INFERENSI DATA UJI HIDUP TERSENSOR TIPE II BERDISTRIBUSI RAYLEIGH. Oleh : Tatik Widiharih 1 Wiwin Mardjiyati 2

Ukuran: px
Mulai penontonan dengan halaman:

Download "INFERENSI DATA UJI HIDUP TERSENSOR TIPE II BERDISTRIBUSI RAYLEIGH. Oleh : Tatik Widiharih 1 Wiwin Mardjiyati 2"

Transkripsi

1 INFERENSI DAA UJI HIDUP ERSENSOR IPE II BERDISRIBUSI RAYLEIGH Oleh : ak Wdhah Ww Madjya Saf Pogam Sud Saska FMIPA UNDIP Alum Pogam Sud Saska FMIPA UNDIP Absac Aalyss of lfe me s oe of sascal aalyss whch may ulzed dusy ad heal. Lfe me daa havg a fom complee o ceso daa, ha s a oegave adom vaable. Deemao of po esmao s ulzed MLE (maxmum lkelhood esmao, goodess of f dsbuo s ulzed Adesso Dalg mehods. Po esmao of lfe me es epo o mea me o falue (MMF, hazad fuco h(, suvval fuco S(. Ieval esmao s ulzed pvoal quay mehods. Key wods : ceso daa, MLE, mea me o falue, hazad fuco, suvval fuco.. PENDAHULUAN Aalss daa uj hdup meupaka salah sau ekk saska yag begua uuk melakuka peguja eag aha hdup aau keadala suau kompoe aaupu pegukua lamaya aha hdup seoag pase dalam pegobaa suau peyak [3] [4]. Keadala dapa daka sebaga pobablas dak ejadya kegagala aau keusakasuau ala uuk melakuka fugsya secaa waja selama peode opeas yag deuka []. Dalam melakuka aalss daa uj hdup dbuuhka daa aha hdup yag melpu waku aha hdup da saus waku aha hdup da objec yag del. Daa waku hdup yag dpeoleh dapa beupa daa legkap (semua objec dcaa daya aha hdupya sampa semua ma aau daa eseso (dama sampa waku yag deuka (eseso pe I aau dama sampa sebaga objec ( buah da semua objec yag del ( elah ma sehgga mash ada sebaga objec yag mash eap hdup (- buah basa dkeal dega eseso pe II Ada ga macam pe peyesoa daa yau :. Seso pe I. Semua objec yag del ( masuk peguja dalam waku yag [] [3] [4] besamaa, da peguja dheka seelah baas waku yag deuka [5]. Kelemaha da seso pe I bsa ejad sampa baas waku yag deuka semua objec mash hdup sehgga dak dpeoleh daa aha hdup da objec yag duj.. Seso pe II. Semua objec yag del ( masuk peguja dalam waku yag besamaa, da peguja dheka seelah medapaka objec daaaya ma, dega. [] [3] [4] [5]. Kelemaha da seso pe II waku yag dpeluka uuk mempeoleh objec yag ma bsa jad saga pajag, eap pas dpeoleh daa aha hdup da objec esebu. 3. Seso pe III. Objec masuk dalam peguja pada waku yag dak besamaa selama peode waku yag elah deuka. Bebeapa objec yag ma gagal sebelum pegamaa beakh mempuya daa aha hdup, sebaga la mash eap hdup sampa waku peguja beakh, sebaga lag ada yag mash hdup eap kelua da peguja (pada kasus objec beupa mausa pase yag mejala eap eeu [4]. Dsbus Raylegh meupaka beuk khusus da dsbus Webull, sehgga fees yag dbua ada aalog dega dsbus Webull. Bedasaka hal esebu 69

2 Meda Saska, Vol., No., Desembe 8: daas ujua da ulsa adalah membua fees daa aha hdup eseso pe II uuk dsbus Raylegh. Uj kecocoka dsbus meguuaka meode Adeso Dalg, esmas k megguaka meode lkelhood maksmum da esmas eval megguaka meode besaa pvo. Uuk mempejelas pembahaaasa dbeka cooh kasus objec yag del aha hdup kapaso keamk.. DESKRIPSI EORIIS. Kosep Dasa Uj aha Hdup Waku aha hdup meupaka vaabel adom koue oegaf. Dsbus peluag da dapa dyaaka dalam ga caa :. Fugs keahaa (suvval fuco S(. Fugs kepadaa peluag f( 3. Fugs kegagala (hazad fuco h( Kega fugs secaa maemaka adalah salg ekuvale, aya jka salah sau da kega fugs dkeahu, maka fugs-fugs yag laya dapa deuka. Defs da fugs keahaa da fugs kegagala sebaga beku : Fugs keahaa S( P(> P( F(...( Fugs kegagala f ( f ( h (.( F( S(. Dsbus Raylegh Fugs kepadaa peluag uuk daa aha hdup bedsbus Raylegh adalah : f ( > >. (3 Esmao Maksmum Lkelhood da : L( [ ] l + l( l L( [ ] l L(. maka (4 7

3 Ifees Daa Uj Hdup (ak Wdhah 3. INFERENSI UJI AHAN HIDUP UNUK DISRIBUSI RAYLEIGH 3. Kosep Uj aha Hdup pada Dsbus Raylegh a. Fugs kepadaa peluag da dsbus Raylegh sepe pada pesamaa (3 : f ( > > b. Fugs dsbus kumulaf da dsbus Raylegh : x F (. x dx...(5 c. Fugs keahaa : S( F( S ( F(...(6 d. Fugs kegagala : f ( h (.(7 S( 3. Mea me o Falue (MF uuk Dsbus Raylegh Salah sau kompoe da keahaa adalah aa-aa waku kegagala aau Mea me o Falue (MF. Esmas aa-aa waku kegagala ( MF adalah : MF.f (d Da beuk esebu elha bahwa MF E(, oaska MF µ MF. d..(8 3.3 Daa eseso pe II uuk Dsbus Raylegh Msalka objec meupaka sampel adom da populas yag bedsbus Raylegh dega fugs kepadaa peluag sepe pada pesamaa (3, aka duj aha hdupya pada kods omal dega seso pe II. aha hdup da objec peama yag gagal dcaa sebaga sask beuu ( (... (, uuk pembahasa selajuya duls dega :.... Dalam hal mash ada (- objec yag mash eap hdup pada saa uj dheka. Fugs kepadaa peluag besama... adalah :! f (,,..., ; f ( [ S( ] (! dega! ( -! + (. 7

4 Meda Saska, Vol., No., Desembe 8: MLE uuk :! L(, (! l ( L[,] + ( L[,] l 3! l l + (! maka. l(..(9 MF µ...( Lemma. [3] Msalka vaabel adom bedsbus Raylegh(, dega :... adalah sampel euu beukua da populas yag beukua, maka :. Esmao uuk yau dega + ( adalah esmao yag akbas uuk.. Buk : y.a. Dbua asfomas, dega asfomas Exp( b. Dca fugís kepadaa peluag besama da y beku : f y. y c. Beuk asfomas W (-(-(y y -,,3,..., dega y Sehgga w + ( da W ;,,.., vaable adom depede bedsbus Expoesal dega paamee. Da lagkah sfa akbas ebuk.. Bedasaka lagkah.c. fugs pembagk mome uuk w hádala : y 7

5 Ifees Daa Uj Hdup (ak Wdhah 73 ( ( ( Sehgga w M M w w Esmas eval uuk. Bedasaka, eval (-.% uuk adalah :...( P ; ; ; ; Bedasaka pesamaa ( maka eval (-.% uuk MF µ adalah :...( ; ; ; ; µ µ Esmas fugs keahaa :...(3 ( S( + Bedasaka pesamaa ( dpeoleh eval (-.% uuk S( pada sebaga beku :.(4 S ( ; ; 3.4. Uj Kecocoka Dsbus. Uj kecocoka dsbus pelu dlakuka uuk megeahu apakah daa yag dpuya megku dsbus eeu. Hal kaea beuk dsbus meeuka

6 Meda Saska, Vol., No., Desembe 8: fees yag aka dlakuka. Dalam ulsa dguaka meode Adeso Dalg [3] sebaga beku : H : F( F ( vs H : F( F ( Sask Adeso Dalg uuk daa eseso pe II adalah : + A logf ( log( F (, + ( ( F ( ( log( ( ( F log ( ( ( Dega bayakya objec yag duj da bayakya objec yag gagal. olak H jka : A > D dega p da D abel pada lampa.,,p, p Daa Pusaka :. Ba, L.J ad Egelhad, M : Ioduco o Pobably ad Mahemacal Sascs, secod edo. Duxbuy Pess, Calfoa (99. Elsayed, E.A : Relably Egeg. Addso Wesley Logma, Ic, New Yok ( Lawless, J.E : Sascal Model ad Mehods fo Lfe me Daa. Joh Wley & Sos Ic, Caada ( Lee,.E : Sascal Mehods fo Suvval Daa Aalyss. Joh Wley & Sos Ic, Caada ( Wuyada, da Wdhah, : Ifees Daa Uj Hdup eseso pe II pada Dsbus Webull. Jual maemaka da Kompue, volume o.3 hal 65-74, Juusa Maemaka FMIPA UNDIP (999. F 74

BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL. MESIN OKK Gill BCG1-P2 PADA BAGIAN DRAWING PT VONEX INDONESIA

BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL. MESIN OKK Gill BCG1-P2 PADA BAGIAN DRAWING PT VONEX INDONESIA BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL MESIN OKK Gll BCG1-P PADA BAGIAN DRAWING PT VONEX INDONESIA 3.1 Pedahulua Pada Bab II elah djelaska megea eor eor yag dbuuhka uuk meeuka jadwal opmum

Lebih terperinci

DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma.

DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma. DITRIBUI GAMMA Ada beberaa dsrbus eg dalam dsrbus uj hdu, salah sauya adalah dsrbus gamma. A. Fugs keadaa eluag (fk) Fugs keadaa eluag (fk) dar dsrbus gamma dega dua arameer yau da adalah sebaga berku:

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DUA PARAMETER MENGGUNAKAN METODE BAYES

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DUA PARAMETER MENGGUNAKAN METODE BAYES JURNA GAUSSIAN Volume Nomo ahu 0 Halama 03- Ole d: hp://ejoual-sudpad/dephp/aussa ESIMASI PARAMEER DISRIBUSI WEIBU DUA PARAMEER MENGGUNAKAN MEODE BAYES Ida sa Hazhah Suo Ra Rahmawa 3 Mahasswa Juusa Saska

Lebih terperinci

BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV

BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV 4. Proses Sokask Dalam kehdupa yaa, sergkal orag g megama keerkaa sau kejada dega kejada la dalam suau erval waku ereu, yag merupaka suau barsa kejada.

Lebih terperinci

III. METODE PENELITIAN. instansi pemerintah, diantaranya adalah publikasi data dari Badan Pusat Statistik

III. METODE PENELITIAN. instansi pemerintah, diantaranya adalah publikasi data dari Badan Pusat Statistik III. METODE PENELITIAN A. Jes da Sumber Daa Daa yag dguaka adalah daa sekuder dar publkas das aau sas pemerah, daaraya adalah publkas daa dar Bada Pusa Sask megea PDRB Koa Badar Lampug da PDRB Props Lampug.

Lebih terperinci

LOGO ANALISIS REGRESI LINIER

LOGO ANALISIS REGRESI LINIER LOGO ANALISIS REGRESI LINIER BERGANDA Hazmra Yozza Jur. Maemaka FMIPA Uv. Adalas KOMPETENSI megdefkaska model regres ler bergada dalam oas aljabar basa maupu oas marks da asumsya medapaka model regres

Lebih terperinci

BAB II LANDASAN TEORI. pembahasan bab-bab berikutnya antara lain tentang model pergerakan harga

BAB II LANDASAN TEORI. pembahasan bab-bab berikutnya antara lain tentang model pergerakan harga BAB II LANDASAN TEORI Pada bab aka dbahas bebeapa eo dasa yag dpeluka pada pembahasa bab-bab bekuya aaa la eag model pegeaka haga saham, model kesembaga, meode maxmum lkelhood esmao, ops pu Ameka, smulas

Lebih terperinci

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel BAB III PENAKSIR DERET FOURIER 3. Peaksi Dalam saisika, peaksi adalah sebuah saisik (fugsi dai daa sampel obsevasi) yag diguaka uuk meaksi paamee populasi yag idak dikeahui (esimad) aau fugsi yag memeaka

Lebih terperinci

STUDI SIMULASI DALAM ESTIMASI BAYESIAN OBYEKTIF

STUDI SIMULASI DALAM ESTIMASI BAYESIAN OBYEKTIF STUDI SIMULASI DALAM ESTIMASI BAYESIAN OBYEKTIF A Seawa Program Su Maemaka Iusr a Saska Fakulas Sas a Maemaka Uversas Krse Saya Wacaa Jl Dpoegoro 52-6 Salaga 57 Ioesa e-mal: a_sea_3@yahoocom Absrak Dega

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN KONDUKSI 1D DENGAN SKEMA FTCS, LAASONEN DAN CRANK-NICOLSON. Eko Prasetya Budiana 1 Syamsul Hadi 2

PENYELESAIAN NUMERIK PERSAMAAN KONDUKSI 1D DENGAN SKEMA FTCS, LAASONEN DAN CRANK-NICOLSON. Eko Prasetya Budiana 1 Syamsul Hadi 2 PENYELESAIAN NUMERIK PERSAMAAN KONDUKSI D DENGAN SKEMA FCS, LAASONEN DAN CRANK-NICOLSON Eko Praseya Budaa Syamsul Had Absrac, Fe dfferece mehod ( FCS, Laasoe ad Crak-Ncholso scheme) have bee develop for

Lebih terperinci

Hidraulika Komputasi

Hidraulika Komputasi Hdraulka Kompuas Meoda Beda Hgga Ir. Djoko Lukao, M.Sc., Ph.D. Jurusa Tekk Spl Fakulas Tekk Uversas Gadjah Mada Peyelesaa Pedekaa Karea dak dperoleh peyelesaa aals, maka dguaka peyelesaa pedekaa umers.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Pada bab aka dbahas eag posedu peguja hpoess uuk daa yag beasal da dua sampel salg behubuga aau slah la dua sampel bepasaga. Salah sau cooh adalah ekspeme yag pegukuaya dlakuka

Lebih terperinci

UJI HIDUP DIPERCEPAT PADA DISTRIBUSI EKSPONENSIAL TERSENSOR TYPE II DENGAN TEGANGAN KONSTAN. Staf Kementerian Tenaga Kerja Pusat

UJI HIDUP DIPERCEPAT PADA DISTRIBUSI EKSPONENSIAL TERSENSOR TYPE II DENGAN TEGANGAN KONSTAN. Staf Kementerian Tenaga Kerja Pusat Uj Hdup Dpecepa Okavaa UJI HIDUP DIPERCEPAT PADA DISTRIBUSI EKSPONENSIAL TERSENSOR TYPE II DENGAN TEGANGAN KONSTAN Okavaa Paudha,Tau Wuada Sa Kemeea Teaga Keja Pua Sa Pegaja Pd Saka MIPA UNDIP Abac Acceleaed

Lebih terperinci

Kredibilitas dengan Pendekatan Bühlmann

Kredibilitas dengan Pendekatan Bühlmann Kedblas dega Pedekaa Bühlma Isada Slame da Ksa Naala Juusa Maemaka FMIPA UNS Absak Teo kedblas meupaka poses pembuaa a oleh akuas uuk melakuka peyesuaa pem d masa depa meuu pegalama masa lampau. Pada eo

Lebih terperinci

BEBERAPA SIFAT IDEAL GELANGGANG POLINOM MIRING: SUATU KAJIAN PUSTAKA

BEBERAPA SIFAT IDEAL GELANGGANG POLINOM MIRING: SUATU KAJIAN PUSTAKA Jural Maemaka, Vol., No., 2, 6 2 BEBERAPA SIFAT IDEAL GELANGGANG POLINOM MIRING: SUATU KAJIAN PUSTAKA AMIR KAMAL AMIR Jurusa Maemaka, FMIPA, Uversas Hasaudd 9245 Emal : amrkamalamr@yahoo.com INTISARI Msalka

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER STATISTIK CUKUP Oleh: Ramayai Rizka M (11810101003), Dey Ardiao (1181010101), Ikfi Ulyawai (1181010103), Falviaa Yulia Dewi (1181010106), Ricki Dio Rosada (11810101034), Nurma Yuia D (11810101035), Wula

Lebih terperinci

RISK ANALYSIS RESIKO DAN KETIDAKPASTIAN DALAM MEMBUAT KEPUTUSAN MANAJERIAL

RISK ANALYSIS RESIKO DAN KETIDAKPASTIAN DALAM MEMBUAT KEPUTUSAN MANAJERIAL RISK ANALYSIS Dr. Mohammad Abdul Mukhy,, SE., MM RESIKO DAN KETIDAKPASTIAN DALAM MEMBUAT KEPUTUSAN MANAJERIAL kepuusa maageral dbua d bawah kods-kods kepasa, kedak-pasa aau resko. Kepasa megacu pada suas

Lebih terperinci

BILANGAN BAB V BARISAN BILANGAN DAN DERET

BILANGAN BAB V BARISAN BILANGAN DAN DERET Maemaika Kelas IX emese Baisa Bilaga da Dee BILANGAN BAB V BARIAN BILANGAN DAN DERET A. Baisa Bilaga. Pegeia Baisa Bilaga Jika bilaga-bilaga diuuka dega aua eeu maka aka dipeoleh suau baisa bilaga. Cooh

Lebih terperinci

Declustering Peaks Over Threshold Pada Data Curah Hujan Ekstrim Dependen di Sentra Produksi Padi Jawa Timur

Declustering Peaks Over Threshold Pada Data Curah Hujan Ekstrim Dependen di Sentra Produksi Padi Jawa Timur Decluserg Peaks Over Threshold Pada Daa Curah Huja Eksrm Depede d Sera Produks Pad Jawa Tmur Rosa Malka () da Suko () ()() Jurusa Saska, FMIPA, ITS, Isu Tekolog Sepuluh Nopember (ITS) Jl. Aref Rahma Hakm,

Lebih terperinci

Analisis Survival dengan Model Regresi Cox Weibull pada Penderita Demam Berdarah Dengue (DBD) di Rumah Sakit Haji Sukolilo Surabaya

Analisis Survival dengan Model Regresi Cox Weibull pada Penderita Demam Berdarah Dengue (DBD) di Rumah Sakit Haji Sukolilo Surabaya JURNAL SAINS DAN SENI POMITS Vol., No., (13) 337-35 (31-98X Pr) D-165 Aalss Survval dega Model Regres Cox Webull pada Pedera Demam Berdarah Degue (DBD) d Rumah Sak Haj Sukollo Surabaya Edhy Basya, da I

Lebih terperinci

MODEL KOREKSI KESALAHAN DENGAN METODE BAYESIAN PADA DATA RUNTUN WAKTU INDEKS HARGA KONSUMEN KOTA - KOTA DI PAPUA

MODEL KOREKSI KESALAHAN DENGAN METODE BAYESIAN PADA DATA RUNTUN WAKTU INDEKS HARGA KONSUMEN KOTA - KOTA DI PAPUA Prosdg Semar Nasoal Sas da Peddka Sas IX, Fakulas Sas da Maemaka, UKSW Salaga, Ju 4, Vol 5, No., ISSN :87-9 MODEL KOREKSI KESALAHAN DENGAN MEODE BAYESIAN PADA DAA RUNUN WAKU INDEKS HARGA KONSUMEN KOA -

Lebih terperinci

Estimasi Parameter dan Dalam Pemulusan Eksponensial Ganda Dua Parameter Dengan Metode Modifikasi Golden Section

Estimasi Parameter dan Dalam Pemulusan Eksponensial Ganda Dua Parameter Dengan Metode Modifikasi Golden Section JURNAL SAINS DAN SENI ITS Vol., No., (Sep. 0) ISSN: 0- A- Esmas Parameer a Dalam Pemulusa Ekspoesal Gaa Dua Parameer Dega Meoe Mofkas Gole Seco Nla Yuwa, Lukma Haaf, Nur Wahyugsh Jurusa Maemaka, Fakulas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Ruag sampel da Kejadia Defiisi Himpua semua hasil yag mugki dari suau percobaa disebu ruag sampel da diyaaka dega S Mogomery, 2004: 7. Tiap hasil dari ruag sampel disebu usur aau

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2. Tjaua Pusaka 2.. Defs Pemelharaa Pegera pemelharaa aau perawaa ( maeace ) adalah suau kombas dar berbaga daka yag dlakuka uuk mejaga suau barag aau memperbakya, sampa pada suau

Lebih terperinci

V. PENGUJIAN HIPOTESIS

V. PENGUJIAN HIPOTESIS V. PENGUJIAN IPOTEI A. IPOTEI TATITIK Defiisi uau hipoesa saisik adalah suau peryaaa aau dugaa megeai sau aau lebih variabel populasi. ipoesis digologka mejadi. ipoesis ol adalah hipoesis yag dirumuska

Lebih terperinci

Estimasi Parameter Data Tersensor Tipe I Berdistribusi Loglogistik Menggunakan Maximum Likelihood Estimate dan Iterasi Newton-Rhapson

Estimasi Parameter Data Tersensor Tipe I Berdistribusi Loglogistik Menggunakan Maximum Likelihood Estimate dan Iterasi Newton-Rhapson Estmas Paamete Data Teseso Tpe I Bedstbus Loglogstk Megguaka Maxmum Lkelhood Estmate da Iteas Newto-Rhapso Alfes Fauk Fakultas MIPA, Uvestas Swjaya; emal: alfesfauk@us.ac.d Abstact: Suvval aalyss s oe

Lebih terperinci

Pendeskripsian Kontur Dan Image Suatu Kawasan Eksplorasi Menggunakan Monte Carlo Markov Chain

Pendeskripsian Kontur Dan Image Suatu Kawasan Eksplorasi Menggunakan Monte Carlo Markov Chain Jual Gade Vol.4 No. Jaua 28 : 328-332 edeskpsa Kou Da Image Suau Kawasa Eksploas egguaka oe Calo akov Cha Jose Rzal, Ulfasa Rafflesa Juusa aemaka, Fakulas aemaka da Ilmu egeahua Alam, Uvesas Begkulu, Idoesa

Lebih terperinci

PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU

PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU 8345 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

Pemodelan Regresi untuk Rancangan Percobaan Faktor Tunggal

Pemodelan Regresi untuk Rancangan Percobaan Faktor Tunggal Jural Sas & Maemaka JSM) ISSN Kaa 854-675 Pusaka Volume 5, Nomor, Aprl 7 Arkel Peela 6-67 Pemodela Regres uuk Racaga Percobaa Fakor Tuggal Dw Ispra Saf Pegaar urusa Maemaka Fakulas MIPA UNDIP Semarag ABSTRAK---Meode

Lebih terperinci

BAB 2 TINJAUAN TEORI. Ramalan pada dasarnya merupakan dugaan atau perkiraan mengenai terjadinya suatu

BAB 2 TINJAUAN TEORI. Ramalan pada dasarnya merupakan dugaan atau perkiraan mengenai terjadinya suatu BAB 2 TINJAUAN TEORI 2.1 Pegeria Peramala Ramala pada dasarya merupaka dugaa aau perkiraa megeai erjadiya suau kejadia aau perisiwa di waku yag aka daag. Peramala merupaka sebuah ala bau yag peig dalam

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

Penerapan Analisis Survival untuk Menaksir Waktu Bertahan Hidup bagi Penderita Penyakit Jantung

Penerapan Analisis Survival untuk Menaksir Waktu Bertahan Hidup bagi Penderita Penyakit Jantung Peerapa Aalss Survval utuk Meaksr Waktu Bertaha Hdup bag Pederta Peyakt Jatug Oleh : Ya Hedrajaya (me_ye2@yahoo.co.d), Ad Setawa da Haa A. Parhusp Program Stud Matematka, Fakultas Sas da Matematka Uverstas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defs Pemelharaa Pemelharaa aau perawaa (maeace) merupaka kegaa uuk mejaga aau memelhara faslas-faslas da peralaa pabrk, sera megadaka perbaka, peyesuaa aau peggaa yag dperluka uuk medapaka

Lebih terperinci

PENGUJIAN HIPOTESIS DUA RATA-RATA

PENGUJIAN HIPOTESIS DUA RATA-RATA PENGUJIN HIPOTEI DU RT-RT Pegujia hipoesis dua raa-raa diguaka uuk membadigka dua keadaa aau epaya dua populasi. Misalya kia mempuyai dua populasi ormal masig-masig dega raa-raa µ da µ sedagka simpaga

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian 3 III. METODE PENELITIAN A. Populas da Sampel Peelta dlaksaaka d SMAN Teusa Nuya. Populas dalam peelta adalah seluuh sswa kelas X SMAN Teusa Nuya semeste geap tahu pelajaa / yag bejumlah lma kelas. Kemampua

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

BAB 1 PENDAHULUAN. bahkan tidak sedikit orang yang frustasi akibat dari krisis global.

BAB 1 PENDAHULUAN. bahkan tidak sedikit orang yang frustasi akibat dari krisis global. BAB 1 PENDAHULUAN 1.1 Laar Belakag Telah dkeahu bahwa saa sedag megalam krss global, dak haya erjad pada Negara yag sedag berkembag, bahka Negara maju juga megalamya, seper Amerka. Akbaya bayak orag yag

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi.

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi. . Pedahulua PENGUJIAN HIPOTESIS Hipoesis Saisik : peryaaa aau dugaa megeai sau aau lebih populasi. Pegujia hipoesis berhubuga dega peerimaa aau peolaka suau hipoesis. Kebeara (bear aau salahya) suau hipoesis

Lebih terperinci

BAB III STATISTIK INFERENSI PADA RANTAI MARKOV

BAB III STATISTIK INFERENSI PADA RANTAI MARKOV BAB III STATISTIK INFERENSI PADA RANTAI MARKOV 3. Pedahulua Pada Bab II elah dibahas megeai aai Makov beode- aau Ō() da maiks peluag asisiya. Pada bagia ii, aka dibahas bagaimaa meeuka ode aai Makov dai

Lebih terperinci

Reliabilitas. A. Pengertian

Reliabilitas. A. Pengertian Relablas A. Pengean Relablas adalah sejauh mana hasl ujan sswa eap aau konssen da posedu penlaan (Nko, 007:66). Menuu Ellen, suau es dkaakan elabel jka sko obsevas nla awal behubungan dengan sko yang sebenanya.

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Pengukuran Bunga. Modul 1

Pengukuran Bunga. Modul 1 Moul 1 Pegukura Buga Drs. Pramoo S, M. S. M oul membcaraka eag pegukura buga, fugs akumulas a fugs jumlah, gka buga efekf, buga seerhaa, buga majemuk, la sekarag, gka skoo efekf, gka buga ar skoo omal,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

FINITE FIELD (LAPANGAN BERHINGGA)

FINITE FIELD (LAPANGAN BERHINGGA) INITE IELD (LAPANGAN BERHINGGA) Muhamad Zak Ryao NIM: /5679/PA/8944 E-mal: zak@malugmacd h://zakmahwebd Dose Pembmbg: Drs Al Sujaa, MSc Jka suau laaga (feld) memua eleme yag bayakya berhgga, maka laaga

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

PENENTUAN NILAI ANUITAS JIWA SEUMUR HIDUP MENGGUNAKAN DISTRIBUSI GOMPERTZ

PENENTUAN NILAI ANUITAS JIWA SEUMUR HIDUP MENGGUNAKAN DISTRIBUSI GOMPERTZ Bulei Ilmiah Ma. Sa. da Terapaya (Bimaser) Volume 05, No. 2 (206), hal 79-86 PENENTUAN NILAI ANUITAS JIWA SEUMUR HIDUP MENGGUNAKAN DISTRIBUSI GOMPERTZ Sii Faimah, Neva Sayahadewi, Shaika Marha INTISARI

Lebih terperinci

B A B III METODE PENELITIAN. Objek penelitian dalam penelitian ini adalah menganalisis perbandingan

B A B III METODE PENELITIAN. Objek penelitian dalam penelitian ini adalah menganalisis perbandingan 30 B A B III METODE PENELITIAN 3. Peeapa Lokai da Waku Peeliia Objek peeliia dalam peeliia ii adalah megaalii perbadiga harga jual produk melalui pedekaa arge pricig dega co-plu pricig pada oko kue yag

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F BAB III MENENUKAN MODEL KERUSAKAN DAN INERVAL WAKU PREVENIVE MAINENANCE OPIMUM SISEM AXIS PADA MESIN CINCINNAI MILACRON DOUBLE GANRY IPE-F 3.1 Pedahulua Pada Bab II telah dijelaska beberapa teori yag diguaka

Lebih terperinci

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) . Definisi L.2 (Kejadian lepas )

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) .   Definisi L.2 (Kejadian lepas ) 33 LAMPIRAN 34 35 Beberapa Defiisi Ruag Cooh Kejadia da Peluag Suau percobaa yag dapa diulag dalam kodisi yag sama, yag hasilya idak dapa diprediksi dega epa eapi kia bisa megeahui semua kemugkia hasil

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN EORI 2.1 Pegeria Peramala Peramala adalah kegiaa uuk memperkiraka apa yag aka erjadi di masa yag aka daag. Sedagka ramala adalah suau siuasi aau kodisi yag diperkiraka aka erjadi pada masa

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jeis Peeliia Jeis peeliia ii merupaka peeliia kuaiaif dega megguaka meode eksperime. Desai peeliia ii megguaka ru experime desig beuk desai poses oly corol desig yaki meempaka

Lebih terperinci

KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL. Sudarno Staf Pengajar Program Studi Statistika FMIPA UNDIP

KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL. Sudarno Staf Pengajar Program Studi Statistika FMIPA UNDIP Karakerisik Umur Produk (Sudarno) KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL Sudarno Saf Pengajar Program Sudi Saisika FMIPA UNDIP Absrac Long life of produc can reflec is qualiy. Generally, good producs

Lebih terperinci

PERAMALAN LAJU PRODUKSI MINYAK DENGAN ARPS DECLINE CURVE DAN ANALISIS DERET WAKTU

PERAMALAN LAJU PRODUKSI MINYAK DENGAN ARPS DECLINE CURVE DAN ANALISIS DERET WAKTU PERAMALAN LAJU PRODUKSI MINYAK DENGAN ARPS DECLINE CURVE DAN ANALISIS DERET WAKTU Dyah Rosa STEM Akamgas, Jl. Gajah Mada No. 38 Cepu E-mal: a_dyah@yahoo.com ABSTRAK Peramala produks d masa medaag saga

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

III. METODE KAJIAN A.

III. METODE KAJIAN A. 25 III. METODE KAJIAN A. Lokas da Waku Kaja Lokas kaja d dusr sapu PT. XYZ yag berlokas d Dusu III R.3/05 Desa Kalbuaya, Kecamaa Telagasar, Kabupae Karawag. Pemlha lokas dlakuka secara segaja (purposve),

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

VALIDITAS DAN RELIABILITAS TES YANG MEMUAT BUTIR DIKOTOMI DAN POLITOMI *)

VALIDITAS DAN RELIABILITAS TES YANG MEMUAT BUTIR DIKOTOMI DAN POLITOMI *) VALIDITAS DAN RELIABILITAS TES YANG MEMUAT BUTIR DIKOTOMI DAN POLITOMI Baso Iag Sappale * Absac To measue a vaable eeded by vald sume ad elabel. Resul of measueme a vaable vey flueced by qualy of sume,

Lebih terperinci

Estimasi Parameter Model Logit pada Respons Biner Multivariat Menggunakan Metode Mle dan Gee

Estimasi Parameter Model Logit pada Respons Biner Multivariat Menggunakan Metode Mle dan Gee Jural ILMU DASAR Vol. 0 No.. 009 : 85 9 85 Esmas Parameer Model Log pada Respos Ber Mulvara Megguaka Meode Mle da Gee Esmag Parameers of Log Model o Mulvarae Bary Respose Usg Mle ad Gee Jaka Nugraha, Suryo

Lebih terperinci

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN Nomi Kelari *, Hasriai 2, Musraii 2 Mahasiswa Program S Maemaika 2 Dose Jurusa Maemaika Fakulas Maemaika da Ilmu Pegeahua

Lebih terperinci

ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o

ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o ANALII BEDA Fx. ugiyao da Agus usworo Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg Meguji apakah erdapa perbedaa yg sigifika

Lebih terperinci

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL Robah P Rahaat da Tatk Wdhah Juusa Matmatka FMIPA UNDIP Jl. Pof. H. Sodato, S.H, Smaag 575 Abstat. Logt umulatv modl s usd to dsb th latoshp btw a spos vaabl

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

(Cormen 2002) III PEMBAHASAN. yt : pendapatan rumah tangga pada periode t, dengan yt 0.

(Cormen 2002) III PEMBAHASAN. yt : pendapatan rumah tangga pada periode t, dengan yt 0. 5 Vaabel s dsebu vaabel slak enambahan vaabel slak beujuan unuk mengubah peaksamaan yang mengandung anda menjad sebuah pesamaan eaksamaan () bena jka dan hanya jka pesamaan (2) dan peaksamaan (3) bena

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

Rancangan Acak Kelompok

Rancangan Acak Kelompok Racaga Acak Kelompok Saua percoaa dak seragam dlakuka pegelompoka egacaka dlakuka per kelompok Model : Y j μ + β + τ + ε dega : Y j respos pada perlakua ke -, ulaga ke - j μ raaa umum j τ pegaruh perlakuake

Lebih terperinci

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai BAB 2 LANDASAN TEORI 2.1 Pegeria Peramala (orecasig) Peramala (orecasig) adalah suau kegiaa yag memperkiraka apa yag aka erjadi pada masa medaag. Peramala pejuala adalah peramala yag megkaika berbagai

Lebih terperinci

COMPLETELY RANDOMIZED DESIGN (CRD)

COMPLETELY RANDOMIZED DESIGN (CRD) COMPLETELY RANDOMIZED DESIGN (CRD) CRD Tdak ada kea pengelompokan: Lngkungan homogen Bahan homogen (pebedaan danaa expemenal un yang mempeoleh pelakuan yang ama dalam CRD debu ebaga expemenal eo) Ala homogen

Lebih terperinci

PERENCANAAN & PENGENDALIAN PRODUKSI TIN 4113

PERENCANAAN & PENGENDALIAN PRODUKSI TIN 4113 PERENCANAAN & PENGENDALIAN PRODUKSI TIN 4113 Peremua 3 Oule: Meode Peramala: Expoeal Smoohg (Sgle) Double Expoeal Smoohg Wer s Mehod for Seasoal Problems Error Forecas MAD, MSE, MAPE, MFE aau Bas Referes:

Lebih terperinci

Model Probit pada Respons Biner Multivariat Menggunakan Simulated Maximum Likelihood Estimator

Model Probit pada Respons Biner Multivariat Menggunakan Simulated Maximum Likelihood Estimator 70 Mode Pob... (Jaka Nugaha dkk) Mode Pob pada Respos Be Muvaa Megguaka Smuaed Maxmum Lkehood Esmao Pob Mode o Muvaae Bay Respose Usg Smuaed Maxmum Lkehood Esmao Jaka Nugaha ), Suyo Guo ), S Hayam ) Juusa

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB Sudi kelayaka bisis pada dasarya berujua uuk meeuka kelayaka bisis berdasarka krieria ivesasi Krieria ersebu diaaraya adalah ; 1. Nilai bersih kii (Ne

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

Rumus-rumus yang Digunakan

Rumus-rumus yang Digunakan Saisika Uipa Surabaya 4. Sampel Tuggal = Rumus-rumus yag Diguaka s..... Sampel berkorelasi D D N N N...... 3. Sampel Bebas a. Uuk varias sama... 3 aau x x s g... 4 b. Sampel Heeroge Guaka Uji Corha - Cox

Lebih terperinci

JENIS BUNGA PEMAJEMUKAN KONTINYU

JENIS BUNGA PEMAJEMUKAN KONTINYU JENIS BUNGA PEMAJEMUKAN KONTINYU Suku Buga Nomal Suku Buga Efektf Hubuga ataa Suku Buga Nomal da Efektf Aus Daa Dskt da Aus Daa Kotyu SUKU BUNGA NOMINAL & SUKU BUNGA EFEKTIF Selama daggap aus daa (peemaa

Lebih terperinci

KONSEP DASAR. Latar belakang Metode Numerik Ilustrasi masalah numerik Angka signifikan Akurasi dan Presisi Pendekatan dan Kesalahan

KONSEP DASAR. Latar belakang Metode Numerik Ilustrasi masalah numerik Angka signifikan Akurasi dan Presisi Pendekatan dan Kesalahan KONSEP DASAR Laar belakang Meode Numerk Ilusras masalah numerk Angka sgnfkan Akuras dan Press Pendekaan dan Kesalahan Laar Belakang Meode Numerk Tdak semua permasalahan maemas dapa dselesakan dengan mudah,

Lebih terperinci

BAB III FORMULA PENENTUAN HARGA OPSI ASIA

BAB III FORMULA PENENTUAN HARGA OPSI ASIA 3 BAB III FORMULA PEETUA HARA OPSI ASIA Pada Bab III ii aka dibahas megeai opsi Asia da aalisisya, di maa yag aka dibahas hayalah beberapa ipe opsi Asia, da erbaas pada eis Europea call saa. Jeis-eis opsi

Lebih terperinci

Relasi LOGIK FUNGSI AND, FUNGSI OR, DAN FUNGSI NOT

Relasi LOGIK FUNGSI AND, FUNGSI OR, DAN FUNGSI NOT 2 Relasi LOGIK FUNGSI ND, FUNGSI OR, DN FUNGSI NOT Tujuan : Seelah mempelajari Relasi Logik diharapkan dapa,. Memahami auran-auran relasi logik unuk fungsi-fungsi dasar ND, OR dan fungsi dasar NOT 2. Memahami

Lebih terperinci

Koefisien Korelasi Spearman

Koefisien Korelasi Spearman Koefe Koela Speama La hala dega oefe oela poduct-momet Peao, oela Speama dapat dguaa utu data beala mmal odal utu edua vaabel ag heda dpea oelaa. Lagah petama ag dlaua utu meghtug oefe oela Speama adalah

Lebih terperinci

Fisika Modern. Persamaan Schroodinger dan Fingsi Gelombang

Fisika Modern. Persamaan Schroodinger dan Fingsi Gelombang Fska Modern Persaaan Schroodnger dan Fngs Gelobang Apa Persaaan unuk Gelobang Maer? De Brogle eberkan posula bahwa seap parkel elk hubungan: h/ p Golobang aer ala n dkonfras oleh percobaan dfraks elekron,

Lebih terperinci

BAB II LANDASAN TEORI. Total Productive Maintenance mula mula berasal dari pemikiran PM ( Preventive

BAB II LANDASAN TEORI. Total Productive Maintenance mula mula berasal dari pemikiran PM ( Preventive BAB II LANDASAN TEORI 2. Toal Producve maeace (TPM) Toal Producve Maeace mula mula berasal dar pemkra PM ( Preveve Maeace da Produco Maeace), dar Amerka masuk ke Jepag da berkembag mejad suau ssem baru

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jeis Peeliia Jeis peeliia ii ergolog peeliia komparasioal, yaiu peeliia yag dilaksaaka uuk megeahui ada idakya perbedaa aar variabel yag sedag dielii. Jika perbedaa iu memag

Lebih terperinci

BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU

BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU Pada bab III, ka elah melakukan penguan erhadap meoda Runge-Kua orde 4 pada persamaan panas. Haslnya, solus analk persamaan panas

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro ANALII BEA Agus usworo wi Marhaedro Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg sigifika di aara kelompok-kelompok Tekik

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

MAXIMUM LIKELIHOOD ESTIMATION (MLE) PADA MODEL LOGISTIK EXPONENSIAL

MAXIMUM LIKELIHOOD ESTIMATION (MLE) PADA MODEL LOGISTIK EXPONENSIAL KNM XVI -6 Ju UNPAD Jaagor MAXIMUM LIKELIHOOD EIMAION MLE PADA MODEL LOGIIK EXPONENIAL DEI RAHMAINA Uversas Marm Raa A Ha.J Poekk. eggarag. augpag ema : desrahmaa@gma.com Absrak Mode ogsk ekspoesa yag

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PRODUKSI TANAMAN KEDELAIMENGGUNAKAN DIAGRAM JALUR

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PRODUKSI TANAMAN KEDELAIMENGGUNAKAN DIAGRAM JALUR Bulet Ilmah Mat. Stat. da eapaa (Bmaste) Volume 0, No. (0), hal 79-86. ANALISIS FAKOR-FAKOR YANG MEMPENGARUHI PRODUKSI ANAMAN KEDELAIMENGGUNAKAN DIAGRAM JALUR Zaal Ap, Muhlasah Novtasa Maa, Neva Satahadew

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

PENGGUNAAN REGRESI KONTINUM DENGAN PRA- PEMROSESAN ROBPCA UNTUK PEMODELAN STATISTICAL DOWNSCALING. Sutikno 1 dan Setiawan 2

PENGGUNAAN REGRESI KONTINUM DENGAN PRA- PEMROSESAN ROBPCA UNTUK PEMODELAN STATISTICAL DOWNSCALING. Sutikno 1 dan Setiawan 2 Semar Nasoal Saska IX Isu ekolog Sepulu Nopember, 7 November 009 PENGGUNAAN REGRESI KONINUM DENGAN PRA- PEMROSESAN ROBPCA UNUK PEMODELAN SAISICAL DOWNSCALING Suko da Seaa, Jurusa Saska FMIPA IS suko@saska.s.ac.d,

Lebih terperinci