak pada sebuah bidang datar. erbagai mekanisme peralatan dalam kehidupan

Lebih terperinci

Segi Empat. Persembahan

Segi Empat. Persembahan i Segi Empat Persembahan Hai sobat dumat (dunia metematika), kali ini saya akan mempersembahkan sebuah buku yang sebenarnya untuk memenuhi syarat mendapatkan nilai Ujian Akhir Semester (UAS) mata kuliah

Lebih terperinci

PEMBELAJARAN BANGUN-BANGUN DATAR (1)

PEMBELAJARAN BANGUN-BANGUN DATAR (1) PEMBELAJARAN BANGUN-BANGUN DATAR (1) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 3 PEMBELAJARAN BANGUN-BANGUN DATAR (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun

Lebih terperinci

PEMBELAJARAN SEGIEMPAT, SEGITIGA DAN LINGKARAN LAPORAN. Diajukan untuk memenuhi salah satu tugas mata kuliah Pendidikan Matematika II

PEMBELAJARAN SEGIEMPAT, SEGITIGA DAN LINGKARAN LAPORAN. Diajukan untuk memenuhi salah satu tugas mata kuliah Pendidikan Matematika II PEMBELAJARAN SEGIEMPAT, SEGITIGA DAN LINGKARAN LAPORAN Diajukan untuk memenuhi salah satu tugas mata kuliah Pendidikan Matematika II Dosen Dr. Karso, M.Pd Disusun oleh : Indri Nur Oktaviani 1003282 Saeful

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Rancangan penelitian merupakan salah satu komponen yang akan menentukan berhasil tidaknya pengumpulan data dan hasil penelitian. Rancangan penelitian yang tepat dan teliti akan

Lebih terperinci

PENINGKATAN PEMAHAMAN KONSEP BANGUN-BANGUN SEGIEMPAT MELALUI PENGGUNAAN JARINGAN KONSEP. Sri Tresnaningsih 1) Dosen Universitas Terbuka-UPBJJ Surabaya

PENINGKATAN PEMAHAMAN KONSEP BANGUN-BANGUN SEGIEMPAT MELALUI PENGGUNAAN JARINGAN KONSEP. Sri Tresnaningsih 1) Dosen Universitas Terbuka-UPBJJ Surabaya PENINGKATAN PEMAHAMAN KONSEP BANGUN-BANGUN SEGIEMPAT MELALUI PENGGUNAAN JARINGAN KONSEP 1) Sri Tresnaningsih 1) Dosen Universitas Terbuka-UPBJJ Surabaya Abstract Geometry is a part of mathematics that

Lebih terperinci

SD V BANGUN DATAR. Pengertian bangun datar. Luas bangun datar. Keliling bangun datar SD V

SD V BANGUN DATAR. Pengertian bangun datar. Luas bangun datar. Keliling bangun datar SD V SD V BANGUN DATAR Pengertian bangun datar Luas bangun datar Keliling bangun datar SD V Kata Pengantar Puji syukur kehadirat Allah Subahanahu wa Ta ala, yang Maha Kuasa atas rahmat dan karunianya, sehingga

Lebih terperinci

BAB II KAJIAN TEORI A.

BAB II KAJIAN TEORI A. BAB II KAJIAN TEORI A. Tahap-tahap Berpikir van Hiele Pierre van Hiele dan Dina van Hiele-Geldof adalah sepasang suami-istri bangsa Belanda yang mengabdi sebagai guru matematika di negaranya. Pada tahun

Lebih terperinci

Pembahasan Video :http://stream.primemobile.co.id:1935/testvod/_definst_/smil:semester 2/SMP/Kelas 7/MATEMATIKA/BAB 8/MTK smil/manifest.

Pembahasan Video :http://stream.primemobile.co.id:1935/testvod/_definst_/smil:semester 2/SMP/Kelas 7/MATEMATIKA/BAB 8/MTK smil/manifest. SMP kelas 7 - MATEMATIKA BAB 8. SEGITIGA DAN SEGI EMPATLATIHAN SOAL BAB 8 1. Perhatikan gambar! Luas bangun ABCDEF adalah... 318 cm 2 278 cm 2 258 cm 2 243 cm 2 Kunci Jawaban : C Luas bangun ABCDEF =Luas

Lebih terperinci

Geometri Dimensi Dua

Geometri Dimensi Dua Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

SD kelas 4 - MATEMATIKA BAB 6. LUAS DAN KELILING BANGUN DATARLatihan Soal 6.2

SD kelas 4 - MATEMATIKA BAB 6. LUAS DAN KELILING BANGUN DATARLatihan Soal 6.2 1. Perhatikan gambar berikut! SD kelas 4 - MATEMATIKA BAB 6. LUAS DAN KELILING BANGUN DATARLatihan Soal 6.2 Keliling bangun di atas adalah... 30 32 48 60 Kunci Jawaban : B Lengkapi ukuran bangun tersebut

Lebih terperinci

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: BANGUN DATAR Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA YOGYAKARTA

Lebih terperinci

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 Pembahasan UN 0 A3 by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A3 Hasil dari 5 + [6 : ( 3)] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung

Lebih terperinci

BAB I PENDAHULUAN. dan kemajuan yang sangat pesat. Para ahli psikologi pendidikan. yang telah melalui bermacam penelitiannya. Para ahli pembelajaran

BAB I PENDAHULUAN. dan kemajuan yang sangat pesat. Para ahli psikologi pendidikan. yang telah melalui bermacam penelitiannya. Para ahli pembelajaran 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Proses pembelajaran pada zaman sekarang mengalami perkembangan dan kemajuan yang sangat pesat. Para ahli psikologi pendidikan mengemukakan teori-teori pendidikan

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat! Pembahasan UN 0 C by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C NO SOAL PEMBAHASAN Hasil dari 6 adalah... A. 48. a = a a a B. 7. = C. 08. = D. 6 6 = 6 = 6 = 6 = 6 Hasil dari 8 adalah... A.

Lebih terperinci

BAB II KAJIAN TEORETIK

BAB II KAJIAN TEORETIK BAB II KAJIAN TEORETIK A. Kajian Teori 1. Deskripsi konseptual a. Berpikir kreatif Santrock (2011) mengemukakan bahwa berpikir adalah memanipulasi atau mengelola dan mentransformasi informasi dalam memori.

Lebih terperinci

DAFTAR GAMBAR. Gambar 2.1. Persegi Panjang ABCD 36 Gambar 2.2. Persegi panjang KLMN 37. Gambar 2.3. Persegi ABCD 39 Gambar 2.4.

DAFTAR GAMBAR. Gambar 2.1. Persegi Panjang ABCD 36 Gambar 2.2. Persegi panjang KLMN 37. Gambar 2.3. Persegi ABCD 39 Gambar 2.4. ix DAFTAR GAMBAR Halaman Gambar 2.1. Persegi Panjang ABCD 36 Gambar 2.2. Persegi panjang KLMN 37 Gambar 2.3. Persegi ABCD 39 Gambar 2.4. Persegi KLMN 40 Gambar 2.5. Jajargenjang KLMN 41 Gambar 2.6. Belah

Lebih terperinci

SOAL SIAP ULANGAN AKHIR SEMESTER MATA PELAJARAN : MATEMATIKA KURIKULUM : 2013

SOAL SIAP ULANGAN AKHIR SEMESTER MATA PELAJARAN : MATEMATIKA KURIKULUM : 2013 SOAL SIAP ULANGAN AKHIR SEMESTER MATA PELAJARAN : MATEMATIKA KELAS : VII KURIKULUM : 2013 1. Kumpulan berikut ini yang merupakan himpunan adalah... A. kumpulan siswa-siswa yang pandai B. kumpulan orang-orang

Lebih terperinci

SMP kelas 9 - MATEMATIKA BAB 5. KESEBANGUNAN DAN KEKONGRUNANLATIHAN SOAL

SMP kelas 9 - MATEMATIKA BAB 5. KESEBANGUNAN DAN KEKONGRUNANLATIHAN SOAL SMP kelas 9 - MATEMATIKA BAB 5. KESEBANGUNAN DAN KEKONGRUNANLATIHAN SOAL 1. Suatu persegi dengan panjang diagonel sisinya 10 cm maka luas persegi tersebut adalah... cm 2 A. B. C. D. 400 200 100 50 E. Kunci

Lebih terperinci

datar Belah ketupat. 2. Menentukan keliling dan luas bangun datar Belah

datar Belah ketupat. 2. Menentukan keliling dan luas bangun datar Belah 37 RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Sekolah : SMP Kristen 2 Salatiga Mata Pelajaran : Matematika Kelas / Semester : VII (tujuh) / Genap Tanggal Pertemuan : 9 April 2013 Standar Kompetensi : Memahami

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D45 NO SOAL PEMBAHASAN 5 Hasil dari 8 adalah... 5. a = a a a a a A. 0 B. 5. = C.. = D. 64 Hasil dari 8 adalah... A. 6 B. 8 C. 6 D. 4 6 4 Hasil dari 7 ( ( 8)) adalah...

Lebih terperinci

MATEMATIKA NALARIA REALISTIK

MATEMATIKA NALARIA REALISTIK MATEMATIKA NALARIA REALISTIK Oleh : Ir. R. RIDWAN HASAN SAPUTRA, M.Si Disampaikan : Drs. H.M. ARODHI Sesi 1 : Pemahaman Konsep, Makna PEMAHAMAN KONSEP Pemahaman Konsep Matematika adalah kemampuan siswa

Lebih terperinci

2015 DESAIN DIDAKTIS SIFAT-SIFAT SEGIEMPAT UNTUK MENCAPAI LEVEL BERPIKIR GEOMETRI PENGELOMPOKKAN PADA SISWA SMP

2015 DESAIN DIDAKTIS SIFAT-SIFAT SEGIEMPAT UNTUK MENCAPAI LEVEL BERPIKIR GEOMETRI PENGELOMPOKKAN PADA SISWA SMP BAB I PENDAHALUAN A. Latar Belakang Masalah Menurut Suherman dkk (2001, 8), belajar adalah proses perubahan tingkah laku individu yang relatif tetap sebagai hasil dari pengalaman. Tidak dapat dipungkiri

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) : 2 x 40 menit (satu kali pertemuan)

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) : 2 x 40 menit (satu kali pertemuan) RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Mata Pelajaran : Matematika Kelas/Semester : V / 1 Pertemuan ke- Alokasi waktu : 1 (satu) : 2 x 40 (satu kali pertemuan) A. TAHAP PERENCANAAN 1. STANDAR KOMPETENSI

Lebih terperinci

BAB I PENDAHULUAN. ada rasa ingin tahu, tanpa pertanyaan, dan tanpa ada daya tarik terhadap hasil

BAB I PENDAHULUAN. ada rasa ingin tahu, tanpa pertanyaan, dan tanpa ada daya tarik terhadap hasil 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Keaktifan siswa sangat dibutuhkan dalam proses belajar mengajar karena dapat menentukan keberhasilan siswa dalam belajar. Siswa diharapkan aktif dalam belajar

Lebih terperinci

APLIKASI MATRIKS DALAM GEOMETRI

APLIKASI MATRIKS DALAM GEOMETRI APLIKASI MATRIKS DALAM GEOMETRI Diajukan untuk memenuhi salah satu tugas mata Kuliah Dosen Pembina: Drs. Darwing Paduppai, M.Pd O l e h: KELOMPOK VI Kelas A ANDI RUSDI 06507010 Hj. KHADIJAH 06507003 BAMBANG

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : B5 1 Hasil dari 17 (3 ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 41 Dalam kurung 1 C. 7 Pangkat ; Akar D. 41 Kali

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN. A. Standar Kompetensi 6. Memahami konsep segiempat serta menentukan ukurannya

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN. A. Standar Kompetensi 6. Memahami konsep segiempat serta menentukan ukurannya LAMPIRAN A.2 RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN Sekolah Mata Pelajaran Kelas/Semester Pertemuan ke- Alokasi Waktu : SMPN 2 Padang : Matematika : VII/2 : 1 (satu) : 2 x 40 menit A. Standar

Lebih terperinci

BAB I PENDAHULUAN. Salah satu upaya guru menciptakan suasana belajar yang menyenangkan

BAB I PENDAHULUAN. Salah satu upaya guru menciptakan suasana belajar yang menyenangkan 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Salah satu upaya guru menciptakan suasana belajar yang menyenangkan yaitu dapat menarik minat, antusiasme siswa, dan memotivasi siswa agar senantiasa belajar

Lebih terperinci

Contoh Soal dan pembahasan tentang Bangun datar Segi Empat

Contoh Soal dan pembahasan tentang Bangun datar Segi Empat Contoh Soal dan pembahasan tentang Bangun datar Segi Empat kaktri ono Add Comment kelas 7, Matematika Jumat, 16 Agustus 2013 Contoh soal dan pembahasan tentang bangun datar segi empat berupa persegi dan

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : D45 NO SOAL PEMBAHASAN 1 Hasil dari 8 5 3 adalah... 1. a A. 10 5 = a a a a a B. 5. a 1 n n = a C. 3 3. a m n n = a m D. 64 Hasil dari 8 3 adalah... A. 6 B. 8 C.

Lebih terperinci

Lampiran A. Instrumen Penelitian. A.1 Angket Minat belajar matematika. A.2 Soal Pretest dan Posttest. A.3 Lembar Observasi Keterlaksanaan Pembelajaran

Lampiran A. Instrumen Penelitian. A.1 Angket Minat belajar matematika. A.2 Soal Pretest dan Posttest. A.3 Lembar Observasi Keterlaksanaan Pembelajaran LAMPIRAN 102 Lampiran A. Instrumen Penelitian A.1 Angket Minat belajar matematika A.2 Soal Pretest dan Posttest A.3 Lembar Observasi Keterlaksanaan Pembelajaran 103 LAMPIRAN A.1 ANGKET MINAT BELAJAR MATEMATIKA

Lebih terperinci

Lampiran A. Instrumen Penelitian. A.1 Angket Minat belajar matematika. A.2 Soal Pretest dan Posttest. A.3 Lembar Observasi Keterlaksanaan Pembelajaran

Lampiran A. Instrumen Penelitian. A.1 Angket Minat belajar matematika. A.2 Soal Pretest dan Posttest. A.3 Lembar Observasi Keterlaksanaan Pembelajaran LAMPIRAN 102 Lampiran A. Instrumen Penelitian A.1 Angket Minat belajar matematika A.2 Soal Pretest dan Posttest A.3 Lembar Observasi Keterlaksanaan Pembelajaran 103 LAMPIRAN A.1 ANGKET MINAT BELAJAR MATEMATIKA

Lebih terperinci

1. BARISAN ARITMATIKA

1. BARISAN ARITMATIKA MATEMATIKA DASAR ARITMATIKA BARISAN ARITMATIKA 1. BARISAN ARITMATIKA Sering disebut barisan hitung, adalah barisan bilangan yang setiap sukunya diperoleh dari suku sebelumnya dengan menambah atau mengurangi

Lebih terperinci

E-LAERNING TEORI BELAJAR VAN HIELE VS BARUDA

E-LAERNING TEORI BELAJAR VAN HIELE VS BARUDA E-LAERNING TEORI BELAJAR VAN HIELE VS BARUDA PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU KEPENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 TEORI BELAJAR SOSIAL ALBERT BANDURA Pada

Lebih terperinci

PEMBELAJARAN BANGUN DATAR (2)

PEMBELAJARAN BANGUN DATAR (2) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 4 PEMBELAJARAN BANGUN DATAR (2) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun datar yang dibagi menjadi dua kegiatan belajar,

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 7

KUMPULAN SOAL MATEMATIKA SMP KELAS 7 KUMPULAN SOAL MATEMATIKA SMP KELAS 7 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co.cc Email: fatkoer@gmail.com EVALUASI MANDIRI A. SOAL PILIHAN GANDA. Pilih

Lebih terperinci

PEMBELAJARAN BANGUN-BANGUN DATAR (1)

PEMBELAJARAN BANGUN-BANGUN DATAR (1) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 3 PEMBELAJARAN BANGUN-BANGUN DATAR (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun datar yang dibagi menjadi dua kegiatan

Lebih terperinci

sdt ACB = = sdt CBA = = 3. Diketahui sebuah segitiga mempunyai keliling 24 cm, luas segitiga tersebut adalah : jawab :

sdt ACB = = sdt CBA = = 3. Diketahui sebuah segitiga mempunyai keliling 24 cm, luas segitiga tersebut adalah : jawab : LATIHAN SOAL MATEMATIKA SMP KELAS 8 SEMESTER GENAP 1. Hitung besar sudut P dan Q pada segitiga berikut : JAWAB : Jumlah ketiga sudut dalam segitiga = jadi :sudut P + sdt Q + sdt R = sdt P= 6 (12) = sdt

Lebih terperinci

MATEMATIKA. Pertemuan 2 N.A

MATEMATIKA. Pertemuan 2 N.A MATEMATIKA Pertemuan 2 N.A smile.akbar@yahoo.co.id Awali setiap aktivitas dengan membaca Basmallah Soal 1 (Operasi Bentuk Aljabar) Bentuk Sederhana dari adalah a. b. c. d. Pembahasan ( A ) Soal 2 (Pola

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA A. Tengertian Belajar Belajar adalah suatu proses yang terjadi pada diri setiap orang sepanjang hidupnya. Proses belajar itu terjadi karena adanya interaksi antara seseorang dengan

Lebih terperinci

Sifat-Sifat Bangun Datar dan Bangun Ruang

Sifat-Sifat Bangun Datar dan Bangun Ruang ab 9 Sifat-Sifat angun Datar dan angun Ruang Setiap benda memiliki sifat yang menjadi ciri khas benda tersebut. oba kamu sebutkan bagaimana sifat yang dimiliki oleh benda yang terbuat dari karet! egitu

Lebih terperinci

INSTRUMEN VALIDITAS DAN RELIABILITAS

INSTRUMEN VALIDITAS DAN RELIABILITAS INSTRUMEN VALIDITAS DAN RELIABILITAS 79 80 UJI VALIDITAS ANGKET Data diri Nama Lengkap : Sekolah : Kelas : Petunjuk pengisian! Di bawah ini terdapat sejumlah pernyataan tentang cara-cara yang kamu gunakan

Lebih terperinci