INFERENSI DATA UJI HIDUP TERSENSOR TIPE II BERDISTRIBUSI RAYLEIGH. Oleh : Tatik Widiharih 1 Wiwin Mardjiyati 2

Ukuran: px
Mulai penontonan dengan halaman:

Download "INFERENSI DATA UJI HIDUP TERSENSOR TIPE II BERDISTRIBUSI RAYLEIGH. Oleh : Tatik Widiharih 1 Wiwin Mardjiyati 2"

Transkripsi

1 INFERENSI DAA UJI HIDUP ERSENSOR IPE II BERDISRIBUSI RAYLEIGH Oleh : ak Wdhah Ww Madjya Saf Pogam Sud Saska FMIPA UNDIP Alum Pogam Sud Saska FMIPA UNDIP Absac Aalyss of lfe me s oe of sascal aalyss whch may ulzed dusy ad heal. Lfe me daa havg a fom complee o ceso daa, ha s a oegave adom vaable. Deemao of po esmao s ulzed MLE (maxmum lkelhood esmao, goodess of f dsbuo s ulzed Adesso Dalg mehods. Po esmao of lfe me es epo o mea me o falue (MMF, hazad fuco h(, suvval fuco S(. Ieval esmao s ulzed pvoal quay mehods. Key wods : ceso daa, MLE, mea me o falue, hazad fuco, suvval fuco.. PENDAHULUAN Aalss daa uj hdup meupaka salah sau ekk saska yag begua uuk melakuka peguja eag aha hdup aau keadala suau kompoe aaupu pegukua lamaya aha hdup seoag pase dalam pegobaa suau peyak [3] [4]. Keadala dapa daka sebaga pobablas dak ejadya kegagala aau keusakasuau ala uuk melakuka fugsya secaa waja selama peode opeas yag deuka []. Dalam melakuka aalss daa uj hdup dbuuhka daa aha hdup yag melpu waku aha hdup da saus waku aha hdup da objec yag del. Daa waku hdup yag dpeoleh dapa beupa daa legkap (semua objec dcaa daya aha hdupya sampa semua ma aau daa eseso (dama sampa waku yag deuka (eseso pe I aau dama sampa sebaga objec ( buah da semua objec yag del ( elah ma sehgga mash ada sebaga objec yag mash eap hdup (- buah basa dkeal dega eseso pe II Ada ga macam pe peyesoa daa yau :. Seso pe I. Semua objec yag del ( masuk peguja dalam waku yag [] [3] [4] besamaa, da peguja dheka seelah baas waku yag deuka [5]. Kelemaha da seso pe I bsa ejad sampa baas waku yag deuka semua objec mash hdup sehgga dak dpeoleh daa aha hdup da objec yag duj.. Seso pe II. Semua objec yag del ( masuk peguja dalam waku yag besamaa, da peguja dheka seelah medapaka objec daaaya ma, dega. [] [3] [4] [5]. Kelemaha da seso pe II waku yag dpeluka uuk mempeoleh objec yag ma bsa jad saga pajag, eap pas dpeoleh daa aha hdup da objec esebu. 3. Seso pe III. Objec masuk dalam peguja pada waku yag dak besamaa selama peode waku yag elah deuka. Bebeapa objec yag ma gagal sebelum pegamaa beakh mempuya daa aha hdup, sebaga la mash eap hdup sampa waku peguja beakh, sebaga lag ada yag mash hdup eap kelua da peguja (pada kasus objec beupa mausa pase yag mejala eap eeu [4]. Dsbus Raylegh meupaka beuk khusus da dsbus Webull, sehgga fees yag dbua ada aalog dega dsbus Webull. Bedasaka hal esebu 69

2 Meda Saska, Vol., No., Desembe 8: daas ujua da ulsa adalah membua fees daa aha hdup eseso pe II uuk dsbus Raylegh. Uj kecocoka dsbus meguuaka meode Adeso Dalg, esmas k megguaka meode lkelhood maksmum da esmas eval megguaka meode besaa pvo. Uuk mempejelas pembahaaasa dbeka cooh kasus objec yag del aha hdup kapaso keamk.. DESKRIPSI EORIIS. Kosep Dasa Uj aha Hdup Waku aha hdup meupaka vaabel adom koue oegaf. Dsbus peluag da dapa dyaaka dalam ga caa :. Fugs keahaa (suvval fuco S(. Fugs kepadaa peluag f( 3. Fugs kegagala (hazad fuco h( Kega fugs secaa maemaka adalah salg ekuvale, aya jka salah sau da kega fugs dkeahu, maka fugs-fugs yag laya dapa deuka. Defs da fugs keahaa da fugs kegagala sebaga beku : Fugs keahaa S( P(> P( F(...( Fugs kegagala f ( f ( h (.( F( S(. Dsbus Raylegh Fugs kepadaa peluag uuk daa aha hdup bedsbus Raylegh adalah : f ( > >. (3 Esmao Maksmum Lkelhood da : L( [ ] l + l( l L( [ ] l L(. maka (4 7

3 Ifees Daa Uj Hdup (ak Wdhah 3. INFERENSI UJI AHAN HIDUP UNUK DISRIBUSI RAYLEIGH 3. Kosep Uj aha Hdup pada Dsbus Raylegh a. Fugs kepadaa peluag da dsbus Raylegh sepe pada pesamaa (3 : f ( > > b. Fugs dsbus kumulaf da dsbus Raylegh : x F (. x dx...(5 c. Fugs keahaa : S( F( S ( F(...(6 d. Fugs kegagala : f ( h (.(7 S( 3. Mea me o Falue (MF uuk Dsbus Raylegh Salah sau kompoe da keahaa adalah aa-aa waku kegagala aau Mea me o Falue (MF. Esmas aa-aa waku kegagala ( MF adalah : MF.f (d Da beuk esebu elha bahwa MF E(, oaska MF µ MF. d..(8 3.3 Daa eseso pe II uuk Dsbus Raylegh Msalka objec meupaka sampel adom da populas yag bedsbus Raylegh dega fugs kepadaa peluag sepe pada pesamaa (3, aka duj aha hdupya pada kods omal dega seso pe II. aha hdup da objec peama yag gagal dcaa sebaga sask beuu ( (... (, uuk pembahasa selajuya duls dega :.... Dalam hal mash ada (- objec yag mash eap hdup pada saa uj dheka. Fugs kepadaa peluag besama... adalah :! f (,,..., ; f ( [ S( ] (! dega! ( -! + (. 7

4 Meda Saska, Vol., No., Desembe 8: MLE uuk :! L(, (! l ( L[,] + ( L[,] l 3! l l + (! maka. l(..(9 MF µ...( Lemma. [3] Msalka vaabel adom bedsbus Raylegh(, dega :... adalah sampel euu beukua da populas yag beukua, maka :. Esmao uuk yau dega + ( adalah esmao yag akbas uuk.. Buk : y.a. Dbua asfomas, dega asfomas Exp( b. Dca fugís kepadaa peluag besama da y beku : f y. y c. Beuk asfomas W (-(-(y y -,,3,..., dega y Sehgga w + ( da W ;,,.., vaable adom depede bedsbus Expoesal dega paamee. Da lagkah sfa akbas ebuk.. Bedasaka lagkah.c. fugs pembagk mome uuk w hádala : y 7

5 Ifees Daa Uj Hdup (ak Wdhah 73 ( ( ( Sehgga w M M w w Esmas eval uuk. Bedasaka, eval (-.% uuk adalah :...( P ; ; ; ; Bedasaka pesamaa ( maka eval (-.% uuk MF µ adalah :...( ; ; ; ; µ µ Esmas fugs keahaa :...(3 ( S( + Bedasaka pesamaa ( dpeoleh eval (-.% uuk S( pada sebaga beku :.(4 S ( ; ; 3.4. Uj Kecocoka Dsbus. Uj kecocoka dsbus pelu dlakuka uuk megeahu apakah daa yag dpuya megku dsbus eeu. Hal kaea beuk dsbus meeuka

6 Meda Saska, Vol., No., Desembe 8: fees yag aka dlakuka. Dalam ulsa dguaka meode Adeso Dalg [3] sebaga beku : H : F( F ( vs H : F( F ( Sask Adeso Dalg uuk daa eseso pe II adalah : + A logf ( log( F (, + ( ( F ( ( log( ( ( F log ( ( ( Dega bayakya objec yag duj da bayakya objec yag gagal. olak H jka : A > D dega p da D abel pada lampa.,,p, p Daa Pusaka :. Ba, L.J ad Egelhad, M : Ioduco o Pobably ad Mahemacal Sascs, secod edo. Duxbuy Pess, Calfoa (99. Elsayed, E.A : Relably Egeg. Addso Wesley Logma, Ic, New Yok ( Lawless, J.E : Sascal Model ad Mehods fo Lfe me Daa. Joh Wley & Sos Ic, Caada ( Lee,.E : Sascal Mehods fo Suvval Daa Aalyss. Joh Wley & Sos Ic, Caada ( Wuyada, da Wdhah, : Ifees Daa Uj Hdup eseso pe II pada Dsbus Webull. Jual maemaka da Kompue, volume o.3 hal 65-74, Juusa Maemaka FMIPA UNDIP (999. F 74

DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma.

DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma. DITRIBUI GAMMA Ada beberaa dsrbus eg dalam dsrbus uj hdu, salah sauya adalah dsrbus gamma. A. Fugs keadaa eluag (fk) Fugs keadaa eluag (fk) dar dsrbus gamma dega dua arameer yau da adalah sebaga berku:

Lebih terperinci

LOGO ANALISIS REGRESI LINIER

LOGO ANALISIS REGRESI LINIER LOGO ANALISIS REGRESI LINIER BERGANDA Hazmra Yozza Jur. Maemaka FMIPA Uv. Adalas KOMPETENSI megdefkaska model regres ler bergada dalam oas aljabar basa maupu oas marks da asumsya medapaka model regres

Lebih terperinci

UJI HIDUP DIPERCEPAT PADA DISTRIBUSI EKSPONENSIAL TERSENSOR TYPE II DENGAN TEGANGAN KONSTAN. Staf Kementerian Tenaga Kerja Pusat

UJI HIDUP DIPERCEPAT PADA DISTRIBUSI EKSPONENSIAL TERSENSOR TYPE II DENGAN TEGANGAN KONSTAN. Staf Kementerian Tenaga Kerja Pusat Uj Hdup Dpecepa Okavaa UJI HIDUP DIPERCEPAT PADA DISTRIBUSI EKSPONENSIAL TERSENSOR TYPE II DENGAN TEGANGAN KONSTAN Okavaa Paudha,Tau Wuada Sa Kemeea Teaga Keja Pua Sa Pegaja Pd Saka MIPA UNDIP Abac Acceleaed

Lebih terperinci

Kredibilitas dengan Pendekatan Bühlmann

Kredibilitas dengan Pendekatan Bühlmann Kedblas dega Pedekaa Bühlma Isada Slame da Ksa Naala Juusa Maemaka FMIPA UNS Absak Teo kedblas meupaka poses pembuaa a oleh akuas uuk melakuka peyesuaa pem d masa depa meuu pegalama masa lampau. Pada eo

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER STATISTIK CUKUP Oleh: Ramayai Rizka M (11810101003), Dey Ardiao (1181010101), Ikfi Ulyawai (1181010103), Falviaa Yulia Dewi (1181010106), Ricki Dio Rosada (11810101034), Nurma Yuia D (11810101035), Wula

Lebih terperinci

BILANGAN BAB V BARISAN BILANGAN DAN DERET

BILANGAN BAB V BARISAN BILANGAN DAN DERET Maemaika Kelas IX emese Baisa Bilaga da Dee BILANGAN BAB V BARIAN BILANGAN DAN DERET A. Baisa Bilaga. Pegeia Baisa Bilaga Jika bilaga-bilaga diuuka dega aua eeu maka aka dipeoleh suau baisa bilaga. Cooh

Lebih terperinci

Declustering Peaks Over Threshold Pada Data Curah Hujan Ekstrim Dependen di Sentra Produksi Padi Jawa Timur

Declustering Peaks Over Threshold Pada Data Curah Hujan Ekstrim Dependen di Sentra Produksi Padi Jawa Timur Decluserg Peaks Over Threshold Pada Daa Curah Huja Eksrm Depede d Sera Produks Pad Jawa Tmur Rosa Malka () da Suko () ()() Jurusa Saska, FMIPA, ITS, Isu Tekolog Sepuluh Nopember (ITS) Jl. Aref Rahma Hakm,

Lebih terperinci

Estimasi Parameter dan Dalam Pemulusan Eksponensial Ganda Dua Parameter Dengan Metode Modifikasi Golden Section

Estimasi Parameter dan Dalam Pemulusan Eksponensial Ganda Dua Parameter Dengan Metode Modifikasi Golden Section JURNAL SAINS DAN SENI ITS Vol., No., (Sep. 0) ISSN: 0- A- Esmas Parameer a Dalam Pemulusa Ekspoesal Gaa Dua Parameer Dega Meoe Mofkas Gole Seco Nla Yuwa, Lukma Haaf, Nur Wahyugsh Jurusa Maemaka, Fakulas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Ruag sampel da Kejadia Defiisi Himpua semua hasil yag mugki dari suau percobaa disebu ruag sampel da diyaaka dega S Mogomery, 2004: 7. Tiap hasil dari ruag sampel disebu usur aau

Lebih terperinci

Estimasi Parameter Data Tersensor Tipe I Berdistribusi Loglogistik Menggunakan Maximum Likelihood Estimate dan Iterasi Newton-Rhapson

Estimasi Parameter Data Tersensor Tipe I Berdistribusi Loglogistik Menggunakan Maximum Likelihood Estimate dan Iterasi Newton-Rhapson Estmas Paamete Data Teseso Tpe I Bedstbus Loglogstk Megguaka Maxmum Lkelhood Estmate da Iteas Newto-Rhapso Alfes Fauk Fakultas MIPA, Uvestas Swjaya; emal: alfesfauk@us.ac.d Abstact: Suvval aalyss s oe

Lebih terperinci

V. PENGUJIAN HIPOTESIS

V. PENGUJIAN HIPOTESIS V. PENGUJIAN IPOTEI A. IPOTEI TATITIK Defiisi uau hipoesa saisik adalah suau peryaaa aau dugaa megeai sau aau lebih variabel populasi. ipoesis digologka mejadi. ipoesis ol adalah hipoesis yag dirumuska

Lebih terperinci

PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU

PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU 8345 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

Pemodelan Regresi untuk Rancangan Percobaan Faktor Tunggal

Pemodelan Regresi untuk Rancangan Percobaan Faktor Tunggal Jural Sas & Maemaka JSM) ISSN Kaa 854-675 Pusaka Volume 5, Nomor, Aprl 7 Arkel Peela 6-67 Pemodela Regres uuk Racaga Percobaa Fakor Tuggal Dw Ispra Saf Pegaar urusa Maemaka Fakulas MIPA UNDIP Semarag ABSTRAK---Meode

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

PENGUJIAN HIPOTESIS DUA RATA-RATA

PENGUJIAN HIPOTESIS DUA RATA-RATA PENGUJIN HIPOTEI DU RT-RT Pegujia hipoesis dua raa-raa diguaka uuk membadigka dua keadaa aau epaya dua populasi. Misalya kia mempuyai dua populasi ormal masig-masig dega raa-raa µ da µ sedagka simpaga

Lebih terperinci

Reliabilitas. A. Pengertian

Reliabilitas. A. Pengertian Relablas A. Pengean Relablas adalah sejauh mana hasl ujan sswa eap aau konssen da posedu penlaan (Nko, 007:66). Menuu Ellen, suau es dkaakan elabel jka sko obsevas nla awal behubungan dengan sko yang sebenanya.

Lebih terperinci

FINITE FIELD (LAPANGAN BERHINGGA)

FINITE FIELD (LAPANGAN BERHINGGA) INITE IELD (LAPANGAN BERHINGGA) Muhamad Zak Ryao NIM: /5679/PA/8944 E-mal: zak@malugmacd h://zakmahwebd Dose Pembmbg: Drs Al Sujaa, MSc Jka suau laaga (feld) memua eleme yag bayakya berhgga, maka laaga

Lebih terperinci

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) . Definisi L.2 (Kejadian lepas )

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) .   Definisi L.2 (Kejadian lepas ) 33 LAMPIRAN 34 35 Beberapa Defiisi Ruag Cooh Kejadia da Peluag Suau percobaa yag dapa diulag dalam kodisi yag sama, yag hasilya idak dapa diprediksi dega epa eapi kia bisa megeahui semua kemugkia hasil

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL Robah P Rahaat da Tatk Wdhah Juusa Matmatka FMIPA UNDIP Jl. Pof. H. Sodato, S.H, Smaag 575 Abstat. Logt umulatv modl s usd to dsb th latoshp btw a spos vaabl

Lebih terperinci

ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o

ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o ANALII BEDA Fx. ugiyao da Agus usworo Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg Meguji apakah erdapa perbedaa yg sigifika

Lebih terperinci

VALIDITAS DAN RELIABILITAS TES YANG MEMUAT BUTIR DIKOTOMI DAN POLITOMI *)

VALIDITAS DAN RELIABILITAS TES YANG MEMUAT BUTIR DIKOTOMI DAN POLITOMI *) VALIDITAS DAN RELIABILITAS TES YANG MEMUAT BUTIR DIKOTOMI DAN POLITOMI Baso Iag Sappale * Absac To measue a vaable eeded by vald sume ad elabel. Resul of measueme a vaable vey flueced by qualy of sume,

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

Rancangan Acak Kelompok

Rancangan Acak Kelompok Racaga Acak Kelompok Saua percoaa dak seragam dlakuka pegelompoka egacaka dlakuka per kelompok Model : Y j μ + β + τ + ε dega : Y j respos pada perlakua ke -, ulaga ke - j μ raaa umum j τ pegaruh perlakuake

Lebih terperinci

Model Probit pada Respons Biner Multivariat Menggunakan Simulated Maximum Likelihood Estimator

Model Probit pada Respons Biner Multivariat Menggunakan Simulated Maximum Likelihood Estimator 70 Mode Pob... (Jaka Nugaha dkk) Mode Pob pada Respos Be Muvaa Megguaka Smuaed Maxmum Lkehood Esmao Pob Mode o Muvaae Bay Respose Usg Smuaed Maxmum Lkehood Esmao Jaka Nugaha ), Suyo Guo ), S Hayam ) Juusa

Lebih terperinci

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai BAB 2 LANDASAN TEORI 2.1 Pegeria Peramala (orecasig) Peramala (orecasig) adalah suau kegiaa yag memperkiraka apa yag aka erjadi pada masa medaag. Peramala pejuala adalah peramala yag megkaika berbagai

Lebih terperinci

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN Nomi Kelari *, Hasriai 2, Musraii 2 Mahasiswa Program S Maemaika 2 Dose Jurusa Maemaika Fakulas Maemaika da Ilmu Pegeahua

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB Sudi kelayaka bisis pada dasarya berujua uuk meeuka kelayaka bisis berdasarka krieria ivesasi Krieria ersebu diaaraya adalah ; 1. Nilai bersih kii (Ne

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

JENIS BUNGA PEMAJEMUKAN KONTINYU

JENIS BUNGA PEMAJEMUKAN KONTINYU JENIS BUNGA PEMAJEMUKAN KONTINYU Suku Buga Nomal Suku Buga Efektf Hubuga ataa Suku Buga Nomal da Efektf Aus Daa Dskt da Aus Daa Kotyu SUKU BUNGA NOMINAL & SUKU BUNGA EFEKTIF Selama daggap aus daa (peemaa

Lebih terperinci

Rumus-rumus yang Digunakan

Rumus-rumus yang Digunakan Saisika Uipa Surabaya 4. Sampel Tuggal = Rumus-rumus yag Diguaka s..... Sampel berkorelasi D D N N N...... 3. Sampel Bebas a. Uuk varias sama... 3 aau x x s g... 4 b. Sampel Heeroge Guaka Uji Corha - Cox

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

Koefisien Korelasi Spearman

Koefisien Korelasi Spearman Koefe Koela Speama La hala dega oefe oela poduct-momet Peao, oela Speama dapat dguaa utu data beala mmal odal utu edua vaabel ag heda dpea oelaa. Lagah petama ag dlaua utu meghtug oefe oela Speama adalah

Lebih terperinci

Fisika Modern. Persamaan Schroodinger dan Fingsi Gelombang

Fisika Modern. Persamaan Schroodinger dan Fingsi Gelombang Fska Modern Persaaan Schroodnger dan Fngs Gelobang Apa Persaaan unuk Gelobang Maer? De Brogle eberkan posula bahwa seap parkel elk hubungan: h/ p Golobang aer ala n dkonfras oleh percobaan dfraks elekron,

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

PERATURAN PRESIDEN NOMOR 29 TAHUN 2014 TENTANG SISTEM AKUNTABILITAS KINERJA INSTANSI PEMERINTAH

PERATURAN PRESIDEN NOMOR 29 TAHUN 2014 TENTANG SISTEM AKUNTABILITAS KINERJA INSTANSI PEMERINTAH PERATURAN PRESIDEN NOMOR 29 TAHUN 2014 TENTANG SISTEM AKUNTABILITAS INSTANSI PEMERINTAH ISI PERATURAN PRESIDEN NO 29 TAHUN 2014 BAB I KETENTUAN UMUM ( 1 asal ) Pasal 1 BAB II PENYELENGGARAAN SAKIP ( 29

Lebih terperinci

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro ANALII BEA Agus usworo wi Marhaedro Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg sigifika di aara kelompok-kelompok Tekik

Lebih terperinci

PENGUJIAN HIPOTESIS. pernyataan atau dugaan mengenai satu atau lebih populasi.

PENGUJIAN HIPOTESIS. pernyataan atau dugaan mengenai satu atau lebih populasi. PENGUJIAN HIPOTESIS 1. PENDAHULUAN Hipoesis Saisik : pernyaaan aau dugaan mengenai sau aau lebih populasi. Pengujian hipoesis berhubungan dengan penerimaan aau penolakan suau hipoesis. Kebenaran (benar

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

METODE PELAKSANAAN Deain Penelitian dalam Hubungan dengan Waktu

METODE PELAKSANAAN Deain Penelitian dalam Hubungan dengan Waktu II MTOD PLAKSAAA 2.1. Dea Peela dala Hubuga dega Waku Dala sud behubuga dega waku sea pegulaga peela daa ka elha bahwa peela egguaka eode deskpf eaka desa d aa peyeldka aau aalss dlakuka dala suau eval

Lebih terperinci

BAB II LANDASAN TEORI. Total Productive Maintenance mula mula berasal dari pemikiran PM ( Preventive

BAB II LANDASAN TEORI. Total Productive Maintenance mula mula berasal dari pemikiran PM ( Preventive BAB II LANDASAN TEORI 2. Toal Producve maeace (TPM) Toal Producve Maeace mula mula berasal dar pemkra PM ( Preveve Maeace da Produco Maeace), dar Amerka masuk ke Jepag da berkembag mejad suau ssem baru

Lebih terperinci

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad

Lebih terperinci

BAB METODOLOGI. Bab 2 Metodologi berisikan :

BAB METODOLOGI. Bab 2 Metodologi berisikan : BAB METODOLOGI Bab Meodologi berisika :.. Pegambila Sampel.. Peramala Nilai Iflasi melalui Ideks Harga Kosume Megguaka Meode ARIMA.3. Akumulasi Prese Value melalui Buga Sederhaa dalam Perhiuga Harga Barag

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

PERBANDINGAN ANTARA METODE K-MEANS CLUSTERING DENGAN GATH-GEVA CLUSTERING (STUDI KASUS PADA VOLUME EKSPOR NON MIGAS PAKAIAN JADI)

PERBANDINGAN ANTARA METODE K-MEANS CLUSTERING DENGAN GATH-GEVA CLUSTERING (STUDI KASUS PADA VOLUME EKSPOR NON MIGAS PAKAIAN JADI) JURAL MATEMATIKA MATIK Vol. 0 o. 0. Me 06. ISS: 57-359 E-ISS: 57-367 PERBADIGA ATARA METODE K-MEAS CLUSTERIG DEGA GATH-GEVA CLUSTERIG (STUDI KASUS PADA VOLUME EKSPOR O MIGAS PAKAIA JADI) Oleh : S Lalyah

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun Pemodelan Daa Runun Waku : Kasus Daa Tingka Pengangguran di Amerika Serika pada Tahun 948 978. Adi Seiawan Program Sudi Maemaika, Fakulas Sains dan Maemaika Universias Krisen Saya Wacana, Jl. Diponegoro

Lebih terperinci

adalah nilai-nilai yang mungkin diambil oleh parameter jika H

adalah nilai-nilai yang mungkin diambil oleh parameter jika H Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 15 BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian 2.1.1 Definisi Ruang Sampel Himpunan semua hasil semua hasil (oucome) yang mungkin muncul pada suau percobaan disebu ruang sampel dan dinoasikan dengan

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

MENENTUKAN PERSEDIAAN BERAS DENGAN MENGGUNAKAN MODEL ECONOMIC ORDER QUANTITY (EOQ) BERDASARKAN RAMALAN PERMINTAAN PADA TAHUN 2012

MENENTUKAN PERSEDIAAN BERAS DENGAN MENGGUNAKAN MODEL ECONOMIC ORDER QUANTITY (EOQ) BERDASARKAN RAMALAN PERMINTAAN PADA TAHUN 2012 MENENTUKAN PERSEDIAAN BERAS DENGAN MENGGUNAKAN MODEL ECONOMIC ORDER QUANTITY (EOQ) BERDASARKAN RAMALAN PERMINTAAN PADA TAHUN 2012 Julia Nahar 1 1 Uiversias Padjadjara, Jala Raya Badug-Sumedag km 21,Jaiagor

Lebih terperinci

Ukuran Dispersi Multivariat

Ukuran Dispersi Multivariat Bab IV Ukua Disesi Mulivaia Pada bab ii, eama-ama aka dikemukaka defiisi eag veko vaiasi vaiabel-vaiabel sada (VVVS sebagai ukua disesi mulivaia akala seluuh vaiabel yag eliba adalah vaiabel sada. Selajuya

Lebih terperinci

ρ = sehingga momen pertama dan kedua BAB 2 TEORI DASAR 2.1 Random Walk ρi = ε) = q= 1 p. Posisi suku bunga bergerak pada

ρ = sehingga momen pertama dan kedua BAB 2 TEORI DASAR 2.1 Random Walk ρi = ε) = q= 1 p. Posisi suku bunga bergerak pada BAB EORI DASAR Uuk meeuka ieres rae differeial, peulis aka membahas erlebih dahulu beberapa eori yag berkaia dega proses sokasik Pergeraka suau parikel yag bergerak secara acak aau disebu juga megikui

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Creaed by Smpo PDF Creaor Pro (unregsered verson) hp://www.smpopdf.com Sask Bsns : BAB 8 VIII. ANALISIS DATA DERET BERKALA (TIME SERIES) 8.1 Pendahuluan Daa Berkala (Daa Dere waku) adalah daa yang dkumpulkan

Lebih terperinci

Estimasi Fungsi Tahan Hidup Virus Hepatitis di Kabupaten Jember (Estimating of Survival Function of Hepatitis Virus in Jember)

Estimasi Fungsi Tahan Hidup Virus Hepatitis di Kabupaten Jember (Estimating of Survival Function of Hepatitis Virus in Jember) Jurnal ILMU DASAR Vol. 8 No. 2, Juli 2007 : 135-141 135 Esimasi Fungsi Tahan Hidup Virus Hepaiis di Kabupaen Jember (Esimaing of Survival Funcion of Hepaiis Virus in Jember) Mohamad Faekurohman Saf Pengajar

Lebih terperinci

Bab II Dasar Teori Kelayakan Investasi

Bab II Dasar Teori Kelayakan Investasi Bab II Dasar Teori Kelayakan Invesasi 2.1 Prinsip Analisis Biaya dan Manfaa (os and Benefi Analysis) Invesasi adalah penanaman modal yang digunakan dalam proses produksi unuk keunungan suau perusahaan.

Lebih terperinci

Bahan kuliah Hidraulika Komputasi Jurusan Teknik Sipil FT UGM Yogyakarta

Bahan kuliah Hidraulika Komputasi Jurusan Teknik Sipil FT UGM Yogyakarta MODEL MTEMTIK oleh Ir. Djoko Lukao, M.Sc., Ph.D. Februar 003 Baha kulah Hdraulka Kompuas Jurusa Tekk Spl FT UGM Yogyakara Baha Kulah Laboraorum Hdraulka, JTS FT UGM PRKT D:\My Documes\Publkas\Model Maemaka\Model

Lebih terperinci

STATISTIKA DASAR. Oleh

STATISTIKA DASAR. Oleh STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

Algoritma Genetik dan Wavelet Packet

Algoritma Genetik dan Wavelet Packet Subyao Algorma Geek da Wavele Packe Algorma Geek da Wavele Packe Subyao Tekk Elekro Fakulas Tekk Uversas Neger Semarag Absrak Tulsa membahas aalsa fugs fess dalam algorma geek megguaka rasformas wavele

Lebih terperinci

Statistika Inferensi Tentang Ratarata Dua Populasi Independen

Statistika Inferensi Tentang Ratarata Dua Populasi Independen Saisika Inferensi Tenang aaraa Dua Populasi Independen Populasi aa-raa = µ (idak dikeahui) Sampel Ukuran = n (besar) aa-raa = X Deviasi Sandar = S Uji Hipoesis enang Perbedaan aa-raa Sampel Besar Saisik

Lebih terperinci

Integral dan Persamaan Diferensial

Integral dan Persamaan Diferensial Sudaryano Sudirham Sudi Mandiri Inegral dan Persamaan Diferensial ii Darpublic 4.1. Pengerian BAB 4 Persamaan Diferensial (Orde Sau) Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pegerta Perawata (Mateace) Meurut Assaur (999, p95) perawata merupaka kegata utuk memelhara atau mejaga fasltas da peralata pabrk, da megadaka perbaka, peyesuaa, atau peggata yag dperluka

Lebih terperinci

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN Dose Pegampu : Pof. D. Si Wahyui DISUSUN OLEH: Nama : Muh. Zaki Riyato Nim : 02/156792/PA/08944 Pogam Studi : Matematika JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

BAGIAN 2 TOPIK 5. andhysetiawan

BAGIAN 2 TOPIK 5. andhysetiawan BAGIAN OIK 5 adhyseiawa Isi Maeri Modulasi Aliudo AM Modulasi Frekuesi FM adhyseiawa MODULASI AMLIUDO DAN MODULASI ANGULAR SUDU Modulasi roses erubaha karakerisik aau besara gelobag ebawa, euru ola gelobag

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

Ahmad Riyadi Sampurno 1, Erna Zuni Astutik, M.Kom 2

Ahmad Riyadi Sampurno 1, Erna Zuni Astutik, M.Kom 2 ANALISA DISTRIBUSI GAUSSE UNTUK PENGUJIAN STATISTIK Ahmad Riadi Sampurno 1, Erna Zuni Asuik, M.Kom 2 1 Mahasiswa Teknik Informaika, Universias Dian Nuswanoro Semarang 2 Dosen Pembimbing Teknik Informaika,

Lebih terperinci

Hidden Markov Model. Oleh : Firdaniza, Nurul Gusriani dan Akmal

Hidden Markov Model. Oleh : Firdaniza, Nurul Gusriani dan Akmal Hdden Markov Model Oleh : Frdanza, urul Gusran dan Akmal Dosen Jurusan Maemaka FMIPA Unversas Padjadjaran Jl. Raya Bandung Sumedang Km 2, Janangor, Jawa Bara elp. / Fax : 022 7794696 Absrak Hdden Markov

Lebih terperinci

PROGRAM LINIEAR DENGAN METODE SIMPLEX

PROGRAM LINIEAR DENGAN METODE SIMPLEX POGAM LINIEA DENGAN METODE SIMPLEX A. TEKNIK PENYELESAIAN Betuk Soal Progra Lear Kedala utaa asalah rogra lear daat eretuk a atau a atau a. Kedala yag eretuk ertdaksaaa daoat duah ead ersaaa seaga erkut

Lebih terperinci

BAB II TEORI DASAR. 2.1 Proses Stokastik Rantai Markov

BAB II TEORI DASAR. 2.1 Proses Stokastik Rantai Markov BAB II TEORI DASAR. Proses Sokasik Raai Markov Proses sokasik merupaka suau cara uuk mempelajari hubuga yag diamis dari suau ruua perisiwa aau proses yag kejadiaya bersifa idak pasi. Dalam memodelka perubaha

Lebih terperinci

NILAI AKUMULASI DARI SUATU CASH FLOW DENGAN TINGKAT BUNGA BERUBAH BERDASARKAN FORMULA FISHER

NILAI AKUMULASI DARI SUATU CASH FLOW DENGAN TINGKAT BUNGA BERUBAH BERDASARKAN FORMULA FISHER ILAI AKUMULASI DARI SUATU CASH FLOW DEGA TIGKAT BUGA BERUBAH BERDASARKA FORMULA FISHER Devs Apranda, Johannes Kho, Sg Sugaro Mahasswa rogram S Maemaka Dosen Jurusan Maemaka Fakulas Maemaka dan Ilmu engeahuan

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

PENDUGAAN STATISTIK AREA KECIL DENGAN METODE EMPIRICAL CONSTRAINED BAYES 1

PENDUGAAN STATISTIK AREA KECIL DENGAN METODE EMPIRICAL CONSTRAINED BAYES 1 PENDUGAAN SAISIK AREA KECIL DENGAN MEODE EMPIRICAL CONSRAINED AYES Ksmann Jurusan Penddkan Maemaka FMIPA Unversas Neger Yogyakara Absrak Meode emprcal ayes (E merupakan meode yang lebh aplkaf pada pendugaan

Lebih terperinci

Sampel dan Distribusi Sampling

Sampel dan Distribusi Sampling P Modul Sampel da Dstrbus Samplg PENDAHULUAN Prof. Dr. Zazaw Soejoet ada modul pertama, aka dpelajar terlebh dahulu megea sampel da sfat-sfatya serta samplg-ya. Mater sebearya telah bayak dsajka pada mata

Lebih terperinci

ENERGI LISTRIK Tujuan : Menentukan faktor faktor yang mempengaruhi besar energi listrik

ENERGI LISTRIK Tujuan : Menentukan faktor faktor yang mempengaruhi besar energi listrik ENEGI LISTIK Tujuan : Menenukan fakor fakor yang mempengaruhi besar energi lisrik Ala dan bahan : 1. ower Suplay. Amperemeer 3. olmeer 4. Hambaan geser 5. Termomeer 6. Sopwach 7. Saif 8. Kawa nikelin 1

Lebih terperinci

titik tengah kelas ke i k = banyaknya kelas

titik tengah kelas ke i k = banyaknya kelas STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryao Sudirham Aalisis Ragkaia Lisrik Di Kawasa Waku 3- Sudaryao Sudirham, Aalisis Ragkaia Lisrik () BAB 3 Peryaaa Siyal da Spekrum Siyal Dega mempelajari lajua eag model siyal ii, kia aka memahami

Lebih terperinci

Proyeksi Penduduk Provinsi Riau Menggunakan Metode Campuran

Proyeksi Penduduk Provinsi Riau Menggunakan Metode Campuran Saisika, Vol. 10 No. 2, 129 138 Nopember 2010 Proyeksi Penduduk Provinsi Riau 2010-2015 Menggunakan Meode Campuran Ari Budi Uomo, Yaya Karyana, Tei Sofia Yani Program Sudi Saisika, Universias Islam Bandung

Lebih terperinci

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1 4. KOMBINATORIKA 4. Atua Utuk Suatu Peistiwa Evet sesuatu yag tejadi. Jika peistiwa A dapat tejadi dalam m caa da peistiwa B dapat tejadi dalam N caa, maka tedapat (m, ) caa kedua peistiwa tejadi besama-sama.

Lebih terperinci

ESTIMASI PARAMETER DAN PENGUJIAN HIPOTESISMODEL REGRESI BURRTIGA PARAMETER TIPE XII

ESTIMASI PARAMETER DAN PENGUJIAN HIPOTESISMODEL REGRESI BURRTIGA PARAMETER TIPE XII Prosdg Semar Nasoal Matematka, Uverstas Jember, 19 November 2014145 ESTIMASI PARAMETER DAN PENGUJIAN HIPOTESISMODEL REGRESI BURRTIGA PARAMETER TIPE XII Rzwa Arsad 1, Purhad 2 1,2 Jurusa Statstka FMIPA

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasa I (FI-321) Topik hai ini (minggu 3) Geak dalam Dua dan Tiga Dimensi Posisi dan Pepindahan Kecepaan Pecepaan Geak Paabola Geak Melingka Geak dalam Dua dan Tiga Dimensi Menggunakan anda + aau

Lebih terperinci

ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA

ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA Laar Belakag Masalah Semaki berambah pesaya pembagua dibidag kosruksi maka meyebabka meigka pula kebuuha aka meerial-maerial

Lebih terperinci

ANALISIS KEANDALAN (RELIABILITY) MESIN PRODUKSI DENGAN FUNGSI DISTRIBUSI WEIBULL

ANALISIS KEANDALAN (RELIABILITY) MESIN PRODUKSI DENGAN FUNGSI DISTRIBUSI WEIBULL ANALISIS KEANDALAN (RELIABILITY) MESIN PRODUKSI DENGAN FUNGSI DISTRIBUSI WEIBULL Agus Fkr, ST., MM Muhammad Irva, ST.,MT. ABSTRACT I a producto system, all mache related to the creato of added value of

Lebih terperinci

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRL TK TENTU pecaha rasioal gusia Pradjaigsih, M.Si. Jurusa Maemaika FMIP UNEJ agusia.fmipa@uej.ac.id DEFINISI Fugsi suku bayak derajad dega bula o egaif 0 dimaa, 0 a a a a a P Fugsi kosa dipadag sbg

Lebih terperinci

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1 PERSAMAAN GERAK Posisi iik maeri dapa dinyaakan dengan sebuah VEKTOR, baik pada suau bidang daar maupun dalam bidang ruang. Vekor yang dipergunakan unuk menenukan posisi disebu VEKTOR POSISI yang diulis

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perawaan (Mainenance) Mainenance adalah akivias agar komponen aau sisem yang rusak akan dikembalikan aau diperbaiki dalam suau kondisi erenu pada periode waku erenu (Ebeling,

Lebih terperinci