BAB PENGOLAHAN AIR LIMBAH INDUSTRI TEKSTIL

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB PENGOLAHAN AIR LIMBAH INDUSTRI TEKSTIL"

Transkripsi

1 BAB PENGOLAHAN AIR LIMBAH INDUSTRI TEKSTIL 8.1. Pendahuluan Di Indonesia industri tekstil merupakan salah satu penghasil devisa bagi negara. Dalam melakukan kegiatannya, industri tekstil besar ataupun kecil membutuhkan banyak air dan bahan kimia yang digunakan antara lain dalam proses pelunturan, pewarnaan dan pemutihan. Salah satu proses penting dalam produksi garmen (salah satu produk tekstil) adalah proses pencucian (laundry) yang dapat disebut juga sebagai proses akhir dalam produksi garmen, yaitu dengan cara pelunturan warna asli dan memberikan warna baru yang diinginkan. Terutama dalam produk tekstil, hasil pencucian akan menjadi kunci keberhasilan produk tersebut, karena efek dari pencucian itu akan menjadi pertimbangan utama dalam menentukan harga jualnya di pasaran. Pada industri tekstil kegiatan pencucian bahan tekstil akan menghasilkan air limbah yang dapat mencemari lingkungan. Industri tekstil di kota-kota besar kegiatan pencuciannya dilakukan dalam jumlah yang banyak dengan menggunakan air yang banyak pula, sehingga kapasitas air limbah yang dibuang pun sebanding dengan jumlah air digunakan. Bahkan kegiatan pencucian bahan tekstil dapat menjadi industri tersendiri yang mengkhususkan kegiatannya dalam proses pencucian dan pelunturan bahan tekstil menggunakan mesin-mesin cuci dan pengering dalam kapasitas besar. Keberadaan industri pencucian bahan tekstil ini sangat dibutuhkan oleh industri penghasil bahan tentunan atau tekstil yang mempunyai kapasitas besar. 175

2 8.2. Proses Pencucian Tekstil Di industri tekstil, kegiatan pencucian hasil tenunan bahan tekstil dapat dibagi menjadi beberapa proses tahapan seperti terlihat pada gambar di bawah ini. Proses Pencucian (Garment Wash) Proses Pelunturan Proses Pembilasan Proses Pemerasan Proses Pengeringan Proses Pewarnaan Gambar 8.1. Diagram Alir Proses Industri Pencucian Tekstil Proses Pencucian Proses ini bertujuan untuk membuang kanji dengan maksud melemaskan pakaian tekstil yang masih kaku. Bahan yang di gunakan adalah air sebanyak 500 liter, detergent merk Blue-J Scour (cair dan berwarna coklat) sebanyak ml dan sebagai bahan pengganti detergent dapat digunakan zat kimia Genencor Desize-HT (cair dan berwarna biru) sebanyak 1,5 Kg. Pada proses pencucian ini suhu dioperasikan 40 C - 50 C dan pakaian digiling dalam mesin selama 25 menit. Apabila pihak konsumen hanya membutuhkan pencucian saja, maka proses selanjutnya tidak lakukan. 176

3 Proses Pelunturan Setelah proses pelemasan atau pencucian, kemudian dilakukan proses pelunturan atau pemucatan tekstil dengan masud melunturkan warna asli tekstil menjadi warna dasarnya atau lebih pucat dari warna asalinya. Proses ini dilakukan tergantung pada permintaan. Proses pelunturan ada dua macam yakni : (a) Proses stone wash yaitu proses pelunturan warna pakaian jadi tekstil dengan menggunakan bahan yang sama dengan batu apung sebagai bahan penggosok atau peluntur. (b) Proses stone bleanching yaitu proses pelunturan warna pakaian jadi selain menggunakan bahan yang sama dengan stone wash juga ditambah dengan sodium hipochlorite yang berfungsi untuk pemutih. Penggunaan sodium Hipochlorite ini tidak banyak tentunya tergantung permintaan (sesuai dengan warna putih yang di inginkan) Proses Pembilasan Setelah proses pencucian dan pelunturan maka dilakukan proses pembilasan dimana dalam proses ini diperlukan air sebanyak 500 l, softener sebagai pelembut sebanyak 0,6 ml dan OBA untuk mencerahkan warna sebanyak 0,3 ml. Suhu disesuaikan tetap 30 C dan dapat diputar selama 10 menit sedangkan untuk proses pembilasan dimana dalam proses pembilasan yang berasal dari stone bleancing selain bahanbahan di atas ditambahkan pula sodium hipocrit dan mengilangkan bau sebanyak 1 kg permesin serta hidrogen perioksida (H 2 O 2 ) yang berfungsi untuk membuat bersih atau warna terang sebanyak 1kg Proses Pemerasan Proses pemerasan adalah proses untuk menghilangkan air dari pakaian jadi tekstil. Proses ini bertujuan untuk mempercepat proses pengeringan. Pada proses pemerasan ini digunakan mesin ekstrator yang berkapasitas potong pakaian yang diputar selama 5 menit. 177

4 Proses Pengeringan Proses pengeringan adalah proses yang dilakukan setelah pakaian jadi telah mengalami proses pembilasan dengan maksud untuk mengeringkan pakaian. Proses pengeringan dapat dilakukan melalui penjemuran dengan sinar matahari maupun menggunakan mesin pengering berupa oven yang berkapasitas potong pakaian. Proses ini memerlukan waktu sekitar 45 menit sampai 1 jam Proses Pewarnaan Pada proses ini pakaian jadi tekstil di beri warna yang sesuai dengan perintaan dengan menggunakan bahan-bahan kimia. Sebagai hasil sampingan dari proses kegiatan industri pencucian tekstil adalah limbah yang dihasilkan dari proses pencucian tekstil. Limbah pencucian tekstil secara fisik berwarna biru atau ungu berbau kaporit yang menyengat serta terdapat busa berwarna. Selain itu ada zat-zat tersuspensi dari batu apung yang hancur dari proses pelunturan banyak mengendap di saluran air sehingga menyebabkan pendangkalan seperti limbah industri lainnya, limbah pencucian tekstil ini dapat menimbulkan gangguan terhadap manusia, biota air maupun gangguan estetika Karakteristik Air Limbah Hasil Pencucian Tekstil Karakteristik air limbah hasil pencucian tekstil umumnya mengandung bahan pencemar yang telah melampaui baku mutu yang diizinkan oleh peraturan pemerintah. Sebagai contoh studi kasus yang pernah dilakukan untuk mengamati karakteristik air limbah pada industri pencucian tekstil yang ada di Jakarta menunjukkan bahwa beberapa parameter air limbah yakni BOD, COD, Total zat padat tersuspensi (TSS) dan Warna menunjukkan konsentrasi yang cukup tinggi, sehingga jika langsung dibuang ke saluran atau diresapkan ke tanah tanpa pengolahan dapat menjadi sumber pencemaran yang sangat potensial. Secara umum karaktersitik air limbah pencucian tekstil dapat dilihat pada tabel berikut : 178

5 Tabel 8.1. Contoh Karakteristik Air Limbah Pencucian Tekstil No Parameter Satuan Konsentrasi 1 BOD mg/l COD mg/l TSS mg/l Warna Pt.Co ph 6,0-6, Proses Pengolahan Air Limbah Pengolahan Biologis Pengolahan air buangan secara biologi adalah suatu cara pengolahan yang diarahkan untuk menurunkan atau menyisihkan substrat tertentu yang terkandung dalam air buangan dengan memanfaatkan aktifitas mikroorganisme untuk melakukan perombakan substrat tersebut. Pengolahan secara biologis dapat diklasifikasikan berdasarkan 3 pendekatan, yaitu berdasarkan lingkungan proses biologi, macam-macam biotransformasi yang terjadi dan konfigurasi reaktor bioproses. Proses pengolahan air buangan secara biologi merupakan suatu proses biokimia yang dapat berlangsung dalam 2 lingkungan utama, yaitu lingkungan aerob dan lingkungan anaerob. Lingkungan aerob, yaitu lingkungan dimana kadar oksigen terlarut (DO) di dalam air terdapat cukup banyak, sehingga oksigen merupakan faktor pembatas. Pada keadaan ini oksigen bertindak sebagai akseptor elektron akhir dalam metabolisme mikroba, dan pertumbuhan akan berlangsung secara efisien. Sedangkan lingkungan anaerob merupakan kebalikan dari aerob, yaitu pada lingkungan ini tidak terdapat oksigen terlarut atau ada dalam konsentrasi yang sangat rendah, sehingga oksigen menjadi faktor penghambat berlangsungnya proses metabolisme anaerob. Pada kondisi ini bahan lain akan bertindak sebagai akseptor elektron akhir. Jika bahan tersebut adalah 179

6 molekul organik, maka istilah yang dipakai untuk menyebutkan proses yang berlangsung adalah fermentasi. Jika akseptor elektron akhir tersebut merupakan bahan anorganik, pertumbuhan tersebut dikatakan mengalami respirasi anaerob Proses Pengolahan Secara Anaerob Secara garis besar mekanisme proses pengolahan air limbah secara anaerob adalah konversi bahan organik atau organik karbon menjadi gas bio atau gas methan dan karbondioksida. Proses konversi tersebut meliputi tiga tahapan proses, yaitu : 1) Tahap Hidrolisis dan Fermentasi Tahap hidrolisis adalah tahap penguraian polimer-polimer organik tak larut menjadi senyawa organik terlarut. Polimer organik tak larut tersebut hadir dalam bentuk lemak, protein dan karbohidrat. Proses hidrolisis dapat dijelaskan sebagai berikut : Lemak dihidrolisis menjadi asam lemak yang selanjutnya diubah menjadi asam propionat Protein dihidrolisis menjadi asam amino yang selanjutnya diubah menjadi asam keto Karbohidrat dihidrolisis menjadi asam keto dan alkohol. Asam keto yang berasal dari hidrolisis protein dan karbohidrat diubah menjadi asam piruvat, yang selanjutnya diubah lagi menjadi asam laktat, asam propionat dan asam butirat. Proses hidrolisis dan fermentasi dilakukan oleh aktivitas bakteri pembentuk asam yang merupakan bakteri fakultatif. 2) Tahap Asetogenesis Tahap asetogenesis merupakan tahap pembentukan asam asetat. Asam asetat yang terbentuk sebagian besar berasal dari asam propionat dan asam butirat. Pada tahap ini dihasilkan asam asetat, hidrogen dan karbondioksida. Reaksi kimia pembentukan asam asetat adalah sebagai berikut : 180

7 Asam propionat menjadi asam asetat : CH 3 CH 2 COOH + 2 H 2 O CH 3 COOH + CO 2 + 3H 2 Asam butirat menjadi asam asetat : CH 3 CH 2 CH 2 COOH + 2H 2 O 2 CH 3 COOH + 2H 2 3) Tahap Metanogenesis Tahap ini merupakan tahap terakhir dari mekanisme proses anaerob. Pada tahap ini gas metana akan terbentuk, baik yang berasal dari asam asetat maupun dari hidrogen. Secara keseluruhan tahap ini merupakan tahapan yang paling menentukan dari keseluruhan tahap mekanisme proses secara anaerob. Proses metanogenesis merupakan proses yang berjalan paling lambat dari keseluruhan mekanisme anaerob. Hal ini dikarenakan oleh karena lambatnya pembelahan diri dari bakteri metana asetoklastik. Reaksi pembentukan gas metana adalah sebagai berikut : Pembentukan gas metana dari asam asetat : CH 3 COOH CH 4 + CO 2 Pembentukan gas metana dari hidrogen : 3H 2 + CO 2 CH 4 + H 2 O Hal yang perlu diperhatikan dari ketiga tahapan pada mekanisme proses anaerob adalah bahwa secara keseluruhan proses konversi tersebut dilakukan oleh mikroorganisme yang berbeda, dimana pada tahap hidrolisis dilakukan oleh bakteri fakultatif dan pada proses asetogenesis oleh bakteri anaerob Proses Pengolahan Secara Aerob Berbeda dengan proses anaerob, beban pengolahan pada proses aerob lebih rendah, sehingga prosesnya ditempatkan sesudah proses anaerob. Pada proses aerob hasil pengolahan dari proses anaerob masih mengandung zat organik dan nutrisi 181

8 yang dapat diubah menjadi sel baru, hidrogen maupun karbondioksida oleh sel bakteri baru tersebut dalam kondisi oksigen yang cukup. Sistem penguraian aerob umumnya dioperasikan secara kontinyu. Persamaan umum reaksi penguraian secara aerob adalah sebagai berikut : mikroba aerob Bahan organik + O 2 Sel baru + energi untuk sel + CO 2 + H 2 O + produk akhir lainnya Faktor-Faktor Yang Mempengaruhi Proses Biologis Pada Reaktor Gabungan 1) Temperatur : Temperatur tidak hanya mempengaruhi aktifitas metabolisme mikroorganisme, tetapi juga mempengaruhi faktor lain seperti kecepatan transfer gas dan karakteristik pengendapan lumpur. Temperatur optimum untuk mikroorganisme untuk proses aerob adalah sama dengan untuk proses anaerob 2) ph : Nilai ph merupakan faktor kunci bagi pertumbuhan mikroorganisme. Beberapa bakteri dapat hidup pada ph di atas 9,5 dan di bawah 4,0. Secara umum ph optimum bagi pertumbuhan mikroorganisme adalah 6,5-7,5. 3) Waktu tinggal hidrolis : Waktu Tinggal Hidrolik (WTH) adalah waktu perjalanan limbah cair di dalam reaktor, atau dapat pula dikatakan lamanya proses pengolahan limbah cair tersebut. Semakin lama waktu tinggal, maka penguraian yang terjadi akan semakin sempurna. Waktu tinggal dalam reaktor biologis sangat bervariasi dari 1 jam hingga berharihari. 4) Nutrien : Di samping kebutuhan karbon dan energi, mikroorganisme juga membutuhkan nutrien untuk sintesa sel dan pertumbuhan. Kebutuhan nutrien dinyatakan dalam bentuk perbandingan karbon dan nitrogen dan fosfor yang merupakan nutrien anorganik utama yang diperlukan mikroorganisme dalam bentuk BOD:N:P. 182

9 Biotransformasi Yang Terjadi Dalam Pengolahan Air Buangan Berdasarkan macam biotransformasinya, pengolahan air buangan secara biologi dapat dibagi menjadi 3 proses, yaitu : penyisihan bahan organik terlarut, stabilisasi bahan organik yang tak terlarut, dan konversi bahan anorganik terlarut. Salah satu tujuan pengolahan air limbah secara biologis adalah menyisihkan bahan organik terlarut yang dapat digunakan sebagai sumber makanan bagi mikroorganisme yang ada. Jika hal ini terjadi, maka karbon akan dikonversikan menjadi karbondioksida, dan sisanya akan dijadikan bahan sel baru yang dapat dipisahkan melalui proses fisis, sehingga akan diperoleh air yang bersih dari bahan organik asal, atau konsentrasinya berkurang Konfigurasi Reaktor Berdasarkan atas kondisi pertumbuhan mikroorganisme yang bertanggungjawab dalam proses penguraian yang terjadi, bioreaktor dapat dibedakan menjadi 3 bagian, yaitu : Reaktor pertumbuhan tersuspensi, Reaktor pertumbuhan lekat, dan Lagoon/kolam. Pada reaktor pertumbuhan tersuspensi, mikroorganisme tumbuh dan berkembang dalam keadaan tersuspensi dalam fasa cair. Gambar 8.2. Klasifikasi Proses Pengolahan Air Limbah Secara Biologis Berdasarkan Konfigurasi Reaktor 183

10 Reaktor pertumbuhan lekat, mikroorganisme tumbuh dan berkembang di atas suatu media dengan membentuk suatu lapisan lendir untuk melekatkan diri di atas permukaan media tersebut membentuk lapisan biofilm dan pada proses lagoon dengan cara menampung air limbah pada suatu kolam dengan waktu tinggal yang cukup lama sehingga mikroorganisme akan tumbuh secara alami akan menguraikan bahan-bahan pencemar di dalamnya. Tetapi terkadang juga proses lagoon ini dapat pula digolongkan sebagai pertumbuhan tersuspensi Peranan Mikroorganisme Dalam Pengolahan Biologis Dalam pengolahan biologis keberadaan mikroorganisme sangat dibutuhkan karena proses tidak akan berlangsung tanpa kehadiran mikroorganisme pengurai. Berdasarkan kebutuhan nutrisi yang digunakan, mikro-organisme dapat dibedakan menjadi : 1) Mikroorganisme heterotrof, yaitu mikroorganisme yang memakai substrat organik karbon sebagai sumber energi. 2) Mikroorganisme autotrof, mikroorganisme yang memakai - senyawa CO 2 atau HCO 3 sebagai sumber karbon untuk proses metabolismenya, dimana sumber karbon diperoleh dari proses oksidasi dari bakteri heterotrof. 3) Mikroorganisme fakultatif autotrof, yaitu mikroorganisme yang dapat menggunakan CO 2 dan senyawa organik sebagai sumber karbon. Bakteri, jamur, alga, protozoa, crustacea dan virus adalah mikroorganisme yang berperan penting dalam proses pengolahan air buangan. Diantara mikroorganisme yang memegang peranan terpenting adalah bakteri dan juga yang paling banyak digunakan dalam proses pengolahan air buangan, sehingga struktur sel mikroorganisme lainnya dapat disamakan dengan bakteri. Sel bakteri sebagian besar terdiri dari air (80%) dan sisanya merupakan materi kering (20%). Materi kering tersebut terdiri dari 10 % bahan anorganik dan 90 % bahan organik (C 5 H 7 O 2 N). Untuk memperoleh hasil yang memuaskan dari suatu proses pengolahan air limbah secara biologis diperlukan desain sistem pengolahan yang efektif. Untuk mendapatkan desain yang efektif diperlukan faktor-faktor berikut : 184

11 1) Kebutuhan nutrisi mikroorganisme 2) Faktor-faktor lingkungan yang mempengaruhi pertumbuhan mikroorganisme 3) Metabolisme mikroorganisme 4) Hubungan antara pertumbuhan mikroorganisme dan pemakaian substrat Berdasarkan temperatur untuk tumbuh dan berkembang biak, maka mikroorganisme dapat digolongkan menjadi 3 (tiga) jenis, yaitu : 1. Mikroorganisme Psikofilik, yaitu mikroorganisme yang hidup dan tumbuh pada temperatur (10 30) o C, dengan temperatur optimal (12 18) o C. 2. Mikroorganisme Mesofilik, yaitu mikroorganisme yang hidup dan tumbuh pada temperatur (20 50) o C, dengan temperatur optimal (25 40) o C. 3. Mikroorganisme Thermofilik, yaitu mikroorganisme yang hidup dan tumbuh pada temperatur (35 75) o C, dengan temperatur optimal (55 65) o C. Berdasarkan sumber energi yang dibutuhkan untuk proses metabolismenya, dapat digolongkan menjadi : 1. Mikroorganisme fototrof, yaitu mikroorganisme yang memakai cahaya sebagai sumber energi. 2. Mikroorganisme kemototrof, yaitu mikroorganisme yang memanfaatkan hasil reaksi oksidasi-reduksi untuk memenuhi kebutuhan energi. Mikroorganisme mengalami proses metabolisme yang terdiri dari katabolisme dan anabolisme. Proses anabolisme memerlukan energi (reaksi endergonik) dan terjadi pada proses sintesa mikroorganisme. Sedangkan proses katabolisme yang terjadi pada proses oksidasi dan respirasi merupakan reaksi eksergonik karena melepaskan energi. Proses transformasi substrat berlangsung dalam suatu kelompok protein yang berperan sangat penting dalam proses biologis, yaitu enzim yang bersifat katalis. Kultur bakteri melakukan konversi yang dapat digambarkan menurut reaksi berikut ini : 185

12 Oksidasi dan sintesa : (bahan organik) bakteri COHNS + O 2 + Nutrien CO 2 + NH 3 + C 5 H 7 NO 2 Respirasi endogenous : C 5 H 7 NO O 2 bakteri 5 CO 2 + NH 3 + 2H 2 O + energi Bahan organik seperti C, O, H, N dan S terkandung dalam air buangan Proses Biofilter Unggun Tetap (Fixed Bed Biofilter) Reaktor fixed film upflow biasa disebut dengan biofilter. Sebenarnya nama ini kurang sesuai karena dalam hal ini penyaringan tidaklah berperan penting. Sebenarnya reaktor ini merupakan paket reaktor biologis yang diisi dengan batu ataupun modul plastik yang dapat disesuaikan dengan berbagai macam saluran dan daerah penyerapan yang luas. Air buangan masuk ke reaktor melalui dasar reaktor, kemudian secara overflow akan mencapai atas. Bakteri terdapat dalam bentuk gumpalan seperti menempel pada permukaan filter. Biofilter lekat terendam merupakan reaktor yang dilengkapi dengan media seperti kerikil, pasir, plastik dan partikel karbon aktif sebagai tempat pertumbuhan mikroorganisme. Di dalam pengoperasiannya, media dapat terendam sebagaian ataupun seluruhnya, maupun juga hanya dilewati air. Reaktor ini merupakan reaktor dengan pertumbuhan terlekat di atas suatu media dengan membentuk suatu lapisan lendir untuk melekat di atas permukaan media tersebut. Lapisan ini disebut biofilm. Beberapa keuntungan dari jenis reaktor ini antara lain : Proses relatif tidak mudah terpengaruh oleh perubahan debit aliran maupun besarnya beban pencemar baik itu yang bersifat mendadak ataupun tidak. Pengontrolan terhadap senyawa beracun yang masuk secara tiba-tiba ke dalam reator lebih mudah. Hal ini di tandai dengan komposisinya yang sering berubah-ubah. Dapat dipergunakan pada reaktor berukuran kecil. 186

13 Biofilm merupakan lapisan yang terdiri dari sel-sel bio solid dan material inorganik dalam bentuk polimerik matriks yang menempel pada suatu media penyokong. Akumulasi dari biofilm pada media solid merupakan suatu hasil dari proses mikrobiologi, fisis dan kimia yang terjadi di dalam fase liquid-biofilm-media. Mekanisme proses yang terjadi adalah : Transportasi dan adsorpsi zat organik dan nutrien dari fase liquid ke fase biofilm atau media. Transportasi mikroorganisme dari fasa liquid ke biofilm/ media. Adsorpsi mikroorganisme pada biofilm Reaksi metabolisme mikoorganisme yang terjadi pada biofilm memungkinkan terjadinya mekanisme pertumbuhan, pemeliharaan dan kematian sel. Pelekatan dari sel yaitu pada saat lapisan biofilm mulai terbentuk dan terakumulasi secara lanjut dan granual pada lapisan biofilm-media. Mekanisme pelepasan biofilm dan produk lainnya. Pertumbuhan mikroorganisme akan terus berlangsung pada slime yang sudah terbentuk sehingga ketebalan slime bertambah. Difusi makanan dan O 2 akan berlangsung sampai ketebalan maksimum. Pada ketebalan maksimum makanan dan O 2 tidak mampu lagi mencapai permukaan padat atau bagian terjauh dari fasa cair. Hal ini menyebabkan lapisan biomassa akan terbagi menjadi 2 bagian, yaitu lapisan aerob dan lapisan anaerob. Gambar 8.3. Mekanisme Proses Metabolisme Dalam Sistem Biofilm 187

14 Media Penyangga Sebagai tempat tumbuh dan berkembang mikroorganisme, media yang akan digunakan dapat terbuat dari bahan organik dan anorganik. Media dari bahan organik antara lain terdapat dalam bentuk tali, jaring, butiran tak teratur, plate dan sarang tawon. Media banyak yang dibuat dengan cara dicetak dari bahan tahan karat dan ringan seperti PVC dengan luas permukaan spesifik yang besar dan porositas rongga yang besar sehingga dapat melekatkan mikroorganisme dalam jumlah besar tanpa menyebabkan kebuntuan. Untuk media anorganik antara lain batu pecah, kerikil, batu marmer, tembikar, batu bara muda (kokas). Untuk mendapatkan permukaan media yang luas, media dapat dimodifikasi dalam berbagai bentuk seperti bergelombang, saling-silang dan sarang tawon. Dua sifat paling penting yang harus ada dari suatu media adalah : 1. Luas permukaan media, semakin luas permukaan media maka semakin besar jumlah biomassa per unit volume. 2. Persentase ruang kosong, semakin besar ruang kosong maka semakin besar kontak antara substrat dalam air buangan dengan biomassa yan menempel pada media pendukung. Tabel 8.2. Karakteristik Perbandingan Media No Jenis media Luas permukaan spesifik (m 2 /m 3 ) 1 Trikling filter dengan batu pecah Modul sarang tawon Tipe jaring 50 4 RBC Proses Koagulasi dan Flokulasi Koagulasi atau pencampuran adalah penambahan bahan kimia yang dapat digunakan untuk menggabungkan koloid dengan cara merusak stabilitas dari partikel koloid yang disebut dengan koagulasi kimia. Kekeruhan dan warna yang terdapat dalam air yang disebabkan oleh bahan organik sebagai bahan pengganggu dapat dihilangkan dengan proses koagulasi. 188

15 Flokulasi didefinisikan sebagai pengadukan lambat untuk menggabungkan atau menggumpalkan partikel-partikel koloid yang telah mengalami destabilisasi, sehingga terbentuk flok yang berat dan mudah mengendap. Kecepatan penggumpalan ini ditentukan oleh banyaknya tumbukan yang terjadi antara partikel koloid dan efektifitas tumbukan yang terjadi. Proses koagulasi-flokulasi dikenal juga sebagai proses pengadukan cepat dan pengadukan lambat. Pengadukan cepat dimaksudkan untuk menghasilkan penyebaran bahan-bahan kimia yang ditambahkan ke dalam air olahan dan diharapkan terjadi kondisi turbulen. Pengadukan lambat bertujuan destabilisasi partikel-partikel koloid sehingga saling kontak dan terjadi penggabungan Bahan Koagulan Dalam proses koagulasi memerlukan bahan kimia yang disebut koagulan. Bahan yang sering digunakan sebagai koagulan adalah senyawa aluminium dan senyawa besi. Senyawa ini di dalam air akan terionisasi menghasilkan kation dan anion valensi tinggi. Senyawa aluminium yang umum digunakan adalah tawas (Al 2 (SO 4 ) 3 ) dan Poly Aluminium Chlorida (PACl), sedangkan senyawa besi yang biasa dipakai adalah ferro sulfat (FeSO 4 ) dan senyawa lainnya adalah campuran tawas dan kapur atau campuran tawas dan soda abu. Walaupun senyawa aluminium lebih populer penggunaannya daripada senyawa besi, tetapi ternyata garam-garam besi memberikan hasil yang menguntungkan daripada aluminium. Keuntungan yang paling nyata adalah rentang ph yang lebih lebar daripada aluminium Rancang Bangun IPAL Pencucian Tekstil Proses Pengolahan Air limbah yang berasal dari limbah pencucian tekstil serta limbah domestik dialirkan melalui saluran terbuka yang dilengkapi dengan bak pemisah pasir, dan selanjutnya air limbah dialirkan ke bak penampung yang berfungsi sebagai bak ekualisasi. Bak ekualisasi ini dilengkapi dengan saringan kasar dan saringan halus pada bagian inletnya (saluran masuk), yang berfungsi untuk 189

16 menyaring kotoran padat yang ikut di dalam air limbah. Dari bak ekualisasi, air limbah dipompa ke bak pengendapan kimia sambil diinjeksi dengan bahan koagulan ferosulfat. Efluen limbah dari bak pengendapan kimia selanjutnya dialirkan secara gravitasi ke reaktor biofilter anerob, selaqnjutna efluen dari reaktor biofilter anaerob dialirkan ke reaktor biofilter anaerob-aerob yang terdiri dari bak pengendapan awal, biofilter zona anaerob, biofilter zona aerob dan bak pengendapan akhir. Efluen dari biofilter anerob pertama masuk ke bak pengendapan awal, dan dari bak pengendapan awal air limbah dialirkan ke biofilter zona anaerob dengan arah aliran dari atas ke bawah, dan dari bawah ke atas. Di dalam bak biofilter anaerob tersebut diisi dengan media dari bahan plastik tipe sarang tawon. Jumlah bak kontaktor anaerob terdiri dari dua buah ruangan. Penguraian zat-zat organik yang ada dalam air limbah dilakukan oleh bakteri anaerobik atau facultatif aerobik. Setelah beberapa hari operasi, pada permukaan media filter akan tumbuh lapisan film mikro-organisme. Mikro-organisme inilah yang menguraikan zat organik yang belum sempat terurai pada bak pengendap Air limpasan dari bak biofilter anaerob dialirkan ke bak biofilter aerob. Di dalam bak biofilter aerob ini diisi dengan media dari bahan pasltik tipe rarang tawon, sambil diaerasi atau dihembus dengan udara sehingga mikro organisme yang ada akan menguraikan zat organik yang ada dalam air limbah serta tumbuh dan menempel pada permukaan media. Dengan demikian air limbah akan kontak dengan mikro-orgainisme yang tersuspensi dalam air maupun yang menempel pada permukaan media yang mana hal tersebut dapat meningkatkan efisiensi penguraian zat organik, deterjen serta mempercepat proses nitrifikasi, sehingga efisiensi penghilangan ammonia menjadi lebih besar. Dari bak aerasi, air dialirkan ke bak pengendap akhir. Di dalam bak ini lumpur aktif yang mengandung massa mikroorganisme diendapkan dan dipompa kembali ke bagian inlet bak aerasi dengan pompa sirkulasi lumpur. Sedangkan air limpasan dialirkan ke bak khlorinasi. Di dalam bak kontaktor khlor ini air limbah dikontakkan dengan senyawa khlor untuk membunuh micro-organisme patogen. Air olahan, yakni air yang keluar setelah proses khlorinasi dapat langsung 190

17 dibuang ke sungai atau saluran umum. Dengan menggunakan kombinasi proses pengendapan kimia dengan proses biofilter anaerob dan aerob tersebut selain dapat menurunkan zat organik (BOD, COD), ammonia, deterjen, padatan tersuspensi (SS), phospat dan lainnya. Diagram proses pengolahan air limbah pencucian tekstil menggunakan kombinasi proses pengendapan kimia dengan biofilter anaerob-aerob dan skenario penurunan konsentrasi BOD dapat dilihat pada Gambar 8.4, sedangankan Diagram proses biofilter anaerob-aerob dan skenario penurunan konsentrasi BOD dapat dilihat pada Gambar Keunggulan Proses Proses dengan Biofilter Anaerob-Aerob ini mempunyai beberapa keuntungan yakni : Adanya air buangan yang melalui media kerikil yang terdapat pada biofilter mengakibatkan timbulnya lapisan lendir yang menyelimuti kerikil atau yang disebut juga biological film. Air limbah yang masih mengandung zat organik yang belum teruraikan pada bak pengendap bila melalui lapisan lendir ini akan mengalami proses penguraian secara biologis. Efisiensi biofilter tergantung dari luas kontak antara air limbah dengan mikro-organisme yang menempel pada permukaan media filter tersebut. Makin luas bidang kontaknya maka efisiensi penurunan konsentrasi zat organiknya makin besar. Selain menghilangkan atau mengurangi BOD dan COD, cara ini dapat juga mengurangi konsentrasi padatan tersuspensi atau suspended solids, deterjen, ammonium dan posphor. Biofilter juga berfungsi sebagai media penyaring air limbah yang melalui media ini. Sebagai akibatnya, air limbah yang mengandung suspended solids dan bakteri E.coli setelah melalui filter ini akan berkurang konsentrasinya. Efesiensi penyaringan akan sangat besar karena dengan adanya biofilter up flow yakni penyaringan dengan sistem aliran dari bawah ke atas akan mengurangi kecepatan partikel yang terdapat pada air buangan dan partikel yang tidak terbawa aliran ke atas akan mengendapkan di dasar bak filter. Sistem biofilter ini sangat sederhana, operasinya mudah dan tanpa memakai bahan kimia serta tanpa membutuhkan energi. Poses ini cocok digunakan untuk mengolah air limbah dengan kapasitas yang tidak terlalu besar. 191

18 Gambar 8.4. Diagram Proses Pengolahan Air Limbah Pencucian Tekstil Menggunakan Kombinasi Proses Pengendapan Kimia Dengan Biofilter Anaerob-Aerob Dan Skenario Penurunan Konsentrasi BOD Gambar 8.5. Diagram Proses Biofilter Anaerob-Aerob Dan Skenario Penurunan Konsentrasi BOD. Dengan kombinasi proses Anaerob-Aerob, efisiensi penghi-langan senyawa phospor menjadi lebih besar bila diban-dingankan dengan proses anaerob atau proses aerob saja. Selama berada pada kondisi anaerob, senyawa phospor anorganik yang ada dalam sel-sel mikrooragnisme akan keluar sebagai akibat hidrolosa senyawa phospor. Sedang-kan energi yang dihasilkan digunakan untuk menyerap BOD yang ada di dalam air limbah. Selama berada pada kondisi aerob, senyawa phospor terlarut akan diserap oleh bakteria atau mikroorganisme dan akan sintesa menjadi polyphospat dengan menggunakan energi yang dihasilkan oleh proses oksidasi senyawa organik (BOD). 192

19 Dengan demikian dengan kombinasi proses anaerob-aerob dapat menghilangkan BOD maupun phospor dengan baik. Proses ini dapat digunakan untuk pengolahan air limbah dengan beban organik yang cukup besar. Pengelolaannya sangat mudah. Biaya operasinya rendah. Dibandingkan dengan proses lumpur aktif, Lumpur yang dihasilkan relatif sedikit. Dapat menghilangkan nitrogen dan phospor yang dapat menyebabkan euthropikasi. Suplai udara untuk aerasi relatif kecil. Dapat digunakan untuk air limbah dengan beban BOD yang cukup besar. Dapat menghilangan padatan tersuspensi dengan baik Contoh Rancang Bangun dan Spesifikasi Teknis IPAL Kapasitas 20 m 3 / hari Dalam desain unit pengolahan limbah tekstil kapasitas individual ini ada beberapa kriteria desain yang ditetapkan, dengan mempertimbang kondisi air baku (campuran dengan domestik waste) dan kualitas air keluaran yang ditetapkan adalah sebagai berikut : Kapasitas Pengolahan : 20 m3/hari Influent BOD : 1500 mg/l Effluent BOD : < 50 mg/l Effluent SS : < 50 ppm Efisiensi pengolahan : % Bak Ekualisasi Debit Air Limbah = 20 m 3 /hari = 835 lt/jam = 0,835 m 3 /jam Konsentrasi BOD dalam air limbah = 1500 mg/l Waktu Tinggal = 10 Jam Volume Efektif = 10/24 x 20 m 3 = 8,34 m 3 Dimensi : Lebar : 1,5 m Panjang : 4 m 193

20 Kedalaman : 1,38 m dibulatkan 1,5m Tinggi Ruang Bebas : 0,5 m Jadi : Dimensi Bak ekualisasi = 1,5 m x 4 m x 2 m Disain bak dapat dilihat seperti pada Gambar IV.3. Bak Pengendapan Kimia Tipe Bak Pengendap adalah Pengendapan dengan papan miring. Efisiensi Penurunan BOD = 45 % Konsentrasi BOD Masuk = 1500 mg/l Konsentrasi BOD Keluar = 825 mg/l Waktu tinggal di dalam bak = 6 jam Volume Efektif = 5 m 3 Dimensi: Lebar : 1,5 m Panjang : 2,5 m Kedalaman : 1,3 m Tinggi ruang bebas: 0.2 m Dimensi Bak : 1,5 m x2,5 m x1,5 m Disain bak dapat dilihat seperti pada Gambar IV.4. Kebutuhan Bahan Kimia (Koagulan) Bahan kimia yang digunakan : ferosulfat (FeSO 4.n H 2 O) Tipe : butiran (granular) Dosis Ferosulfat = 400 mg/l Debit Limbah = 20 m 3 /hari. Laju alir pompa dosing = liter/jam = 0,24 0,36 m 3 /hari Untuk menentukan konsentrasi Ferosulfat di dalam larutan Ferosulfat (larutan koagulan) dapat dihitung berdasarkan ilustrasi sepeti pada Gambar 8.6. untuk mendapatkan persamaan : Q1 x C1 + Q2 x C2 = Q3 x C3 dimana : Q1 = Debit air limbah (m 3 /hari) C1 = Konsentrasi ferosulfat awal di dalam air Limbah Q2 = Laju alir larutan ferosulfat yang diinjeksikan ke dalam air limbah (m 3 /hari) C2 = Konsentrasi ferosulfat di dalam larutan (gr/m 3 ) Q3 = Laju alir total (m 3 ) C3 = Konsentrasi ferosulfat yang diharapkan (400 gr//m 3 ) 194

21 Gambar 8.6. Ilustrasi Perhitungan Injeksi Ferosulfat Q1 = 20 m 3 /hari Ci = 0 Q2 = 0,24 m 3 /hari C2 = belum diketahui Q3 = 20,24 m 3 /hari C3 = 400 gr/m 3 20,24 X 400 Jadi : C2 = gr/m 3 = gr/m 3 0,24 Dengan demikian untuk mendapatkan konsentrasi injeksi ferosulfat sebesar 400 mg/l dilakukan dengan cara menginjeksikan larutan ferosulfat dengan konsentrasi mg/l ke dalam air limbah dengan laju injeksi 0,24 m 3 /hari atau 10 liter/jam. Untuk membuat larutan ferosulfat dengan konsentrasi gr/m 3 dilakukan dengan cara melarutkan gr ferosulfat ke dalam 200 liter air. Bak Biofilter Anaerob Debit Air Limbah = 20 m 3 /hari = 835 lt/jam = 0,835 m 3 /jam Efisiensi Penurunan BOD = 70 % Konsentrasi BOD Masuk = 825 mg/l Konsentrasi BOD Keluar = 330 mg/l 195

22 Berdasarkan percobaan beban BOD Volumetrik 1-4 kg/m 3 - reaktor.hari didapatkan efisiensi penghilangan BOD %. Ditetapkan : Beban BOD volumetrik 3,5 kg-bod/m 3.hari. Jumlah BOD masuk Reaktor = 20 m 3 /hari x 825 gr/m 3 = gr-bod/hari =16,5 kg-bod/hari. 16,5 kg-bod/hari Volume Efektif Reaktor = = 4,7 m 3 3,5 kg-bod/m 3.hari Dimensi Reaktor Biofilter Anaerobik : Lebar : 1,5 m Panjang : 1,5 m Kedalaman air : 2,0 m Tinggi ruang bebas : 0,3 m Reaktor Biofilter Anaerobik tersebut diisi dengan media dari bahan plastik tipe sarang tawon. Ratio volume media dengan volume efektif Reaktor adalah 0,6. Volume media = 0,6 x 4,7 m 3 = 2,82 m 3 16,5 kg-bod/hari Beban BOD per volume media = 2,82 m 3 = 5,85 kg-bod/m 3.hari. Untuk standar High Rate Trickiling Filter beban BOD berkisar antara 0,4 4,7 kg-bod/m 3.hari dengan efisiensi pengolahan sekitar 80 %. Bak Biofilter Anaerob-Aerob (Pengolahan Lanjut) Diagram proses biofilter anaerob-aerob dan skenario penurunan konsentrasi BOD di dalam reaktor dapat dilihat pada gambar di bawah ini. Reaktor terdiri dari beberapa bagian yakni : bak pengendapan awal, bak biofilter anaerob, bak biofilter aerob dan bak pengendapan akhir. 196

23 Gambar 8.7. Diagram Proses Biofilter Anaerob-Aerob Dan Skenario Penurunan Konsentrasi BOD a. Ruang Pengendapan Awal Debit Air Limbah = 20 m 3 /hari = 835 lt/jam = 0,835 m 3 /jam Waktu Tinggal = 1,4 Jam Efisiensi Penurunan BOD = 25 % Konsentrasi BOD Masuk = 330 mg/l Konsentrasi BOD Keluar = 250 mg/l Volume Efektif = 1,4/24 x 20 m 3 = 1,18 m 3 Dibulatkan menjadi 1,2 m 3 Dimensi Bak : Lebar : 1 m Panjang : 0,6 m Kedalaman air : 2 m Tinggi ruang bebas : 0,1 m Chek Waktu Tinggal rata-rata = 1,44 Jam Beban permukaan (surface loading) rata-rata = 20 m 3 /hari = = 33 m3/m2.hari (0,6 x 1) m 2 Standar JWWA : Beban permukaan = m3/m2.hari. (JWWA) 197

24 b. Bak Biofilter Anaerob (Zona Pengolahan Lanjut Anoksik ) Debit Air Limbah = 20 m 3 /hari = 835 lt/jam = 0,835 m 3 /jam Konsentrasi BOD Masuk = 250 mg/l Konsentrasi BOD Keluar = 100 mg/l Efisiensi Penurunan BOD = 60 % Jumlah BOD masuk Reaktor = 20 m 3 /hari x 250 gr/m 3 = 5000 gr-bod/hari = 5 kg-bod/hari. Ditetapkan : Beban BOD volumetrik 2,0 kg-bod/m 3.hari. 5 kg-bod/hari Volume Efektif Reaktor = = 2,5 m 3 2,0 kg-bod/m 3.hari Dimensi Bak Lebar Panjang Kedalaman air Tinggi ruang bebas : 1 m X 1,2 m X 2 m : 1 m : 0,6 m : 2 m : 0,1 m Dibagi menjadi dua ruangan, masing-masing berukuran : Lebar Panjang Kedalaman air Tinggi ruang bebas Waktu Tinggal Total : 1 m : 0,6 m : 2 m : 0,1 m : 3 Jam Tiap-tiap ruang diisi dengan media biofiloter dati bahan plastik tipe sarang tawon. Ratio volume media terhadap volume reaktor = 0,7 Volume media yang diperlukan = 0,7 x 2,5 m 3 = 1,75 m 3 5 kg-bod/hari Beban BOD per volume media = 1,75 m 3 = 2,85 kg-bod/m 3.hari. 198

25 Untuk standar High Rate Trickiling Filter beban BOD berkisar antara 0,4 4,7 kg-bod/m 3.hari dengan efisiensi pengolahan sekitar 80 %. c. Bak Biofilter Aerob (Zona Pengolahan Lanjut Aerob) Debit Air Limbah = 20 m 3 /hari = 835 lt/jam = 0,835 m 3 /jam Konsentrasi BOD Masuk = 100 mg/l Konsentrasi BOD Keluar = 50 mg/l Efisiensi Penurunan BOD = 50 % Jumlah BOD masuk Reaktor = 20 m 3 /hari x 100 gr/m 3 = 2000 gr-bod/hari = 2 kg-bod/hari. BOD yang dihilangkan = 0,5 x 2 kg-bod/hari = 1,0 kg-bod/hari Ditetapkan : Beban BOD volumetrik 1,7 kg-bod/m 3.hari. 2 kg-bod/hari Volume Efektif Reaktor = = 1,2 m 3 1,7 kg-bod/m 3.hari Dimensi Bak : 1 m X 1,2 m X 2 m Lebar : 1 m Panjang : 0,6 m Kedalaman air : 2 m Tinggi ruang bebas : 0,1 m Waktu Tinggal : 1,5 Jam Reaktor diisi dengan media biofiloter dari bahan plastik tipe sarang tawon. Ratio volume media terhadap volume reaktor = 0,7 Volume media yang diperlukan = 0,7 x 1,2 m 3 = 0,84 m 3 2 kg-bod/hari Beban BOD per volume media = 0,84 m 3 = 2,38 kg-bod/m 3.hari. 199

26 Kebutuhan Oksigen (Udara) : Kebutuhan oksigen di dalam reaktor biofilter aerob sebanding dengan jumlah BOD yang dihilangkan. Kebutuhan teoritis = Jumlah BOD yang dihilangkan = 1,0 kg/hari. Faktor keamanan ditetapkan + 1,4 Kebutuhan Oksigen Teoritis = 1,4 x 1,0 kg/ hari = 1,4 kg/hari. Temperatur udara rata-rata = 28 o C Berat Udara pada suhu 28 o C = 1,1725 kg/m 3. Di asumsikan jumlah oksigen didalam udara 23,2 %. Jumlah Kebutuhan Udara teoritis = 1,4 kg/hari = 1,1725 kg/m 3 x 0,232 g O 2 /g Udara = 5,15 m 3 /hari. Efisiensi Difuser = 1 % (tipe pipa berlubang) 5,15 m 3 /hari Kebutuhan Udara Aktual = = 0,01 = 515 m 3 /hari = 0,330 m 3 /menit. = 330 liter per menit Chek : Ratio Volume Udara /Volume Air Limbah = 25,75 Blower Udara Yang diperlukan : Spesifikasi Blower : Kapasitas Blower = 500 liter/menit Head = 2800 mm-aqua Jumlah = 1 unit Tipe blower = HIBLOW Listrik = 60 watt, 220 volt. Ruangan Pengendapan Akhir Debit Air Limbah = 20 m 3 /hari = 835 lt/jam = 0,835 m 3 /jam Waktu Tinggal = 1,4 Jam Volume Efektif = 1,4/24 x 20 m 3 = 1,18 m 3 dibulatkan 1,2 m 3 Dimensi = 1 m X 0,6 m X 2 m Konsentrasi BOD Masuk = 50 mg/l 200

27 Konsentrasi BOD Keluar = 50 mg/l Chek Waktu Tinggal rata-rata = 1,44 Jam Beban permukaan (surface loading) rata-rata = 20 m 3 /hari = = 33 m3/m2.hari (0,6 x 1) m 2 Standar JWWA : Beban permukaan = 20 50m3/m2.hari. (JWWA) Dari hasil perhintungan di atas ditentukan spesifikasi teknis bangunan IPAL serta peralatan pendukung sebagai berikut : 1) Bak Penampung Air Limbah Dimensi : 150 cm X 400 cm X 200 cm Bahan : Beton semen cor Volume Efektif : 10 M3 Lebar : 1,5 m Panjang : 4 m Kedalaman : 1,5m Tinggi Ruang Bebas : 0,5 m Waktu Tinggal : 10 jam 2) Bak Pengedapan dengan Bahan Kimia Dimensi : 150 cm X 250 cm X 150 cm Lebar : 1,5 m Panjang : 2,5 m Kedalaman : 1,3 m Tinggi ruang bebas : 0.2 m Bahan : Fiber glass Volume Efektif : 5 M3 3) Unit Reaktor Biofiloter Anaerob Dimensi : 150 cm X 150 cm X 230 cm Bahan : Fiber glass Volume Efektif : 4,5 M3 Total Retention Time : 5 jam Tipe media biofilter : Sarang tawon, Bahan : PVC Volume Media : 2,8 m 3 4) Unit Reaktor Biofilter Anaerob-Aerob Dimensi : 100 cm X 310 cm X 225 cm Bahan : Fiber glass Volume Efektif : 6 M3 Total Retention Time : 7,2 jam Tipe media biofilter : Sarang tawon 201

28 Bahan : PVC Volume Media biofilter : 2,7 M3 5) Media Pembiakan Mikroba Material : PVC sheet Ketebalan : 0,15 0,23 mm Luas Kontak Spsesifik : m2/m3 Diameter lubang : 2 cm x 2 cm Warna : bening transparan Berat Spesifik : kg/m3 Porositas Rongga : 0,98 6) Blower Udara Tipe : Hi Blow Listrik : 60 watt, 220 volt. Head : 2 m air Q udara : 500 liter/menit Jumlah : 1unit 7) Pompa Air Baku Tipe :Submersible Pump Kapasitas : 20 liter/menit Listrik : 250 watt, 220 volt Total Head : 8 meter Jumlah : 1 unit 8) Pompa Sirkulasi Tipe : Submersible Pump Kapasitas : 10 liter/menit Listrik : 60 watt Total Head : 6 meter 9) Bak Kontrol Dimensi : 50 cm x 50 cm x 50 cm bahan : bata-semen Jumlah : 1 unit. 10) Pompa Dosing Tipe : Pulsa Feeder 150/100 Tekanan : 7 Bar Kapasitas : 15 liter per jam Jumlah : 1 unit 11) Chemical Tank Volume : 200 liter Bahan : Polyethylene Perlenkapan : Motor Pengaduk Listrik : 200 watt, 220 volt 202

29 Perkiraan Biaya Operasional IPAL Kapasitas 20 m 3 /Hari Biaya untuk pembangunan unit pengolah limbah individual dihitung berdasarkan kebutuhan biaya listrik dan kebutuhan bahan kimia yang digunakan dlam hal ini menggunakan ferrosulfat dengan konsentrasi 400 mg/l. Rincian biaya litrik dan biaya bahan kimia per hari dapat dilihat pada Tabel 4.3. Dari tabel tersebut dapat diperkirakan biaya operasional IPAL industri kecil tekstil kapasitas 20 m 3 per hari adalah Rp ,- per hari atau Rp.1.076,- per m 3 limbah. Tabel 8.3. Perkiraan Biaya Operasional IPAL per Hari No Pengeluaran Jumlah Harga Satuan (Rp) 1 Kebutuhan Listrik Pompa Limbah 250 watt Pompa sirkulasi 100 watt Pompa Dosing 50 watt Blower Udara 60 watt Total 460 watt Total 11,04 Kwh Bahan kimia Dosis 400 gr/m 3 x 20 m 3 8 kg TOTAL Jika diasumsikan tiap mesin menghasilkan limbah 3000 liter dan dapat mencuci 400 potong tekstil maka air limbah sebesar 20 m 3 merupakan air limbah yang dikeluarkan untuk mencuci tekstil sebanyak = (20 m 3 /3 m 3 )x400 potong = 2666 potong. Dengan demikian biaya limbah tiap potong tekstil yang dicuci yakni = 21520,- / 2666 potong = Rp. 8,07 per potong tekstil. 203

30 204 Gambar 8.8. Diagram Proses Pengolahan Air Limbah Pencucian Tekstil Dengan Menggunakan Kombinasi Proses Pengendapan Kimia Dengan Proses Biofilter Anaerob-Aerob

31 Gambar 8.9. Tata Letak Peralatan IPAL Gambar Contoh Pilot Plant IPAL Industri Pencucian Tekstil Kapasitas M 3 Per Hari 205

32 DAFTAR PUSTAKA "The Study OnUrban Drainage And Waste Water Disposal Project In The City Of Jakarta,, JICA, December , Gesuidou Shissetsu Sekkei Shisin to Kaisetsu, Nihon Gesuidou Kyoukai, FAIR, GORDON MASKEW et.al., "Eements Of Water Supply And Waste Water Disposal, John Willey And Sons Inc., GOUDA T., Suisitsu Kougaku - Ouyouben, Maruzen kabushiki Kaisha, Tokyo, HIKAMI, Sumiko., Shinseki rosohou ni yoru mizu shouri gijutsu (Water Treatment with Submerged Filter), Kougyou Yousui No.411, 12, METCALF AND EDDY, "Waste Water Engineering, Mc Graw Hill SUEISHI T., SUMITOMO H., YAMADA K., DAN WADA Y., Eisei Kougaku (Sanitary Engineering), Kajima Shuppan Kai, Tokyo, VIESSMAN W, JR., HAMER M.J., Water Supply And Polution Control, Harper & Row, New York,

BAB IV PILOT PLANT PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN MENGGUNAKAN KOMBINASI PROSES PENGENDAPAN KIMIA DENGAN PROSES BIOFILTER TERCELUP ANAEROB-AEROB

BAB IV PILOT PLANT PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN MENGGUNAKAN KOMBINASI PROSES PENGENDAPAN KIMIA DENGAN PROSES BIOFILTER TERCELUP ANAEROB-AEROB BAB IV PILOT PLANT PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN MENGGUNAKAN KOMBINASI PROSES PENGENDAPAN KIMIA DENGAN PROSES BIOFILTER TERCELUP ANAEROB-AEROB 129 IV.1 Rancang Bangun IPAL IV.1.1 Proses Pengolahan

Lebih terperinci

BAB IV PENGOLAHAN AIR LIMBAH INDUSTRI TEKSTIL

BAB IV PENGOLAHAN AIR LIMBAH INDUSTRI TEKSTIL BAB IV PENGOLAHAN AIR LIMBAH INDUSTRI TEKSTIL 4.1. Industri Kecil Tekstil Di Indonesia industri tekstil merupakan salah satu penghasil devisa bagi negara. Dalam melakukan kegiatannya, industri tekstil

Lebih terperinci

BAB 5 TEKNOLOGI PENGOLAHAN AIR LIMBAH FASILITAS LAYANAN KESEHATAN SKALA KECIL

BAB 5 TEKNOLOGI PENGOLAHAN AIR LIMBAH FASILITAS LAYANAN KESEHATAN SKALA KECIL BAB 5 TEKNOLOGI PENGOLAHAN AIR LIMBAH FASILITAS LAYANAN KESEHATAN SKALA KECIL 5.1 Masalah Air Limbah Layanan Kesehatan Air limbah yang berasal dari unit layanan kesehatan misalnya air limbah rumah sakit,

Lebih terperinci

BAB PENGOLAHAN AIR LIMBAH DOMESTIK

BAB PENGOLAHAN AIR LIMBAH DOMESTIK BAB PENGOLAHAN AIR LIMBAH DOMESTIK 9.1. Latar Belakang Masalah pencemaran lingkungan di kota-kota, khususnya di Tegal telah menunjukkan gejala yang cukup serius, terutama masalah pencemaran air. Penyebab

Lebih terperinci

RANCANG BANGUN INSTALASI PENGOLAHAN AIR LIMBAH RUMAH POTONG HEWAN (RPH) AYAM DENGAN PROSES BIOFILTER

RANCANG BANGUN INSTALASI PENGOLAHAN AIR LIMBAH RUMAH POTONG HEWAN (RPH) AYAM DENGAN PROSES BIOFILTER RANCANG BANGUN INSTALASI PENGOLAHAN AIR LIMBAH RUMAH POTONG HEWAN (RPH) AYAM DENGAN PROSES BIOFILTER Oleh : Nusa Idaman Said dan Satmoko Yudo Kelompok Teknologi Pengelolaan Air bersih dan Limbah Cair,

Lebih terperinci

Petunjuk Operasional IPAL Domestik PT. UCC BAB 2 PROSES PENGOLAHAN AIR LIMBAH

Petunjuk Operasional IPAL Domestik PT. UCC BAB 2 PROSES PENGOLAHAN AIR LIMBAH BAB 2 PROSES PENGOLAHAN AIR LIMBAH 5 2.1 Proses Pengolahan Air Limbah Domestik Air limbah domestik yang akan diolah di IPAL adalah berasal dari kamar mandi, wastavel, toilet karyawan, limpasan septik tank

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang PENDAHULUAN Latar Belakang Limbah merupakan sisa suatu kegiatan atau proses produksi yang antara lain dihasilkan dari kegiatan rumah tangga, industri, pertambangan dan rumah sakit. Menurut Undang-Undang

Lebih terperinci

BAB 13 UJI COBA IPAL DOMESTIK INDIVIDUAL BIOFILTER ANAEROB -AEROB DENGAN MEDIA BATU SPLIT

BAB 13 UJI COBA IPAL DOMESTIK INDIVIDUAL BIOFILTER ANAEROB -AEROB DENGAN MEDIA BATU SPLIT BAB 13 UJI COBA IPAL DOMESTIK INDIVIDUAL BIOFILTER ANAEROB -AEROB DENGAN MEDIA BATU SPLIT 304 13.1 PENDAHULUAN 13.1.1 Latar Belakang Masalah Masalah pencemaran lingkungan di kota besar, khususnya di Jakarta

Lebih terperinci

BAB PENGOLAHAN AIR LIMBAH INDUSTRI TEPUNG BERAS

BAB PENGOLAHAN AIR LIMBAH INDUSTRI TEPUNG BERAS BAB PENGOLAHAN AIR LIMBAH INDUSTRI TEPUNG BERAS 13.1. Pendahuluan Tepung beras merupakan bahan baku makanan yang sangat luas sekali penggunaannya. Tepung beras dipakai sebagai bahan pembuat roti, mie dan

Lebih terperinci

II. PENGELOLAAN AIR LIMBAH DOMESTIK GEDUNG SOPHIE PARIS INDONESIA

II. PENGELOLAAN AIR LIMBAH DOMESTIK GEDUNG SOPHIE PARIS INDONESIA II. PENGELOLAAN AIR LIMBAH DOMESTIK GEDUNG SOPHIE PARIS INDONESIA 2. 1 Pengumpulan Air Limbah Air limbah gedung PT. Sophie Paris Indonesia adalah air limbah domestik karyawan yang berasal dari toilet,

Lebih terperinci

BAB III PROSES PENGOLAHAN IPAL

BAB III PROSES PENGOLAHAN IPAL BAB III PROSES PENGOLAHAN IPAL 34 3.1. Uraian Proses Pengolahan Air limbah dari masing-masing unit produksi mula-mula dialirkan ke dalam bak kontrol yang dilengkapi saringan kasar (bar screen) untuk menyaring

Lebih terperinci

ALAT PENGOLAH AIR LIMBAH RUMAH TANGGA INDIVIDUAL ATAU SEMI KOMUNAL

ALAT PENGOLAH AIR LIMBAH RUMAH TANGGA INDIVIDUAL ATAU SEMI KOMUNAL BAB X ALAT PENGOLAH AIR LIMBAH RUMAH TANGGA INDIVIDUAL ATAU SEMI KOMUNAL KOMBINASI BIOFILTER ANAEROB DAN AEROB 257 Nusa Idaman Said X.1. PENDAHULUAN X.1.1 LATAR BELAKANG MASALAH Masalah pencemaran lingkungan

Lebih terperinci

BAB 12 UJI COBA PENGOLAHAN AIR LIMBAH DOMESTIK INDIVIDUAL DENGAN PROSES BIOFILTER ANAEROBIK

BAB 12 UJI COBA PENGOLAHAN AIR LIMBAH DOMESTIK INDIVIDUAL DENGAN PROSES BIOFILTER ANAEROBIK BAB 12 UJI COBA PENGOLAHAN AIR LIMBAH DOMESTIK INDIVIDUAL DENGAN PROSES BIOFILTER ANAEROBIK 286 12.1 PENDAHULUAN 12.1.1 Permasalahan Masalah pencemaran lingkungan di kota besar misalnya di Jakarta, telah

Lebih terperinci

III.2.1 Karakteristik Air Limbah Rumah Sakit Makna Ciledug.

III.2.1 Karakteristik Air Limbah Rumah Sakit Makna Ciledug. 39 III.1 Waktu dan Tempat Penelitian Penelitian dilakukan di Instalasi Pengolahan Air Limbah Rumah Sakit Makna, Ciledug yang terletak di Jalan Ciledug Raya no. 4 A, Tangerang. Instalasi Pengolahan Air

Lebih terperinci

BAB III PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN DENGAN PROSES BIOFILTER TERCELUP ANAEROB-AEROB UJI COBA SKALA LABORATORIUM

BAB III PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN DENGAN PROSES BIOFILTER TERCELUP ANAEROB-AEROB UJI COBA SKALA LABORATORIUM BAB III PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN DENGAN PROSES BIOFILTER TERCELUP ANAEROB-AEROB UJI COBA SKALA LABORATORIUM 37 III.1 Proses Pengolahan Air Limbah Secara Biologis Pengolahan air buangan secara

Lebih terperinci

BAB 11 CONTOH PERENCANAAN DAN PEMBANGUNAN IPAL DOMESTIK KAPASITAS 150 M 3 PER HARI

BAB 11 CONTOH PERENCANAAN DAN PEMBANGUNAN IPAL DOMESTIK KAPASITAS 150 M 3 PER HARI BAB 11 CONTOH PERENCANAAN DAN PEMBANGUNAN IPAL DOMESTIK KAPASITAS 150 M 3 PER HARI 233 11.1 Kriteria Perencanaan Pemilihan proses pengolahan air limbah domestik yang digunakan didasarkan atas beberapa

Lebih terperinci

A. Regulasi IPAL (Instalasi Pengolahan Air Limbah) atau Sewage Treatment Plant Regulation

A. Regulasi IPAL (Instalasi Pengolahan Air Limbah) atau Sewage Treatment Plant Regulation A. Regulasi IPAL (Instalasi Pengolahan Air Limbah) atau Sewage Treatment Plant Regulation 1. UU No 32 thn 2009 Tentang Perlindungan dan Pengelolaan Lingkungan Hidup Gambar 1. Pencemaran air sungai Pasal

Lebih terperinci

BAB 6 PENGOLAHAN AIR LIMBAH DENGAN PROSES TRICKLING FILTER

BAB 6 PENGOLAHAN AIR LIMBAH DENGAN PROSES TRICKLING FILTER BAB 6 PENGOLAHAN AIR LIMBAH DENGAN PROSES TRICKLING FILTER 97 6.1 Proses Pengolahan Pengolahan air limbah dengan proses Trickilng Filter adalah proses pengolahan dengan cara menyebarkan air limbah ke dalam

Lebih terperinci

BAB II UNIT INSTALASI PENGOLAHAN AIR LIMBAH (IPAL)

BAB II UNIT INSTALASI PENGOLAHAN AIR LIMBAH (IPAL) BAB II UNIT INSTALASI PENGOLAHAN AIR LIMBAH (IPAL) 5 2.1. Unit Instalasi Pengolahan Air Limbah Instalasi pengolahan air limbah PT. Kinocare Era Kosmetindo terdiri dari unit pemisah lemak 2 ruang, unit

Lebih terperinci

TEKNOLOGI PENGOLAHAN AIR LIMBAH DENGAN PROSES BIOFILM TERCELUP

TEKNOLOGI PENGOLAHAN AIR LIMBAH DENGAN PROSES BIOFILM TERCELUP TEKNOLOGI PENGOLAHAN AIR LIMBAH DENGAN PROSES BIOFILM TERCELUP Oleh : Ir. Nusa Idaman Said, M.Eng. *) Abstract Water pollution in the big cities in Indonesia has shown serious problems. One of the potential

Lebih terperinci

APLIKASI BIO-BALL UNTUK MEDIA BIOFILTER STUDI KASUS PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN

APLIKASI BIO-BALL UNTUK MEDIA BIOFILTER STUDI KASUS PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN APLIKASI BIO-BALL UNTUK MEDIA BIOFILTER STUDI KASUS PENGOLAHAN AIR LIMBAH PENCUCIAN JEAN Oleh : Nusa Idaman Said Kelompok Teknologi Pengelolaan Air Bersih dan Limbah Cair, Pusat Pengkajian dan Penerapan

Lebih terperinci

BAB 6 PEMBAHASAN 6.1 Diskusi Hasil Penelitian

BAB 6 PEMBAHASAN 6.1 Diskusi Hasil Penelitian BAB 6 PEMBAHASAN 6.1 Diskusi Hasil Penelitian Penelitian biofiltrasi ini targetnya adalah dapat meningkatkan kualitas air baku IPA Taman Kota Sehingga masuk baku mutu Pergub 582 tahun 1995 golongan B yakni

Lebih terperinci

BAB PENGOLAHAN AIR LIMBAH INDUSTRI SIRUP, KECAP DAN SAOS

BAB PENGOLAHAN AIR LIMBAH INDUSTRI SIRUP, KECAP DAN SAOS BAB PENGOLAHAN AIR LIMBAH INDUSTRI SIRUP, KECAP DAN SAOS 12.1. Pendahuluan Seiring dengan tingginya laju pertumbuhan penduduk dan pesatnya proses industrialisasi, kwalitas lingkungan hidup juga menurun

Lebih terperinci

BAB PENGOLAHAN AIR LIMBAH RUMAH MAKAN / RESTORAN

BAB PENGOLAHAN AIR LIMBAH RUMAH MAKAN / RESTORAN BAB PENGOLAHAN AIR LIMBAH RUMAH MAKAN / RESTORAN 4.1. Pendahuluan Rumah makan saat ini adalah suatu usaha yang cukup berkembang pesat seiring dengan meningkatnya jumlah penduduk dan kebutuhan masyarakat

Lebih terperinci

BAB I PENDAHULUAN. Dalam upaya meningkatkan derajat kesehatan masyarakat khususnya di kotakota

BAB I PENDAHULUAN. Dalam upaya meningkatkan derajat kesehatan masyarakat khususnya di kotakota BAB I PENDAHULUAN 1.1 Latar Belakang Dalam upaya meningkatkan derajat kesehatan masyarakat khususnya di kotakota besar, semakin banyak didirikan Rumah Sakit (RS). 1 Rumah Sakit sebagai sarana upaya perbaikan

Lebih terperinci

PENGOLAHAN AIR LIMBAH RUMAH TANGGA SKALA INDIVIDUAL

PENGOLAHAN AIR LIMBAH RUMAH TANGGA SKALA INDIVIDUAL BAB VI PENGOLAHAN AIR LIMBAH RUMAH TANGGA SKALA INDIVIDUAL TANGKI SEPTIK - FILTER UP FLOW 132 Nusa Idaman Said VI.1 PENDAHULUAN Masalah pencemaran lingkungan di kota besar misalnya di Jakarta, telah menunjukkan

Lebih terperinci

ALAT PENGOLAH AIR LIMBAH RUMAH TANGGA SEMI KOMUNAL KOMBINASI BIOFILTER ANAEROB DAN AEROB

ALAT PENGOLAH AIR LIMBAH RUMAH TANGGA SEMI KOMUNAL KOMBINASI BIOFILTER ANAEROB DAN AEROB ALAT PENGOLAH AIR LIMBAH RUMAH TANGGA SEMI KOMUNAL KOMBINASI BIOFILTER ANAEROB DAN AEROB Oleh Ir. Nusa Idaman Said, M.Sc. dan Heru Dwi Wahjono, B.Eng. Kelompok Teknologi Pengelolaan Air Bersih dan Limbah

Lebih terperinci

PENGOLAHAN AIR LIMBAH INDUSTRI KECIL TEKSTIL DENGAN PROSES BIOFILTER ANAEROB-AEROB TERCELUP MENGGUNAKAN MEDIA PLASTIK SARANG TAWON

PENGOLAHAN AIR LIMBAH INDUSTRI KECIL TEKSTIL DENGAN PROSES BIOFILTER ANAEROB-AEROB TERCELUP MENGGUNAKAN MEDIA PLASTIK SARANG TAWON PENGOLAHAN AIR LIMBAH INDUSTRI KECIL TEKSTIL DENGAN PROSES BIOFILTER ANAEROB-AEROB TERCELUP MENGGUNAKAN MEDIA PLASTIK SARANG TAWON Oleh : Ir. Nusa Idaman Said, M.Eng. *) Abstrak Masalah pencemaran air

Lebih terperinci

INSTALASI PENGELOLAAN AIR LIMBAH (IPAL)

INSTALASI PENGELOLAAN AIR LIMBAH (IPAL) INSTALASI PENGELOLAAN AIR LIMBAH (IPAL) Proses Pengelolaan Air Limbah secara Biologis (Biofilm): Trickling Filter dan Rotating Biological Contactor (RBC) Afid Nurkholis 1, Amalya Suci W 1, Ardian Abdillah

Lebih terperinci

PERANCANGAN INSTALASI PENGOLAHAN LIMBAH CAIR INDUSTRI GULA

PERANCANGAN INSTALASI PENGOLAHAN LIMBAH CAIR INDUSTRI GULA TUGAS MATA KULIAH PERANCANGAN PABRIK PERANCANGAN INSTALASI PENGOLAHAN LIMBAH CAIR INDUSTRI GULA Dosen Pengampu: Ir. Musthofa Lutfi, MP. Oleh: FRANCISKA TRISNAWATI 105100200111001 NUR AULYA FAUZIA 105100200111018

Lebih terperinci

BAB PENGOLAHAN AIR LIMBAH INDUSTRI PERHOTELAN

BAB PENGOLAHAN AIR LIMBAH INDUSTRI PERHOTELAN BAB PENGOLAHAN AIR LIMBAH INDUSTRI PERHOTELAN 3.1. Pendahuluan Untuk menjadikan pariwisata sebagai salah satu tambang emas, maka diperlukan berbagai fasilitas pendukung pariwisata. Salah satu fasilitas

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 3 METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian dilakukan di Water Treatment Plant (WTP) sungai Cihideung milik Institut Pertanian Bogor (IPB) kabupaten Bogor, Jawa Barat.Analisa laboratorium

Lebih terperinci

BAB 4 PAKET INSTALASI PENGOLAHAN AIR LIMBAH RUMAH SAKIT KAPASITAS 30 M 3 PER HARI. 4.1 Lokasi dan Kapasitas IPAL

BAB 4 PAKET INSTALASI PENGOLAHAN AIR LIMBAH RUMAH SAKIT KAPASITAS 30 M 3 PER HARI. 4.1 Lokasi dan Kapasitas IPAL BAB 4 PAKET INSTALASI PENGOLAHAN AIR LIMBAH RUMAH SAKIT KAPASITAS 30 M 3 PER HARI 4.1 Lokasi dan Kapasitas IPAL Untuk IPAL rumah sakit dengan kapasitas kecil dapat dibuat dalam bentuk paket IPAL rumah

Lebih terperinci

Kombinasi pengolahan fisika, kimia dan biologi

Kombinasi pengolahan fisika, kimia dan biologi Metode Analisis Untuk Air Limbah Pengambilan sample air limbah meliputi beberapa aspek: 1. Lokasi sampling 2. waktu dan frekuensi sampling 3. Cara Pengambilan sample 4. Peralatan yang diperlukan 5. Penyimpanan

Lebih terperinci

BAB 5 PENGOLAHAN AIR LIMBAH DENGAN PROSES FILM MIKROBIOLOGIS (BIOFILM)

BAB 5 PENGOLAHAN AIR LIMBAH DENGAN PROSES FILM MIKROBIOLOGIS (BIOFILM) BAB 5 PENGOLAHAN AIR LIMBAH DENGAN PROSES FILM MIKROBIOLOGIS (BIOFILM) 90 5.1 Klasifikasi Proses Film Mikrobiologis (Biofilm) Proses pengolahan air limbah dengan sistem biofilm atau biofilter secara garis

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. KARAKTERISTIK LIMBAH CAIR Limbah cair tepung agar-agar yang digunakan dalam penelitian ini adalah limbah cair pada pabrik pengolahan rumput laut menjadi tepung agaragar di PT.

Lebih terperinci

BAB I PENDAHULUAN. Pesatnya pertumbuhan dan aktivitas masyarakat Bali di berbagai sektor

BAB I PENDAHULUAN. Pesatnya pertumbuhan dan aktivitas masyarakat Bali di berbagai sektor BAB I PENDAHULUAN 1.1 Latar Belakang Pesatnya pertumbuhan dan aktivitas masyarakat Bali di berbagai sektor seperti pariwisata, industri, kegiatan rumah tangga (domestik) dan sebagainya akan meningkatkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Air Limbah Limbah deidefinisikan sebagai sisa atau buangan dari suatu usaha atau kegiatan manusia. Limbah adalah bahan buangan yang tidak terpakai yang berdampak negatif jika

Lebih terperinci

PENGOLAHAN LIMBAH CAIR INDUSTRI PERMEN

PENGOLAHAN LIMBAH CAIR INDUSTRI PERMEN J. Tek. Ling Edisi Khusus Hal. 58-63 Jakarta Juli 2008 ISSN 1441-318X PENGOLAHAN LIMBAH CAIR INDUSTRI PERMEN Indriyati dan Joko Prayitno Susanto Peneliti di Pusat Teknologi Lingkungan Badan Pengkajian

Lebih terperinci

Mukhlis dan Aidil Onasis Staf Pengajar Jurusan Kesehatan Lingkungan Politeknik Kesehatan Padang

Mukhlis dan Aidil Onasis Staf Pengajar Jurusan Kesehatan Lingkungan Politeknik Kesehatan Padang OP-18 REKAYASA BAK INTERCEPTOR DENGAN SISTEM TOP AND BOTTOM UNTUK PEMISAHAN MINYAK/LEMAK DALAM AIR LIMBAH KEGIATAN KATERING Mukhlis dan Aidil Onasis Staf Pengajar Jurusan Kesehatan Lingkungan Politeknik

Lebih terperinci

JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG

JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG PERANCANGAN PABRIK PENGOLAHAN LIMBAH Oleh: KELOMPOK 2 M. Husain Kamaluddin 105100200111013 Rezal Dwi Permana Putra 105100201111015 Tri Priyo Utomo 105100201111005 Defanty Nurillamadhan 105100200111010

Lebih terperinci

Sistem Aerasi Berlanjut (Extended Aeratian System) Proses ini biasanya dipakai untuk pengolahan air limbah dengan sistem paket (package treatment)

Sistem Aerasi Berlanjut (Extended Aeratian System) Proses ini biasanya dipakai untuk pengolahan air limbah dengan sistem paket (package treatment) Sistem Aerasi Berlanjut (Extended Aeratian System) Proses ini biasanya dipakai untuk pengolahan air limbah dengan sistem paket (package treatment) dengan beberapa ketentuan antara lain : Waktu aerasi lebih

Lebih terperinci

BAB 3 METODA PENELITIAN

BAB 3 METODA PENELITIAN BAB 3 METODA PENELITIAN 3.1 Peralatan Yang Digunakan Penelitian dilakukan dengan menggunakan suatu reaktor berskala pilot plant. Reaktor ini mempunyai ukuran panjang 3,4 m, lebar 1,5 m, dan kedalaman air

Lebih terperinci

PEMBANGUNAN IPAL & FASILITAS DAUR ULANG AIR GEDUNG GEOSTECH

PEMBANGUNAN IPAL & FASILITAS DAUR ULANG AIR GEDUNG GEOSTECH PEMBANGUNAN IPAL & FASILITAS DAUR ULANG AIR GEDUNG GEOSTECH Nusa Idaman Said Pusat Teknologi Lingkungan, Kedeputian TPSA Badan Pengkajian dan Penerapan Teknologi Jl. M.H. Thamrin No. 8, Lantai 12, Jakarta

Lebih terperinci

PENGGUNAAN MEDIA SERAT PLASTIK PADA PROSES BIOFILTER TERCELUP UNTUK PENGOLAHAN AIR LIMBAH RUMAH TANGGA NON TOILET

PENGGUNAAN MEDIA SERAT PLASTIK PADA PROSES BIOFILTER TERCELUP UNTUK PENGOLAHAN AIR LIMBAH RUMAH TANGGA NON TOILET Nusa Idaman Said : Penggunaan Media Serat Palstik pada Proses JAI Vol. 1, No.2 25 PENGGUNAAN MEDIA SERAT PLASTIK PADA PROSES BIOFILTER TERCELUP UNTUK PENGOLAHAN AIR LIMBAH RUMAH TANGGA NON TOILET Oleh

Lebih terperinci

BIOGAS. Sejarah Biogas. Apa itu Biogas? Bagaimana Biogas Dihasilkan? 5/22/2013

BIOGAS. Sejarah Biogas. Apa itu Biogas? Bagaimana Biogas Dihasilkan? 5/22/2013 Sejarah Biogas BIOGAS (1770) Ilmuwan di eropa menemukan gas di rawa-rawa. (1875) Avogadro biogas merupakan produk proses anaerobik atau proses fermentasi. (1884) Pasteur penelitian biogas menggunakan kotoran

Lebih terperinci

BAB I PENDAHULUAN. industri berat maupun yang berupa industri ringan (Sugiharto, 2008). Sragen

BAB I PENDAHULUAN. industri berat maupun yang berupa industri ringan (Sugiharto, 2008). Sragen BAB I PENDAHULUAN A. Latar Belakang Berbagai usaha telah dilaksanakan oleh pemerintah pada akhir-akhir ini untuk meningkatkan taraf hidup serta kesejahteraan masyarakat yang dicita-citakan yaitu masyarakat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Aktivitas pencemaran lingkungan yang dihasilkan dari suatu kegiatan industri merupakan suatu masalah yang sangat umum dan sulit untuk dipecahkan pada saat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pemanfaatan Limbah Cair Industri Tahu sebagai Energi Terbarukan. Limbah Cair Industri Tahu COD. Digester Anaerobik

BAB II TINJAUAN PUSTAKA. Pemanfaatan Limbah Cair Industri Tahu sebagai Energi Terbarukan. Limbah Cair Industri Tahu COD. Digester Anaerobik 5 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka 2.1.1. Kerangka Teori Pemanfaatan Limbah Cair Industri Tahu sebagai Energi Terbarukan Limbah Cair Industri Tahu Bahan Organik C/N COD BOD Digester Anaerobik

Lebih terperinci

BAB I PENDAHULUAN. limbah yang keberadaannya kerap menjadi masalah dalam kehidupan masyarakat.

BAB I PENDAHULUAN. limbah yang keberadaannya kerap menjadi masalah dalam kehidupan masyarakat. BAB I PENDAHULUAN 1.1 Latar Belakang Limbah cair atau yang biasa disebut air limbah merupakan salah satu jenis limbah yang keberadaannya kerap menjadi masalah dalam kehidupan masyarakat. Sifatnya yang

Lebih terperinci

Jurusan. Teknik Kimia Jawa Timur C.8-1. Abstrak. limbah industri. terlarut dalam tersuspensi dan. oxygen. COD dan BOD. biologi, (koagulasi/flokulasi).

Jurusan. Teknik Kimia Jawa Timur C.8-1. Abstrak. limbah industri. terlarut dalam tersuspensi dan. oxygen. COD dan BOD. biologi, (koagulasi/flokulasi). KINERJA KOAGULAN UNTUK PENGOLAHAN AIR LIMBAH INDUSTRI PENGOLAHAN KAYU KETUT SUMADA Jurusan Teknik Kimia Universitas Pembangunan Nasional (UPN) Veteran Jawa Timur email : ketutaditya@yaoo.com Abstrak Air

Lebih terperinci

TEKNOLOGI PENGOLAHAN SAMPAH DAN AIR LIMBAH

TEKNOLOGI PENGOLAHAN SAMPAH DAN AIR LIMBAH TEKNOLOGI PENGOLAHAN SAMPAH DAN AIR LIMBAH Oleh : Arie Herlambang dan Djoko Heru Martono Pusat Teknologi Lingkungan, TPSA - BPPT Abstract Solid waste has become a problem for large and small cities, as

Lebih terperinci

Bab IV Data dan Hasil Pembahasan

Bab IV Data dan Hasil Pembahasan Bab IV Data dan Hasil Pembahasan IV.1. Seeding dan Aklimatisasi Pada tahap awal penelitian, dilakukan seeding mikroorganisme mix culture dengan tujuan untuk memperbanyak jumlahnya dan mengadaptasikan mikroorganisme

Lebih terperinci

BAB 9 KOLAM (PONDS) DAN LAGOON

BAB 9 KOLAM (PONDS) DAN LAGOON BAB 9 KOLAM (PONDS) DAN LAGOON 177 Di dalam proses pengolahan air limbah secara biologis, selain proses dengan biakan tersuspensi (suspended culture) dan proses dengan biakan melekat (attached culture),

Lebih terperinci

TL-4140 Perenc. Bangunan Pengolahan Air Limbah L A G O O N / P O N D S

TL-4140 Perenc. Bangunan Pengolahan Air Limbah L A G O O N / P O N D S TL-4140 Perenc. Bangunan Pengolahan Air Limbah L A G O O N / P O N D S OXIDATION PONDS (KOLAM OKSIDASI) Bentuk kolam biasanya sangat luas, tetapi h (kedalamannya) kecil atau dangkal, bila kedalaman terlalu

Lebih terperinci

BAB 3 TEKNOLOGI PENGOLAHAN AIR LIMBAH DOMESTIK

BAB 3 TEKNOLOGI PENGOLAHAN AIR LIMBAH DOMESTIK BAB 3 TEKNOLOGI PENGOLAHAN AIR LIMBAH DOMESTIK 52 3.1 Karakteristik Air Limbah Domestik Air limbah perkotaan adalah seluruh buangan cair yang berasal dari hasil proses seluruh kegiatan yang meliputi limbah

Lebih terperinci

PERENCANAAN TEKNIS INSTALASI PENGOLAHAN AIR LIMBAH RUMAH SAKIT PROSES BIOFILTER ANAEROB-AEROB KAPASITAS 200 M 3 PER HARI

PERENCANAAN TEKNIS INSTALASI PENGOLAHAN AIR LIMBAH RUMAH SAKIT PROSES BIOFILTER ANAEROB-AEROB KAPASITAS 200 M 3 PER HARI BAB 3 PERENCANAAN TEKNIS INSTALASI PENGOLAHAN AIR LIMBAH RUMAH SAKIT PROSES BIOFILTER ANAEROB-AEROB KAPASITAS 200 M 3 PER HARI 3.1 Perkiraan Jumlah Air Limbah dan Kapasitas IPAL Untuk memperkirakan jumlah

Lebih terperinci

RANCANG BANGUN PAKET IPAL RUMAH SAKIT DENGAN PROSES BIOFILTER ANAEROB-AEROB, KAPASITAS M 3 PER HARI

RANCANG BANGUN PAKET IPAL RUMAH SAKIT DENGAN PROSES BIOFILTER ANAEROB-AEROB, KAPASITAS M 3 PER HARI RANCANG BANGUN PAKET IPAL RUMAH SAKIT DENGAN PROSES BIOFILTER ANAEROB-AEROB, KAPASITAS 20-30 M 3 PER HARI Oleh : Wahyu Widayat dan Nusa Idaman Said Kelompok Teknologi Pengelolaan Air Bersih dan Limbah

Lebih terperinci

ANALISIS KUALITAS AIR WADUK RIO RIO DENGAN METODE INDEKS PENCEMARAN DAN TEKNOLOGI UNTUK MENGURANGI DAMPAK PENCEMARAN

ANALISIS KUALITAS AIR WADUK RIO RIO DENGAN METODE INDEKS PENCEMARAN DAN TEKNOLOGI UNTUK MENGURANGI DAMPAK PENCEMARAN Dinda Rita K.Hartaja : Analisis Kualitas Air Waduk Rio Rio dengan... JAI Vol 8. No. 2. 2015 ANALISIS KUALITAS AIR WADUK RIO RIO DENGAN METODE INDEKS PENCEMARAN DAN TEKNOLOGI UNTUK MENGURANGI DAMPAK PENCEMARAN

Lebih terperinci

BAB I PENDAHULUAN. mengganggu kehidupan dan kesehatan manusia (Sunu, 2001). seperti Jawa Tengah, Daerah Istimewa Yogyakarta, Jawa Timur, Jawa Barat,

BAB I PENDAHULUAN. mengganggu kehidupan dan kesehatan manusia (Sunu, 2001). seperti Jawa Tengah, Daerah Istimewa Yogyakarta, Jawa Timur, Jawa Barat, BAB I PENDAHULUAN A. Latar Belakang Kemajuan di bidang industri dan teknologi membawa kesejahteraan khususnya di sektor ekonomi. Namun demikian, ternyata juga menimbulkan pencemaran terhadap lingkungan,

Lebih terperinci

DESAIN INSTALASI PENGOLAHAN AIR LIMBAH (IPAL) BIOFILTER UNTUK MENGOLAH AIR LIMBAH POLIKLINIK UNIPA SURABAYA

DESAIN INSTALASI PENGOLAHAN AIR LIMBAH (IPAL) BIOFILTER UNTUK MENGOLAH AIR LIMBAH POLIKLINIK UNIPA SURABAYA DESAIN INSTALASI PENGOLAHAN AIR LIMBAH (IPAL) BIOFILTER UNTUK MENGOLAH AIR LIMBAH POLIKLINIK UNIPA SURABAYA Rhenny Ratnawati*) Muhammad Al Kholif*) dan Sugito*) Abstrak Poliklinik menghasilkan air limbah

Lebih terperinci

IMPROVING THE QUALITY OF RIVER WATER BY USING BIOFILTER MEDIATED PROBIOTIC BEVERAGE BOTTLES CASE STUDY WATER RIVER OF SURABAYA (SETREN RIVER JAGIR)

IMPROVING THE QUALITY OF RIVER WATER BY USING BIOFILTER MEDIATED PROBIOTIC BEVERAGE BOTTLES CASE STUDY WATER RIVER OF SURABAYA (SETREN RIVER JAGIR) UPAYA PENINGKATAN KUALITAS AIR SUNGAI DENGAN MENGGUNAKAN BIOFILTER BERMEDIA BOTOL BEKAS MINUMAN PROBIOTIK STUDI KASUS AIR KALI SURABAYA (SETREN KALI JAGIR) IMPROVING THE QUALITY OF RIVER WATER BY USING

Lebih terperinci

BAB I PENDAHULUAN. tetapi limbah cair memiliki tingkat pencemaran lebih besar dari pada limbah

BAB I PENDAHULUAN. tetapi limbah cair memiliki tingkat pencemaran lebih besar dari pada limbah BAB I PENDAHULUAN 1.1 Latar Belakang Industri tahu merupakan salah satu industri yang menghasilkan limbah organik. Limbah industri tahu yang dihasilkan dapat berupa limbah padat dan cair, tetapi limbah

Lebih terperinci

PENGOLAHAN AIR LIMBAH RUMAH SAKIT DENGAN PROSES BIOLOGIS BIAKAN MELEKAT MENGGUNAKAN MEDIA PALSTIK SARANG TAWON

PENGOLAHAN AIR LIMBAH RUMAH SAKIT DENGAN PROSES BIOLOGIS BIAKAN MELEKAT MENGGUNAKAN MEDIA PALSTIK SARANG TAWON PENGOLAHAN AIR LIMBAH RUMAH SAKIT DENGAN PROSES BIOLOGIS BIAKAN MELEKAT MENGGUNAKAN MEDIA PALSTIK SARANG TAWON Oleh : Nusa Idaman Said *) Abstrak Masalah yang sering muncul dalam hal pengelolaan limbah

Lebih terperinci

Kajian Pengolahan Air Gambut Dengan Upflow Anaerobic Filter dan Slow Sand Filter. Oleh: Iva Rustanti Eri /

Kajian Pengolahan Air Gambut Dengan Upflow Anaerobic Filter dan Slow Sand Filter. Oleh: Iva Rustanti Eri / Kajian Pengolahan Air Gambut Dengan Upflow Anaerobic Filter dan Slow Sand Filter Oleh: Iva Rustanti Eri / 3307201001 Senyawa Dominan Air Gambut Tujuan Penelitian Melakukan kajian terhadap: 1. kondisi lingkungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. A. Penelitian Terdahulu

BAB II TINJAUAN PUSTAKA. A. Penelitian Terdahulu BAB II TINJAUAN PUSTAKA A. Penelitian Terdahulu Sudah banyak yang melakukan penelitian mengenai analisis kualitas air dengan alat uji model filtrasi buatan diantaranya; Eka Wahyu Andriyanto, (2010) Uji

Lebih terperinci

BAB I PENDAHULUAN. pembangunan. Kebutuhan yang utama bagi terselenggaranya kesehatan

BAB I PENDAHULUAN. pembangunan. Kebutuhan yang utama bagi terselenggaranya kesehatan BAB I PENDAHULUAN A. Latar Belakang Air merupakan salah satu sumberdaya alam yang memiliki fungsi sangat penting bagi kehidupan manusia, serta untuk memajukan kesejahteraan umum sehingga merupakan modal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Air 1. Pengertian air a. Pengertian air minum Air minum adalah air yang kualitasnya memenuhi syarat kesehatan dan dapat langsung diminum. 8) b. Pengertian air bersih Air bersih

Lebih terperinci

BAB V ANALISA DAN PEMBAHASAN

BAB V ANALISA DAN PEMBAHASAN 66 BAB V ANALISA DAN PEMBAHASAN 5.1 Penyebab Penyimpangan Baku Mutu Instalasi pengolahan air limbah (IPAL) yang ada di Central Parkmenggunakan sistem pengolahan air limbah Enviro RBC.RBC didesain untuk

Lebih terperinci

Buku Panduan Operasional IPAL Gedung Sophie Paris Indonesia I. PENDAHULUAN

Buku Panduan Operasional IPAL Gedung Sophie Paris Indonesia I. PENDAHULUAN I. PENDAHULUAN Seiring dengan tingginya laju pertumbuhan penduduk dan pesatnya proses industrialisasi jasa di DKI Jakarta, kualitas lingkungan hidup juga menurun akibat pencemaran. Pemukiman yang padat,

Lebih terperinci

PROSES PENGOLAHAN AIR SUNGAI MENJADI AIR MINERAL

PROSES PENGOLAHAN AIR SUNGAI MENJADI AIR MINERAL PROSES PENGOLAHAN AIR SUNGAI MENJADI AIR MINERAL PENDAHULUAN 1. AIR Air merupakan sumber alam yang sangat penting di dunia, karena tanpa air kehidupan tidak dapat berlangsung. Air juga banyak mendapat

Lebih terperinci

PENGOLAHAN AIR LIMBAH RUMAH MAKAN (RESTORAN) DENGAN UNIT AERASI, SEDIMENTASI DAN BIOSAND FILTER

PENGOLAHAN AIR LIMBAH RUMAH MAKAN (RESTORAN) DENGAN UNIT AERASI, SEDIMENTASI DAN BIOSAND FILTER PENGOLAHAN AIR LIMBAH RUMAH MAKAN (RESTORAN) DENGAN UNIT AERASI, SEDIMENTASI DAN BIOSAND FILTER Afry Rakhmadany 1, *) dan Nieke Karnaningroem 2) 1)Jurusan Teknik Lingkungan, Institut Teknologi Sepuluh

Lebih terperinci

Pengolahan Air Bersih dengan Saringan Pasir lambat Up Flow BAB IV PENGOLAHAN AIR BERSIH DENGAN SARINGAN PASIR LAMBAT UP FLOW

Pengolahan Air Bersih dengan Saringan Pasir lambat Up Flow BAB IV PENGOLAHAN AIR BERSIH DENGAN SARINGAN PASIR LAMBAT UP FLOW BAB IV PENGOLAHAN AIR BERSIH DENGAN SARINGAN PASIR LAMBAT UP FLOW 69 Nusa Idaman Said IV.1 PENDAHULUAN Dalam rangka meningkatkan kebutuhan dasar masyarakat khususnya mengenai kebutuhan akan air bersih

Lebih terperinci

BAB I PENDAHULUAN. berdampak positif, keberadaan industri juga dapat menyebabkan dampak

BAB I PENDAHULUAN. berdampak positif, keberadaan industri juga dapat menyebabkan dampak BAB I PENDAHULUAN A. Latar Belakang Keberadaan sektor industri menjadi salah satu sektor penting, dimana keberadaannya berdampak positif dalam pembangunan suatu wilayah karena dengan adanya industri maka

Lebih terperinci

penambahan nutrisi berupa lumpur sebanyak ± 200 ml yang diambil dari IPAL

penambahan nutrisi berupa lumpur sebanyak ± 200 ml yang diambil dari IPAL 63 BAB IV HASIL PENELITIAN DAN PEMBAHASAN Penelitian dengan menggunakan Fluidized Bed Reaktor secara aerobik dengan media styrofoam ini dimulai dengan melakukan strarter bakteri yaitu dengan penambahan

Lebih terperinci

BAB VI HASIL. Tabel 3 : Hasil Pre Eksperimen Dengan Parameter ph, NH 3, TSS

BAB VI HASIL. Tabel 3 : Hasil Pre Eksperimen Dengan Parameter ph, NH 3, TSS 6.1 Pre Eksperimen BAB VI HASIL Sebelum dilakukan eksperimen tentang pengolahan limbah cair, peneliti melakukan pre eksperimen untuk mengetahui lama waktu aerasi yang efektif menurunkan kadar kandungan

Lebih terperinci

KOMBINASI PROSES AERASI, ADSORPSI, DAN FILTRASI PADA PENGOLAHAN AIR LIMBAH INDUSTRI PERIKANAN

KOMBINASI PROSES AERASI, ADSORPSI, DAN FILTRASI PADA PENGOLAHAN AIR LIMBAH INDUSTRI PERIKANAN 79 Jurnal Ilmiah Teknik Lingkungan Vol.1 No. 2 KOMBINASI PROSES AERASI, ADSORPSI, DAN FILTRASI PADA PENGOLAHAN AIR LIMBAH INDUSTRI PERIKANAN Luluk Edahwati dan Suprihatin Program Studi Teknik Kimia Fakultas

Lebih terperinci

PENGELOLAAN AIR LIMBAH PKS

PENGELOLAAN AIR LIMBAH PKS PENGELOLAAN AIR LIMBAH PKS 2 PENDAHULUAN Kebijakan Perusahaan Melalui pengelolaan air limbah PMKS akan dipenuhi syarat buangan limbah yang sesuai dengan peraturan pemerintah dan terhindar dari dampak sosial

Lebih terperinci

BAB I PENDAHULUAN. hidup. Namun disamping itu, industri yang ada tidak hanya menghasilkan

BAB I PENDAHULUAN. hidup. Namun disamping itu, industri yang ada tidak hanya menghasilkan BAB I PENDAHULUAN A. Latar Belakang Meningkatnya sektor industri pertanian meningkatkan kesejahteraan dan mempermudah manusia dalam pemenuhan kebutuhan hidup. Namun disamping itu, industri yang ada tidak

Lebih terperinci

PEMULIHAN KUALITAS AIR LIMBAH LAUNDRY DENGAN MEMBANDINGKAN REAKTOR BIOFILTER DAN SLOW SAND FILTER. Oleh : Satria Pratama Putra Nasution

PEMULIHAN KUALITAS AIR LIMBAH LAUNDRY DENGAN MEMBANDINGKAN REAKTOR BIOFILTER DAN SLOW SAND FILTER. Oleh : Satria Pratama Putra Nasution PEMULIHAN KUALITAS AIR LIMBAH LAUNDRY DENGAN MEMBANDINGKAN REAKTOR BIOFILTER DAN SLOW SAND FILTER Oleh : Satria Pratama Putra Nasution 3308100040 Latar Belakang Seiring dengan pertumbuhan penduduk dan

Lebih terperinci

BAB I PENDAHULUAN. pencemaran yang melampui daya dukungnya. Pencemaran yang. mengakibatkan penurunan kualitas air berasal dari limbah terpusat (point

BAB I PENDAHULUAN. pencemaran yang melampui daya dukungnya. Pencemaran yang. mengakibatkan penurunan kualitas air berasal dari limbah terpusat (point BAB I PENDAHULUAN A. Latar Belakang Salah satu masalah yang timbul akibat meningkatnya kegiatan manusia adalah tercemarnya air pada sumber-sumber air karena menerima beban pencemaran yang melampui daya

Lebih terperinci

BAB PENGOLAHAN AIR LIMBAH RUMAH SAKIT

BAB PENGOLAHAN AIR LIMBAH RUMAH SAKIT BAB PENGOLAHAN AIR LIMBAH RUMAH SAKIT 5.1. Pendahuluan Air limbah industri farmasi dan rumah sakit merupakan salah satu sumber pencemaran lingkungan yang sangat potensial. Oleh karena itu air limbah tersebut

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Gambaran Umum Unit Operasi IPAL Mojosongo Instalasi Pengolahan Air Limbah (IPAL) Mojosongo di bangun untuk mengolah air buangan dari kota Surakarta bagian utara, dengan

Lebih terperinci

PROSES PENGOLAHAN AIR LIMBAH PADA IPAL INDUSTRI PENYAMAKAN KULIT BTIK LIK MAGETAN

PROSES PENGOLAHAN AIR LIMBAH PADA IPAL INDUSTRI PENYAMAKAN KULIT BTIK LIK MAGETAN BAB VII PROSES PENGOLAHAN AIR LIMBAH PADA IPAL INDUSTRI PENYAMAKAN KULIT BTIK LIK MAGETAN 7.1. Sumber Limbah Di BTIK-LIK Magetan terdapat kurang lebih 43 unit usaha penyamak kulit, dan saat ini ada 37

Lebih terperinci

BAB 3 INSTRUKSI KERJA (IK)

BAB 3 INSTRUKSI KERJA (IK) BAB 3 INSTRUKSI KERJA (IK) 3.1. Start-Up IPAL Sebelum IPAL dioperasikan seluruh peralatan mekanik dan elektrik harus dipastikan dalam keadaan berjalan dengan baik dan siap untuk dioerasikan. Peralatan-peralatan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Analisis Awal Bahan Baku Pembuatan Biogas Analisis bahan baku biogas dan analisis bahan campuran yang digunakan pada biogas meliputi P 90 A 10 (90% POME : 10% Aktivator), P 80 A 20

Lebih terperinci

HASIL PENELITIAN DAN PEMBAHASAN. IV.1 Karakteristik Air Limbah

HASIL PENELITIAN DAN PEMBAHASAN. IV.1 Karakteristik Air Limbah 49 IV. HASIL PENELITIAN DAN PEMBAHASAN IV.1 Karakteristik Air Limbah Air limbah dalam penelitian ini adalah air limbah Rumah Sakit Makna yang berlokasi di Jalan Ciledug Raya, Tangerang dan tergolong rumah

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 LATAR BELAKANG Indonesia tahun 2014 memproduksi 29,34 juta ton minyak sawit kasar [1], tiap ton minyak sawit menghasilkan 2,5 ton limbah cair [2]. Limbah cair pabrik kelapa sawit

Lebih terperinci

PENGOLAHAN AIR LIMBAH RUMAH SAKIT KAJIAN ASPEK PEMILIHAN TEKNOLOGI

PENGOLAHAN AIR LIMBAH RUMAH SAKIT KAJIAN ASPEK PEMILIHAN TEKNOLOGI Pengolahan Air Limbah rumah Sakit BAB VII PENGOLAHAN AIR LIMBAH RUMAH SAKIT KAJIAN ASPEK PEMILIHAN TEKNOLOGI VII.1 PENDAHULUAN 153 Nusa Idaman Said Rumah sakit adalah merupakan fasilitas sosial yang tak

Lebih terperinci

KAJIAN PENGGUNAAN BIJI KELOR SEBAGAI KOAGULAN PADA PROSES PENURUNAN KANDUNGAN ORGANIK (KMnO 4 ) LIMBAH INDUSTRI TEMPE DALAM REAKTOR BATCH

KAJIAN PENGGUNAAN BIJI KELOR SEBAGAI KOAGULAN PADA PROSES PENURUNAN KANDUNGAN ORGANIK (KMnO 4 ) LIMBAH INDUSTRI TEMPE DALAM REAKTOR BATCH Spectra Nomor 8 Volume IV Juli 06: 16-26 KAJIAN PENGGUNAAN BIJI KELOR SEBAGAI KOAGULAN PADA PROSES PENURUNAN KANDUNGAN ORGANIK (KMnO 4 ) LIMBAH INDUSTRI TEMPE DALAM REAKTOR BATCH Sudiro Ika Wahyuni Harsari

Lebih terperinci

PENGOLAHAN AIR LIMBAH DOMESTIK

PENGOLAHAN AIR LIMBAH DOMESTIK PENGOLAHAN AIR LIMBAH DOMESTIK Wahyu Widayat Pusat Teknologi Lingkungan, Kedeputian TPSA Badan Pengkajian dan Penerapan Teknologi Jl. M.H. Thamrin No. 8, Lantai 12, Jakarta 10340 e-mail: wdytwahyu@yahoo.com

Lebih terperinci

Menentukan Dimensi Setiap Peralatan yang Diperlukan Sesuai Proses yang Terpilih Menentukan Luas Lahan yang Diperlukan Menentukan Biaya Bangunan

Menentukan Dimensi Setiap Peralatan yang Diperlukan Sesuai Proses yang Terpilih Menentukan Luas Lahan yang Diperlukan Menentukan Biaya Bangunan perancangan FASILITAS FLOW SHEET PROSES PENGOLAHAN AIR LIMBAH INDUSTRI Menentukan Dimensi Setiap Peralatan yang Diperlukan Sesuai Proses yang Terpilih Menentukan Luas Lahan yang Diperlukan Menentukan Biaya

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi penelitian dilaksanakan di Hotel Mutiara Kota Gorontalo di mana

BAB III METODE PENELITIAN. Lokasi penelitian dilaksanakan di Hotel Mutiara Kota Gorontalo di mana BAB III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Lokasi penelitian dilaksanakan di Hotel Mutiara Kota Gorontalo di mana limbah cair yang digunakan dalam penelitian ini berasal dari limbah cair

Lebih terperinci

Pengolahan Air Gambut sederhana BAB III PENGOLAHAN AIR GAMBUT SEDERHANA

Pengolahan Air Gambut sederhana BAB III PENGOLAHAN AIR GAMBUT SEDERHANA Pengolahan Air Gambut sederhana BAB III PENGOLAHAN AIR GAMBUT SEDERHANA 51 Nusa Idaman Said III.1 PENDAHULUAN Air merupakan kebutuhan pokok bagi kehidupan manusia. Dalam kehidupan sehari-hari manusia selalu

Lebih terperinci

SISTEM PENGOLAHAN LIMBAH CAIR PADA IPAL PT. TIRTA INVESTAMA PABRIK PANDAAN PASURUAN

SISTEM PENGOLAHAN LIMBAH CAIR PADA IPAL PT. TIRTA INVESTAMA PABRIK PANDAAN PASURUAN SISTEM PENGOLAHAN LIMBAH CAIR PADA IPAL PT. TIRTA INVESTAMA PABRIK PANDAAN PASURUAN (1)Yovi Kurniawan (1)SHE spv PT. TIV. Pandaan Kabupaten Pasuruan ABSTRAK PT. Tirta Investama Pabrik Pandaan Pasuruan

Lebih terperinci

BAB I PENDAHULUAN. selain memproduksi tahu juga dapat menimbulkan limbah cair. Seperti

BAB I PENDAHULUAN. selain memproduksi tahu juga dapat menimbulkan limbah cair. Seperti BAB I PENDAHULUAN A. Latar Belakang Masalah Industri pembuatan tahu dalam setiap tahapan prosesnya menggunakan air dengan jumlah yang relatif banyak. Artinya proses akhir dari pembuatan tahu selain memproduksi

Lebih terperinci

PERENCANAAN PENGOLAHAN AIR LIMBAH SISTEM TERPUSAT (STUDI KASUS DI PERUMAHAN PT. PERTAMINA UNIT PELAYANAN III PLAJU SUMATERA SELATAN)

PERENCANAAN PENGOLAHAN AIR LIMBAH SISTEM TERPUSAT (STUDI KASUS DI PERUMAHAN PT. PERTAMINA UNIT PELAYANAN III PLAJU SUMATERA SELATAN) PERENCANAAN PENGOLAHAN AIR LIMBAH SISTEM TERPUSAT (STUDI KASUS DI PERUMAHAN PT. PERTAMINA UNIT PELAYANAN III PLAJU SUMATERA SELATAN) Puji Retno Wulandari (1 spasi, 12 pt) Jurusan Teknik Sipil, Fakultas

Lebih terperinci

TUGAS MATA KULIAH PENGELOLAAN LIMBAH MANAJEMEN PENGELOLAAN LIMBAH CAIR RUMAH SAKIT STUDI KASUS: CUT MEUTIA DI KOTA LHOKSEUMAWE

TUGAS MATA KULIAH PENGELOLAAN LIMBAH MANAJEMEN PENGELOLAAN LIMBAH CAIR RUMAH SAKIT STUDI KASUS: CUT MEUTIA DI KOTA LHOKSEUMAWE TUGAS MATA KULIAH PENGELOLAAN LIMBAH MANAJEMEN PENGELOLAAN LIMBAH CAIR RUMAH SAKIT STUDI KASUS: CUT MEUTIA DI KOTA LHOKSEUMAWE Diajukan untuk memenuhi Tugas Mata Kuliah Pengelolaan Limbah Oleh: Laila Rismawati

Lebih terperinci

PERANAN MIKROORGANISME DALAM SIKLUS UNSUR DI LINGKUNGAN AKUATIK

PERANAN MIKROORGANISME DALAM SIKLUS UNSUR DI LINGKUNGAN AKUATIK PERANAN MIKROORGANISME DALAM SIKLUS UNSUR DI LINGKUNGAN AKUATIK 1. Siklus Nitrogen Nitrogen merupakan limiting factor yang harus diperhatikan dalam suatu ekosistem perairan. Nitrgen di perairan terdapat

Lebih terperinci

TUGAS MANAJEMEN LABORATORIUM PENANGANAN LIMBAH DENGAN MENGGUNAKAN LUMPUR AKTIF DAN LUMPUR AKTIF

TUGAS MANAJEMEN LABORATORIUM PENANGANAN LIMBAH DENGAN MENGGUNAKAN LUMPUR AKTIF DAN LUMPUR AKTIF TUGAS MANAJEMEN LABORATORIUM PENANGANAN LIMBAH DENGAN MENGGUNAKAN LUMPUR AKTIF DAN LUMPUR AKTIF DISUSUN OLEH RIZKIKA WIDIANTI 1413100100 DOSEN PENGAMPU Dr. Djoko Hartanto, M.Si JURUSAN KIMIA FAKULTAS MATEMATIKA

Lebih terperinci