PENGGUNAAN PHOTO DIODA DAN INFRA RED PADA PERANCANGAN LIFT UNTUK 3 LANTAI BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGGUNAAN PHOTO DIODA DAN INFRA RED PADA PERANCANGAN LIFT UNTUK 3 LANTAI BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR"

Transkripsi

1 1 PENGGUNAAN PHOTO DIODA DAN INFRA RED PADA PERANCANGAN LIFT UNTUK 3 LANTAI BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR AJI WINATA UTAMA PROGRAM STUDI DIPLOMA III FISIKA INSTRUMENTASI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2008

2 2 PENGGUNAAN PHOTO DIODA DAN INFRA RED PADA PERANCANGAN LIFT UNTUK 3 LANTAI BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ahli Madya AJI WINATA UTAMA PROGRAM STUDI DIPLOMA III FISIKA INSTRUMENTASI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2008

3 3 PERSETUJUAN Judul : PENGGUNAAN PHOTO DIODA DAN INFRA RED PADA PERANCANGAN LIFT UNTUK 3 LANTAI BERBASIS MIKROKONTROLER AT89S51 Kategori : LAPORAN TUGAS AKHIR Nama : AJI WINATA UTAMA Nomor Induk Mahasiswa : Program Studi : DIPLOMA III FISIKA INSTRUMENTASI Departemen : FISIKA Fakultas : MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) UNIVERSITAS SUMATERA UTARA Disetujui oleh: Ketua Program Studi, Dosen Pembimbing, Drs. Syahrul Humaidi. Msc. NIP Drs.Junaidi NIP

4 4 PERNYATAAN PENGGUNAAN PHOTO DIODA DAN INFRA RED PADA PERANCANGAN LIFT UNTUK 3 LANTAI BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR Saya mengakui bahwa tugas akhir ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya. Medan, Agustus 2008 AJI WINATA UTAMA

5 5 PENGHARGAAN Puji dan syukur penulis panjatkan kehadirat Allah SWT karena berkat rahmat dan kurnia-nya penulis dapat menyelesaikan laporan Tugas Akhir ini. Salawat dan salam kepada Rasulullah Muhammad SAW. Laporan Tugas Akhir ini yang berjudul PENGGUNAAN PHOTO DIODA DAN INFRA RED PADA PERANCANGAN LIFT UNTUK 3 LANTAI BERBASIS MIKROKONTROLER AT89S51. meskipun dalam peruses penulisan banyak menemui hambatan dan rintangan namun dengan usaha maksimal yang dilakukan penulis serta bantuan dari berbagai pihak, akhirnya laporan Tugas Akhir ini dapat selesai. Atas bantuan dan motivasi yang diberikan, maka penulis mengucapkan banyak terima kasih kepada :Bapak DR.Edi Marlianto, M.Sc selaku Dekan FMIPA USU, Bapak Drs. Syahrul Humaidi M.Sc selaku ketua jurusan Perogram studi Fisika Instrumentasi. Bapak Ir.Junaidi selaku dosen pembimbing, Seluruh Dosen yang telah memberikan ilmu pengetahuan selama perkuliahan, yang membuka cakrawala berfikir serta pegawai tata usaha yang ikut mensukseskan proses belajar mengajar. Terima kasih kepada Ayahanda dan Ibunda yang telah memberikan didikan terbaik bagi penulis Rekan-rekan di Fisika Instrumentasi, Arie Prasetya Wibawa, Riadi, terima kasih atas, kritik dan sarannya terhadap laporan Tugas Akhir ini. Putri Rahmadhania Sari yang terus memberikan penulis motivasi dan semangat. Dan kepada Bryan Habsyah terima kasih atas bantuanya dan dukungannya., Penulis menyadari bahwa dalam penyusunan laporan Tugas Akhir ini masih terdapat kekurangan dan masih jauh dari kesempurnaan. Oleh karena itu penulis sangat terbuka terhadap saran maupun kritikan dalam sebuah diskusi yang membangun dari pembaca Akhirnya kata penulis mengharapkan semoga laporan Tugas Akhir ini dapat bermanfaat bagi pembaca.

6 6 ABSTRAK Pada gedung gedung besar yang memiliki lebih dari satu lantai diperlukan tangga yang dapat menghubungkan satu lantai ke lantai lainnya. Namun dengan menggunakan tangga masih kurang efisien. Karena itu dibutuhkan sebuah lift yang dapat menghubungkan sseluruh lantai yang terdapat dalam gedung tersebut. Untuk mengendalikan sebuah lift diperlukan sebuah motor dan pengontrol system. Dalam penelitian ini motor yang digunakan adalah motor stepper dan sebagai pengontrol system digunakan mikrokontroler AT89S51. Motor stepper berfungsi untuk mengangkat dan menurunkan lift. Sedangkan mikrokontroler berfungsi untuk memberikan data pada motor stepper agar motor stepper dapat bergerak searah dengan jarum jam atau berlawanan arah dengan jarum jam ( mengangkat dan menurunkan lift). Untuk mengetahui apakan lift harus turun atau naik akan digunakan tombol manual. Tombol ini diletakkan pada masing-masing lantai. Jadi mikrokontroler juga mendeteksi penekanan tombol untuk kemudian memutuskan lift akan bergerak naik atau turun.

7 7 DAFTAR ISI Halaman Persetujuan... ii Pernyataan...iii Penghargaan...iv Abstrak... v Daftar Isi...vi Daftar Tabel...viii Daftar Gambar...ix BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Rumusan Masalah Tujuan Proyek Batasan Masalah Sistematika Penulisan... 2 BAB II LANDASAN TEORI 2.1 Perangkat Keras Mikrokontroler AT89S Kontruksi AT89S SFR ( Register Fungsi Khusus ) Keluarga Gambar IC Mikrokontroler AT89S Perangkat Lunak Instruksi Instruksi AT89S Software 8051 Editor, Assembler, Simulator (IDE) Software Downloader Motor Langkah (Stepper) Penguat Sinyal Gambaran Umum... 22

8 Karakteristik Ideal Penguat Operasional Penguat Non Inverting Penguat Inverting Penguat Differensiator Penguat Jumlah (Summing Amplifier) Transistor Sebagai Switching BAB III RANCANGAN SISTEM 3.1 Diagram Blok Rangkaian Power Supply ( PSA ) Rangkaian Mikrokontroler AT89S Rangkaian Tombol Perintah Rangkaian Display Seven Segment Rangkaian Driver Motor Stepper Rangkaian Penguat Sinyal Diagram Alir Pemrograman BAB IV PENGUJIAN ALAT 4.1 Pengujian Rangkaian Power Supply ( PSA ) Pengujian Rangkaian Mikrokontroler AT89S Pengujian Rangkaian Tombol Pengujian Rangkaian Display Seven Segment Pengujian Rangkaian Driver Motor Stepper Pengujian Program BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Saran DAFTAR PUSTAKA LAMPIRAN

9 9 DAFTAR TABEL Tabel 2.1.Peta Register Fungsi Khusus-SFR... 8 Tabel 2.2 Fungsi Pin Pada Port Tabel 4.1 Penampilan Angka Decimal... 49

10 10 DAFTAR GAMBAR Gambar 2.1 IC Mikrokntroler AT89S Gambar Editor,Assebler,Simulator Gambar 2.3 ISP-Flash Programmer Gambar 2.4 Diagram Motor Langkah Gambar 2.5 Pemberian Data/Pulsa Pada Motor Stepper Gambar 2.6 Rangkaian Dasar Penguat non-inverting Gambar 2.7 Rangkaian Dasar Penguat inverting Gambar 2.8 Rangkaian Dasar Penguat differensial Gambar 2.9 Rangkaian Dasar Penguat Jumlah Gambar 2.10 Transistor Seagai Switching Gambar 3.1 Diagram Blok Rangkaian Gambar 3.2 Rangkaian Power Supply Gambar 3.3 Rangkaian Mikrokontroller AT9S Gambar 3.4 Rangkaian Tombol Perintah Gambar 3.5 Rangkaian Display Seven Segmen Gambar 3.6 Rangkaian Driver Motor Stepper Gambar 3.7 Rangkaian Penguat Sinyal Gambar 3.8 Diagram Alir Pemrograman... 44

11 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada gedung - gedung besar yang memiliki lebih dari satu lantai diperlukan tangga yang dapat menghubungkan satu lantai ke lantai lainnya. Namun dengan menggunakan tangga masih kurang efisien. Karena itu dibutuhkan sebuah lift yang dapat menghubungkan seluruh lantai yang terdapat dalam gedung tersebut. Untuk merancang sebuah lift diperlukan sebuah sistem kendali. Untuk itu dapat digunakan sebuah komputer untuk mengendalikannya. Namun dengan menggunakan komputer masih kurang efisien. Karena itu komputer dapat digantikan dengan sebuah mikrokontroler. Mikrokontroler merupakan sebuah IC yang dapat ditulis dan dihapus sampai 1000 kali. Penggunaan mikrokontroler sebagai pengganti dari sebuah komputer untuk mengendalikan suatu sistem sudah sering digunakan. Karena itu penggunaan mikrokontroler akan sangat membantu dalam membuat sebuah sistem kendali. Dalam hal ini adalah mengendalikan sebuah lift Rumusan Masalah Berdasarkan uraian diatas, penulis tertarik untuk mengangkat merancang sebuah lift 3 lantai berbasis mikrokontroler AT89S51. Dimana pada perancangan ini akan digunakan sebuah mikrokontroler tipe AT89S51.

12 2 1.3 Tujuan Proyek 1. Sebagai salah satu syarat untuk dapat menyelesaikan program Diploma Tiga (D-III) Fisika Instrumentasi FMIPA Universitas Sumatera Utara. 2. Memanfaatkan mikrokontroler AT89S51 sebagai tempat pemrosesan data (otak) dari sebuah robot 3. Menggantikan sistem komputer dengan sebuah mikrokontroler AT89S51 untuk mengendalikan sebuah lift. 1.4 Batasan Masalah Tujuan dilakukan penulisan proyek ini adalah sebagai berikut : 1. Pada perancangan ini sistem hanya akan mengendalikan lift untuk 3 lantai. Untuk mengembangkan ke lantai berikutnya harus ada penambahan dan perubahan sistem dan program. 2. Pada perancangan ini akan dibuat miniature dari lift untuk 3 lantai, jadi beban yang dapat diangkat oleh lift masih terbatas. 1.5 Sistematika Penulisan Untuk mempermudah pembahasan dan pemahaman maka penulis membuat sistematika pembahasan bagaimana sebenarnya prinsip perancangan lift untuk 3 lantai ini. BAB I. PENDAHULUAN Dalam bab ini berisikan mengenai latar belakang, rumusan masalah, tujuan penulisan, batasan masalah, serta sistematika penulisan.

13 3 BAB II. LANDASAN TEORI Landasan teori, dalam bab ini dijelaskan tentang teori pendukung yang digunakan untuk pembahasan dan cara kerja dari rangkaian Teori pendukung itu antara lain tentang resitor, transistor dan IC-IC yang digunakan dalam rangkaian ini. BAB III. PERANCANGAN ALAT DAN PROGRAM Pada bagian ini akan dibahas perancangan dari alat, yaitu diagram blok dari rangkaian, skematik dari masing-masing rangkaian BAB IV. ANALISA RANGKAIAN DAN SISTEM KERJA ALAT Pada bab ini akan dibahas hasil analisa dari rangkaian dan sistem kerja alat, dan juga pemrograman. BAB V. KESIMPULAN DAN SARAN Mengenai kesimpulan yang didapat setelah merakit proyek ini dan saran yang diberikan demi kesempurnaan dan pengembangan proyek ini pada masa yang akan datang.

14 4 BAB 2 LANDASAN TEORI 2.1 Perangkat Keras Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai teknologi baru, yaitu teknologi semikonduktor dengan kandungan transistor yang lebih banyak namun hanya membutuhkan ruang kecil serta dapat diproduksi secara massal (dalam jumlah banyak) sehingga harga menjadi lebih murah (dibandingkan mikroprosesor). Sebagai kebetuhan pasar, mikrokontroler hadir untuk memenuhi selera industri dan para konsumen akan kebutuhan dan keinginan alat-alat bantu dan mainan yang lebih canggih. Ilustrasi yang mungkin bisa memberikan gambaran yang jelas dalam penggunaan mikrokontroler adalah aplikasi mesin tiket dalam arena permainan yang saat ini terkenal di Indonesia. Jika kita sudah selesai bermain, maka akan diberikan suatu nilai, nilai inilah yang menentukan berapa jumlah tiket yang bisa diperoleh dan jika dikumpulkan dapat ditukar dengan berbagai macam hadiah. Sistem tiket ini ditangani dengan mikrokontroler, karena tidak mungkin menggunakan komputer PC yang harus dipasang di samping (atau di belakang) mesin permainan yang bersangkutan. Selain sistem tiket, kita juga dapat menjumpai aplikasi mikrokontroler dalam bidang pengukuran jarak jauh atau yang dikenal dengan sistem telemetri. Misalnya

15 5 pengukuran disuatu tempat yang membahayakan manusia, maka akan lebih nyaman jika dipasang suatu sistem pengukuran yang bisa mengirimkan data lewat pemancar dan diterima oleh stasiun pengamatan dari jarak yang cukup aman dari sumbernya. Sistem pengukuran jarak jauh ini jelas membutuhkan suatu sistem akuisisi data sekaligus sistem pengiriman data secara serial (melalui pemancar), yang semuanya itu bisa diperoleh dari mikrokontroler yang digunakan. Tidak seperti sistem komputer, yang mampu menangani berbagai macam program aplikasi (misalnya pengolah kata, pengolah angka dan lain sebagainya), mikrokontroler hanya bisa digunakan untuk satu aplikasi tertentu saja. Perbedaan lainnya terletak pada perbandingan RAM dan ROM-nya. Pada sistem komputer RAM dan ROMnya besar. Sedangkan pada mikrokontroler ROM dan RAM-nya terbatas. Pada mikrokontroler AT89S51 ROM atau flash PEROM berukuran 2 kilo byte, sedangkan RAM-nya berukuran 128 byte Kontruksi AT89S51 Mikrokontrol AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 kristal serta catu daya 5 Volt. Kapasitor 10 mikro-farad dan resistor 10 Kilo Ohm dipakai untuk membentuk rangkaian reset. Dengan adanya rangkaian reset ini AT89S51 otomatis direset begitu rangkaian menerima catu daya. Kristal dengan frekuensi maksimum 24 MHz dan kapasitor 30 piko-farad dipakai untuk melengkapi rangkaian oscilator pembentuk clock yang menentukan kecepatan kerja mikrokontroler. Memori merupakan bagian yang sangat penting pada mikrokontroler. Mikrokontroler memiliki dua macam memori yang sifatnya berbeda. Read Only Memory

16 6 (ROM) yang isinya tidak berubah meskipun IC kehilangan catu daya. Sesuai dangan keperluannya, dalam susunan MCS-51 memori penyimpanan progam ini dinamakan sebagai memori progam. Random Access Memori (RAM) isinya akan sirna begitu IC kehilangan catu daya, dipakai untuk menyimpan data pada saat progam bekerja. RAM yang dipakai untuk menyimpan data ini disebut sebagai memori data. Ada berbagai jenis ROM. Untuk mikrokontroler dengan progam yang sudah baku dan diproduksi secara masal, progam diisikan ke dalam ROM pada saat IC mikrokontroler dicetak di pabrik IC. Untuk keperluan tertentu mikrokontroler mengunakan ROM yang dapat diisi ulang atau Programble-Eraseable ROM yang disingkat menjadi PEROM atau PROM. Dulu banyak dipakai UV-EPROM (Ultra Violet Eraseable Progamble ROM) yang kemudian dinilai mahal dan ditinggalkan setelah ada flash PEROM yang harganya jauh lebih murah. Jenis memori yang dipakai untuk Memori Program AT89S51 adalah Flash PEROM, program untuk mengendalikan mikrokontroler diisikan ke memori itu lewat bantuan alat yang dinamakan sebagai AT89S51 Flash PEROM Programmer. Memori Data yang disediakan dalam chip AT89S51 sebesar 128 byte, meskipun hanya kecil saja tapi untuk banyak keperluan memori kapasitas itu sudah cukup. Sarana Input/Ouput yang disediakan cukup banyak dan bervariasi. AT89S51 mempunyai 32 jalur Input/Ouput. Jalur Input/Ouput paralel dikenal sebagai Port 1 (P1.0..P1.7) dan Port 3 (P3.0..P3.5 dan P3.7). AT89S51 dilengkapi UART (Universal Asyncronous Receiver/Transmiter) yang biasa dipakai untuk komunikasi data secara seri. Jalur untuk komunikasi data seri (RXD dan TXD) diletakan berhimpitan dengan P3.0 dan P3.1 di kaki nomor 10 dan 11,

17 7 sehingga kalau sarana input/ouput yang bekerja menurut fungsi waktu. Clock penggerak untaian pencacah ini bisa berasal dari oscillator kristal atau clock yang diumpan dari luar lewat T0 dan T1. T0 dan T1 berhimpitan dengan P3.4 dan P3.5, sehingga P3.4 dan P3.5 tidak bisa dipakai untuk jalur input/ouput parelel kalau T0 dan T1 dipakai. AT89S51 mempunyai enam sumber pembangkit interupsi, dua diantaranya adalah sinyal interupsi yang diumpankan ke kaki INT0 dan INT1. Kedua kaki ini berhimpitan dengan P3.2 dan P3.3 sehingga tidak bisa dipakai sebagai jalur input/output parelel kalau INT0 dan INT1 dipakai untuk menerima sinyal interupsi. Port1 dan 2, UART, Timer 0,Timer 1 dan sarana lainnya merupakan register yang secara fisik merupakan RAM khusus, yang ditempatkan di Special Functoin Regeister (SFR) SFR (Register Fungsi Khusus ) Pada Keluarga 51 Sekumpulan SFR atau Special Function Register yang terdapat pada Mikrokontroler Atmel Keluarga 51 ditunjukan pada tabel 2.1, pada bagian sisi kiri dan kanan dituliskan alamat-alamatnya dalam format heksadesimal. Tidak semua alamat pada SFR digunakan, alamat-alamat yang tidak digunakan diimplementasikan pada chip. Jika dilakukan usaha pembacaan pada alamat-alamat yang tidak terpakai tersebut akan menghasilkan data acak dan penulisannya tidak menimbulkan efek sama sekali. Pengguna perangkat lunak sebaiknya jangan menuliskan 1 pada lokasi-lokasi tak bertuan tersebut, karena dapat digunakan untuk mikrokontroler generasi selanjutnya. Dengan demikian, nilai-nilai reset atau non-aktif

18 8 dari bit-bit baru ini akan selalu 0 dan nilai aktifnya adalah 1. Berikut akan dijelaskan secara singkat SFR-SFR beserta fungsinya: Tabel 2.1. Peta Register Fungsi Khusus SFR (Special Function Register) Akumulator ACC atau akumulator yang menempati lokasi E 0h digunakan sebagai register untuk penyimpanan data sementara, dalam program, instruksi mengacunya sebagai register A (bukan ACC). Register B Register B (lokasi D 0h) digunakan selama operasi perkalian dan pembagian, untuk instruksi lain dapat diperlakukan sebagai register scratch pad ( papan coret-coret ) lainnya.

19 9 Program Status Word (PSW) Register PSW (lokasi D 0h) mengandung informasi status program. Stack Pointer Register SP atau Stack Pointer (lokasi 8 1h) merupakan register dengan panjang 8-bit, digunakan dalam proses simpan menggunakan instruksi PUSH dan CALL. Walau Stack bisa menempati lokasi dimana saja dalam RAM, register SP akan selalu diinisialisasi ke 07h setelah adanya reset, hal ini menyebabkan stack berawal di lokasi 08h. Data Pointer Register Data Pointer atau DPTR mengandung DPTR untuk byte tinggi (DPH) dan byte rendah (DPL) yang masing-masing berada dilokasi 83h dan 82h, bersama-sama membentuk register yang mampu menyimpan alamat 16-bit. Dapat dimanipulasi sebagai register 16-bit atau ditulis dari/ke port, untuk masing-masing Port 0,Port 1, Port2 dan Port 3. Serial Data Buffer SBUF atau Serial Data Buffer (lokasi 99h) sebenarnya terdiri dari dua register yang terpisah, yaitu register penyangga pengirim (transmit buffer) dan penyangga penerima (receive buffer). Pada saat data disalin ke SBUF, maka data sesungguhnya dikirim ke penyangga pengirim dan sekaligus mengawali transmisi data serial. Sedangkan pada saat data disalin dari SBUF, maka sebenarnya data tersebut berasal dari penyangga penerima. Time Register Pasangan register (TH0, TL0) dilokasi 8Ch dan 8Ah,(TH1, TL1) dilokasi 8Dh dan 8Bh serta (TH2, TL2) dilokasi CDh dan CCH merupakan register-register pencacah 16-bit untuk masing-masing Timer 0, Timer 1 dan Timer 2.

20 10 Capture Register Pasangan register (RCAP2H, RCAP21) yang menempati lokasi CBh dan CAh merupakan register capture untuk mode Timer 2 capture. Pada mode ini, sebagai tanggapan terjadinya suatu transisi sinyal di kaki (pin) T2EX (pada AT89C52/55), TH2 dan TL2 disalin masing-masing ke RCAP2H dan RCAP2L. Timer 2 juga memiliki mode isi-ulang-otomatis 16-bit dan RCAP2H serta RCAP2L digunakan untuk menyimpan nilai isi-ulang tersebut. Kontrol Register Register-register IP, IE, TMOD, TCON, T2CON, T2MOD, SCON dan PCON berisi bitbit kontrol dan status untuk sistem interupsi, pencacah/pewaktu dan port serial. Berikut ini merupakan spesifikasi dari IC AT89S51 : Kompatible dengan produk MCS-51 Empat K byte In-Sistem Reprogammable Flash Memory Daya tahan 1000 kali baca/tulis Tegangan kerja 4,0 volt sampai 5,5 volt Fully Static Operation : 0 Hz sampai 33 MHz Tiga level kunci memori progam 128 x 8 bit RAM internal 32 jalur input/output (I/O) Dua 16 bit Timer/Counter Enam sumber interupt Jalur serial dengan UART

21 Gambar IC Mikrokontroler AT89S51 Gambar IC mikrokontroler AT89S51 ditunjukkan pada gambar 2.1 di bawah ini: Gambar 2.1. IC Mikrokontroler AT89S51 Deskripsi pin-pin pada mikrokontroler AT89S51 : V CC (Pin 40) Suplai tegangan GND (Pin 20) Ground Port 0 (Pin 39 pin 32) Port 0 dapat berfungsi sebagai I/O biasa, low order multiplex address/data ataupun penerima kode byte pada saat flash progamming Pada fungsi sebagai I/O biasa port ini dapat memberikan output sink ke delapan buah TTL input atau dapat diubah sebagai

22 12 input dengan memberikan logika 1 pada port tersebut. Pada fungsi sebagai low order multiplex address/data, port ini akan mempunyai internal pull up. Pada saat flash progamming diperlukan eksternal pull up, terutama pada saat verifikasi program. Port 2 (Pin 21 pin 28) Port 2 berfungsi sebagai I/O biasa atau high order address, pada saat mengakse memori secara 16 bit. Pada saat mengakses memori 8 bit, port ini akan mengeluarkan isi dari P2 special function register. Port ini mempunyai internal pull up dan berfungsi sebagai input dengan memberikan logika 1. Sebagai output, port ini dapat memberikan output sink ke keempat buah input TTL. Port 3 (Pin 10 pin 17) Port 3 merupakan 8 bit port I/O dua arah dengan internal pull up. Port 3 juga mempunyai fungsi pin masing-masing, yaitu sebagai berikut : Tabel 2.2 Fungsi Pin pada Port 3 Nama pin Fungsi P3.0 (pin 10) RXD (Port input serial) P3.1 (pin 11) TXD (Port output serial) P3.2 (pin 12) INT0 (interrupt 0 eksternal) P3.3 (pin 13) INT1 (interrupt 1 eksternal) P3.4 (pin 14) T0 (input eksternal timer 0) P3.5 (pin 15) T1 (input eksternal timer 1) P3.6 (pin 16) WR (menulis untuk eksternal data memori) P3.7 (pin 17) RD (untuk membaca eksternal data memori) RST (pin 9)

23 13 Reset akan aktif dengan memberikan input high selama 2 cycle. ALE/PROG (pin 30) Address latch Enable adalah pulsa output untuk me-latch byte bawah dari alamat selama mengakses memori eksternal. Selain itu, sebagai pulsa input progam (PROG) selama memprogram Flash. PSEN (pin 29) Program store enable digunakan untuk mengakses memori progam eksternal. EA (pin 31) Pada kondisi low, pin ini akan berfungsi sebagai EA yaitu mikrokontroler akan menjalankan progam yang ada pada memori eksternal setelah sistem direset. Jika kondisi high, pin ini akan berfungsi untuk menjalankan progam yang ada pada memori internal. Pada saat flash programming, pin ini akan mendapat tegangan 12 Volt. X TAL 1 (pin 19) Input untuk clock internal. X TAL 2 (pin 18) Output dari osilator. 2.2 Perangkat Lunak Instruksi Instruksi AT89S51 Bahasa yang digunakan untuk memprogram IC mikrokontroller AT89S51 adalah bahasa assembly untuk MCS-51 merupakan jumlah instruksi, pada bahasa ini hanya ada 51 instruksi. Dari instruksi, yang sering digunakan orang hanya 10 instruksi. instruksi tersebut adalah :

24 14 1. Instruksi MOV Perintah ini merupakan perintah untuk mengisikan nilai ke alamat atau register tertentu. Pengisian nilai dapat secara langsung atau tidak langsung. Contoh pengisian nilai secara langsung MOV R0,#20h Perintah di atas berarti : isikan nilai 20 Heksadesimal ke register 0 (R0). Tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah nilai. Contoh pengisian nilai secara tidak langsung MOV 20h,#80h MOV R0,20h Perintah di atas berarti : isikan nilai yang terdapat pada alamat 20 Heksadesimal ke register 0 (R0). Tanpa tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah alamat. 2. Instruksi DJNZ Decreament Jump If Not Zero (DJNZ) ini merupakan perintah untuk mengurangi nilai register tertentu dengan 1 dan lompat jika hasil pengurangannya belum nol. Contoh, MOV R0,#80h Loop:......

25 15 DJNZ R0,Loop... R0-1, jika belum 0 lompat ke loop, jika R0 = 0 maka program akan meneruskan ke perintah pada baris berikutnya. 3. Instruksi ACALL Instruksi ini berfungsi untuk memanggil suatu rutin tertentu. Contoh :... ACALL TUNDA... TUNDA: Instruksi RET Instruksi RETURN (RET) ini merupakan perintah untuk kembali ke rutin pemanggil setelah instruksi ACALL dilaksanakan. Contoh, ACALL TUNDA... TUNDA:... RET 5. Instruksi JMP (Jump) Instruksi ini merupakan perintah untuk lompat ke alamat tertentu. Contoh, Loop:...

26 16... JMP Loop 6. Instruksi JB (Jump if bit) Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika high (1). Contoh, Loop: JB P1.0,Loop Instruksi JNB (Jump if Not bit) Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika Low (0). Contoh, Loop: JNB P1.0,Loop Instruksi CJNE (Compare Jump If Not Equal) Instruksi ini berfungsi untuk membandingkan nilai dalam suatu register dengan suatu nilai tertentu. Contoh, Loop:... CJNE R0,#20h,Loop...

27 17 Jika nilai R0 tidak sama dengan 20h, maka program akan lompat ke rutin Loop. Jika nilai R0 sama dengan 20h,maka program akan melanjutkan instruksi selanjutnya.. 9. Instruksi DEC (Decreament) Instruksi ini merupakan perintah untuk mengurangi nilai register yang dimaksud dengan 1. Contoh, MOV R0,#20h R0 = 20h... DEC R0 R0 = R Instruksi INC (Increament) Instruksi ini merupakan perintah untuk menambahkan nilai register yang dimaksud dengan 1. Contoh, MOV R0,#20h R0 = 20h... INC R0 R0 = R Software 8051 Editor, Assembler, Simulator (IDE) Instruksi-instruksi yang merupakan bahasa assembly tersebut dituliskan pada sebuah editor, yaitu 8051 Editor, Assembler, Simulator. Tampilannya seperti di bawah ini.

28 18 Gambar Editor, Assembler, Simulator Setelah program selesai ditulis, kemudian di-save dan kemudian di-assemble (dicompile). Pada saat di-assemble akan tampil pesan peringatan dan kesalahan. Jika masih ada kesalahan atau peringatan, itu berarti ada kesalahan dalam penulisan perintah atau ada nama subrutin yang sama, sehingga harus diperbaiki terlebih dahulu sampai tidak ada pesan kesalahan lagi. Software 8051IDE ini berfungsi untuk merubah program yang kita tuliskan ke dalam bilangan heksadesimal, proses perubahan ini terjadi pada saat peng-compile-an. Bilangan heksadesimal inilah yang akan dikirimkan ke mikrokontroller Software Downloader Untuk mengirimkan bilangan-bilangan heksadesimal ini ke mikrokontroller digunakan software ISP- Flash Programmer 3.0a yang dapat didownload dari internet. Tampilannya seperti gambar di bawah ini

29 19 Gambar 2.3 ISP- Flash Programmer 3.a Cara menggunakannya adalah dengan meng-klik Open File untuk mengambil file heksadesimal dari hasil kompilasi 8051IDE, kemudian klik Write untuk mengisikan hasil kompilasi tersebut ke mikrokontroller Motor Langkah (Stepper) Motor langkah (stepper) banyak digunakan dalam berbagai aplikasi, dipergunakan apabila dikehendaki jumlah putaran yang tepat atau diperlukan sebagian dari putaran motor. Suatu contoh dapat di jumpai pada disk drive, untuk proses pembacaan dan/atau penulisan data ke/dari cakram(disk), head baca-tulis ditempatkan pada tempat yang tepat di atas jalur atau track pada cakram, untuk head tersebut di hubungkan dengan sebuah motor langkah.

30 20 Aplikasi penggunaan motor langkah dapat juga dijumpai dalam bidang industri atau untuk jenis motor langkah kecil dapat di gunakan dalam perancangan suatu alat mekatronik atau robot. Motor langkah berukuran besar digunakan, misalnya, dalam proses pengeboran logam yang menghendaki ketepatan posisi pengeboran, dalam hal ini di lakukan oleh sebuah robot yang memerlukan ketepatan posisi dalam gerakan lengannya dan lain-lain. Pada gambar di bawah ditunjukkan dasar susunan sebuah motor langkah (stepper). A U B C D A B S Gambar 2.4 Diagram motor langkah (stepper) Magnet permanen N-S berputar kearah medan magnet yang aktif. Apabila kumparan stator dialiri arus sedemikian rupa, maka akan timbul medan magnet dan rotor akan berputar mengikuti medan magnet tersebut. Setiap pengalihan arus ke kumparan berikutnya menyebabkan medan magnet berputar menurut suatu sudut tertentu, biasanya informasi besar sudut putar tertulis pada badan motor langkah yang

31 21 bersangkutan. Jumlah keseluruhan pengalihan menentukan sudut perputaran motor. Jika pengalihan arus di tentukan, maka rotor akan berhenti pada posisi terakhir. Jika kecepatan pengalihan tidak terlalu tinggi, maka slip akan dapat dihindari. Sehingga tidak di perlukan umpan balik (feedback) pada pengendalian motor langkah. Motor langkah yang akan di gunakan memiliki 4 fase (pole atau kutub), pengiriman pulsa dari mikrokontroler ke rangkaian motor langkah dilakukan secara bergantian, masing-masing 4 data (sesuai dengan jumlah phase-nya), sebagian di tunjukkan pada gambar di bawah ini. A B C D Gambar 2.5 Pemberian data/pulsa pada motor stepper Pada saat yang sama, untuk tiap motor langkah, tidak boleh ada 2 (dua) masukan atau lebih yang mengandung pulsa sama dengan 1 (high), atau dengan kata lain, pada suatu saat hanya sebuah masukan yang bernilai 1 (satu) sedangkan lainnya bernilai 0 (nol).

32 Penguat Sinyal Gambaran umum Penguat operasional (Op - Amp) adalah suatu rangkaian terintegrasi yang berisi beberapa tingkat dan konfigurasi penguat diferensial yang telah dijelaskan di atas. Penguat operasional memilki dua masukan dan satu keluaran serta memiliki penguatan DC yang tinggi. Untuk dapat bekerja dengan baik, penguat operasional memerlukan tegangan catu yang simetris yaitu tegangan yang berharga positif (+V) dan tegangan yang berharga negatif (-V) terhadap tanah (ground). Operational Amplifier atau di singkat Op - Amp merupakan salah satu komponen analog yang popular digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi penguat operasional popular yang paling sering dibuat antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada bagian ini akan dipaparkan beberapa aplikasi penguat operasional yang paling dasar, dimana rangkaian feedback (umpan balik) negatif memegang peranan penting. Secara umum, umpan balik positif akan menghasilkan osilasi sedangkan umpan balik negatif menghasilkan penguatan yang dapat terukur. Penguat operasional pada dasarnya adalah sebuah differential amplifier (penguat diferensial) yang memiliki dua masukan. Input (masukan) penguat operasional seperti yang telah dimaklumi ada yang dinamakan input inverting dan non-inverting. Penguat operasional ideal memiliki open loop gain (penguatan loop terbuka) yang tak terhingga besarnya.

33 23 Ada dua aturan penting dalam melakukan analisa rangkaian penguat operasional berdasarkan karakteristik penguat operasional ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yaitu : Aturan 1 : Perbedaan tegangan antara input v + dan v - adalah nol (v + -v - = 0 / v + = v - ) Aturan 2 : Arus pada input Penguat operasional adalah nol (i + = i - = 0) Inilah dua aturan penting penguat operasional ideal yang digunakan untuk menganalisa rangkaian penguat operasional Karakteristik Ideal Penguat Operasional Penguat operasional banyak digunakan dalam berbagai aplikasi karena beberapa keunggulan yang dimilikinya, seperti penguatan yang tinggi, impedansi masukan yang tinggi, impedansi keluaran yang rendah dan lain sebagainya. Berikut ini adalah karakteristik dari Penguat operasional ideal: 1. Penguatan tegangan lingkar terbuka Penguatan tegangan lingkar terbuka (open loop voltage gain) adalah penguatan diferensial Penguat operasional pada kondisi dimana tidak terdapat umpan balik (feedback). Secara ideal, penguatan tegangan lingkar terbuka adalah: A VOL = Vo / Vid = A VOL = Vo/(V1-V2) = Tanda negatif menandakan bahwa tegangan keluaran V O berbeda fasa dengan tegangan masukan V id. Konsep tentang penguatan tegangan tak berhingga tersebut sukar untuk divisualisasikan dan tidak mungkin untuk diwujudkan. Suatu hal yang perlu untuk dimengerti adalah bahwa tegangan keluaran V O jauh lebih

34 24 besar daripada tegangan masukan V id. Dalam kondisi praktis, harga A VOL adalah antara 5000 (sekitar 74 db) hingga (sekitar 100 db).tetapi dalam penerapannya tegangan keluaran V O tidak lebih dari tegangan catu yang diberikan pada Penguat operasional. Karena itu Penguat operasional baik digunakan untuk menguatkan sinyal yang amplitudonya sangat kecil. 2. Tegangan ofset keluaran Tegangan ofset keluaran (output offset voltage) V OO adalah harga tegangan keluaran dari Penguat operasional terhadap tanah (ground) pada kondisi tegangan masukan V id = 0. Secara ideal, harga V OO = 0 V. Penguat operasional yang dapat memenuhi harga tersebut disebut sebagai Penguat operasional dengan CMR (common mode rejection) ideal. Tetapi dalam kondisi praktis, akibat adanya ketidakseimbangan dan ketidakidentikan dalam penguat diferensial dalam Penguat operasional tersebut, maka tegangan ofset V OO biasanya berharga sedikit di atas 0 V. Apalagi apabila tidak digunakan umpan balik maka harga V OO akan menjadi cukup besar untuk menimbulkan saturasi pada keluaran. Untuk mengatasi hal ini, maka perlu diterapakan tegangan koreksi pada Penguat operasional. Hal ini dilakukan agar pada saat tegangan masukan V id = 0, tegangan keluaran V O juga = Hambatan Masukan Hambatan masukan (input resistance) R i dari Penguat operasional adalah besar hambatan di antara kedua masukan Penguat operasional. Secara ideal hambatan

35 25 masukan Penguat operasional adalah tak berhingga. Tetapi dalam kondisi praktis, harga hambatan masukan Penguat operasional adalah antara 5 k hingga 20 M, tergantung pada tipe Penguat operasional. Harga ini biasanya diukur pada kondisi Penguat operasional tanpa umpan balik. Apabila suatu umpan balik negatif (negative feedback) diterapkan pada Penguat operasional, maka hambatan masukan Penguat operasional akan meningkat. Dalam suatu penguat, hambatan masukan yang besar adalah suatu hal yang diharapkan. Semakin besar hambatan masukan suatu penguat, semakin baik penguat tersebut dalam menguatkan sinyal yang amplitudonya sangat kecil. Dengan hambatan masukan yang besar, maka sumber sinyal masukan tidak terbebani terlalu besar. 4. Hambatan Keluaran Hambatan Keluaran (output resistance) R O dari Penguat operasional adalah besarnya hambatan dalam yang timbul pada saat Penguat operasional bekerja sebagai pembangkit sinyal. Secara ideal harga hambatan keluaran R O Penguat operasional adalah = 0. Apabila hal ini tercapai, maka seluruh tegangan keluaran Penguat operasional akan timbul pada beban keluaran (RL), sehingga dalam suatu penguat, hambatan keluaran yang kecil sangat diharapkan. Dalam kondisi praktis harga hambatan keluaran Penguat operasional adalah antara beberapa ohm hingga ratusan ohm pada kondisi tanpa umpan balik.

36 26 Dengan diterapkannya umpan balik, maka harga hambatan keluaran akan menurun hingga mendekati kondisi ideal. 5. Lebar Pita Lebar pita (band width) BW dari Penguat operasional adalah lebar frekuensi tertentu dimana tegangan keluaran tidak jatuh lebih dari 0,707 dari harga tegangan maksimum pada saat amplitudo tegangan masukan konstan. Secara ideal, Penguat operasional memiliki lebar pita yang tak terhingga. Tetapi dalam penerapannya, hal ini jauh dari kenyataan. Sebagian besar Penguat operasional serba guna memiliki lebar pita hingga 1 MHz dan biasanya diterapkan pada sinyal dengan frekuensi beberapa kilohertz. Tetapi ada juga Penguat operasional yang khusus dirancang untuk bekerja pada frekuensi beberapa MegaHertz. Penguat operasional jenis ini juga harus didukung komponen eksternal yang dapat mengkompensasi frekuensi tinggi agar dapat bekerja dengan baik. 6. Waktu Tanggapan Waktu tanggapan (respon time) dari Penguat operasional adalah waktu yang diperlukan oleh keluaran untuk berubah setelah masukan berubah. Secara ideal harga waktu respon Penguat operasional adalah = 0 detik, yaitu keluaran harus berubah langsung pada saat masukan berubah.tetapi dalam prakteknya, waktu tanggapan dari Penguat operasional memang cepat tetapi tidak langsung berubah sesuai masukan. Waktu tanggapan Penguat operasional umumnya adalah beberapa mikro detik hal ini disebut juga slew rate. Perubahan keluaran yang

37 27 hanya beberapa mikrodetik setelah perubahan masukan tersebut umumnya disertai dengan oveshoot yaitu lonjakan yang melebihi kondisi steady state. Tetapi pada penerapan biasa, hal ini dapat diabaikan. 7. Karakteristik Terhadap Suhu Sebagai mana diketahui, suatu bahan semikonduktor yang akan berubah karakteristiknya apabila terjadi perubahan suhu yang cukup besar. Pada Penguat operasional yang ideal, karakteristiknya tidak berubah terhadap perubahan suhu. Tetapi dalam prakteknya, karakteristik sebuah Penguat operasional pada umumnya sedikit berubah, walaupun pada penerapan biasa, perubahan tersebut dapat diabaikan Penguat non-inverting Prinsip utama rangkaian penguat non-inverting adalah seperti yang diperlihatkan pada gambar 2.3 berikut ini. Seperti namanya, penguat ini memiliki masukan yang dibuat melalui input non-inverting. Dengan demikian tegangan keluaran rangkaian ini akan satu fasa dengan tegangan inputnya. Gambar 2.6 Rangkaian dasar penguat non-inverting

38 28 Dengan menggunakan aturan 1 dan aturan 2, kita uraikan dulu beberapa fakta yang ada, antara lain : v in = v + v + = v - = v in. Dari sini ketahui tegangan jepit pada R 2 adalah v out v - = v out v in, atau i out = (v out - v in )/R 2. Lalu tegangan jepit pada R 1 adalah v - = v in, yang berarti arus i R1 = v in /R 1. Hukum kirchoff pada titik input inverting merupakan fakta yang mengatakan bahwa : i out + i (-) = i R1 Aturan 2 mengatakan bahwa i (-) = 0 dan jika disubsitusi ke rumus yang sebelumnya, maka diperoleh i out = i R1 dan Jika ditulis dengan tegangan jepit masing-masing maka diperoleh (v out v in )/R 2 = v in /R 1 yang kemudian dapat disederhanakan menjadi : v out = v in (1 + R 2 /R 1 ) Jika penguatan G adalah perbandingan tegangan keluaran terhadap tegangan masukan, maka didapat penguatan penguat operasional non-inverting : Penguat Inverting Rangkaian dasar penguat inverting adalah seperti yang ditunjukkan pada gambar 2.4, dimana sinyal masukannya dibuat melalui input inverting. Seperti tersirat pada namanya, bahwa fase keluaran dari penguat inverting ini akan selalu berbalikan dengan inputnya. Pada rangkaian ini, umpan balik negatif di bangun melalui resistor R2.

39 29 Gambar 2.7 Rangkaian dasar penguat inverting Input non-inverting pada rangkaian ini dihubungkan ke ground, atau v + = 0. Dengan mengingat dan menimbang aturan 1 (lihat aturan 1), maka akan dipenuhi v - = v + = 0. Karena nilainya = 0 namun tidak terhubung langsung ke ground, input penguat operasional v - pada rangkaian ini dinamakan virtual ground. Dengan fakta ini, dapat dihitung tegangan jepit pada R1 adalah v in v - = v in dan tegangan jepit pada reistor R 2 adalah v out v - = v out. Kemudian dengan menggunakan aturan 2, di ketahui bahwa : i in + i out = i - = 0, karena arus masukan penguat operasional adalah 0. i in + i out = v in /R 1 + v out /R 2 = 0 Selanjutnya v out /R 2 = - v in /R 1 atau v out /v in = - R 2 /R 1 Jika penguatan G didefenisikan sebagai perbandingan tegangan keluaran terhadap tegangan masukan, maka dapat ditulis

40 30 Impedansi rangkaian inverting didefenisikan sebagai impedansi input dari sinyal masukan terhadap ground. Karena input inverting (-) pada rangkaian ini diketahui adalah 0 (virtual ground) maka impendasi rangkaian ini tentu saja adalah Z in = R Penguat diffrensiator Penguat Differensial bisa mengukur maupun memperkuat sinyal-sinyal kecil yang terbenam dalam sinyal-sinyal yang jauh lebih besar. Empat tahanan presisi (1 %) dan sebuah penguat operasional membentuk sebuah penguat differensial, seperti terlihat pada gambar terminal inputnya ada dua, input (-) dan (+), dihubungkan dengan terminal penguat operasional yang terdekat. Sumber masukan penguat differensial ada 2, yaitu E1 dan E2. Jika E2 dihubung singkat, maka E1 mendapat penguatan pembalik sebesar -mr/r = -m. Karena tegangan keluaran akibat E1 adalah -me1. Jika E1 dihubung singkat, maka E2 akan terbagi antara R dan mr, sehingga terminal positif dari penguat operasional menerima tegangan sebesar mendapat penguatan pembalik sebesar -mr/r = -m. Karena tegangan keluaran akibat E1 adalah -me2/(1+m), dengan penguatan sebesar (1+m). Gambar 2.8 Rangkaian dasar penguat differensial

41 31 Karena itu tegangan keluaran akibat E1 adalah: Dengan demikian jika E1 dan E2 sama-sama dimasukan, maka tegangan keluaran Vo adalah: Dari persamaan diatas, dapat dilihat bahwa tegangan keluaran dari Penguat differensial sebanding dengan perbedaan tegangan masukan E1 dan E2. Pengali ini adalah merupakan gain diferensial yang ditentukan oleh perbandingan tahanannya Penguat jumlah (summing amplifier) Penguat operasional sering digunakan sebagai penjumlah berbagai input sinyal. Berikut ini adalah gambar dari summing amplifier. Gambar 2.9 Rangkaian dasar penguat jumlah (summing amplifier) Rangkaian summing amplifier mempunyai penguatan tegangan sebanyak dua penguatan tegangan. Untuk penguatan tegangan 1 adalah sebagai berikut:

42 32 Untuk penguatan tegangan 2 adalah sebagai berikut: Penguatan tegangan total dari summing amplifier adalah sebagai berikut: Transistor Sebagai Switching Disamping sebagai penguat, transistor juga sering digunakan sebagai switching untuk mengontrol suatu beban dengan arus kecil, medium, atau arus besar dalam aplikasi aplikasi industri. Gambar 2.10 menunjukkan rangkaian transistor sebagai switching. Vcc Ib Rc Ic Rb Vbe Tr Gambar 2.10 Transistor sebagai switching Pada penggunaan transistor sebagai switching tegangan nol volt pada Vbe transistor jenis NPN berarti mengaktipkan transistor tersebut sebagai saklar dengan

43 33 keadaan terbuka, sedangkan memberi tegangan 0,7 volt untuk transistor silikon dan 0,3 volt untuk transistor germanium pada Vbe transistor akan memfungsikan transistor itu sebagai saklar dengan keadaan tertutup. Sedangkan pada transistor jenis PNP tegangan nol justru akan membuat transistor tersebut bekerja sebagai saklar dalam keadaan tertutup. Pada keadaan transistor sebagai saklar tertutup maka arus Ic dari transistor itu akan mengalir melalui Rc menuju ground, sedangkan pada keadaan transistor sebagai saklar terbuka maka arus Ic akan tertahan sampai Rc saja.

44 34 BAB III RANCANGAN SISTEM 3.1 DIAGRAM BLOK Secara garis besar rangkaian untuk lift 4 lantai terdiri dari 5 blok utama, yaitu rangkaian tombol, rangkaian display, rangkaian mikrokontroler, rangkaian display, rangkaian driver motor stepper dan motor stepper. Diagram blok rangkaian tampak seperti gambar berikut: Tombol Lantai 1 Tombol Lantai 2 Tombol Lantai 3 Sensor Lt.1 Penguat Sinyal P3.0 P3.1 P3.2 Sensor Lt.2 Penguat Sinyal Micro AT89S51 P0 Pengendali Motor Stepper Motor Stepper Sensor Lt.3 Penguat Sinyal P3.0 P3.1 Display Gambar 3.1. Diagram Blok Rangkaian Gambar di atas merupakan gambar diagram blok dari rangkaian untuk lift 3 lantai. Tombol berfungsi sebagai tombol pemanggil dari masing-masing lantai, dimana tombol ini berada pada setiap lantai. Rangkaian mikrokontroler berfungsi untuk mengolah datayang diterima dari masing-masing timbil kemudian menampilkan pada display dan menggerakkan lift ke atas atau ke bawah. Rangkaian display berfungsi untuk menampilkan nilai dari penekanan tombol, semisal pengguna akan menuju lantai 3,

45 35 sehingga menekan tombol 3, maka pada display akan tampil angka 3. Driver motor stepper berfungsi untuk mengendalikan pergerakan motor stepper, dan motor stepper sendiri berfungsi untuk menaikkan dan menurunkan lift. 3.2 Rangkaian Power Supplay (PSA) Rangkaian ini berfungsi untuk mensupplay tegangan ke seluruh rangkaian yang ada. Rangkaian PSA yang dibuat terdiri dari dua keluaran, yaitu 5 volt dan 12 volt, keluaran 5 volt digunakan untuk mensupplay tegangan ke seluruh rangkaian, sedangkan keluaran 12 volt digunakan untuk mensuplay tegangan ke motor stepper.. Rangkaian power supplay ditunjukkan pada gambar 3.2 berikut ini : TIP32C LM7805CT 12 Volt Vreg 220V 50Hz 0Deg 1N5392GP 100ohm IN OUT 5 Volt 330ohm 1N5392GP 2200uF 1uF 100uF TS_PQ4_12 Gambar 3.2 Rangkaian Power Supplay (PSA) Trafo CT merupakan trafo stepdown yang berfungsi untuk menurunkan tegangan dari 220 volt AC menjadi 12 volt AC. Kemudian 12 volt AC akan disearahkan dengan menggunakan dua buah dioda, selanjutnya 12 volt DC akan diratakan oleh kapasitor 2200 µf. Regulator tegangan 5 volt (LM7805CT) digunakan agar keluaran yang

46 36 dihasilkan tetap 5 volt walaupun terjadi perubahan pada tegangan masukannya. LED hanya sebagai indikator apabila PSA dinyalakan. Transistor PNP TIP 32 disini berfungsi untuk mensupplay arus apabila terjadi kekurangan arus pada rangkaian, sehingga regulator tegangan (LM7805CT) tidak akan panas ketika rangkaian butuh arus yang cukup besar.transistor tipe PNP ini akan aktip jika tegangan pada basis > 0,7 volt dari tegangan positip. Tegangan positip yang dihubungkan ke emitor sebesar 12 volt, sehingga transistor akan aktip jika diberi tegangan yang lebih kecil dari 12 volt 0,7 volt = 11,3 volt. Dalam kondisi biasa (LM7805 tidak kekurangan arus), maka basis akan mendapatkan tegangan 12 volt, sehingga transistor tidak aktip, emitor tidak terhubung dengan kolektor, sehingga tegangan pada kolektor sama dengan tegangan pada output regulator LM7805 yaitu 5 volt. Namun jika rangkaian membutuhkan arus yang lebih banyak, maka regulator akan mengambil arus dari inputnya, sehingga tegangan pada input regulator akan turun hingga lebih kecil dari 11,3 volt, transistor akan aktip, maka arus akan mengalir dari emitor ke kolektor. Pada transistor ini jika aktip, maka yang mengalir dari emitor ke kolektor adalah arusnya, sedangkan tegangannya tidak, sehingga tegangan pada kolektor tetap 5 volt. Tegangan 12 volt DC langsung diambil dari keluaran 2 buah dioda penyearah. 3.3 Rangkaian Mikrokontroler AT89S51 Rangkaian Mikrokontroler berfungsi untuk mengolah sinyal yang dikirimkan oleh sensor 1 dan 2 kemudian menghitung kecepatan dari kendaraan dalam satuan kilometer per jam ( Km/Jam ) untuk ditampilkan ke seven segmen. Gambar rangkaian mikrokontroler AT89S51 ditunjukkan pada gambar 3.8 berikut ini :

47 37 VCC 5V 10uF VCC 5V 1 P1.0 2 P1.1 3 P1.2 4 P1.3 5 P1.4 6 P1.5 7 P1.6 8 P1.7 9 RST AT89S51 40 Vcc 39 P0.0 (AD0) 38 P0.1 (AD1) 37 P0.2 (AD2) 36 P0.3 (AD3) 35 P0.4 (AD4) 34 P0.5 (AD5) 33 P0.6 (AD6) 32 P0.7 (AD7) VCC 5V 2SA k XTAL 12 MHz LED pF 30pF 10 P3.0 (RXD) 11 P3.1 (TXD) 12 P3.2 (INT0) 13 P3.3 (INT1) 14 P3.4 (T0) 15 P3.5 (T1) 16 P3.6 (WR) 17 P3.7 (RD) 18 XTAL2 19 XTAL1 20 GND 31 EA/VPP 30 ALE/PROG 29 PSEN 28 P2.7 (A15) 27 P2.6 (A14) 26 P2.5 (A13) 25 P2.4 (A12) 24 P2.3 (A11) 23 P2.2 (A10) 22 P2.1 (A9) 21 P2.0 (A8) Gambar 3.3. Rangkaian Mikrokontroler AT89S51 Mikrokontroler ini memiliki 32 port I/O, yaitu port 0, port 1, port 2 dan port 3. Pin 40 dihubungkan ke sumber tegangan 5 volt. Dan pin 20 dihubungkan ke ground. Rangkaian mikrokontroler ini menggunakan komponen kristal 12 MHz sebagai sumber clocknya. Nilai kristal ini akan mempengaruhi kecepatan mikrokontroler dalam mengeksekusi suatu perintah tertentu. Pada pin 9 dihubungkan dengan sebuah kapasitor 10 uf yang dihubungkan ke positip dan sebuah resistor 10 Kohm yang dihubungkan ke ground. Kedua komponen ini berfungsi agar programpada mikrokontroler dijalankan beberapa saat setelah power aktip. Lamanya waktu antara aktipnya power pada IC mikrokontroler dan aktipnya program adalah sebesar perkalian antara kapasitor dan resistor tersebut. Jika dihitung maka lama waktunya adalah :

48 38 t R x C 10 K x 10 F 1mdet ik Jadi 1 mili detik setelah power aktip pada IC kemudian program aktip. Pin 17 yang merupakan P3.7 dihubungkan dengan transistor dan sebuah LED. Ini dilakukan hanya untuk menguji apakan rangkaian minimum mikrokontroller AT89S51 sudah bekerja atau belum. Dengan memberikan program sederhana pada mikrokontroller tersebut, dapat diketahui apakah rangkaian minimum tersebut sudah bekerja dengan baik atau tidak. Jika LED yang terhubug ke Pin 17 sudah bekerja sesuai dengan perintah yang diberikan, maka rangkaian minimum tersebut telah siap digunakan. 3.4 Rangkaian Tombol perintah Tombol berfungsi sebagai tombol pemanggil dari masing-masing lantai, dimana tombol ini berada pada setiap lantai. Jika tombol pada lantai 1 ditekan, maka lift akan menuju lantai 1, jika tombol pada lantai 2 ditekan, maka lift akan menuju lantai 2, demikian juga jika tombol pada lantai 3 atau lantai 4 yang ditekan. Rangkaian tombol perintah ini dihubungkan dengan port 1. Dalam kondisi biasa, port 1 mendapatkan logika high (1), saat terjadi penakanan salah satu tombol, maka pin yang terhubung ke tombol tersebut akan terhubung ke ground, sehingga mengirimkan sinyal low (0). Perubahan kondisi dari high (1), menjadi low (0) inilah yang merupakan tanda adanya penekanan pada salah satu tombol. Rangkaian tombol perintah ditunjukkan pada gambar berikut ini :

49 39 VCC 5V 4K7 Tombol P1.0 AT89S51 Gambar 3.4. Rangkaian Tombol perintah 3.5 Rangkaian Display Seven Segment Untuk menampilkan angka dari setiap penekanan tombol, maka dibutuhkan sebuah display untuk menampilkannya. Pada alat ini, display yang digunakan adalah display seven segmen, yang terdiri dari 1 buah seven segmen. Display seven segmen ini akan diaktipkan oleh IC 4094 yang merupakan IC serial to paralel (serial in paralel out). Jadi data dimasukkan ke dalam IC ini dengan mengirimkan data serial. Keluaran dari IC 4094 ini langsung dihubungkan ke seven segmen, sehingga data serial yang diterima oleh input IC ini akan ditampilkan nilainya pada seven segmen. Rangkaian ini terhubung ke P3.0 dan P3.1, yang mempunyai fungsi khusus sebagai pengiriman data secara serial. Sehingga nilai yang akan tampil pada display seven segmen akan dapat dikendalikan oleh mikrokontroler AT89S51. Rangkaian display seven segmen daitunjukkan pada gambar berikut ini :

50 40 VCC 5V SEVEN_SEG_DISPLAY A B C DE FG Out Clock In D7 D6 D5 D4 D3 D2 D1 D P3.0 AT89S51 P3.1 AT89S51 Gambar 3.5. Rangkaian display seven segmen Dengan menghubungkan P3.0 dengan IC serial to paralel (IC 4094), maka data serial yang dikirim akan diubah menjadi data paralel. Kemudian IC 4094 ini dihubungkan dengan seven segmen agar data tersebut dapat ditampilkan dalam bentuk angka. Seven segmen yang digunakan adalah aktip low, ini berarti segmen akan hidup jika diberi data low (0) dan segmen akan mati jika diberi data high (1). 3.6 Rangkaian Driver Motor Stepper Untuk mengendalikan perputaran motor stepper dibutuhkan sebuah driver. Driver ini berfungsi untuk memutar motor stepper searah/berlawanan arah dengan arah jarum jam. Mikrokontroler tidak dapat langsung mengendalikan putaran dari motor stepper, karena itu dibutuhkan driver sebagai perantara antara mikrokontroler dan motor stepper, sehingga perputaran dari motor stepper dapat dikendalikan oleh mikrokontroler. Rangkaian jembatan H ditunjukkan pada gambar 3.9 berikut ini :

51 41 Gambar 3.6. Rangkaian Driver Motor Stepper Untuk mempermudah penjelasan, maka rangkaian di atas dikelompokkan menjadi rangkaian. Pada rangkaian di atas, jika salah input rangkaian I yang dihubungkan ke mikrokontroler diberi logika high dan input pada rangkaian lainnya diberi logika low, maka kedua transistor tipe NPN C945 pada rangkaian I akan aktip. Hal ini akan membuat kolektor dari kedua transistor C945 pada rangkaian I akan mendapat tegangan 0 volt dari ground. Kolektor dari transistor C945 yang berada di sebelah kiri atas diumpankan ke basis dari transistor tipe PNP TIP 127 sehingga basis dari transistor TIP 127 mendapatkan tegangan 0 volt yang menyebabkan transistor ini aktip (transistor tipe PNP akan aktip jika tegangan pada basis lebih kecil dari 4,34 volt). Aktipnya transistor PNP TIP 127 ini akan mengakibatkan kolektornya terhubung ke emitor sehingga kolektor mendapatkan tegangan 15 volt dari Vcc. Kolektor dari transistor TIP 127 dihubungkan ke kumparan, sehingga kumparan akan mendapatkan tegangan 6 volt. Hal ini akan mengakibatkan kumparan menimbulkan

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 PERANGKAT KERAS 2.1.1 Arsitektur Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontoler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Perangkat Keras 2.1.1 Bahasa Assembly MCS-51 Bahasa yang digunakan untuk memprogram IC mikrokontroler AT89S51 adalah bahasa assembly untuk MCS-51. angka 51 merupakan jumlah instruksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan

BAB II TINJAUAN PUSTAKA. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan BAB II TINJAUAN PUSTAKA 2.1. PERANGKAT KERAS 2.1.1. Arsitektur Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar

Lebih terperinci

digunakan untuk pembahasan dan cara kerja dari rangkaian Teori komponen-komponen pendukung.

digunakan untuk pembahasan dan cara kerja dari rangkaian Teori komponen-komponen pendukung. 13 Landasan teori, dalam bab ini dijelaskan tentang teori pendukung yang digunakan untuk pembahasan dan cara kerja dari rangkaian Teori pendukung itu antara lain tentang mikrokontroler AT89S51 (hardware

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer,

BAB 2 TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, BAB 2 TINJAUAN TEORITIS 2.1.Hardware 2.1.1 Mikrokontroler AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontoler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru.

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu. dua macam memori yang sifatnya berbeda yaitu:

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu. dua macam memori yang sifatnya berbeda yaitu: BAB 2 LANDASAN TEORI 2.1 Perangkat Keras 2.1.1 Mikrokontroler AT89S52 Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu mikrokomputer CMOS 8 bit dengan daya rendah, kemampuan tinggi,

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS 7 BAB 2 TINJAUAN TEORITIS 1 Konveyor Konveyor hanya bergerak ke satu arah saja, konveyor digerakkan dengan motor stepper 12V type. Sinyal keluaran dari motor stepper untuk menggerakkan konveyor dirangkaikan

Lebih terperinci

BAB III RANCANGAN SISTEM. dirancanag. Setiap diagram blok mempunyai fungsi masing-masing. Adapun diagram

BAB III RANCANGAN SISTEM. dirancanag. Setiap diagram blok mempunyai fungsi masing-masing. Adapun diagram BAB III RANCANGAN SISTEM 3.1. Diagram Blok Rangkaian Diagram blok merupakan gambaran dasar dari rangkaian sistem yang akan dirancanag. Setiap diagram blok mempunyai fungsi masing-masing. Adapun diagram

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 Perangkat keras Mikrokontroler AT89S51 2.1.1 Arsitektur Mikrokontroler AT89S51 Mikrokontroler AT89S51 merupakan salah satu keluarga dari MCS-51 keluaran Atmel. Jenis mikrokontroler

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan

BAB 2 LANDASAN TEORI. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan BAB 2 LANDASAN TEORI 2.1. Sistem Minimum Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi

Lebih terperinci

Please purchase PDFcamp Printer on to remove this watermark. BAB 2 DASAR TEORI

Please purchase PDFcamp Printer on  to remove this watermark. BAB 2 DASAR TEORI BAB 2 DASAR TEORI 2.1 Telepon Dual Tone Multi Frequency (DTMF) Dewasa ini hampir semua telepon yang ada sudah menggunakan tombol tekan yang disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada

Lebih terperinci

BAB III PERANCANGAN SISTEM. Secara garis besar rangkaian pengendali peralatan elektronik dengan. blok rangkaian tampak seperti gambar berikut :

BAB III PERANCANGAN SISTEM. Secara garis besar rangkaian pengendali peralatan elektronik dengan. blok rangkaian tampak seperti gambar berikut : BAB III PERANCANGAN SISTEM 3.1. Diagram Blok Secara garis besar rangkaian pengendali peralatan elektronik dengan menggunakan PC, memiliki 6 blok utama, yaitu personal komputer (PC), Mikrokontroler AT89S51,

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 BAB 2 LANDASAN TEORI 2.1 Defenisi AT89S51 Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 kristal serta catu daya 5 Volt. Kapasitor 10 mikro-farad dan resistor 10 Kilo Ohm

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI A II LANDASAN TEORI 2.1 Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai

Lebih terperinci

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 Ringkasan Pendahuluan Mikrokontroler Mikrokontroler = µp + Memori (RAM & ROM) + I/O Port + Programmable IC Mikrokontroler digunakan sebagai komponen pengendali

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Perangkat Keras (Hardware) 2.1.1. Mikrokontroller AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroller dan mikrokomputer, hadir memenuhi kebutuhan pasar

Lebih terperinci

BAB 2 LANDASAN TEORI. bisa digunakan untuk memindahkan program yang ber-ekstention.hex ke Flash,

BAB 2 LANDASAN TEORI. bisa digunakan untuk memindahkan program yang ber-ekstention.hex ke Flash, BAB 2 LANDASAN TEORI Arsitektur Mikrokontroler AT89S51 Programer Atmel seri S merupakan programer yang serbaguna, karena programer ini bisa digunakan untuk memindahkan program yang ber-ekstention.hex ke

Lebih terperinci

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu BAB II LANDASAN TEORI 2.1. Perangkat Keras Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu perangkat keras (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil pilihan.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Perangkat Keras 2.1.1. Mikrokontroler AT89S51 Mikrokontroler merupakan suatu komponen elektronika yang di dalamnya terdapat rangkaian mikroprosesor, memori (RAM atau ROM) dan

Lebih terperinci

BAB 2 LANDASAN TEORI. (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil

BAB 2 LANDASAN TEORI. (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil BAB 2 LANDASAN TEORI 2.1 Perangkat Keras Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu perangkat keras (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil pilihan.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Perangkat Keras 2.1.1. Mikrokontroler AT89S51 Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer hadir memenuhi kebutuhan pasar (market need) dan

Lebih terperinci

Tabel Perbandingan ROM dan RAM pada beberapa seri ATMEL

Tabel Perbandingan ROM dan RAM pada beberapa seri ATMEL Pendahuluan Mikroprosessor 8051 (Struktur dan Organisasi Memori, SFR ) Tabel Perbandingan ROM dan RAM pada beberapa seri ATMEL A. Organisasi Memori Mikroprosesor 8051 Pada mikrokontroler keluarga MCS51

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Konsep Dasar Sistem pendeteksi intensitas cahaya yang akan dirancang pada tugas akhir ini adalah sebuah sistem yang menggunakan sebuah mikrokontroler, dimana sistem ini berfungsi

Lebih terperinci

ARSITEKTUR MIKROKONTROLER AT89C51/52/55

ARSITEKTUR MIKROKONTROLER AT89C51/52/55 ARSITEKTUR MIKROKONTROLER AT89C51/52/55 A. Pendahuluan Mikrokontroler merupakan lompatan teknologi mikroprosesor dan mikrokomputer. Mikrokontroler diciptakan tidak semata-mata hanya memenuhi kebutuhan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Sinar Kosmik, Mikrowave, Gelombang listrik dan Sinar Inframerah.

BAB 2 TINJAUAN TEORITIS. Sinar Kosmik, Mikrowave, Gelombang listrik dan Sinar Inframerah. 7 BAB 2 TINJAUAN TEORITIS 2.1 Cahaya Matahari Spektrum sinar matahari terdiri dari sinar tampak dan tidak tampak. Sinar tampak meliputi: merah, oranye, kuning, hijau dan ungu (diketahui sebagai warna pelangi).

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Perangkat Keras Prinsip Kerja Pembuka/Penutup Pintu

BAB 2 DASAR TEORI. 2.1 Perangkat Keras Prinsip Kerja Pembuka/Penutup Pintu BAB 2 DASAR TEORI 2.1 Perangkat Keras 2.1.1 Prinsip Kerja Pembuka/Penutup Pintu Pintu air sebagai sistem kontrol, yang akan digerakkan oleh motor. Mikrokontroler AT89S51 sebagai pusat proses untuk mengendalikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Mikrokontroller AT89S51 Didalam pembuatan alat ini peran penting mikrokontroller sangat berpengaruh dalam menentukan hasil akhir /output dari fungsi alat ini, yang mana hasil akhir/ouput

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Inframerah Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti

Lebih terperinci

BAB II DASAR TEORI. disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada pesawat telepon

BAB II DASAR TEORI. disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada pesawat telepon BAB II DASAR TEORI 2.1. Telepon Dual Tone Multi Frequency (DTMF) Dewasa ini hampir semua telepon yang ada sudah menggunakan tombol tekan yang disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada

Lebih terperinci

BAB II TEORI DASAR 2.1 Pendahuluan 2.2 Sensor Clamp Putaran Mesin

BAB II TEORI DASAR 2.1 Pendahuluan 2.2 Sensor Clamp Putaran Mesin 4 BAB II TEORI DASAR 2.1 Pendahuluan Pada bab ini akan dijelaskan mengenai teori-teori mengenai perangkatperangkat pendukung baik perangkat keras dan perangkat lunak yang akan dipergunakan sebagai pengukuran

Lebih terperinci

Mikrokontroler 89C51 Bagian II :

Mikrokontroler 89C51 Bagian II : Mikrokontroler 89C51 Bagian II : Mikrokontroler 89C51 Mikrokontroler 89C51 merupakan mikrokomputer CMOS 8 bit dengan 4 Kbytes Flash Programmable Memory. Arsitektur 89C51 ditunjukkan pada gambar 2. Accumulator

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Perangkat Keras 2.1.1. Mikrokontroler AT89S51 Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need)

Lebih terperinci

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut.

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut. Arsitektur mikrokontroler MCS-51 diotaki oleh CPU 8 bit yang terhubung melalui satu jalur bus dengan memori penyimpanan berupa RAM dan ROM serta jalur I/O berupa port bit I/O dan port serial. Selain itu

Lebih terperinci

BAB 2 DASAR TEORI. sistem atau rangkaian terlebih dahulu membuat blok diagramnya. Sensor air sederhana

BAB 2 DASAR TEORI. sistem atau rangkaian terlebih dahulu membuat blok diagramnya. Sensor air sederhana BAB 2 DASAR TEORI 2.1 Perangkat Keras 2.1.1 Prinsip Kerja Pembuka/Penutup Pintu Dalam membuat suatu alat ada beberapa hal yang perlu di perhatikan yaitu bagaimana cara merancang alat yang akan di buat

Lebih terperinci

I/O dan Struktur Memori

I/O dan Struktur Memori I/O dan Struktur Memori Mikrokontroler 89C51 adalah mikrokontroler dengan arsitektur MCS51 seperti 8031 dengan memori Flash PEROM (Programmable and Erasable Read Only Memory) DESKRIPSI PIN Nomor Pin Nama

Lebih terperinci

BAB 2. cara merancang alat yang akan di buat sesuai dasar teori. Sebelum merancang suatu

BAB 2. cara merancang alat yang akan di buat sesuai dasar teori. Sebelum merancang suatu BAB 2 LANDASAN TEORI PINTU KANAL BANJIR OTOMATIS PADA BENDUNGAN 2.1 Prinsip kerja pembuka/penutup pintu Dalam membuat suatu alat ada beberapa hal yang perlu di perhatikan yaitu bagaimana cara merancang

Lebih terperinci

BAB II LANDASAN TEORI. berukuran kecil (mikro). Sebelum mikrokontroller ada, terlebih dahulu muncul yang

BAB II LANDASAN TEORI. berukuran kecil (mikro). Sebelum mikrokontroller ada, terlebih dahulu muncul yang BAB II LANDASAN TEORI II.1. PERANGKAT KERAS II.1.1 Mikrokontroller Mikrokontroller, sesuai namanya adalah suatu alat pengontrol / pengendali yang berukuran kecil (mikro). Sebelum mikrokontroller ada, terlebih

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1 M

BAB 2 LANDASAN TEORI 2.1 M BAB 2 LANDASAN TEORI 2.1 M ikrokontroller AT89S51 Mikroprosesor ialah suatu chip (rangkaian terintegrasi yang sangat komplek) yang berfungsi sebagai pemroses data dari input yang diterima pada suatu sistem

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer,

BAB 2 LANDASAN TEORI. Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, BAB 2 LANDASAN TEORI 2.1. Mikrokontroler AT89S51 Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai

Lebih terperinci

BAB 2 LANDASAN TEORI. dunia elektronika, khususnya dunia mikroelektronika. Penemuan silikon

BAB 2 LANDASAN TEORI. dunia elektronika, khususnya dunia mikroelektronika. Penemuan silikon BAB 2 LANDASAN TEORI 2.1. Perangkat Keras 2.1.1 Mikrokontroler AT89S52 2.1.1.1 Pengenalan Mikrokontroler AT89S52 Perkembangan teknologi telah maju dengan pesat dalam perkembangan dunia elektronika, khususnya

Lebih terperinci

MIKROKONTROLER AT89S52

MIKROKONTROLER AT89S52 MIKROKONTROLER AT89S52 Mikrokontroler adalah mikroprosessor yang dirancang khusus untuk aplikasi kontrol, dan dilengkapi dengan ROM, RAM dan fasilitas I/O pada satu chip. AT89S52 adalah salah satu anggota

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1.Hardware 2.1.1 Mikrokontroler AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi

Lebih terperinci

BAB 3 PERANCANGAN ALAT DAN PROGRAM

BAB 3 PERANCANGAN ALAT DAN PROGRAM BAB 3 PERANCANGAN ALAT DAN PROGRAM 3.1. DIAGRAM BLOK display Penguat sinyal Sensor 1 keypad AT89S51 Penguat sinyal Sensor 5 relay alarm pompa Keterangan diagram blok: Sensor air yang berfungsi untuk mengetahui

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS 3.1. Pendahuluan Perangkat pengolah sinyal yang dikembangkan pada tugas sarjana ini dirancang dengan tiga kanal masukan. Pada perangkat pengolah sinyal

Lebih terperinci

BAB III PERANCANGAN DAN KERJA ALAT

BAB III PERANCANGAN DAN KERJA ALAT BAB III PERANCANGAN DAN KERJA ALAT 3.1 DIAGRAM BLOK sensor optocoupler lantai 1 POWER SUPPLY sensor optocoupler lantai 2 sensor optocoupler lantai 3 Tombol lantai 1 Tbl 1 Tbl 2 Tbl 3 DRIVER ATMEGA 8535

Lebih terperinci

TKC210 - Teknik Interface dan Peripheral. Eko Didik Widianto

TKC210 - Teknik Interface dan Peripheral. Eko Didik Widianto TKC210 - Teknik Interface dan Peripheral Eko Didik Sistem Komputer - Universitas Diponegoro Review Kuliah Pembahasan tentang: Referensi: mikrokontroler (AT89S51) mikrokontroler (ATMega32A) Sumber daya

Lebih terperinci

RANCANG BANGUN ALAT HITUNG JUMLAH KENDARAAN MEMANFAATKAN SENSOR INFRAMERAH SEBAGAI INPUT PADA GERBANG PARKIR BERBASIS MIKROKONTROLER ATMEGA8535

RANCANG BANGUN ALAT HITUNG JUMLAH KENDARAAN MEMANFAATKAN SENSOR INFRAMERAH SEBAGAI INPUT PADA GERBANG PARKIR BERBASIS MIKROKONTROLER ATMEGA8535 RANCANG BANGUN ALAT HITUNG JUMLAH KENDARAAN MEMANFAATKAN SENSOR INFRAMERAH SEBAGAI INPUT PADA GERBANG PARKIR BERBASIS MIKROKONTROLER ATMEGA8535 TUGAS AKHIR MARLENI 102408002 PROGRAM STUDI D3 FISIKA DEPARTEMEN

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Pada bab ini akan dijelaskan langkah-langkah yang akan digunakan dalam menyelesaikan perangkat keras (hardware) yang berupa komponen fisik penunjang seperti IC AT89S52 dan perangkat

Lebih terperinci

BAB III PERANCANGAN. Perancangan tersebut mulai dari: spesifikasi alat, blok diagram sampai dengan

BAB III PERANCANGAN. Perancangan tersebut mulai dari: spesifikasi alat, blok diagram sampai dengan 41 BAB III PERANCANGAN Pada bab ini akan menjelaskan perancangan alat yang akan penulis buat. Perancangan tersebut mulai dari: spesifikasi alat, blok diagram sampai dengan perancangan rangkaian elektronik,

Lebih terperinci

BAB II TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan

BAB II TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan 6 BAB II TINJAUAN TEORITIS 2.1. Mikrokontroller AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru.

Lebih terperinci

Lab Elektronika Industri Mikrokontroler - 1 AT89C1051

Lab Elektronika Industri Mikrokontroler - 1 AT89C1051 Lab Elektronika Industri Mikrokontroler - 1 AT89C1051 I. FITUR AT89C1051 Kompatibel dengan produk MCS51 1k byte program flash ROM yang dapa diprogram ulang hingga 1000 kali Tegangan operasi 2.7 volt hingga

Lebih terperinci

BAB 2 LANDASAN TEORI PEMANCAR GELOMBANG INFRAMERAH. 2.1 Diagram Blok Pemancar Gelombang Inframerah

BAB 2 LANDASAN TEORI PEMANCAR GELOMBANG INFRAMERAH. 2.1 Diagram Blok Pemancar Gelombang Inframerah BAB 2 LANDASAN TEORI PEMANCAR GELOMBANG INFRAMERAH 2.1 Diagram Blok Pemancar Gelombang Inframerah Tombol ON Tombol OFF A T 8 9 S 5 1 Pemancar inframerah Pulsa gelo inframe Gambar 2.1 Diagram Blok Pemancar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Perangkat Keras 2.1.1. Sistem Minimum Mikrokontroler AT89S52 Perkembangan teknologi telah maju dengan pesat dalam perkembangan dunia elektronika, khususnya dunia mikroelektronika.

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

BAB 2 LANDASAN TEORI. Agar kendaraan lebih teratur dan tidak terlalu padat, biasanya tempat perparkiran ini dibagi

BAB 2 LANDASAN TEORI. Agar kendaraan lebih teratur dan tidak terlalu padat, biasanya tempat perparkiran ini dibagi BAB 2 LANDASAN TEORI 2.1. Inteligent Parking System Agar kendaraan lebih teratur dan tidak terlalu padat, biasanya tempat perparkiran ini dibagi menjadi beberapa tempat. Dengan demikian kendaraan yang

Lebih terperinci

BAB II TEORI DASAR. peralatan input / output ( I / O ) pendukung di dalamnya. Suatu sistem mikroprosesor

BAB II TEORI DASAR. peralatan input / output ( I / O ) pendukung di dalamnya. Suatu sistem mikroprosesor BAB II TEORI DASAR 2. 1 Sistem Mikrokontroler AT89S52 Mikrokontroller adalah suatu perangkat keras yang memiliki memori dan peralatan input / output ( I / O ) pendukung di dalamnya. Suatu sistem mikroprosesor

Lebih terperinci

Pendahuluan Mikrokontroler 8051

Pendahuluan Mikrokontroler 8051 Pendahuluan Mikrokontroler 8051 Pokok Bahasan: 1. Mikrokontroler 8051 Arsitektur (Architecture) Timers/Counters Interrupts Komunikasi Serial (Serial Communication) Tujuan Belajar: Setelah mempelajari dalam

Lebih terperinci

Memprogram Port sebagai Output dan Input Sederhana

Memprogram Port sebagai Output dan Input Sederhana BAGIAN 1 Tujuan Pembelajaran Umum: 1. Mahasiswa trampil memprogram Port sebagai Input dan Output sederhana menggunakan bahasa pemrograman assembly Tujuan Pembelajaran Khusus: 1. Mahasiswa memahami Konstruksi

Lebih terperinci

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN 3.1 Diagram Blok Rangkaian Secara Detail Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

BAB 2 LANDASAN TEORI. Component tester adalah instrument elektronika, atau alat penguji komponen yang

BAB 2 LANDASAN TEORI. Component tester adalah instrument elektronika, atau alat penguji komponen yang BAB 2 LANDASAN TEORI 2.1 Component Tester Component tester adalah instrument elektronika, atau alat penguji komponen yang dirancang khusus dengan menggunakan microcontroller AT89S52 sebagai pusat kendali

Lebih terperinci

BAB III ANALISA DAN CARA KERJA RANGKAIAN

BAB III ANALISA DAN CARA KERJA RANGKAIAN BAB III ANALISA DAN CARA KERJA RANGKAIAN 3.1 Analisa Rangkaian Secara Blok Diagram Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

PENGGUNAAN LDR DAN SENSOR AIR PADA SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR SRI WULANDARI RITONGA

PENGGUNAAN LDR DAN SENSOR AIR PADA SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR SRI WULANDARI RITONGA PENGGUNAAN LDR DAN SENSOR AIR PADA SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR SRI WULANDARI RITONGA 072408019 PROGRAM STUDI D3 FISIKA INSTRUMENTASI DEPARTEMEN

Lebih terperinci

Gambar 1.1. Diagram blok mikrokontroller 8051

Gambar 1.1. Diagram blok mikrokontroller 8051 1.1. Organisasi Memori Semua divais 8051 mempunyai ruang alamat yang terpisah untuk memori program dan memori data, seperti yang ditunjukkan pada gambar1.1. dan gambar 1.2. Pemisahan secara logika dari

Lebih terperinci

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL. Diagram Blok Diagram blok merupakan gambaran dasar membahas tentang perancangan dan pembuatan alat pendeteksi kerusakan kabel, dari rangkaian sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Alat-alat Ukur Yang Mengintegrasikan Kebesaran-kebesaran Listrik

BAB II TINJAUAN PUSTAKA. 2.1 Alat-alat Ukur Yang Mengintegrasikan Kebesaran-kebesaran Listrik BAB II TINJAUAN PUSTAKA 2.1 Alat-alat Ukur Yang Mengintegrasikan Kebesaran-kebesaran Listrik Suatu alat ukur untuk mengintegrasika dan mengukur arus, daya reaktif atau sebangsanya, yang diberikan kepada

Lebih terperinci

4. Port Input/Output Mikrokontroler MCS-51

4. Port Input/Output Mikrokontroler MCS-51 4. Port Input/Output Mikrokontroler MCS-51 Mikrokontroler MCS-51 memiliki 2 jenis port input/output, yaitu port I/O parallel dan port I/O serial. Port I/O parallel sebanyak 4 buah dengan nama P0,P1,P2

Lebih terperinci

USER MANUAL TRAINER KEYPAD DAN SEVEN SEGMENT MATA PELAJARAN:ELEKTRONIKA KENDALI

USER MANUAL TRAINER KEYPAD DAN SEVEN SEGMENT MATA PELAJARAN:ELEKTRONIKA KENDALI USER MANUAL TRAINER KEYPAD DAN SEVEN SEGMENT MATA PELAJARAN:ELEKTRONIKA KENDALI SISWA TINGKAT XII - ELEKTRONIKA INDUSTRI JURUSAN TEKNIK ELEKTRONIKA INDUSTRI SEKOLAH MENENGAH KEJURUAN SMK NEGERI 3 BOYOLANGU

Lebih terperinci

MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51

MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51 MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51 TUGAS UTS MATA KULIAH E-BUSSINES Dosen Pengampu : Prof. M.Suyanto,MM

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan

Lebih terperinci

TAKARIR. Akumulator Register yang digunakan untuk menyimpan semua proses aritmatika

TAKARIR. Akumulator Register yang digunakan untuk menyimpan semua proses aritmatika TAKARIR AC (Alternating Current) Adalah sistem arus listrik. Sistem AC adalah cara bekerjanya arus bolakbalik. Dimana arus yang berskala dengan harga rata-rata selama satu periode atau satu masa kerjanya

Lebih terperinci

BAB II TEORI Telepon Dual Tone Multiple Frequency (DTMF) sebagai DTMF (Dual Tone Multiple Frequency).

BAB II TEORI Telepon Dual Tone Multiple Frequency (DTMF) sebagai DTMF (Dual Tone Multiple Frequency). BAB II TEORI 2.1. Telepon Dual Tone Multiple Frequency (DTMF) Setelah beralih ke teknologi digital,cara meminta nomor sambungan telepon tidak lagi dengan cara memutar piringan angka tetapi dengan cara

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini, banyak terjadi kecelakaan didunia pertransportasian. Salah satunya dalam industri perkeretaapian. Salah satu penyebab banyaknya kecelakaan adalah disebabkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 REMOTE TV Remote TV adalah suatu pengontrol, yang fungsinya untuk merubah dan meng-set TV yang dapat digunakan untuk merubah saluran TV seperti ingin melihat saluran ( RCTI,

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global. BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar

Lebih terperinci

PERANCANGAN PROGRAM SIMULASI JEMBATAN ANGKAT OTOMATIS BERBASIS AT89S51 TUGAS AKHIR ELISA SIMATUPANG

PERANCANGAN PROGRAM SIMULASI JEMBATAN ANGKAT OTOMATIS BERBASIS AT89S51 TUGAS AKHIR ELISA SIMATUPANG PERANCANGAN PROGRAM SIMULASI JEMBATAN ANGKAT OTOMATIS BERBASIS AT89S51 TUGAS AKHIR ELISA SIMATUPANG 052408089 PROGRAM STUDI FISIKA INSTRUMENTASI D-3 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR WIWIK SARASWATI

SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR WIWIK SARASWATI SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR WIWIK SARASWATI 072408043 PROGRAM STUDI D3 FISIKA INSTRUMENTASI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI xx BAB 2 LANDASAN TEORI 2.1 Mikrokontroler AT89S52 2.1.1 Gambaran umum Mikrokontroler AT89S52 adalah mikrokomputer CMOS 8 bit yang memiliki 8 KB Programmable and Erasable Read Only Memory (PEROM). Mikrokontroler

Lebih terperinci

BAB III PERENCANAAN DAN REALISASI

BAB III PERENCANAAN DAN REALISASI BAB III PERENCANAAN DAN REALISASI 3.1 PERANCANGAN UMUM SISTEM Metode untuk pelaksanaan Program dimulai dengan mempelajari system pengukuran tangki air yang akan digunakan. Dari sini dikembangkan apa saja

Lebih terperinci

BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar

BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED 3.1. Rancang Bangun Perangkat Keras Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar 3.1. Sistem ini terdiri dari komputer, antarmuka

Lebih terperinci

BAB 2 LANDASAN TEORI PEMBUKA/PENUTUP PINTU JARAK JAUH. sistem atau rangkaian terlebih dahulu membuat blok diagramnya.

BAB 2 LANDASAN TEORI PEMBUKA/PENUTUP PINTU JARAK JAUH. sistem atau rangkaian terlebih dahulu membuat blok diagramnya. BAB 2 LANDASAN TEORI PEMBUKA/PENUTUP PINTU JARAK JAUH 2.1 Prinsip kerja pembuka/penutup pintu Dalam membuat suatu alat ada beberapa hal yang perlu di perhatikan yaitu bagaimana cara merancang alat yang

Lebih terperinci

BAB III SISTEM KERJA RANGKAIAN

BAB III SISTEM KERJA RANGKAIAN BAB III SISTEM KERJA RANGKAIAN 3.1 Diagram Blok Secara garis besar, perancangan pengisian tangki air otomatis menggunakan sensor ultrasonik ini terdiri dari Bar Display, Mikrokontroler ATMega8535, Relay,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengenalan Mikrokontroler Mikrokontroler sebagai teknologi mikroelektronik terbaru yaitu teknologi semikonduktor kehadiranya sangat membantu perkembangan dunia elektronika. Dengan

Lebih terperinci

Perancangan Serial Stepper

Perancangan Serial Stepper Perancangan Serial Stepper ini : Blok diagram dari rangakaian yang dirancang tampak pada gambar dibawah Komputer Antar Muka Peralatan luar Komputer Komputer berfungsi untuk mengendalikan peralatan luar,

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared).

BAB 3 PERANCANGAN SISTEM. Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared). 30 BAB 3 PERANCANGAN SISTEM 3.1 Diagram Blok Rangkaian Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared). Buzzer PIR (Passive Infra Red) Mikrokontroler

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan BAB 3 PERANCANGAN SISTEM Konsep dasar mengendalikan lampu dan komponen komponen yang digunakan pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan perancangan sistem

Lebih terperinci

BAB 2 LANDASAN TEORI. Dalam bab ini penulis akan membahas tentang komponen-komponen yang

BAB 2 LANDASAN TEORI. Dalam bab ini penulis akan membahas tentang komponen-komponen yang BAB 2 LANDASAN TEORI Dalam bab ini penulis akan membahas tentang komponen-komponen yang digunakan dalam seluruh unit sistem ini. Agar pembahasan tidak melebar dan menyimpang dari topik utama laporan ini,

Lebih terperinci

BAB III PERENCANAAN DAN REALISASI

BAB III PERENCANAAN DAN REALISASI BAB III PERENCANAAN DAN REALISASI 3.1 Perancangan Blok Diaram Metode untuk pelaksanaan Program dimulai dengan mempelajari sistem pendeteksi kebocoran gas pada rumah yang akan digunakan. Dari sini dikembangkan

Lebih terperinci

PERANCANGAN DAN PENGGUNAAN PHOTODIODA SEBAGAI SENSOR PENGHINDAR DINDING PADA ROBOT FORKLIFT TUGAS AKHIR

PERANCANGAN DAN PENGGUNAAN PHOTODIODA SEBAGAI SENSOR PENGHINDAR DINDING PADA ROBOT FORKLIFT TUGAS AKHIR PERANCANGAN DAN PENGGUNAAN PHOTODIODA SEBAGAI SENSOR PENGHINDAR DINDING PADA ROBOT FORKLIFT TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh gelar Ahli Madya JOHANNES PANDIANGAN

Lebih terperinci

ROBOT PENGHINDAR DINDING DENGAN NAVIGASI INFRAMERAH TUGAS AKHIR. Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ahli Madya

ROBOT PENGHINDAR DINDING DENGAN NAVIGASI INFRAMERAH TUGAS AKHIR. Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ahli Madya ROBOT PENGHINDAR DINDING DENGAN NAVIGASI INFRAMERAH TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ahli Madya HOTMAIDA SITOHANG 042408060 PROGRAM STUDI DIPLOMA III FISIKA INSTRUMENTASI

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Sensor TGS 2610 merupakan sensor yang umum digunakan untuk mendeteksi adanya

BAB 2 TINJAUAN TEORITIS. Sensor TGS 2610 merupakan sensor yang umum digunakan untuk mendeteksi adanya 10 BAB 2 TINJAUAN TEORITIS 2.1 Sensor TGS 2610 2.1.1 Gambaran umum Sensor TGS 2610 merupakan sensor yang umum digunakan untuk mendeteksi adanya kebocoran gas. Sensor ini merupakan suatu semikonduktor oksida-logam,

Lebih terperinci

PERANCANGAN HARDWARE JAM DIGITAL DENGAN SISTEM KALENDER BERBASIS MIKROKONTROLLER DS1307 TUGAS AKHIR DIAN SAIFUL RAMADHAN NUR TANJUNG

PERANCANGAN HARDWARE JAM DIGITAL DENGAN SISTEM KALENDER BERBASIS MIKROKONTROLLER DS1307 TUGAS AKHIR DIAN SAIFUL RAMADHAN NUR TANJUNG PERANCANGAN HARDWARE JAM DIGITAL DENGAN SISTEM KALENDER BERBASIS MIKROKONTROLLER DS1307 TUGAS AKHIR DIAN SAIFUL RAMADHAN NUR TANJUNG 072408030 PROGRAM STUDI DIPLOMA III FISIKA INSTRUMENTASI DEPARTEMEN

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Uraian Umum Dalam perancangan alat akses pintu keluar masuk menggunakan pin berbasis mikrokontroler AT89S52 ini, penulis mempunyai pemikiran untuk membantu mengatasi

Lebih terperinci

PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA TEMPERATUR DENGAN MENGGUNAKAN SINAR INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR

PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA TEMPERATUR DENGAN MENGGUNAKAN SINAR INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA TEMPERATUR DENGAN MENGGUNAKAN SINAR INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar

Lebih terperinci

BAB II TEORI DASAR. Pembuatan alat Traffic light dengan menggunakan mikrokontroler 89S51

BAB II TEORI DASAR. Pembuatan alat Traffic light dengan menggunakan mikrokontroler 89S51 BAB II TEORI DASAR Pembuatan alat Traffic light dengan menggunakan mikrokontroler 89S51 baik dengan perangkat-keras maupun dengan perangkat-lunak membutuhkan beberapa teori penunjang. Teori tersebut akan

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Jenis Mikrokontroler AVR dan spesifikasinya Flash adalah suatu jenis Read Only Memory yang biasanya diisi dengan program

Lebih terperinci

Gambar 2.1. simbol op amp

Gambar 2.1. simbol op amp BAB II. PENGUAT OP AMP II.1. Pengenalan Op Amp Penguat Op Amp (Operating Amplifier) adalah chip IC yang digunakan sebagai penguat sinyal yang nilai penguatannya dapat dikontrol melalui penggunaan resistor

Lebih terperinci

BAB II LANDASAN TEORI. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer,

BAB II LANDASAN TEORI. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, BAB II LANDASAN TEORI 2.1 Perangkat Keras (Hardware) 2.1.1 Mikrokontroler AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT 35 BAB III PERANCANGAN ALAT 3.1 Diagram Blok Secara garis besar, rangkaian display papan skor LED dapat dibagi menjadi 6 blok utama, yaitu blok power supply, mikrokontroler, driver board, seven segmen,

Lebih terperinci

Desain Tracker Antena Parabola Berbasis Mikrokontroler

Desain Tracker Antena Parabola Berbasis Mikrokontroler Desain Tracker Antena Parabola Berbasis Mikrokontroler Sri Wahyuni Dali #1, Iskandar Z. Nasibu #2, Syahrir Abdussamad #3 #123 Teknik Elektro Universitas Negeri Gorontalo Abstrak Makalah ini membahas desain

Lebih terperinci