Bab III Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap"

Transkripsi

1 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno ab III KECEPTN RELTIF DN PERCEPTN RELTIF 3.1 KECEPTN RELTIF Kecepatan relatif dua buah titik pada satu penghubung kaku Penghubung berputar terhadap satu titik tetap Perhatikan sebuah penghubung kaku ang berputar terhadap satu titik tetap. Seperti ditunjukkan dalam gambar 3.1 V V R V R Gambar 3.1. Kecepatan sebuah titik ang bergerak terhadap satu titik tetap Jarak antara dan adalah R dan garis - membuat suatu sudut sebesar θ terhadap sumbu. Universitas rawijaa 1

2 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Perpindahan titik dalam arah sumbu = R cos θ dan perpindahan titik dalam arah sumbu = R sin θ Dideferensial terhadap waktu dengan harga R konstan diperoleh : d = d( R cosθ ) = R( sin θ ) d d( R cosθ ) = = ( R cosθ ) d Kecepatan titik dalam arah adalah = d Kecepatan titik dalam arah adalah V = Kecepatan sudut garis - adalah : ω = Maka kecepatan pada titik : 1. Dalam arah adalah V = -Rω sin θ. Dalam arah adalah V = Rω cos θ Kecepatan total titik diperoleh dengan menjumlahkan secara vector kedua komponen kecepatan tegak lurus. V = Rω sin θ Rω cos θ V = [(R ω sin θ ) + ( Rω cos θ ) ] 1/ = Rω (sin θ + cos θ ) = Rω Universitas rawijaa

3 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Dari gambar diatas ditunjukkan bahwa kecepatan titik tegak lurus terhadap garis Hubungan kecepatan dua buah titik pada satu penghubung kaku Persamaan kecepatan relatif untuk dua buah titik pada satu penghubung kaku dapat diperoleh dengan mengembangkan prosedur analisa diatas. R cos R sin V R R R sin V Y X R cos Gambar 3.. Hubungan kecepatan dua buah titik pada satu penghubung kaku Perhatikan sebuah garis -, seperti terlihat pada gambar 3.3 ang mempunai gerak kombinasi translasi dan rotasi. Koordinat titik adalah (X,Y), panjang - sebesar R dan sudut ang dibentuk garis - dan sumbu adalah θ. Sehingga koordinat titik adalah : Universitas rawijaa 3

4 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno X = X + R cos θ Y = Y + R sin θ Dideferensialkan terhadap waktu t, dan R adalah besaran Konstanta d = dx Rsin θ d = dy + R cosθ Dengan d d = V, d = V, V d =, = V, dan ω = Maka V = V Rω sin θ V = V + Rω cosθ Posisi dari vector-vektor kecepatan ini ditunjukkan pada gambar 3.3. Dengan menjumlahkan kedua persamaan diatas akan diperoleh kecepatan total dari titik. V = (V X a V a ) (Rω sin θ Rω cos θ ) Harga (V X a V a ) adalah kecepatan total titik, V dan Harga (R ω sin θ Rω cos θ ) = Rω, maka persamaan diatas dapat dituliskan menjadi : V = V Rω Dengan Rω adalah vector kecepatan ang tegak lurus ke garis - dan dalam arah ang sama dengan kecepatan sudutna. Kecepatan relatif titik terhadap titik adalah V = Rω. Universitas rawijaa 4

5 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Sehingga untuk dua buah titik pada satu penghubung kaku, dapat dipakai salah satu dari dua persamaan dibawah ini : V = V Rω V = V V 3. PERCEPTN RELTIF 3..1 Percepatan sebuah titik pada sebuah penghubung ang berputar terhadap satu pusat tetap dengan jari-jari konstan. Universitas rawijaa 5

6 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Universitas rawijaa 6

7 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno R a sin a R R a cos R a (e) Gambar 3.3. Percepatan sebuah titik pada sebuah penghubung ang berputar terhadap satu pusat tetap. Penghubung (Link) (Gambar 3.3 a) berputar terhadap satu pusat tetap, dengan kecepatan sudut ω radian per detik, kearah melawan putaran jam (CCW), dan percepatan sudutna α. Jarak sama dengan R. link membentuk sudut θ dengan sumbu. Diinginkan percepatan total ang diterima titik. Kecepatan titik : 1. Dalam arah adalah V = -Rω sin θ. Dalam arah adalah V = Rω cos θ Kedua persamaan diatas dideferensialkan terhadap waktu t, dan R adalah konstanta dihasilkan : dv = R[ ω (cosθ ) dω + (sin θ ) ] Universitas rawijaa 7

8 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno dv = R[ ω ( sin θ ) dω + (cosθ ) ] Percepatan titik dalam arah sumbu : Percepatan titik dalam arah sumbu : dω Percepatan sudut : α = dv b = dv b = Sehingga persamaan diatas menjadi : = Rω cosθ Rα sin θ = Rω sin θ + Rα cosθ Gambar 6.1b memperlihatkan vector-vektor dalam posisina masingmasing, sehingga percepatan total titik adalah : = ( R ω cosθ R ω sin θ ) ( R α sin θ R α cosθ ) Kedua komponen tegak lurus dalam tanda kurung pertama, ang ditunjukkan dalam gambar 3.3c memberikan sebuah resultan R, ang mempunai arah dari titik ke pusat perputaran penghubung (link). Dua komponen kedua tegak lurus dalam tanda kurung kedua, ang ditunjukkan dalam gambar 3.3d memberikan sebuah resultan Ra, ang mempunai arah tegak lurus ke garis -. Gambar 3.3e menunjukkan pengaruh pembalikan arah percepatan sudutna. Sehingga percepatan total titik dapat dinatakan dengan persamaan : = Rω Rα Dengan : R ω disebut komponen percepatan normal atau radial Universitas rawijaa 8

9 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Rα disebut komponen percepatan tangensial Universitas rawijaa 9

10 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno 3.. Percepatan relatif dua buah titik pada satu penghubung kaku Sebuah gari - seperti pada gambar, adalah bagian dari penghubung kaku ang bergerak dalam suatu bidang dengan gerak sebarang, lokasi titik : a R Y X (a) X = X + R cos θ Y = Y + R sin θ Kecepatan titik : V = V Rω sin θ V = V + Rω cosθ Persamaan kecepatan titik dideferensialkan terhadap waktu t dengan harga R konstan diperoleh : dv = dv R[ ω (cosθ ) dω + (sin θ ) ] dv = dv + R[ ω ( sin θ ) dω + (cosθ ) ] Universitas rawijaa 30

11 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Percepatan titik dalam arah sumbu : Percepatan titik dalam arah sumbu : Percepatan titik dalam arah sumbu : Percepatan titik dalam arah sumbu : Kecepatan sudut: ω = dω Percepatan sudut : α = dv b = dv b = dv b = dv = Maka persamaan diatas dapat dituliskan menjadi : = Rω cosθ Rα sin θ = Rω sin θ + Rα cosθ Percepatan total titik, diperoleh dengan menjumlahkan komponen tegak lurus: = Dengan menjumlahkan vector seperti ang ada digambar dengan urutan sebagai berikut : = ( ) ( ω R cosθ R ω sin θ ) ( R α sin θ R α cosθ ) Suku dalam kurung pertama adalah percepatan total titik Suku dalam kurung kedua adalah samadengan Rω aitu vector ang arahna dari ke. Suku dalam kurung ketiga adalah sama dengan Rα Universitas rawijaa 31

12 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno aitu vector dengan arah tegak lurus - dan arahna sesuai dengan arah percepatan sudutna. Sehingga percepatan titik dapat dinatakan dengan : = R ω R α R a a R (c) Dari persamaan ini percepatan titik sama dengan percepatan titik ditambah denganpercepatan relatif titik terhadap titik. Sehingga persamaan percepatan titik dapat dituliskan : = Dengan mengganti R = dan ω = maka didapatkan persamaan : V = V α Universitas rawijaa 3

13 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno Soal-soal : I. Kecepatan Relatif 1. penghubung - bagian dari sebuah mekanisme empat penghubung telah dianalisa dan telah didapatkan bahwa kecepatan adalah 10 m/ seperti ditunjukkan. Juga diketahui bahwa kecepatan sudut penghubung untuk sesaat pengamatan adalah 60 rat/det kearah putaran jam. jika penghubung - panjangna 10 cm berapa kecepatan total titik dan bearna dan arah. Selesaikan dengan memakai V =V + V ; dan selesaikan dengan memakai V= V +V. V 30 0 V. Sebuah penghubung - panjangna 0 cm. Komponen-komponen kecepatan titik a dan b seperti ditunjukkan. erapa besar dan arah kecepatan sudut penghubung 6 m/det 3 m/det 1.5 m/det 1.5 m/det Universitas rawijaa 33

14 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno 3. Kecepatan titik a pada penghung diketahui besar dan arahna. Kecepatan relatif titik terhadap titik diketahui besar dan arahna. Tunjukkan bagaimana kecepatan titik dan kecepatan titik C dapat ditentukan. V V C II. Percepatan Relatif 1. Sebuah penghubung ang panjangna 1.5 cm, berputar pada 400 rpm kearah putaran jarum jam, dengan salah satu ujungna tetap dan 5 detik kemudian berputar pada 1800 rpm, dengan percepatan sudut konstan. erapa percepatan titik tengah penghubung pada saat penghubung berputar pada 1400 rpm. pabila percepatan titik seperti ang ditunjukkan, berapa kecepatan sudut dan percepatan sudutpenghubung untuk posisi ang ditunjukkan Kemana arah percepatan sudutna Dapatkah arah kecepatan sudut diketahui =1000 m/det cm Universitas rawijaa 34

15 Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno 3. Jika percepatan normal titik terhadap titik adalah 15 m/det dan percepatan tangensial titik terhadap titik adalah 50 m/det. erapa kecepatan sudut dan percepatan sudut penghubung t =50 m/det = 15 cm n =15 m/det 4. Jika percepatan total titik-titik dan diketahui dan seperti ditunjukkan, berapa kecepatan sudut dan percepatan sudut penghubung Perhatikan dalam dua cara : hubungan percepatan titik terhadap titik, dan hubungan percepatan titik a dan titik. tentukan juga percepatan titik C. =00 m/det 60 0 =400 m/det C Universitas rawijaa 35

BAB 6 PERCEPATAN RELATIF

BAB 6 PERCEPATAN RELATIF BAB 6 PERCEPATAN RELATIF Dalam analisa percepatan, dapat dijumpai tiga situasi yang telah dibahas dalam analisa kecepatan : (1) hubungan perceptana dua buah titik yang berbeda dan terpisah, (2) hubungan

Lebih terperinci

Bab V. Untuk menentukan besarnya kecepatan suatu titik yang bergerak. terhadap sebuah badan yang juga bergerak, perhatikan titik B yang

Bab V. Untuk menentukan besarnya kecepatan suatu titik yang bergerak. terhadap sebuah badan yang juga bergerak, perhatikan titik B yang Oleh : Ir Ir. Erwin ulityo - Ir. Endi utikno. Bab V KECEPATAN DAN PERCEPATAN PADA DUA TITIK YANG BERIMPIT KOMPONEN CORIOLI DARI PERCEPATAN NORMAL 5.1 Kecepatan relatif dua titik berimpit Untuk menentukan

Lebih terperinci

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Pengertian Transformasi geometric transformation Transformasi = mengubah deskripsi koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Translasi Mengubah posisi objek: perpindahan lurus

Lebih terperinci

BUKU AJAR KINEMATIKA DAN DINAMIKA 1 TIM DOSEN FAKULTAS TEKNIK UNIVERSITAS WIJAYA PUTRA SURABAYA

BUKU AJAR KINEMATIKA DAN DINAMIKA 1 TIM DOSEN FAKULTAS TEKNIK UNIVERSITAS WIJAYA PUTRA SURABAYA UKU JR KINEMTIK DN DINMIK 1 TIM DOSEN FKULTS TEKNIK UNIVERSITS WIJY PUTR SURY 1 ab I KONSEP KONSEP DSR 1.1 KINEMTIK Kinematika mesin adalah suatu pengetahuan tentang gerak relatif dari bagian -bagian mesin

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

KINEMATIKA GERAK 1 PERSAMAAN GERAK

KINEMATIKA GERAK 1 PERSAMAAN GERAK KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut

Lebih terperinci

BAB III KECEPATAN RELATIF

BAB III KECEPATAN RELATIF III KECEPTN RELTIF 3.1. Indikator Kompetensi relatif. Setelah mengikuti mata kuliah ini, mahasiswa mempunyai pemahaman tentang kecepatan 3.2. Kecepatan Relatif dari Dua Titik erbeda Dua buah titik dan

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1 Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen

Lebih terperinci

1 Sistem Koordinat Polar

1 Sistem Koordinat Polar 1 Sistem Koordinat olar ada kuliah sebelumna, kita selalu menggunakan sistem koordinat Kartesius untuk menggambarkan lintasan partikel ang bergerak. Koordinat Kartesius mudah digunakan saat menggambarkan

Lebih terperinci

Sumber:

Sumber: Transformasi angun Datar Geometri transformasi adalah teori ang menunjukkan bagaimana bangun-bangun berubah kedudukan dan ukuranna menurut aturan tertentu. Contoh transformasi matematis ang paling umum

Lebih terperinci

KESETIMBANGAN MOMEN GAYA

KESETIMBANGAN MOMEN GAYA 43 MDUL PERTEMUAN KE 5 MATA KULIAH : ( sks) MATERI KULIAH: Momen gaa, sarat kedua kesetimbangan, resultan gaa sejajar, pusat berat, kopel. PKK BAHASAN: KESETIMBANGAN MMEN GAYA 5. PENGERTIAN MMEN GAYA Besar

Lebih terperinci

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 5 Bangun Geometris 5.1. Persamaan Kurva Persamaan suatu kurva secara umum dapat kita tuliskan sebagai F (, )

Lebih terperinci

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.

Lebih terperinci

Fisika Dasar 9/1/2016

Fisika Dasar 9/1/2016 1 Sasaran Pembelajaran 2 Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1-dimensi dan 2-dimensi. Kinematika 3 Cabang ilmu Fisika yang membahas gerak benda

Lebih terperinci

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Definisi KINEMATIKA Kinematika adalah cabang ilmu fisika yang

Lebih terperinci

r = r = xi + yj + zk r = (x 2 - x 1 ) i + (y 2 - y 1 ) j + (z 2 - z 1 ) k atau r = x i + y j + z k

r = r = xi + yj + zk r = (x 2 - x 1 ) i + (y 2 - y 1 ) j + (z 2 - z 1 ) k atau r = x i + y j + z k Kompetensi Dasar Y Menganalisis gerak parabola dan gerak melingkar dengan menggunakan vektor. P Uraian Materi Pokok r Kinematika gerak translasi, terdiri dari : persamaan posisi benda, persamaan kecepatan,

Lebih terperinci

KHAIRUL MUKMIN LUBIS IK 13

KHAIRUL MUKMIN LUBIS IK 13 Fakultas Perikanan - KESETIMBANGAN Kondisi benda setelah menerima gaya-gaya luar SEIMBANG : Bila memenuhi HUKUM NEWTON I Resultan Gaya yang bekerja pada benda besarnya sama dengan nol sehingga benda tersebut

Lebih terperinci

19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran)

19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran) 9. TRANSFORMASI A. Translasi (Pergeseran) ; T = b a b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis =, dan

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

TRANSFORMASI. Kegiatan Belajar Mengajar 6

TRANSFORMASI. Kegiatan Belajar Mengajar 6 Kegiatan elajar Mengajar 6 TRNSFORMSI Drs. Zainuddin, M.Pd Tranformasi (perpindahan) ang dipelajari dalam matematika, antara lain translasi (pergeseran), refleksi (pencerminan), rotasi (perputaran), dan

Lebih terperinci

Transformasi Geometri Sederhana

Transformasi Geometri Sederhana Transformasi Geometri Sederhana Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut dengan manipulasi. Perubahan gambar dengan mengubah koordinat

Lebih terperinci

20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b

20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b . TRANSFORMASI A. Translasi (Pergeseran) ; T b a + b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis, dan garis

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS ( PERSAMAAN LINEAR ) Indikator :. Siswa dapat contoh persamaan garis lurus dalam berbagai bentuk dan variabel.. Siswa dapat menusun tabel pasangan dan menggambar grafik pada koordinat

Lebih terperinci

BAB 2 ANALISIS VEKTOR

BAB 2 ANALISIS VEKTOR BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep

Lebih terperinci

BAB I ANALISIS VEKTOR

BAB I ANALISIS VEKTOR BAB I ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan

Lebih terperinci

BAB V TRANSFORMASI 2D

BAB V TRANSFORMASI 2D BAB V TRANSFORMASI 2D OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : Transformasi Dasar 2D 1. Translasi 2. Rotasi 3. Scalling Transformasi Lain 1. Refleksi 2. Shear TUJUAN DAN SASARAN: Setelah

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENN PELKSNN PEMELJRN Mata Pelajaran : Matematika Kelas : XI / 4 Pertemuan ke - :, lokasi Waktu : 4 jam @ 45 menit Standar Kompetensi : Menentukan kedudukan jarak dan besar sudut ang melibatkan titik,

Lebih terperinci

A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor

A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor . Vektor.1 Representasi grafis sebuah vektor erdasarkan nilai dan arah, besaran dibagi menjadi dua bagian aitu besaran skalar dan besaran vektor. esaran skalar adalah besaran ang memiliki nilai dan tidak

Lebih terperinci

FIsika KTSP & K-13 KESEIMBANGAN BENDA TEGAR. K e l a s. A. Syarat Keseimbangan Benda Tegar

FIsika KTSP & K-13 KESEIMBANGAN BENDA TEGAR. K e l a s. A. Syarat Keseimbangan Benda Tegar KTSP & K-1 FIsika K e l a s XI KESEIMNGN END TEG Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami sarat keseimbangan benda tegar.. Memahami macam-macam

Lebih terperinci

Bab II. Lintasan dari sebuah titik adalah perubahan dari posisinya dan dia. adalah besaran vector. Pada gambar 2.1 sebagai titik P bergerak

Bab II. Lintasan dari sebuah titik adalah perubahan dari posisinya dan dia. adalah besaran vector. Pada gambar 2.1 sebagai titik P bergerak Bab II KECEPATAN DAN PERCEPATAN.1 LINTASAN DAN KECEPATAN LINEAR.1.1 Kecepatan Linear Lintasan dari sebuah titik adalah perubahan dari posisinya dan dia adalah besaran vector. Pada gambar.1 sebagai titik

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

GERAK MELINGKAR. = S R radian

GERAK MELINGKAR. = S R radian GERAK MELINGKAR. Jika sebuah benda bergerak dengan kelajuan konstan pada suatu lingkaran (disekeliling lingkaran ), maka dikatakan bahwa benda tersebut melakukan gerak melingkar beraturan. Kecepatan pada

Lebih terperinci

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014 Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

Bab IV. Mekanisme paling sederhana yang dipelajari adalah mekanisme. engkol-peluncur segaris seperti pada gambar 4.1

Bab IV. Mekanisme paling sederhana yang dipelajari adalah mekanisme. engkol-peluncur segaris seperti pada gambar 4.1 Bab IV PENERAPAN KECEPATAN RELATIF DAN PERCEPATAN RELATIF 4.1.1 Mekanisme Engkol Peluncur Mekanisme paling sederhana yang dipelajari adalah mekanisme engkol-peluncur segaris seperti pada gambar 4.1 Semua

Lebih terperinci

TM. II : KONSEP DASAR ANALISIS STRUKTUR

TM. II : KONSEP DASAR ANALISIS STRUKTUR TKS 4008 Analisis Struktur I TM. II : KONSE DASAR ANALISIS STRUKTUR Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaa endahuluan Analisis struktur adalah suatu proses

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

Bab I. Kinematika mesin adalah suatu pengetahuan tentang gerak relatif. dari bagian-bagian mesin yaitu posisi, kecepatan dan percepatan.

Bab I. Kinematika mesin adalah suatu pengetahuan tentang gerak relatif. dari bagian-bagian mesin yaitu posisi, kecepatan dan percepatan. ab I KNSEP KNSEP DSR 1.1 KINEMTIK Kinematika mesin adalah suatu pengetahuan tentang gerak relatif dari bagian-bagian mesin yaitu posisi, kecepatan dan percepatan. 1.2 DIGRM KINEMTIS Dalam mempelajari gerakan-gerakan

Lebih terperinci

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub Bab. Persamaan Parametrik dan Sistim Koordinat Kutub Persamaan Parametrik Kurva-kurva ang berada dalam bidang datar dapat representasikan dalam bentuk persamaan parametrik. Dalam persamaan ini, setiap

Lebih terperinci

Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II

Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II Koordinat Kartesius, Koordinat Tabung & Koordinat Bola Tim Kalkulus II Koordinat Kartesius Sistem Koordinat 2 Dimensi Sistem koordinat kartesian dua dimensi merupakan sistem koordinat yang terdiri dari

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule.

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule. Gerak Translasi dan Rotasi A. Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Misalnya anak yang bermain jungkat-jungkit, dengan titik acuan adalah

Lebih terperinci

PP' OP = OP' PERSAMAAN UMUM LINGKARAN

PP' OP = OP' PERSAMAAN UMUM LINGKARAN Bab III : Lingkaran 30 Lingkaran adalah tempat kedudukan titik-titik ang berjarak sama terhadap suatu titik tetap. Jarak ang sama itu disebut jari-jari sedangkan titik tetap dinamakan pusat lingkaran 3..

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Irisan Kerucut animation 1 animation 2 Irisan kerucut adalah kurva ang terbentuk dari perpotongan antara sebuah kerucut dengan bidang datar. Kurva irisan ini

Lebih terperinci

Perkalian Titik dan Silang

Perkalian Titik dan Silang PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1 GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT sofyan mahfudy-iain Mataram 1 Sasaran kuliah hari ini 1. Mahasiwa dapat menjelaskan konsep kemiringan garis/gradien 2. Mahasiswa dapat menentukan

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat pada Bidang Datar Disusun dengan pasangan angka urut (ordered pair) (a,b) : a dan b berturut- turut adalah

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

BAB 1 ANALISA SKALAR DANVEKTOR

BAB 1 ANALISA SKALAR DANVEKTOR 1.1 Skalar dan Vektor BAB 1 ANAISA SKAA DANVEKT Skalar merupakan besaran ang dapat dinatakan dengan sebuah bilangan nata. Simbul,, dan z ang digunakan merupakan scalar, dan besarna juga dinatakan dalam

Lebih terperinci

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu. VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel

Lebih terperinci

Transformasi Datum dan Koordinat

Transformasi Datum dan Koordinat Transformasi Datum dan Koordinat Sistem Transformasi Koordinat RG091521 Lecture 6 Semester 1, 2013 Jurusan Pendahuluan Hubungan antara satu sistem koordinat dengan sistem lainnya diformulasikan dalam bentuk

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom A 1 Vektor Fisika Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sub Pokok ahasan Definisi Vektor Penjumlahan Vektor Vektor Satuan

Lebih terperinci

ANALISA VEKTOR. Skalar dan Vektor

ANALISA VEKTOR. Skalar dan Vektor ANALISA VEKTOR Skalar dan Vektor Skalar merupakan besaran ang dapat dinatakan dengan sebuah bilangan nata. Contoh dari besaran skalar antara lain massa, kerapatan, tekanan, dan volume. Sedangkan besaran

Lebih terperinci

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci

B. Pengertian skalar dan vektor Dalam mempelajari dasar-dasar fisika, terdapat beberapa macam kuantitas kelompok besaran yaitu Vektor dan Skalar.

B. Pengertian skalar dan vektor Dalam mempelajari dasar-dasar fisika, terdapat beberapa macam kuantitas kelompok besaran yaitu Vektor dan Skalar. ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan melibatkan

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Contoh - 1 Volume V dari sebuah silinder dengan

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR INTEGRASI VEKTOR Materi pokok pertemuan ke 11: 1. Integral Biasa 2. Integral Garis URAIAN MATERI Sebelum masuk ke integral garis, Anda pelajari dulu mengenai integral biasa dari vektor. Integral Biasa

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika

K13 Revisi Antiremed Kelas 11 Matematika K3 Revisi Antiremed Kelas Matematika Turunan - Latihan Soal Doc. Name: RK3ARMATWJB080 Version: 06- halaman 0. Jika f(x) = 8x maka f'(x) =. (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui y = sin ( π x),

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

PENGETAHUAN STRUKTUR SLIDE 1

PENGETAHUAN STRUKTUR SLIDE 1 Momen Momen terhadap suatu sumbu, akibat suatu gaa, adalah ukuran kemampuan gaa tersebut menimbulkan rotasi terhadap sumbu tersebut. Momen didefinisikan sebagai: M rf sin dimana r adalah jarak radial dari

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Dalam mekanika bahan, pengertian tegangan tidak sama dengan vektor tegangan. Tegangan merupakan tensor derajat dua, sedangkan vektor, vektor apapun, merupakan tensor

Lebih terperinci

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan PERSAAAN BIDANG RATA DAN VEKTOR NORAL Bila terdapat tiga titik yang tidak kolinear maka ketiga titik itu menentukan sebuah bidang rata. dan. Dan misalkan isalkan ketiga titik itu masing-masing vector-vektor

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

VEKTOR. Oleh : Musayyanah, S.ST, MT

VEKTOR. Oleh : Musayyanah, S.ST, MT VEKTOR Oleh : Musayyanah, S.ST, MT 1 2.1 ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan).

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Mekanika bahan merupakan salah satu ilmu yang mempelajari/membahas tentang tahanan dalam dari sebuah benda, yang berupa gaya-gaya yang ada di dalam suatu benda yang

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS nalisis Penampang Pertemuan 4, 5, 6 TU : Mahasiswa dapat menghitung properti dasar penampang, seperti luas, momen statis, momen inersia TK : Mahasiswa

Lebih terperinci

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik.

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. Kompetensi Dasar Menganalisis besaran fisika pada gerak dengan kecepatan dan percepatan konstan.

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 Sistem Koordinat Parameter SistemKoordinat Koordinat Kartesian Koordinat Polar Sistem Koordinat

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Persiapan UAS Doc. Name: ARMAT0UAS Doc. Version : 06-08 halaman 0. Jika f(x)= (x x 5)dx dan f()=0, maka f(x) =... x + x - 5x - 6 4x - x + 5x - 4 5 5 x x x x - x + 5x - 5 x +

Lebih terperinci

Kinematika. 1 Kinematika benda titik: posisi, kecepatan, percepatan

Kinematika. 1 Kinematika benda titik: posisi, kecepatan, percepatan ekan #1 Kinematika Mekanika membahas gerakan benda-benda fisis. Kita akan memulai pembahasan kinematika benda titik. Kinematika aitu topik ang membahas deskripsi gerak benda-benda tanpa memperhatikan penebab

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I

UJIAN TENGAH SEMESTER KALKULUS I UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

I. Ulangan Bab 2. Pertanyaan Teori 1. Tentukanlah besar dan arah vektor-vektor berikut : a. V = 3, 1. b. V = 1, 3. c. V = 5, 8.

I. Ulangan Bab 2. Pertanyaan Teori 1. Tentukanlah besar dan arah vektor-vektor berikut : a. V = 3, 1. b. V = 1, 3. c. V = 5, 8. I. Ulangan Bab Pertanaan Teori 1. Tentukanlah besar dan arah vektor-vektor berikut : a. V = 3, 1 b. V = 1, 3 c. V = 5, 8 a. Besar V adalah V 3 1 31 4 Arah V adalah 1 1 tan = 3 30 3 3 b. Besar V adalah

Lebih terperinci

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn

Lebih terperinci

BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor

BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor BAB II LANDASAN TEORI A. Tinjauan Pustaka 1. Vektor Ada beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. Ada juga besaran fisis yang tidak

Lebih terperinci

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah

Lebih terperinci

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

Suryadi Siregar Metode Matematika Astronomi 2

Suryadi Siregar Metode Matematika Astronomi 2 Suryadi Siregar Metode Matematika Astronomi Bab 4 Integral Garis dan Teorema Green 4. Integral Garis Definisi : Misal suatu lintasan dalam ruang dimensi m pada interval [a,b]. Andaikan adalah medan vektor

Lebih terperinci