Bab III Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap"

Transkripsi

1 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno ab III KECEPTN RELTIF DN PERCEPTN RELTIF 3.1 KECEPTN RELTIF Kecepatan relatif dua buah titik pada satu penghubung kaku Penghubung berputar terhadap satu titik tetap Perhatikan sebuah penghubung kaku ang berputar terhadap satu titik tetap. Seperti ditunjukkan dalam gambar 3.1 V V R V R Gambar 3.1. Kecepatan sebuah titik ang bergerak terhadap satu titik tetap Jarak antara dan adalah R dan garis - membuat suatu sudut sebesar θ terhadap sumbu. Universitas rawijaa 1

2 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Perpindahan titik dalam arah sumbu = R cos θ dan perpindahan titik dalam arah sumbu = R sin θ Dideferensial terhadap waktu dengan harga R konstan diperoleh : d = d( R cosθ ) = R( sin θ ) d d( R cosθ ) = = ( R cosθ ) d Kecepatan titik dalam arah adalah = d Kecepatan titik dalam arah adalah V = Kecepatan sudut garis - adalah : ω = Maka kecepatan pada titik : 1. Dalam arah adalah V = -Rω sin θ. Dalam arah adalah V = Rω cos θ Kecepatan total titik diperoleh dengan menjumlahkan secara vector kedua komponen kecepatan tegak lurus. V = Rω sin θ Rω cos θ V = [(R ω sin θ ) + ( Rω cos θ ) ] 1/ = Rω (sin θ + cos θ ) = Rω Universitas rawijaa

3 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Dari gambar diatas ditunjukkan bahwa kecepatan titik tegak lurus terhadap garis Hubungan kecepatan dua buah titik pada satu penghubung kaku Persamaan kecepatan relatif untuk dua buah titik pada satu penghubung kaku dapat diperoleh dengan mengembangkan prosedur analisa diatas. R cos R sin V R R R sin V Y X R cos Gambar 3.. Hubungan kecepatan dua buah titik pada satu penghubung kaku Perhatikan sebuah garis -, seperti terlihat pada gambar 3.3 ang mempunai gerak kombinasi translasi dan rotasi. Koordinat titik adalah (X,Y), panjang - sebesar R dan sudut ang dibentuk garis - dan sumbu adalah θ. Sehingga koordinat titik adalah : Universitas rawijaa 3

4 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno X = X + R cos θ Y = Y + R sin θ Dideferensialkan terhadap waktu t, dan R adalah besaran Konstanta d = dx Rsin θ d = dy + R cosθ Dengan d d = V, d = V, V d =, = V, dan ω = Maka V = V Rω sin θ V = V + Rω cosθ Posisi dari vector-vektor kecepatan ini ditunjukkan pada gambar 3.3. Dengan menjumlahkan kedua persamaan diatas akan diperoleh kecepatan total dari titik. V = (V X a V a ) (Rω sin θ Rω cos θ ) Harga (V X a V a ) adalah kecepatan total titik, V dan Harga (R ω sin θ Rω cos θ ) = Rω, maka persamaan diatas dapat dituliskan menjadi : V = V Rω Dengan Rω adalah vector kecepatan ang tegak lurus ke garis - dan dalam arah ang sama dengan kecepatan sudutna. Kecepatan relatif titik terhadap titik adalah V = Rω. Universitas rawijaa 4

5 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Sehingga untuk dua buah titik pada satu penghubung kaku, dapat dipakai salah satu dari dua persamaan dibawah ini : V = V Rω V = V V 3. PERCEPTN RELTIF 3..1 Percepatan sebuah titik pada sebuah penghubung ang berputar terhadap satu pusat tetap dengan jari-jari konstan. Universitas rawijaa 5

6 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Universitas rawijaa 6

7 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno R a sin a R R a cos R a (e) Gambar 3.3. Percepatan sebuah titik pada sebuah penghubung ang berputar terhadap satu pusat tetap. Penghubung (Link) (Gambar 3.3 a) berputar terhadap satu pusat tetap, dengan kecepatan sudut ω radian per detik, kearah melawan putaran jam (CCW), dan percepatan sudutna α. Jarak sama dengan R. link membentuk sudut θ dengan sumbu. Diinginkan percepatan total ang diterima titik. Kecepatan titik : 1. Dalam arah adalah V = -Rω sin θ. Dalam arah adalah V = Rω cos θ Kedua persamaan diatas dideferensialkan terhadap waktu t, dan R adalah konstanta dihasilkan : dv = R[ ω (cosθ ) dω + (sin θ ) ] Universitas rawijaa 7

8 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno dv = R[ ω ( sin θ ) dω + (cosθ ) ] Percepatan titik dalam arah sumbu : Percepatan titik dalam arah sumbu : dω Percepatan sudut : α = dv b = dv b = Sehingga persamaan diatas menjadi : = Rω cosθ Rα sin θ = Rω sin θ + Rα cosθ Gambar 6.1b memperlihatkan vector-vektor dalam posisina masingmasing, sehingga percepatan total titik adalah : = ( R ω cosθ R ω sin θ ) ( R α sin θ R α cosθ ) Kedua komponen tegak lurus dalam tanda kurung pertama, ang ditunjukkan dalam gambar 3.3c memberikan sebuah resultan R, ang mempunai arah dari titik ke pusat perputaran penghubung (link). Dua komponen kedua tegak lurus dalam tanda kurung kedua, ang ditunjukkan dalam gambar 3.3d memberikan sebuah resultan Ra, ang mempunai arah tegak lurus ke garis -. Gambar 3.3e menunjukkan pengaruh pembalikan arah percepatan sudutna. Sehingga percepatan total titik dapat dinatakan dengan persamaan : = Rω Rα Dengan : R ω disebut komponen percepatan normal atau radial Universitas rawijaa 8

9 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Rα disebut komponen percepatan tangensial Universitas rawijaa 9

10 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno 3.. Percepatan relatif dua buah titik pada satu penghubung kaku Sebuah gari - seperti pada gambar, adalah bagian dari penghubung kaku ang bergerak dalam suatu bidang dengan gerak sebarang, lokasi titik : a R Y X (a) X = X + R cos θ Y = Y + R sin θ Kecepatan titik : V = V Rω sin θ V = V + Rω cosθ Persamaan kecepatan titik dideferensialkan terhadap waktu t dengan harga R konstan diperoleh : dv = dv R[ ω (cosθ ) dω + (sin θ ) ] dv = dv + R[ ω ( sin θ ) dω + (cosθ ) ] Universitas rawijaa 30

11 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Percepatan titik dalam arah sumbu : Percepatan titik dalam arah sumbu : Percepatan titik dalam arah sumbu : Percepatan titik dalam arah sumbu : Kecepatan sudut: ω = dω Percepatan sudut : α = dv b = dv b = dv b = dv = Maka persamaan diatas dapat dituliskan menjadi : = Rω cosθ Rα sin θ = Rω sin θ + Rα cosθ Percepatan total titik, diperoleh dengan menjumlahkan komponen tegak lurus: = Dengan menjumlahkan vector seperti ang ada digambar dengan urutan sebagai berikut : = ( ) ( ω R cosθ R ω sin θ ) ( R α sin θ R α cosθ ) Suku dalam kurung pertama adalah percepatan total titik Suku dalam kurung kedua adalah samadengan Rω aitu vector ang arahna dari ke. Suku dalam kurung ketiga adalah sama dengan Rα Universitas rawijaa 31

12 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno aitu vector dengan arah tegak lurus - dan arahna sesuai dengan arah percepatan sudutna. Sehingga percepatan titik dapat dinatakan dengan : = R ω R α R a a R (c) Dari persamaan ini percepatan titik sama dengan percepatan titik ditambah denganpercepatan relatif titik terhadap titik. Sehingga persamaan percepatan titik dapat dituliskan : = Dengan mengganti R = dan ω = maka didapatkan persamaan : V = V α Universitas rawijaa 3

13 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Soal-soal : I. Kecepatan Relatif 1. penghubung - bagian dari sebuah mekanisme empat penghubung telah dianalisa dan telah didapatkan bahwa kecepatan adalah 10 m/ seperti ditunjukkan. Juga diketahui bahwa kecepatan sudut penghubung untuk sesaat pengamatan adalah 60 rat/det kearah putaran jam. jika penghubung - panjangna 10 cm berapa kecepatan total titik dan bearna dan arah. Selesaikan dengan memakai V =V + V ; dan selesaikan dengan memakai V= V +V. V 30 0 V. Sebuah penghubung - panjangna 0 cm. Komponen-komponen kecepatan titik a dan b seperti ditunjukkan. erapa besar dan arah kecepatan sudut penghubung 6 m/det 3 m/det 1.5 m/det 1.5 m/det Universitas rawijaa 33

14 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno 3. Kecepatan titik a pada penghung diketahui besar dan arahna. Kecepatan relatif titik terhadap titik diketahui besar dan arahna. Tunjukkan bagaimana kecepatan titik dan kecepatan titik C dapat ditentukan. V V C II. Percepatan Relatif 1. Sebuah penghubung ang panjangna 1.5 cm, berputar pada 400 rpm kearah putaran jarum jam, dengan salah satu ujungna tetap dan 5 detik kemudian berputar pada 1800 rpm, dengan percepatan sudut konstan. erapa percepatan titik tengah penghubung pada saat penghubung berputar pada 1400 rpm. pabila percepatan titik seperti ang ditunjukkan, berapa kecepatan sudut dan percepatan sudutpenghubung untuk posisi ang ditunjukkan Kemana arah percepatan sudutna Dapatkah arah kecepatan sudut diketahui =1000 m/det cm Universitas rawijaa 34

15 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno 3. Jika percepatan normal titik terhadap titik adalah 15 m/det dan percepatan tangensial titik terhadap titik adalah 50 m/det. erapa kecepatan sudut dan percepatan sudut penghubung t =50 m/det = 15 cm n =15 m/det 4. Jika percepatan total titik-titik dan diketahui dan seperti ditunjukkan, berapa kecepatan sudut dan percepatan sudut penghubung Perhatikan dalam dua cara : hubungan percepatan titik terhadap titik, dan hubungan percepatan titik a dan titik. tentukan juga percepatan titik C. =00 m/det 60 0 =400 m/det C Universitas rawijaa 35

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Pengertian Transformasi geometric transformation Transformasi = mengubah deskripsi koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Translasi Mengubah posisi objek: perpindahan lurus

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

BUKU AJAR KINEMATIKA DAN DINAMIKA 1 TIM DOSEN FAKULTAS TEKNIK UNIVERSITAS WIJAYA PUTRA SURABAYA

BUKU AJAR KINEMATIKA DAN DINAMIKA 1 TIM DOSEN FAKULTAS TEKNIK UNIVERSITAS WIJAYA PUTRA SURABAYA UKU JR KINEMTIK DN DINMIK 1 TIM DOSEN FKULTS TEKNIK UNIVERSITS WIJY PUTR SURY 1 ab I KONSEP KONSEP DSR 1.1 KINEMTIK Kinematika mesin adalah suatu pengetahuan tentang gerak relatif dari bagian -bagian mesin

Lebih terperinci

BAB III KECEPATAN RELATIF

BAB III KECEPATAN RELATIF III KECEPTN RELTIF 3.1. Indikator Kompetensi relatif. Setelah mengikuti mata kuliah ini, mahasiswa mempunyai pemahaman tentang kecepatan 3.2. Kecepatan Relatif dari Dua Titik erbeda Dua buah titik dan

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

Sumber:

Sumber: Transformasi angun Datar Geometri transformasi adalah teori ang menunjukkan bagaimana bangun-bangun berubah kedudukan dan ukuranna menurut aturan tertentu. Contoh transformasi matematis ang paling umum

Lebih terperinci

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 5 Bangun Geometris 5.1. Persamaan Kurva Persamaan suatu kurva secara umum dapat kita tuliskan sebagai F (, )

Lebih terperinci

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Definisi KINEMATIKA Kinematika adalah cabang ilmu fisika yang

Lebih terperinci

r = r = xi + yj + zk r = (x 2 - x 1 ) i + (y 2 - y 1 ) j + (z 2 - z 1 ) k atau r = x i + y j + z k

r = r = xi + yj + zk r = (x 2 - x 1 ) i + (y 2 - y 1 ) j + (z 2 - z 1 ) k atau r = x i + y j + z k Kompetensi Dasar Y Menganalisis gerak parabola dan gerak melingkar dengan menggunakan vektor. P Uraian Materi Pokok r Kinematika gerak translasi, terdiri dari : persamaan posisi benda, persamaan kecepatan,

Lebih terperinci

19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran)

19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran) 9. TRANSFORMASI A. Translasi (Pergeseran) ; T = b a b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis =, dan

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

Transformasi Geometri Sederhana

Transformasi Geometri Sederhana Transformasi Geometri Sederhana Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut dengan manipulasi. Perubahan gambar dengan mengubah koordinat

Lebih terperinci

BAB I ANALISIS VEKTOR

BAB I ANALISIS VEKTOR BAB I ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

BAB 2 ANALISIS VEKTOR

BAB 2 ANALISIS VEKTOR BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep

Lebih terperinci

BAB V TRANSFORMASI 2D

BAB V TRANSFORMASI 2D BAB V TRANSFORMASI 2D OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : Transformasi Dasar 2D 1. Translasi 2. Rotasi 3. Scalling Transformasi Lain 1. Refleksi 2. Shear TUJUAN DAN SASARAN: Setelah

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENN PELKSNN PEMELJRN Mata Pelajaran : Matematika Kelas : XI / 4 Pertemuan ke - :, lokasi Waktu : 4 jam @ 45 menit Standar Kompetensi : Menentukan kedudukan jarak dan besar sudut ang melibatkan titik,

Lebih terperinci

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014 Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

Bab IV. Mekanisme paling sederhana yang dipelajari adalah mekanisme. engkol-peluncur segaris seperti pada gambar 4.1

Bab IV. Mekanisme paling sederhana yang dipelajari adalah mekanisme. engkol-peluncur segaris seperti pada gambar 4.1 Bab IV PENERAPAN KECEPATAN RELATIF DAN PERCEPATAN RELATIF 4.1.1 Mekanisme Engkol Peluncur Mekanisme paling sederhana yang dipelajari adalah mekanisme engkol-peluncur segaris seperti pada gambar 4.1 Semua

Lebih terperinci

PP' OP = OP' PERSAMAAN UMUM LINGKARAN

PP' OP = OP' PERSAMAAN UMUM LINGKARAN Bab III : Lingkaran 30 Lingkaran adalah tempat kedudukan titik-titik ang berjarak sama terhadap suatu titik tetap. Jarak ang sama itu disebut jari-jari sedangkan titik tetap dinamakan pusat lingkaran 3..

Lebih terperinci

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub Bab. Persamaan Parametrik dan Sistim Koordinat Kutub Persamaan Parametrik Kurva-kurva ang berada dalam bidang datar dapat representasikan dalam bentuk persamaan parametrik. Dalam persamaan ini, setiap

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

Bab I. Kinematika mesin adalah suatu pengetahuan tentang gerak relatif. dari bagian-bagian mesin yaitu posisi, kecepatan dan percepatan.

Bab I. Kinematika mesin adalah suatu pengetahuan tentang gerak relatif. dari bagian-bagian mesin yaitu posisi, kecepatan dan percepatan. ab I KNSEP KNSEP DSR 1.1 KINEMTIK Kinematika mesin adalah suatu pengetahuan tentang gerak relatif dari bagian-bagian mesin yaitu posisi, kecepatan dan percepatan. 1.2 DIGRM KINEMTIS Dalam mempelajari gerakan-gerakan

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat pada Bidang Datar Disusun dengan pasangan angka urut (ordered pair) (a,b) : a dan b berturut- turut adalah

Lebih terperinci

Perkalian Titik dan Silang

Perkalian Titik dan Silang PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu. VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel

Lebih terperinci

PENGETAHUAN STRUKTUR SLIDE 1

PENGETAHUAN STRUKTUR SLIDE 1 Momen Momen terhadap suatu sumbu, akibat suatu gaa, adalah ukuran kemampuan gaa tersebut menimbulkan rotasi terhadap sumbu tersebut. Momen didefinisikan sebagai: M rf sin dimana r adalah jarak radial dari

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR INTEGRASI VEKTOR Materi pokok pertemuan ke 11: 1. Integral Biasa 2. Integral Garis URAIAN MATERI Sebelum masuk ke integral garis, Anda pelajari dulu mengenai integral biasa dari vektor. Integral Biasa

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS nalisis Penampang Pertemuan 4, 5, 6 TU : Mahasiswa dapat menghitung properti dasar penampang, seperti luas, momen statis, momen inersia TK : Mahasiswa

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Dalam mekanika bahan, pengertian tegangan tidak sama dengan vektor tegangan. Tegangan merupakan tensor derajat dua, sedangkan vektor, vektor apapun, merupakan tensor

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Mekanika bahan merupakan salah satu ilmu yang mempelajari/membahas tentang tahanan dalam dari sebuah benda, yang berupa gaya-gaya yang ada di dalam suatu benda yang

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I

UJIAN TENGAH SEMESTER KALKULUS I UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)

Lebih terperinci

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan PERSAAAN BIDANG RATA DAN VEKTOR NORAL Bila terdapat tiga titik yang tidak kolinear maka ketiga titik itu menentukan sebuah bidang rata. dan. Dan misalkan isalkan ketiga titik itu masing-masing vector-vektor

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF

Lebih terperinci

GRAFIKA GAME. Aditya Wikan Mahastama. Rangkuman Transformasi Dua Dimensi UNIV KRISTEN DUTA WACANA TEKNIK INFORMATIKA GENAP 1213

GRAFIKA GAME. Aditya Wikan Mahastama. Rangkuman Transformasi Dua Dimensi UNIV KRISTEN DUTA WACANA TEKNIK INFORMATIKA GENAP 1213 GRAFIKA GAME Aditya Wikan Mahastama mahas@ukdw.ac.id Rangkuman Transformasi Dua Dimensi 5 UNIV KRISTEN DUTA WACANA TEKNIK INFORMATIKA GENAP 1213 Transformasi (Rangkuman) Grafika Komputer Semester Gasal

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik ii Darpublic BAB Fungsi Linier.1. Fungsi Tetapan Fungsi tetapan bernilai tetap untuk rentang nilai x dari sampai +. Kita tuliskan = k [.1] dengan k bilangan-nata.

Lebih terperinci

DAFTAR ISI. BAB 2 GRAVITASI A. Medan Gravitasi B. Gerak Planet dan Satelit Rangkuman Bab Evaluasi Bab 2...

DAFTAR ISI. BAB 2 GRAVITASI A. Medan Gravitasi B. Gerak Planet dan Satelit Rangkuman Bab Evaluasi Bab 2... DAFTAR ISI KATA SAMBUTAN... iii KATA PENGANTAR... iv DAFTAR ISI... v BAB 1 KINEMATIKA GERAK... 1 A. Gerak Translasi... 2 B. Gerak Melingkar... 10 C. Gerak Parabola... 14 Rangkuman Bab 1... 18 Evaluasi

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah

Lebih terperinci

1. Sebuah benda dipindahkan 12 kaki ke barat dan 5 kaki ke utara. Berapa besar dan arah resultan perpindahan?

1. Sebuah benda dipindahkan 12 kaki ke barat dan 5 kaki ke utara. Berapa besar dan arah resultan perpindahan? Bab Vektor Bagian A 1. Sebuah benda dipindahkan 12 kaki ke barat dan 5 kaki ke utara. Berapa besar dan arah resultan perpindahan? Perhatikan gambar berikut: 5 kaki ke utara perpindahan θ 5 kaki ke barat

Lebih terperinci

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi

Lebih terperinci

GERAK MELINGKAR. Gerak Melingkar Beraturan

GERAK MELINGKAR. Gerak Melingkar Beraturan KD: 3.1 Menganalisis gerak lurus,parabola dan gerak melingkar dengan menggunakan vektor. GERAK MELINGKAR Gerak melingkar yaitu Gerak suatu benda dengan lintasan yang berbentuk lingkaran.contoh :Compact

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB Fungsi Linier.. Fungsi Tetapan Fungsi tetapan bernilai tetap untuk rentang nilai x dari sampai +. Kita tuliskan

Lebih terperinci

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat. .. esaran Vektor Dan Skalar II V E K T O R da beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. da juga besaran fisis yang tidak cukup hanya

Lebih terperinci

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1 1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai

Lebih terperinci

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1 . Pengantar a. Hubungan Gerak Melingkar dan Gerak Lurus Gerak melingkar adalah gerak benda yang lintasannya berbentuk lingkaran dengan jari jari r Kedudukan benda ditentukan berdasarkan sudut θ dan jari

Lebih terperinci

UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2004/2005 MATEMATIKA (C3) ( U T A M A )

UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2004/2005 MATEMATIKA (C3) ( U T A M A ) UJIAN NASIONAL SMP/MTs Tahun Pelajaran 00/005 MATEMATIKA (C3) ( U T A M A ) P MATA PELAJARAN MATEMATIKA Hari/Tanggal : Rabu, 8 Juni 005 Jam : 08.00 0.00 PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda

Lebih terperinci

BAB V PENERAPAN DIFFERENSIASI

BAB V PENERAPAN DIFFERENSIASI BAB V PENERAPAN DIFFERENSIASI 5.1 Persamaan garis singgung Bentuk umum persamaan garis adalah = m + n, dimana m adalah koeffisien arah atau kemiringan garis dan n adalah penggal garis. Sekarang perhatikan

Lebih terperinci

C. Momen Inersia dan Tenaga Kinetik Rotasi

C. Momen Inersia dan Tenaga Kinetik Rotasi C. Momen Inersia dan Tenaga Kinetik Rotasi 1. Sistem Diskrit Tinjaulah sistem yang terdiri atas 2 benda. Benda A dan benda B dihubungkan dengan batang ringan yang tegar dengan sebuah batang tegak yang

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Penerapan Integral Lipat-Dua Atina Ahdika,.i, M.i tatistika FMIPA Universitas Islam Indonesia 214 Penerapan Integral Lipat-Dua Penerapan Integral Lipat-Dua Penerapan lain dari integral lipat-dua antara

Lebih terperinci

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah. . Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan

Lebih terperinci

Kurikulum 2013 Antiremed Kelas 11 Matematika

Kurikulum 2013 Antiremed Kelas 11 Matematika Kurikulum 03 Antiremed Kelas Matematika Turunan Fungsi dan Aplikasinya Soal Doc. Name: K3ARMATPMT060 Version: 05-0 halaman 0. Jika f(x) = 8x maka f (x). (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh:

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh: a 1.16. Dalam sistem dibawah ini, gesekan antara m 1 dan meja adalah µ. Massa katrol m dan anggap katrol tidak slip. Abaikan massa tali, hitung usaha yang dilakukan oleh gaya gesek selama t detik pertama!

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun elajaran 00/003 SLT/MTs aket Utama (1) MATEMATIKA (C3) SELASA, 0 MEI 003 ukul 07.30 09.30 0 01-30-C3-9 03 DEARTEMEN ENDIDIKAN NASIONAL Hak Cipta

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

B a b 2. Vektor. Sumber:www.tallship.org

B a b 2. Vektor. Sumber:www.tallship.org a b 2 Vektor Sumber:www.tallship.org Pada bab ini, nda akan diajak untuk dapat menerapkan konsep besaran Fisika dan pengukurannya dengan cara melakukan penjumlahan vektor. Pernahkah nda mengarungi lautan

Lebih terperinci

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini PENDAHULUAN Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini membahas tentang transformasi. Modul ini terdiri dari 2 kegiatan belajar. Pada kegiatan belajar 1 akan dibahas mengenai

Lebih terperinci

BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1.

BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1. TRANSFORMASI GEOMETRI BAB Suatu transformasi bidang adalah suatu pemetaan dari bidang Kartesius ke bidang yang lain atau T : R R (x,y) ( x', y') Jenis-jenis transformasi antara lain : Transformasi Isometri

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat, VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,

Lebih terperinci

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/36 FISIKA DASAR (TEKNIK SISPIL) BENDA TEGAR Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Rotasi Benda Tegar Benda tegar adalah sistem partikel yang

Lebih terperinci

Diktat Fisika XI-1 Damriani. Dra. Damriani SMAN 3 Bandar Lampung 2008

Diktat Fisika XI-1 Damriani. Dra. Damriani SMAN 3 Bandar Lampung 2008 Dra. SMAN 3 Bandar Lampung 008 SURAT KETERANGAN Nomor: Yang bertanda tangan di bawah ini Kepala SMAN 3 Bandar Lampung menerangkan bahwa buku Diktat Fisika XI-1 adalah benar ditulis oleh: Nama : Dra. NIP

Lebih terperinci

III. KINEMATIKA PARTIKEL. 1. PERGESERAN, KECEPATAN dan PERCEPATAN

III. KINEMATIKA PARTIKEL. 1. PERGESERAN, KECEPATAN dan PERCEPATAN III. KINEMATIKA PARTIKEL Kinematika adalah bagian dari mekanika yang mempelajari tentang gerak tanpa memperhatikan apa/siapa yang menggerakkan benda tersebut. Bila gaya penggerak ikut diperhatikan maka

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan

Lebih terperinci

KINEM4TIK4 Tim Fisika

KINEM4TIK4 Tim Fisika KINEM4TIK4 Tim Fisika GERAK PADA SATU DIMENSI POSISI, LAJU, KECEPATAN DAN PERCEPATAN P O S I S I Posisi dari suatu partikel adalah lokasi dari suatu partikel relatif terhadap titik referensi tertentu.

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 85 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya di mana jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

Transformasi Bidang Datar

Transformasi Bidang Datar Bab Transformasi Bidang Datar Sumber: img07.imageshack.us Pada bab ini, nda akan diajak untuk menentukan kedudukan, jarak ang melibatkan titik, garis, dan bidang dalam dimensi dua sehingga nda dapat menerapkan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN : Pertama / 2 x 45 menit : Demonstrasi dan diskusi Besaran dalam Gerak Melingkar o Perpindahan dalam gerak melingkar (Hlm.128) o Memahami makna gerak melingkar o Memahami konsep dari perpindahan dalam

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 2 MEDAN LISTRIK DAN HUKUM GAUSS Pendahuluan, Distribusi Muatan Kontinu, Mencari Medan Listrik Menggunakan Integral,

Lebih terperinci

Soal Latihan 2. Vektor. 1. Perhatikan gambar di bawah ini!

Soal Latihan 2. Vektor. 1. Perhatikan gambar di bawah ini! Soal Latihan Vektor 1. Perhatikan gambar di bawah ini! Tiga buah gaya F1, F, dan F3 memiliki arah dan besar seperti pada gambar berikut ini. Hubungan yang benar untuk ketiga gaya tersebut adalah... a.

Lebih terperinci

AB = AB = ( ) 2 + ( ) 2

AB = AB = ( ) 2 + ( ) 2 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA HUBUNGAN ANTAR GARIS Titik Tengah Sebuah Segmen Garis : : Kompetensi Dasar (KURIKULUM 2013): 3.10 Menganalisis sifat dua garis sejajar dan saling tegak lurus dan

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Fisika Umum Suyoso Kinematika MEKANIKA

Fisika Umum Suyoso Kinematika MEKANIKA GERAK LURUS MEKANIKA A. Kecepatan rata-rata dan Kecepatan sesaat Suatu benda dikatan bergerak lurus jika lintasan gerak benda itu merupakan garis lurus. Perhatikan gambar di bawah: Δx A B O x x t t v v

Lebih terperinci

Bab 3 Medan Listrik. A. Pendahuluan

Bab 3 Medan Listrik. A. Pendahuluan Bab 3 Medan Listrik A. Pendahuluan Pada pokok bahasan ini, akan disajikan tentang medan listrik, baik konsep maupun cara memperolehnya dari beragam distribusi muatan, baik distribusi muatan diskrit (sistem

Lebih terperinci

Sudaryatno Sudirham. Integral dan Persamaan Diferensial

Sudaryatno Sudirham. Integral dan Persamaan Diferensial Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup

Lebih terperinci

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8 1. Sebuah baju setelah dikenakan potongan harga dijual dengan harga Rp 0.000,00. Diskon baju tersebut 0 %. Maka harga baju sebelum didiskon adalah Rp 1.000,00 Rp 15.000,00 Rp.000,00 Rp 7.000,00 e. Rp 75.000,00.

Lebih terperinci

Bagian 4 Terapan Differensial

Bagian 4 Terapan Differensial Bagian 4 Terapan Differensial Dalam bagian 4 Terapan Differensial, kita akan mempelajari materi bagaimana konsep differensial dapat dipergunakan untuk mengatasi persoalan yang terjadi di sekitar kita.

Lebih terperinci

Transformasi Bidang Datar

Transformasi Bidang Datar Bab 5 Transformasi Bidang Datar Sumber: img57.imageshack.us Pada bab ini, nda akan diajak untuk menentukan kedudukan, jarak ang melibatkan titik, garis, dan bidang dalam dimensi dua sehingga nda dapat

Lebih terperinci

Modul Praktikum. Ekonomi Produksi Pertanian. Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya

Modul Praktikum. Ekonomi Produksi Pertanian. Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya Modul Praktikum Ekonomi Produksi Pertanian Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya 1 Membuat Grafik dengan Graphmatica Graphmatica merupakan perangkat lunak pembuat grafik yang

Lebih terperinci

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya . Tentukan nilai maksimum dan minimum pada interval tertutup [, 5] untuk fungsi f(x) x + 9 x. 4. Suatu kolam ikan dipagari kawat berduri, pagar kawat yang tersedia panjangnya 400 m dan kolam berbentuk

Lebih terperinci

KESEIMBANGAN BENDA TEGAR

KESEIMBANGAN BENDA TEGAR KESETIMBANGAN BENDA TEGAR 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINEMATIKA = Ilmu gerak Ilmu yang mempelajari

Lebih terperinci

UN SMA IPA 2012 Matematika

UN SMA IPA 2012 Matematika UN SMA IPA 0 Matematika Kode Soal E8 Doc. Name: UNSMAIPA0MATE8 Doc. Version : 0- halaman. Diketahui premis-premis berikut: Premis I : Jika hari ini hujan maka saya tidak pergi. Premis II : Jika saya tidak

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Prodi Matematika FMIPA Unsyiah September 9, 2011 Melalui pendekatan aljabar, vektor u dinyatakan oleh pasangan berurutan u 1, u 2. Disini digunakan notasi u 1, u 2 bukan (u 1, u 2 ) karena notasi (u 1,

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

x d x t 0 t d t d t d t Kecepatan Sesaat

x d x t 0 t d t d t d t Kecepatan Sesaat Kecepatan Sesaat Kecepatan sesaat suatu benda dapat diketahui dengan cara menghitung kecepatan rata-rata benda tersebut untuk selang waktu ang sangat singkat atau t mendekati nol. Penulisanna secara matematis

Lebih terperinci