Persamaan Garis Singgung Lingkaran Melalui Titik di Luar Lingkaran

Ukuran: px
Mulai penontonan dengan halaman:

Download "Persamaan Garis Singgung Lingkaran Melalui Titik di Luar Lingkaran"

Transkripsi

1 Mtei Pesn Gis Singgung Lingkn Mellui Titik di Lu Lingkn Oleh: Anng Wibowo, S.Pd Apil MtikZone s Seies Eil : Blog : HP : Hk Cipt Dilindungi Undng-undng. Dilng engkutip sebgin tu seluuh isi glei ini tnp endo kn kebikn untuk ki dn ut isl seluuhn. Dn jngn lup encntukn suben

2 Pesn Gis Singgung Lingkn Mellui Stu Titik di Lu Lingkn Dengn C Menci Gdienn. g g P A B T (, ) Mellui titik T di lu lingkn, dpt ditentukn tept du gis singgung pd lingkn tesebut. Gis singgung eninggung lingkn di titik A dn titik B. Untuk enentukn pesn gis singgungn, kit bis enggunkn du c, itu: Pet, dengn enentukn gdien gis singgung telebih dulu keudin enentukn pesn gis ng dikethui gdienn dn ellui titik T. Tedpt inil c dl enentukn gdien gis singgung ini. Kedu, dengn enentukn pesn gis pol, keudin enci titik potongn dengn lingkn, setelh itu enentukn pesn gis singgung ellui titik pd lingkn. Beikut ini contoh sol dn pebhsnn. Pd sol ng kedu, uncul slh pd st enci nili gdien gis singgungn. Selengkpn kit liht dl pebhsn beikut: Sol Pet: Tentukn pesn gis singgung lingkn ng ellui titik T(, ). Jwb: Cek titik: Titik T(, ) > Jdi, titik bed di lu lingkn C : Pesn gis singgung lingkn dgn gdien dlh Pesn gis dgn gdien ellui T(, ) dlh ( ) tu ( ) Mk

3 ( ) ( ) ( ) tu Subtitusi ke pesn gis ( ) (bukn ke ): Untuk ( ) Untuk ( ) Jdi pesn gis singgungn dn C : Mislkn pesn gis singgung lingkn dengn gdien dlh Gis singgung lingkn ellui titik T(, ) k: ( ) tu Pesn gis dgn gdien ellui T(, ) dlh ( ) tu ( ) Subtitusi ng dipeoleh ke pesn Untuk ( ) Untuk ( ) Jdi pesn gis singgungn dn

4 C : Pesn gis singgung lingkn dgn pust (, b), ji-ji dn ellui titik (, ) dlh ( ), dengn: b b Lingkn epuni pust P(, ) dn beji-ji. Gis singgung ellui titik T(, ), epuni pesn: ( ), dengn Jdi, pesn gis singgungn, itu dn C : Mislkn pesn gis singgung ng ellui T(, ) dlh Subtitusi ke dl pesn lingkn St eninggung dlh D tu D Untuk. Untuk Jdi pesn gis singgungn dn

5 C : Lingkn bepust di P(, ) dn beji-ji Pesn gis singgung ng ellui titik T(, ) dn begdien dlh: Ji-ji dlh jk P(, ) dengn gis.. tu Dipeoleh PGS :.. PGS :... C : Pesn gis pol lingkn ng ellui titik T(, ) dlh Subtitusi ke pesn llingkn tu Subtitusi nili ng dipeoleh ke pesn gis (bukn ke pesn lingkn): Untuk,. T

6 Untuk. T, Titik-titik tesebut dlh titik singgung lingkn, gunkn pesn gis singgung lingkn ellui titik PADA lingkn. PGS : PGS : Jdi pesn gis singgungn dn Sol Kedu: Tentukn pesn gis singgung lingkn ( ) Jwb: Cek titik T(, ): ( ) ( ) > g ellui titik T(, ).. Jdi titik T(, ) bed di lu lingkn. C : Pesn gis singgung lingkn ( ) ( ) ( ) ( ) dengn gdien dlh Pesn gis dgn gdien ellui T(, ) dlh ( ) tu ( ) Mk ( ) ( ) ( )

7 Subtitusi ng dipeoleh ke pesn gis ( ) Jdi pesn gis singgungn Hn Dipeoleh Stu Pesn Gis Singgung C : Pesn gis singgung lingkn dengn gdien dlh Pesn gis singgung ellui T(, ) k Pesn gis dgn gdien ellui T(, ) dlh ( ) tu ( ) Subtitusi ng dipeoleh ke pesn gis ( ) Jdi pesn gis singgungn Hn Dipeoleh Stu Pesn Gis Singgung C : Pesn gis singgung lingkn dgn pust (, b), ji-ji dn ellui titik T (, ) dlh ( ), dengn: b b Lingkn epuni pust P(, ) dn beji-ji. Gis singgung

8 ellui titik T(, ), epuni pesn: ( ), dengn ( )( ) ( ) ( ) 8 8 ( ) 8 Tidk didptkn nili Tidk Mendptkn Pesn Gis Singgung C : Mislkn pesn gis singgung ng ellui T(, ) dlh ( ) tu ( ) Subtitusi ke dl pesn lingkn ( ) ( ) ( ) ( ) ( ) St eninggung dlh D D 8 ( ) ( ) ( ) ( ( ) ( )( ) 8 Subtitusi ng dipeoleh ke pesn gis ( ) 8 ( ) 8 Jdi pesn gis singgungn Hn Dipeoleh Stu Pesn Gis Singgung

9 C : Lingkn bepust di P(, ) dn beji-ji Pesn gis singgung ng ellui titik T(, ) dn begdien dlh: Ji-ji dlh jk P(, ) dengn gis.. Subtitusi ng dipeoleh ke pesn gis ( ) Jdi pesn gis singgungn Hn Dipeoleh Stu Pesn Gis Singgung C : Pesn gis pol ng ellui titik, T di lu lingkn b dlh b b Pesn gis pol lingkn ng ellui titik T(, ) dlh

10 Subtitusi ke pesn lingkn ( ) ( ) ( ) ( ) ( ) ( ) ( 7)( ) 8 7 tu Subtitusi nili ng dipeoleh ke pesn gis (bukn ke pesn lingkn): Untuk Untuk 7 7 T, T, Titik-titik tesebut dlh titik singgung lingkn, gunkn pesn gis singgung lingkn ellui titik PADA lingkn. PGS : 7 PGS : ( ) ( ) ( ) ( )( ) ( ) ( ) 8 Jdi pesn gis singgungn dn Dipeoleh Du Pesn Gis Singgung Setidkn itulh dint c penelesin ng kit teukn dl bebep buku peljn di sekolh. Pd sol pet, sudh kit dptkn du pesn gis singgung di keen c ng kit cob. Untuk sol kedu, kit tidk endptkn jwbn ng euskn, keculi c keen. Bhkn untuk c ketig tidk endptkn penelesin s sekli.

11 Mengp kit hn endptkn pesn gis singgung sj dengn etode enentukn nili gdien gis singgung ini? Bhkn c ke- tidk ebuhkn hsil s sekli? Di contoh kedu di ts, penebbn dlh slh stu gis singgungn eupkn gis ng sejj dengn subu Y. Sehingg kit tidk endptkn nili gdien gisn. Mk di itu hendkn p guu ebeikn bec-c c penelesin kepd sisw g tidk eneui kendl sepeti sol di ts. Minil sisw hus engenl c enentukn pesn gis singgung ellui titik di lu lingkn ini dengn enentukn pesn gis pol. Ken hn c inilh ng pu enelesikn sol di ts. Stu slh ng ungkin uncul ketik kit enggunkn c gis pol dlh bsis tu odint di titik singgung ng kit ci dlh bilngn pechn tu bhkn bilngn isionl, sehingg kit gk kesulitn enci titik koodintn. Jdi, kedun epuni kekungn dn kelebihn sing-sing, kit pilih n ng lebih udh dn dpt enelesikn sol. Dl sekin buku peljn ng ki buk, d buku ng hn encntukn stu c c sj dn d jug buku ng enctukn bebep c sebgi pilihn dn pebndingn. Ad buku ng hn enjikn pebhsn sol dengn etode enentukn gdien gis singggung, bhkn d ng hn encntukn c ketig sj. Klu sisw tidk engethui etode gis pol ini, keudin beteu sol sepeti contoh sol kedu di ts, bgin i kn enelesiknn? C Altentif: Pesn gis singgung lingkn dengn pust P (, b) di titik T (, ) di lu lingkn, din dn ji-ji ng ditik tu dlh:. Pesn Pet: dlh gis ng sejj dengn subu Y,. Pesn Kedu:

12 T (, ) T (, ) P(, b) P(, b) X X X X P(, b) P(, b) T (, ) T (, ) Sol: Tentukn pesn gis singgung lingkn ( ) Jwb: g ellui titik T(, ). Lingkn ( ) ( ) epuni pust P(, ) dn ji-ji. Ken gis singgung ellui titik T(, ) di lu lingkn dn, k Pesn gis singgung pet:

13 Pesn gis singgung kedu:??????????????????????????????????????????????????????????????????????????????????????????? Cttn: Ingt!!! Kedu pesn tesebut HANYA belku untuk odel sol ng sedng dibhs, itu jik tu. Sol Ltihn Tentukn pesn gis singgung lingkn beikut ellui titik ng ditentukn. 8 ellui titik A(-, ). ( ) ( ) di titik P(, ). 8 di titik T(, ). ellui titik M(, 8) tu titik N(-, -). ( ) ( ) di titik S(, ) tu titik R(-8, ). di T(, 7) tu titik K(, -)

14 Bhn Bcn Aksin, Nu, dkk.. PG Mtetik untuk SMA/MA kels XI seeste. Klten. Intn Piw. Dnui, M. 8. Pebeljn Lingkn SMA dengn Geoeti Anlitik. Yogkt. PTK Mtetik. Djunt, Whudin dn R Sudjt. 8. Mhi Mengebngkn Kepun Mtetik : untuk Kels XI Sekolh Menengh Ats /Mdsh Alih. Jkt. Depdikns (BSE). Hih, Nu.. Pndun Lengkp, Pint Mtetik. Jkt. Ceds Pustk Publishe. Kngenn, Mthen.. Ceds Belj Mtetik XI SMA/MA Pog IPA. Jkt. Gfindo Medi Pt. Ktini, dkk.. Mtetik IPA kels XI. Klten. Intn Piw. Kishn, Hi.. Coodinte Geoet of Two Diensions. New Delhi. Atlntic Publishe nd Distibutos. (PDF File) Nsution, Andi Hki, dkk.. Mtetik, untuk Sekolh Menengh Uu kels. Jkt. Bli Pustk. Negoo, ST dn B Hhb.. Ensiklopedi Mtetik. Jkt. Ghli Indonesi. Noondii, BK.. Mtetik SMA/MA kels XI Pog IPA. Bndung. Elngg. Mthetics Fou.. Mthetics fo Senio High School Ye XI. Bogo. Yudhisti. Puspit, It.. Metode Menghitung Cept (MMC), Teknik cept dn unik dl engejkn sol tetik untuk tingkt SMA. Bndung. PT Ni J. Soedto, Nugoho dn Mnto. 8. Mtetik untuk SMA tu MA Kels XI Pog IPA. Jkt. Depdikns (BSE). Sulistono, dkk.. Mtetik untuk SMA/MA Kels XI. Jkt. Gelo Aks Pt. Sulistiono. 7. Sei Pendln Mtei MATEMATIKA SMA db MA. Bndung. Esis. Sudi, dkk.. Mtetik SMU A untuk kels. Solo. Tig Sengki. Suti dn Budi U.. Whn Mtetik : untuk SMA / MA Kels XI Pog Ilu Pengethun Al. Jkt. Depdikns (BSE). Wibowo, Slet. Pesn Gis Singgung Lingkn. SMA 7 Jkt. (tikel) No Ne. Golden Co-odinte Geoet. Li Publictions (P) Ltd. (PDF File)

Masalah Dalam Menentukan Persamaan Garis Singgung Lingkaran Melalui Satu Titik di Luar Lingkaran Dengan Cara Mencari Gradiennya.

Masalah Dalam Menentukan Persamaan Garis Singgung Lingkaran Melalui Satu Titik di Luar Lingkaran Dengan Cara Mencari Gradiennya. Mslh Dl Menentukn Pesn Gis Singgung Lingkn Mellui Stu Titik di Lu Lingkn Dengn C Menci Gdienn. g g P A B T (, ) Mellui titik T di lu lingkn, dpt ditentukn tept du gis singgung pd lingkn tesebut. Gis singgung

Lebih terperinci

Soal Latihan dan Pembahasan Persamaan Lingkaran

Soal Latihan dan Pembahasan Persamaan Lingkaran Sol Ltihn dn Pebhsn Pesn Lingkn Di susun Oleh : Yuun Sonti http://bibingnbelj.net/ Di dukung oleh : Potl eduksi Gtis Indonesi Open Knowledge nd Eduction http://oke.o.id Tutoil ini dipebolehkn untuk di

Lebih terperinci

Logaritma. maka tentukan nilai x yang memenuhi persamaan. log + = + 1 = x x. x Jawab : = b maka tentukan 12. Jawab : Jawab : Jawab :

Logaritma. maka tentukan nilai x yang memenuhi persamaan. log + = + 1 = x x. x Jawab : = b maka tentukan 12. Jawab : Jawab : Jawab : Logit Jik k tentukn Jik dn k tentukn Tentukn nili ng eenuhi pesn Jik dn, k tentukn nili ng eenuhi pesn tidk eenuhi Jik dn eenuhi pesn k tentukn p p c p Tentukn penelesin petksn < < < < < St : < < tu

Lebih terperinci

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN Mengenng Jejk Sebgin Kecil Bngs Indonesi ng Pernh Mengikuti Ujin Sekolh Pd Awl Ms Keerdekn UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 98 ALJABAR. SMA 98 Ditentukn persn tingkt du: 7 6.. Berpkh

Lebih terperinci

Materi V. Determianan dinotasikan berupa pembatas dua gris lurus,

Materi V. Determianan dinotasikan berupa pembatas dua gris lurus, Mteri V Tujun : 1. Mhsisw dpt mengenli determinn.. Mhsisw dpt merubh persmn linier menjdi persmn determinn.. Mhsisw menelesikn determinn ordo du. Mhsisw mmpu menelesikn determinn ordo tig. Mhsisw mengethui

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30 Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka :

Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka : Minggu ke 6 Modul Mtemtik LIMIT FUNGSI LIMITS OF FINCTIONS). BRISN SEQUENCES) VS. LIMIT FUNGSI LIMITS OF FUNCTIONS) Contoh : Sequence : fn) = + / n,,,,,,,,, + / n mk : Limit dri fungsi f) =, dimn vribel

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Ms Silm UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 9 ALJABAR. HBS (Hogere Burger School) NI dn AMS (Algemeene Middelbre

Lebih terperinci

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 )

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 ) BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS KERAPATAN FLUKS LISTRIK Fluk litik bemul di mutn poitif dn bekhi di mutn negtif ( tu bekhi di tk tehingg klu tidk d mutn negtif (b + - + -~ Gi fluk ( (b

Lebih terperinci

Matematika XI MIA Peminatan Persamaan Garis Singgung Parabola. Di Susun Oleh : Markus Yuniarto, S.Si

Matematika XI MIA Peminatan Persamaan Garis Singgung Parabola. Di Susun Oleh : Markus Yuniarto, S.Si Mtetik XI MIA Peintn Persn Gris Singgung Prol Di Susun Oleh : Mrkus Yunirto, S.Si SMA Snt Angel Bndung Thun Peljrn 06 07 PERSAMAAN GARIS SINGGUNG PARABOLA A. Persn Gris Singgung Prol Dengn Punck 0,0. Persn

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA MATEMATIKA A Hendr Gunwn Semester II, 6/7 Februri 7 Kulih yng Llu 8. Bentuk Tk Tentu Tipe / Menghitung limit bentuk tk tentu / dengn menggunkn Aturn l Hopitl 8. Bentuk Tk Tentu Linny Menghitung bentuk

Lebih terperinci

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 009 Bidng Mtemtik Wktu :,5 Jm DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

II. Potensial listrik

II. Potensial listrik II. Potensil listik Penjelsn/deskipsi gejl listik: * gy * potensil * medn * enegi Enegi Potensil Listik enegi yng dipelukn untuk memindhkn seuh mutn ( melwn gy listik) q E enegi potensil pestun mutn potensil

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd

POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd POTNSIL LISTRIK Oleh : S Nuohmn,M.Pd Ke Menu Utm Liht Tmpiln eikut: POTNSIL LISTRIK il seuh ptikel emutn egek dlm seuh medn listik, mk medn itu kn mengehkn seuh gy yng dpt melkukn kej pd ptikel teseut.

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit

Lebih terperinci

Hukum Gerak Newton FIS 1 A. PENDAHULUAN B. HUKUM NEWTON I C. HUKUM NEWTON II KINEMATIKA GERAK (I) materi78.co.nr

Hukum Gerak Newton FIS 1 A. PENDAHULUAN B. HUKUM NEWTON I C. HUKUM NEWTON II KINEMATIKA GERAK (I) materi78.co.nr tei78.co.n Huku Gek ewton A. PEDAHULUA Huku gek ewton enjelskn hubungn gy dn gek yng dikibtkn oleh gy tesebut. Huku gek ewton tedii di huku kelebn, huku ewton II dn huku ksieksi. B. HUKUM EO I Huku ewton

Lebih terperinci

- - RELASI DAN FUNGSI - - dlp2fungsi

- - RELASI DAN FUNGSI - - dlp2fungsi 804 Mtemtik Relsi dn Fungsi - - RELASI DAN FUNGSI - - Modul ini singkron dengn Apliksi Android, Downlod mellui Ply Store di HP Kmu, ketik di penrin dlpfungsi Jik Kmu kesulitn, Tnykn ke tentor gimn r downlodny.

Lebih terperinci

PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 28 JULI s.d. 10 AGUSTUS 2003 SUKU BANYAK. Oleh: Fadjar Shadiq, M.App.Sc.

PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 28 JULI s.d. 10 AGUSTUS 2003 SUKU BANYAK. Oleh: Fadjar Shadiq, M.App.Sc. PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 8 JULI s.d. 0 AGUSTUS 00 SUKU BANYAK Oleh: Fdjr Shdiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

PRA ULANGAN UMUM SEMESTER GENAP KELAS X RPL SMK NEGERI 2 MAGELANG 2012

PRA ULANGAN UMUM SEMESTER GENAP KELAS X RPL SMK NEGERI 2 MAGELANG 2012 Mtemtik TI SMK Negeri Mgl wwwfrusgintowordpresscom hl PRA ULANGAN UMUM SEMESTER GENAP KELAS X RPL SMK NEGERI MAGELANG PILIHAN GANDA: Jik = 8, mk nili dlh A C E 8 B D Dikethui A = dn B = 7 9 Jik determinn

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

Matematika X Semester 1 SMAN 1 Bone-Bone

Matematika X Semester 1 SMAN 1 Bone-Bone http://meetbied.wordpress.com Mtemtik X Semester SMAN Bone-Bone Hsil yng pling berhrg dri semu jenis pendidikn dlh kemmpun untuk membut diri kit melkukn sesutu yng hrus kit lkukn, pd st hl itu hrus dilkukn,

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

http://meetbied.wordpress.com SMAN Bone-Bone, Luwu Utr, Sul-Sel Bnyk keggln dlm hidup ini dikrenkn orng tidk menydri betp dektny merek dengn keberhsiln, st merek menyerh (Thoms Alf Edison) [RUMUS CEPAT

Lebih terperinci

tema 1 diri sendiri liburan ke kota

tema 1 diri sendiri liburan ke kota tem 1 diri sendiri liburn ke kot ku nik ke kels 2 selm liburn ku dijk ke kot ku berlibur ke rumh kkek di kot bnyk kendrn d bus tksi dn sebginy ku meliht bus bernomor 105 d pul tksi bernomor 153 ku bis

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT . PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v

adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v Gek Melingk Betun (GMB) dlh jik sebuh bend begek ebentuk sutu lingkn dengn keceptn konstn. 1 = = Peceptn dlh bes peubhn keceptn selng wktu t, h keceptn jug enyebbkn peceptn. 1 = peubhn keceptn t = peubhn

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN / SMA/MA PROGRAM STUDI IPS MATEMATIKA PAKET A Disusun KHAIRUL BASARI khirulfiq.wordpress.com e-mil :muh_bs@hoo.com SOAL DAN PEMBAHASAN UN BIDANG STUDI

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

http://meetied.wordpress.com Mtemtik X Semester 1 SMAN 1 Bone-Bone Reutlh st ini. Ap pun yng is And lkukn tu And impikn Mulilh!!! Keernin mengndung kejeniusn, kekutn dn kejin. Lkukn sj dn otk And kn muli

Lebih terperinci

Hendra Gunawan. 26 Maret 2014

Hendra Gunawan. 26 Maret 2014 MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2013/2014 26 Mret 2014 Kuli ng Llu 12.1 Fungsi du tu lebi peub 12.2 Turunn Prsil 12.3 Limitdn Kekontinun 12.4 Turunn ungsi du peub 12.5 Turunn berr dn grdien

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN Dr. Djdir, M.Pd. Dr. Ilhm Minggi, M.Si J fruddin,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si Shln Sidjr,

Lebih terperinci

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-0 D0-P-0- DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMA/MA Mtemtik (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hk Cipt

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar Terdiri dri sub bb : 1. persmn gerk. Gerk Prbol 3. Gerk Melingkr KINEMATIKA Kels XI 1. PERSAMAAN GERAK Membhs tentng posisi, perpindhn, keceptn dn perceptn dengn menggunkn vector stun. Pembhnsn meliputi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Sistem Persamaan Linier

Sistem Persamaan Linier b I Sistem Persmn Linier I Sistem Persmn Linier TUJUN PEMELJRN: Mhsisw memhmi konsep-konsep tentng sistem persmn linier, eksistensi dn keunikn sistem persmn linier, keunikn sistem persmn linier homogen,

Lebih terperinci

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1 Rinksn Limit Funsi Kels XI IPS SMA Trknit Jkrt LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Mendekti hmpir, sedikit li, tu hr bts, sesutu yn dekt tetpi tidk dpt dicpi. Ilustrsi it = = Funsi ini tk mempunyi

Lebih terperinci

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu Sift-Sift Perklin Sklr Mislkn dn b sklr, D dn H mtriks sebrng dengn ordo sm, mk berlku sift-sift sebgi berikut. D + H (D + H) 2. D + bd ( + b)d 3. (bd) (b)d 4. Perklin Mtriks Du buh mtriks tu lebih selin

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

BENTUK PANGKAT/EKSPONEN, AKAR DAN LOGARITMA.

BENTUK PANGKAT/EKSPONEN, AKAR DAN LOGARITMA. Stndr Koetensi Menggunkn oersi dn sift sert niulsi ljbr dl eechn slh yng berkitn dengn bentuk ngkt, kr dn rit, ersn kudrt dn fungsi kudrt, syste ersn linier kudrt, ertidksn stu vrible, ik tetik. BENTUK

Lebih terperinci

MODUL 6. Materi Kuliah New_S1

MODUL 6. Materi Kuliah New_S1 MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

SUKUBANYAK (POLINOMIAL)

SUKUBANYAK (POLINOMIAL) SUKUBANYAK (POLINOMIAL) A. Bentuk Umum Sukubnyk (Polinomil) n n n b c... z n = pngkt tertinggi (derjt sukubnyk) n = koefisien 7 5 5 9 6 dlh sukubnyk berderjt 7, koefisien dlh 9, koefisien konstnt dlh 6

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

BENTUK PANGKAT, AKAR DAN LOGARITMA

BENTUK PANGKAT, AKAR DAN LOGARITMA BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn

Lebih terperinci

V B Gambar 3.1 Balok Statis Tertentu

V B Gambar 3.1 Balok Statis Tertentu hn jr Sttik ulyti, ST, T erteun, I, II III Struktur lk III endhulun lk (e) dlh sutu nggt struktur yng ditujukn untuk eikul en trnsversl sj, sutu lk kn ternlis dengn secr lengkp pil digr gy geser dn digr

Lebih terperinci

MEMBUKA PROGRAM EMCO DRAFT (MENGGAMBAR BENDA KERJA)

MEMBUKA PROGRAM EMCO DRAFT (MENGGAMBAR BENDA KERJA) MEMBUKA PROGRAM EMCO DRAFT (MENGGAMBAR BENDA KERJA) A. Lngkh-lngkh Membuk Progrm Emco Drft Urutn lngkh yng hrus dilkukn untuk membuk progrm Emco Drft dlh: 1. Menghidupkn komputer dengn menekn tombol power

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

BAB V ENERGI DAN POTENSIAL

BAB V ENERGI DAN POTENSIAL ENERGI DN POTENSIL 4. Eegi g dipeluk meggek mut titik dlm med listik. Itesits med listik didefiisik sebgi g g betumpu pd mut uji stu pd titik g igi kit dptk hg med vekt. Jik mut uji tesebut digekk melw

Lebih terperinci