PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 28 JULI s.d. 10 AGUSTUS 2003 SUKU BANYAK. Oleh: Fadjar Shadiq, M.App.Sc.

Ukuran: px
Mulai penontonan dengan halaman:

Download "PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 28 JULI s.d. 10 AGUSTUS 2003 SUKU BANYAK. Oleh: Fadjar Shadiq, M.App.Sc."

Transkripsi

1 PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 8 JULI s.d. 0 AGUSTUS 00 SUKU BANYAK Oleh: Fdjr Shdiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN PENATARAN GURU (PPPG) MATEMATIKA YOGYAKARTA 00

2 BAGIAN PENGERTIAN SUKUBANYAK Adlh Rene Descrtes yng memperkenlkn penggunn huruf-huruf wl lfbet, b, c,, untuk menytkn konstnt, sert penggunn huruf-huruf khir lfbet,,, y, z untuk menytkn peubh (vribel). To this ecellent custom we shll dhere. Untuk turn yng sngt bgus ini, sehrusny kit mengikutiny, tulis Abrhm dn Gry (97:88). Pd ms sekrng, untuk penggunn simbol-simbol yng lebih bnyk dri huruf-huruf pd lfbet, dptlh digunkn indeks seperti,,,,, k, k,, n. Bentuk Umum Sukubnyk Jik 0,,,, n. merupkn n bilngn (bis rel dn bis jug kompleks), mk bentuk umum sukubnykny dlh: P() = n n n n n- n- n 0. Berikut ini dlh beberp istilh penting: Bentuk ljbr k k disebut suku. k disebut koeffisien k Koeffisien dri dengn pngkt tertinggi disebut dengn koeffisien utm (leding coeffisien). 0 disebut konstnt. Untuk n 0 mk sukubnyk tersebut berderjt n. Contoh.. P() = 7 5 dlh sukubnyk berderjt 7, koeffisien utmny, konstntny dlh 5, dn koeffisien 5 dlh 0. P() = dlh sukubnyk berderjt, koeffisien utmny, dn konstntny jug 0.. P() = 5 dlh sukubnyk berderjt 0.. P() = 0 dlh sukubnyk 0, dn tidk memilik derjt. Penjumlhn dn Perklin Sukubnyk Jik P() = dn Q() = 5; mk. P() Q() = ( ) ( 5) = 5 b. P() Q() = ( ) ( 5) = 6 5

3 Secr umum jik: P() = n n n n n n 0 Q() = b m m b m m b m m b 0 dn n>m, mk: P() Q() = n n n n ( m b m ) m ( m b m ) m ( 0 b 0 ) P() Q() = n b m mn ( n b m n b m ) mn ( 0 b b 0 ) ( 0 b b 0 ) 0 b 0 Jik P() = sedngkn Q () = 5, mk pengerjnny dpt dilkukn sebgi berikut: Di smping dengn mengerjkn seperti: ( 5)( ) = = 6 5 Cr linny dlh dengn perklin bersusun berikut: Pengerjn tersebut dpt disederhnkn menjdi berikut: Perklin di ts merupkn perklin bersusun tnp mengikutkn vribel (peubh) - ny. Hsil perklinny dlh sm dengn du cr di ts, yitu 6 5.

4 Ltihn. Susunlh sutu sukubnyk P() berderjt dengn koeffisien utm jug dn dengn konstnt 7.. Tentukn koeffisien pd ( 5)( 7). Coblh untuk tidk menjbrkn bentuk tersebut.. Jbrkn ( 0 ) (b b b 0 ). Jbrkn llu sederhnkn [ ( ) ( ) ][ ] 5. Klikn yng berikut bersusun tnp mengikutkn peubh -ny.. ( )( 5) b. ( 5)( ) c. ( ) d. ( )

5 NILAI SUKUBANYAK BAGIAN Nili sutu suku bnyk dpt ditentukn dengn du cr, yitu dengn cr substitusi dn cr skem (skemtik).. Cr substitusi Dengn cr substitusi ini, nili sutu suku bnyk ditentukn dengn menggnti (mensubstitusi) setip peubh tu vribelny dengn sutu konstnt. Dengn demikin, nili suku bnyk kn sngt bergntung kepd konstnt yng kn menggntikn. Jik sukubnykny dinytkn dlm P(), mk nili sukubnyk P() untuk = dlh P(). Contoh: Jik b. Cr skemtik Jik P() =, mk nili suku bnyk itu untuk = dlh: P() = () (), = = P() = 5, mk nili suku bnyk itu untuk =k dlh: P(k) = k k k 5 = (k k )k 5 = {(k )k }k 5 Perhtikn bentuk terkhir P(k) ini llu bndingkn dengn P() di mn merupkn koefisien, merupkn koefisien, merupkn koefisien, dn yng terkhir 5 merupkn suku tetp suku bnyk itu. Untuk memudhkn, perhtikn tbel ini. 0 Koefisien 5 Perhtikn sekli lgi bentuk terkhir P(k) = {(k )k }k 5. Bentuk terkhir ini menunjukkn bhw cr tu proses menentukn nili suku bnyk P() untuk = k dlh sebgi berikut:. Klikn koefisien (yitu ) dengn k sehingg didpt k. Tmbhkn hsil pd lngkh tdi dengn koefisien (yitu ) sehingg didpt k. Klikn hsil pd lngkh tdi dengn k sehingg didpt (k)k. Tmbhkn hsil pd lngkh tdi dengn koefisien (yitu ) sehingg didpt {(k)k } 5. Klikn hsil pd lngkh tdi dengn k sehingg didpt {(k)k }k 6. Tmbhkn hsil pd lngkh 5 tdi dengn suku tetpny (yitu 5) sehingg didpt {(k)k }k 5 yng merupkn nili sukubnyk P() untuk = k.

6 Dri yng dijelskn di ts nmpklh bhw d beberp kegitn yng sellu dilkukn, yitu:. Menglikn dengn k koefisien peubh dengn pngkt tertinggi.. Menmbhkn hsilny kepd koefisien peubh dengn pngkt tertinggi berikutny.. Menglikn dengn k hsil yng didpt pd lngkh.. Mengulngi lngkh ke- smpi peubhny berpngkt 0. Berdsr keterngn di ts dptlh ditentukn nili suku bnyk P() untuk = mislny dengn cr skemtik sebgi berikut: Koefisien 5 berrti diklikn P() Hsil tersebut dpt dicek dengn menggunkn cr substitusi, yitu: P() = 5 P() = 5 = Ltihn.. Tentukn nili sukubnyk berikut dengn menggunkn du cr, yitu cr substitusi dn cr skemtik:. P() = untuk = b. P() = untuk =. Sukubnyk P() = 5 q bernili untuk =. Tentukn nili q yng memenuhi.. Ad du orng yitu A dn B menghitung nili dri 7 8 untuk =,7 sebgi berikut: A menggunkn cr substitusi B menggunkn cr skemtik Cr mn yng lebih sedikit menggunkn perhitungn ritmetik? 5

7 BAGIAN PEMBAGIAN SUKUBANYAK. Gunkn pembgin berekor untuk menentukn hsil bgi dn sis dri 667: Tentukn: Pembginy. Yng dibgi. Hsil bginy. Sis pembginny. b. Bgimn cr And mengecek kebenrn jwbn And tdi. c. Nytkn pembgin di ts dlm bentuk: Yng Dibgi = Pembgi Hsil Sis Yng Dibgi =. Gunkn pembgin berekor untuk menentukn hsil bgi dn sis dri 7 jik dibgi oleh.. 7. Tentukn: Pembginy. Yng dibgi. Hsil bginy. Sis pembginny. 6

8 b. Bgimn cr And mengecek kebenrn jwbn And tdi. c. Nytkn pembgin di ts dlm bentuk: Yng Dibgi = Pembgi Hsil Sis Yng Dibgi = Perhtikn sekli lgi pembgin sol di ts. Jik hny koefisien yng dituliskn, pembgin tersebut dpt disederhnkn menjdi: sis Dengn mengeliminsi bilngn yng hny menylin dri yng d ditsny (liht bilngn yng dilingkri di ts), kn didpt: Dengn menggnti pengurngn dengn penmbhn, untuk memudhkn mengopersikn kn didpt:

9 Dengn menggeser bgin bwh ke ts, liht tnd pnh di ts, kn didpt: Bentuk di ts sngt mirip dengn pembgin sintetis (skem) tu bgn di bwh ini Ternyt hsil bginy terletk pd bris terbwh yitu 5 sedngkn sisny dlh f() = Jdi, 7 = ( ) ( 5) Cr di ts dpt digunkn hny jik pembginy dlm bentuk k. Sedngkn untuk pembgi dlm bentuk k k k k 0 dpt digunkn cr pembgin bersusun bis. Ltihn. Tentukn hsil bgi dn sis untuk:. 5 dibgi dengn cr.. 5 dibgi dengn cr.. 5 dibgi. dibgi. 5. b dibgi k. 8

10 BAGIAN TEOREMA SISA Sudh dibhs di depn bhw 7: kn menghsilkn dn sis. Dengn demikin 7 =. Secr umum dpt dinytkn bhw: Yng dibgi = Pembgi Hsil Bgi Sis Jik yng dibgi dlh suku bnyk P(), pembginy dlh k, hsilny dlh h() dn sisny dlh s mk kn didpt: P() = ( k).h() s Untuk = k, kn didpt: P(k) = (k k).h() s P(k) = 0. h() s P(k) = s Kren P(k) dlh nili suku bnyk untuk = k dn s = sis, mk bentuk terkhir ini menunjukkn bhw nili P() untuk = k dlh sm dengn sis pembgin P() oleh ( k). Teorem tu Dlil Sis. Jik suku bnyk P() berderjt n dibgi oleh ( k), mk sisny dlh S = P(k) Ltihn. Tunjukkn kebenrn teorem sis dengn menggunkn:. ( 5 6) : ( ) b. ( 7) : ( ). Tentukn hsil bgi h() jik 5 5 dibgi, dn tunjukkn bhw h() jug hbis dibgi. Tentukn bilngn cch k gr k k- hbis dibgi. Suku bnyk P() = p 6 7 dn suku bnyk Q() = 6 7 kn memiliki sis yng sm jik dibgi. Tentukn nili p. 5. Suku bnyk P() = p kn bersis 0 jik dibgi ( ). Tentukn nili p. 9

11 6. Jik k l merupkn sis dri P() jik ( ) ( b), dengn b, mk P(b) P() tunjukkn bhw k =. Tentukn jug bentuk ljbr untuk l. b 7. Tentukn bilngn rel gr 9 hbis dibgi. 8. Jik P() dibgi kn bersis. Tentukn sisny jik P() dibgi. Tentukn jug jik P() dibgi. 9. Sutu sukubnyk P() jik dibgi kn bersis 5, dn jik dibgi kn bersis 5. Tentukn sisny jik dibgi ( )( ). 0. Buktikn dengn induksi mtemtik identits berikut: n k n = ( k)( n n k n k k n ). Tentukn hsil bgi dn sisny, dengn cr pembgin bis sol berikut:. dibgi ( ) b. 6 5 dibgi ( ). Pd sol di ts, dptkh And menyelesikn sol tersebut dengn cr skemtik? Mengp demikin? Jelskn lsn And. 0

12 BAGIAN 5 TEOREMA FAKTOR Sudh dibhs bgin depn bhw P() = ( k) h() s, sehingg P(k) = s. Jik s = P(k) = 0 mk ( k) disebut fktor dri P(). Dengn demikin, didpt teorem fktor berikut: Jik P() merupkn sutu suku bnyk; ( k) merupkn fktor dri P() jik dn hny jik P(k) = 0 Teorem di ts menunjukkn du hl: ) Jik ( k) merupkn fktor dri P() mk f(k) = 0 b) Jik f(k) = 0 mk ( k) merupkn fktor dri P() Jik P() merupkn sutu suku bnyk; dn l() merupkn fktor dri P() jik dn hny jik sis pembgin P() oleh l() dlh 0 Ltihn:. Tentukn suku bnyk P() = b c yng memiliki fktor ( ) dn ( ) sert memiliki nili 6 untuk =. Tentukn hsil bgi dn sisny jik 5 dibgi ( )( ).. Tentukn suku bnyk P() = p() c yng memiliki fktor = 0 dn = 0 sert memiliki nili mksimum 6.. Tentukn nili b dn c jik merupkn fktor dri b c. 5. Tentukn nili p dn q jik ( ) merupkn fktor dri p q. 6. Jik ( k) dlh fktor dri p q, buktikn bhw p q = 0. Tentukn fktor linny. 7. Gunkn cr skem (skemtis) untuk menentukn hsil dn sisny jik:. 5 dibgi ( )( ) b. 6 dibgi ( )

13 BAGIAN 6 RUMUS VIETA Pd mteri pokok tu pokok bhsn Persmn Kudrt (PK) telh dibhs bhw jik, dn merupkn kr-kr persmn kudrt bc c = 0, mk. = c dn = b. Pembuktin untuk hl tersebut dlh sebgi berikut: Kren dn merupkn kr-kr persmn kudrt tersebut, didptlh: ) )( ( ) ( c b ) ) ( ( sehingg : ( ) = b tu = b. = c Jik digunkn notsi : o = ) )( ( ) ( o =, dn kn didpt = 0 = Jik proses seperti itu dilnjutkn untuk persmn pngkt tig, kn didpt ( )( )( ) o = [ ( ) ( ) ] = sehingg didpt = = o = Dengn cr yng sm, untuk persmn pngkt empt o kn didpt: o ( ) ( ) [ ][ ] ( ) ( ) [ ]

14 ( ) ] sehingg dpt disimpulkn = = = o = Perhtikn hsil-hsil di ts d keterturn-keterturn pd hsil-hsil di ts. Dptkh And sekrng mendug hsilny untuk persmn pngkt lim? Gunkn lngkh seperti lngkh di ts. Jik,,, dn 5 merupkn kr dri = 0 isilh titik-titik di bwh ini. 5 =. =. =.. =. 5 =. Untuk memudhkn pr sisw, perhtikn contoh berikut.. Pd persmn b c b c = 0, kn didpt = dn =. Pd persmn pngkt tig b c d = 0 kn didpt b = c = d =. Pd persmn pngkt empt 5 6 = 0 kn didpt. = = = = 5 = = 6 = =

15 . Pd persmn kubik 5 = 0, jik, b, dn c dlh kr-krny, mk tentukn nili b c. Jwb: b c = ( ) = b c bc = bc = ( 5) = 5 ( b c) = b c (b c bc), tu b c = ( b c) (b c bc) = = Ltihn. Jik, b, dn c dlh kr-kr persmn kubik 6 = 0 mk tentukn nili dri:. b c b. b c c. b c. Mislkn, b dn c dlh kr-kr persmn q r = 0. Buktikn bhw c r ( b) = c. Akr-kr persmn kubik p q r = 0 dlh, b dn c. Nytkn bentukbentuk di bwh ini dlm p, q dn r.. b c b. b c c. b c. Akr-kr persmn kubik p q r = 0 dlh, b, dn c. Susunlh persmn kubik bru yng kr-krny dlh:.,, b c b., b, c c., b, dn c 5. Jik dn b dlh kr-kr positif dri m = n, tunjukknlh bhw terdpt hubungn: n = b b m = b b

16 BAGIAN 7 PERSAMAAN SUKU BANYAK Persmn umum suku bnyk dlh n n n... n n n 0 = 0 dengn n 0. Persmn tersebut disebut berderjt n dn mksiml bnykny krkr persmn tersebut dlh n. Mislkn i merupkn bilngn bult (i = n, n, n,,,,, 0) dn slh stu krny dlh = k yng merupkn bilngn bult, sehingg didpt: P(k) = n k n n k n n k n k 0 = 0; tu 0 = k( n k n n k n n k n k ) Dengn demikin, berdsr bentuk di ts bhw k merupkn fktor dri 0. Kesimpulnny, jik sutu persmn polinom dengn kontnt sert koefisienny merupkn bilngn bult, dn jik persmn tersebut mempunyi fktor bult, mk kr tersebut merupkn fktor bult dri konstntny. Contoh Tentukn kr-kr persmn suku bnyk P() = 5 6 = 0 Jwb Sebgimn dijelskn di ts, kr bult yng mungkin dlh fktor dri A o = 6. Fktor bult dri 6 sendiri dlh ±, ±, ±, ± 6. Dengn menggunkn pembgin sintetik (skemtik) kn didpt kr bult tersebut. Cr ini dilkukn dengn mencob fktor bult 6 tdi stu perstu. Jik didpti sis pembginny dlh 0, mk kn dihsilkn slh stu fktorny. Sekrng yng kn dicob dlh jik suku bnyk P() dibgi dengn cr skemtik berikut: k = Kren sisiny 0, mk ( ) merupkn slh stu fktor sukubnyk tersebut sert dlh kr persmn tersebut, sehingg didpt: P() = 5 6 = 0 ( )( 6) = 0 ( )( )( ) = 0 Jdi kr-kr persmn tersebut dlh,, dn. 5

17 Ltihn 7. Jik sutu suku bnyk P() memiliki koeffsien sert konstnt bult, dn jug memiliki kr rsionl r s dengn r merupkn bentuk pling sederhn sert r dn s s merupkn bilngn bult; tunjukknlh bhw r merupkn fktor dri o dn s merupkn fktor dri n. Tentukn seluruh kr rsionl dri: ) 7 6 b) 5 6 c) 6 d) 6 6

18 Ltihn Ulngn. Dikethui suku bnyk f() jik dibgi ( ) bersis 8 dn dibgi ( ) bersis. Suku bnyk g() jik dibgi ( ) bersis 9 dn jik dibgi ( ) bersis 5. Jik h() = f() g(), mk tentukn sis pembgin h() oleh ( ).. Suku bnyk 6 q mempunyi fktor ( ). Tentukn fktor liner yng lin.. Suku bnyk P() = 6 k hbis dibgi ( ). Crilh sis pembgin P() oleh.. Akr-kr persmn = 0 dlh,, dn. Hitunglh nili 5. Sutu suku bnyk P() dibgi oleh ( ) sisny ( ) dn jik dibgi oleh ( ) sisny. Tentukn sis pembgin suku bnyk oleh ( ). 6. Slh stu kr persmn p 7 0 = 0 dlh. Hitunglh jumlh kr-kr persmn tersebut. 7. Sutu suku bnyk F() dibgi oleh ( ) sisny 8, dn jik dibgi ( ) sisny 7. Crilh sis pembgin suku bnyk F() oleh 6. Dftr Pustk Abrhmson, D; Gry, M.C (97). The Art of Algebr. Adelide: Rigby Limited. Krismnto, A (998). Persmn dn Pertidksmn Absolut sert Persmn Polinom. Yogykrt: PPPG Mtemtik Wirodikromo, Srtono (000). Mtemtik 000. Jilid 7. Jkrt: Erlngg 7

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1 . Hitunglh 7 5. : b. 5 : c. 8 : 6 d. 8 9 7 7 7 5 77 77 77. : c. 8 : 6 : 6 6 9 9 9 6 54 8 40 7 b. 5: 5 d. 4: 4: 4 6 8 7 95 Husein Tmpoms, Rumus-rumus Dsr Mtemtik 4 :. Pmn mempunyi sebidng tnh yng lusny

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

Bilangan. Bilangan Nol. Bilangan Bulat (Z )

Bilangan. Bilangan Nol. Bilangan Bulat (Z ) Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).

Lebih terperinci

BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR

BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR Pet Konsep Bilngn Berpngkt dn Bentuk Akr mempeljri Bilngn berpngkt meliputi Bentuk kr meliputi Sift Opersi Mersionlkn Opersi Sift Kt Kunci. Pngkt 2. Akr 3. Sift

Lebih terperinci

Sifat Akar Polinom Dan Penerapannya Pada Sistem Persamaan Non Linier

Sifat Akar Polinom Dan Penerapannya Pada Sistem Persamaan Non Linier PROSIDING ISBN : 978 979 65 6 Sift Akr Polinom Dn Penerpnny Pd Sistem Persmn Non Linier A 5 Oleh: Drs. Arjudin, M.Si. Dosen Progrm Studi Pendidikn Mtemtik FKIP Universits Mtrm ABSTRAK Persmn kudrt berbentuk

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

BENTUK PANGKAT, AKAR DAN LOGARITMA

BENTUK PANGKAT, AKAR DAN LOGARITMA BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 3

Aljabar Linier & Matriks. Tatap Muka 3 Aljbr Linier & Mtriks Ttp Muk Eliminsi Guss-Jordn Sistem persmn linier dengn n vribel dn m persmn secr umum dinytkn sbg: Sistem persmn linier tsb dpt dinytkn dlm bentuk mtriks sbb: A x X = b dengn A dlh

Lebih terperinci

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R) BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

III. Bab. Persamaan dan Pertidaksamaan

III. Bab. Persamaan dan Pertidaksamaan Bb III Sumber: mycityblogging.com Persmn dn Pertidksmn Konsep persmn dn pertidksmn telh And peljri sebelumny di Kels VII dn Kels VIII. Konsep persmn dn pertidksmn sngt bergun jik diterpkn dlm kehidupn

Lebih terperinci

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu Sift-Sift Perklin Sklr Mislkn dn b sklr, D dn H mtriks sebrng dengn ordo sm, mk berlku sift-sift sebgi berikut. D + H (D + H) 2. D + bd ( + b)d 3. (bd) (b)d 4. Perklin Mtriks Du buh mtriks tu lebih selin

Lebih terperinci

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

PERTEMUAN 4 Metode Simpleks Kasus Maksimum

PERTEMUAN 4 Metode Simpleks Kasus Maksimum PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : SMA IT Izzuddin : Matematika : X (Sepuluh) / Ganjil

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : SMA IT Izzuddin : Matematika : X (Sepuluh) / Ganjil RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nm Sekolh Mt Peljrn Kels / Semester : SMA IT Izzuddin : Mtemtik : X (Sepuluh) / Gnjil Stndr Kompetensi :. Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm.

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) : PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN Dr. Djdir, M.Pd. Dr. Ilhm Minggi, M.Si J fruddin,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si Shln Sidjr,

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

http://meetied.wordpress.com Mtemtik X Semester 1 SMAN 1 Bone-Bone Reutlh st ini. Ap pun yng is And lkukn tu And impikn Mulilh!!! Keernin mengndung kejeniusn, kekutn dn kejin. Lkukn sj dn otk And kn muli

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan 2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,

Lebih terperinci

Materi V. Determianan dinotasikan berupa pembatas dua gris lurus,

Materi V. Determianan dinotasikan berupa pembatas dua gris lurus, Mteri V Tujun : 1. Mhsisw dpt mengenli determinn.. Mhsisw dpt merubh persmn linier menjdi persmn determinn.. Mhsisw menelesikn determinn ordo du. Mhsisw mmpu menelesikn determinn ordo tig. Mhsisw mengethui

Lebih terperinci

PAM 252 Metode Numerik Bab 6 Pengintegralan Numerik

PAM 252 Metode Numerik Bab 6 Pengintegralan Numerik PAM 252 Metode Numerik Bb 6 Pengintegrln Numerik Mhdhivn Syfwn Jurusn Mtemtik FMIPA Universits Andls Semester Genp 2013/2014 1 Mhdhivn Syfwn Metode Numerik: Pengintegrln Numerik Motivsi Pendhulun Motivsi

Lebih terperinci

BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS

BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS Mtriks A dn mtriks B diktkn sm (A = B), jik dn hny jik: 1. Ordo mtriks A sm dengn ordo mtriks B 2. Setip elemen yng seletk pd mtriks A

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

,, % ,, % -0: 0 -0: 0! 2 % 26, &

,, % ,, % -0: 0 -0: 0! 2 % 26, & PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh

Lebih terperinci

Matriks. Modul 1 PENDAHULUAN

Matriks. Modul 1 PENDAHULUAN Modul 1 Mtriks Dr. Whyu Widyt, M.Ec. S PENDAHULUAN ering kli kit berhdpn dengn mslh mencri solusi dri sistem persmn linier, tu mslh optimissi sutu fungsi dengn jumlh vribel yng bnyk. Mslh-mslh tersebut

Lebih terperinci

Integral Agus Yodi Gunawan

Integral Agus Yodi Gunawan Integrl Agus Yodi Gunwn Teknik pengintegrln.. Metode substitusi pd integrl tk tentu. Mislkn g() sutu fungsi yng terdiferensilkn. Mislkn pul F () merupkn ntiturunn dri fungsi f(). Jik u = g(), mk f(g())g

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

MODUL 2 DETERMINAN DAN INVERS MATRIKS

MODUL 2 DETERMINAN DAN INVERS MATRIKS MODUL DETERMINN DN INVERS MTRIKS.. Determinn Definisi. (Determinn) Untuk setip mtriks berukurn n x n, yng dikitkn dengn sutu bilngn rel dengn sift tertentu dinmkn determinn, dengn notsi dri determinn mtriks

Lebih terperinci

Bilangan Berpangkat dan Bentuk Akar. Memahami sifat-sifat bilangan berpangkat dan bentuk akar serta penggunaannya dalam memecahkan masalah sederhana

Bilangan Berpangkat dan Bentuk Akar. Memahami sifat-sifat bilangan berpangkat dan bentuk akar serta penggunaannya dalam memecahkan masalah sederhana Bb Bilngn Berpngkt dn Bentuk Akr Stndr Kompetensi Memhmi sift-sift bilngn berpngkt dn bentuk kr sert penggunnny dlm memechkn mslh sederhn Kompetensi Dsr. Mengidentifiksi sift-sift bilngn berpngktdn bentuk

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 9 Tulngn Rngkp Oleh Resmi Bestri Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dn PERENCANAAN UNIVERSITAS MERCU BUANA 2010 DAFTAR ISI DAFTAR ISI i IX

Lebih terperinci

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig

Lebih terperinci

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT Kometensi (Bgin PERSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Menentukn Jenis Akr-Akr Persmn Kudrt Menggunkn Diskriminn (D Bentuk Umum: D = - 4c + x + c ; 0 Pengertin: x = α dlh kr-kr ersmn + x + c α

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

RUMUS HERON DAN RUMUS BRAHMAGUPTA

RUMUS HERON DAN RUMUS BRAHMAGUPTA RUMUS HERON DAN RUMUS BRAHMAGUPTA Sumrdyono, M.Pd. Topik lus bngun dtr telh dipeljri sejk di Sekolh Dsr hingg SMA. Bil di SD, dipeljri lus segitig dn beberp bngun segiempt mk di SMP dipeljri lebih lnjut

Lebih terperinci

A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA

A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Mtemtik SMA Semester B : Bentuk Pngkt,Akr & Logritm Mteri Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Kometensi Dsr : Menggunkn sift dn turn tentng ngkt, kr dn logritm dlm emechn mslh Kometensi Dsr : Melkukn

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

BAB II PANGKAT, AKAR DAN LOGARITMA

BAB II PANGKAT, AKAR DAN LOGARITMA BAB II PANGKAT, AKAR DAN LOGARITMA ILUSTRASI Sony kn membeli sebuh motor secr kredit, ketentun yng ditwrkn oleh perushn lesing dlh, ung muk sebesr Rp.500.000,00 dn ngsurn perbulnny sebesr Rp 365.000,00

Lebih terperinci

Topik: Matriks Dan Sistem Persamaan Linier

Topik: Matriks Dan Sistem Persamaan Linier Mt Kulih: Mtemtik Kode: TKF Topik: Mtriks Dn Sistem Persmn Linier MAT Kompetensi : Dpt menerpkn konsep-konsep mtriks dn sistem persmn linier dlm mempeljri konsep-konsep keteknikn pd mt kulih mt kulih progrm

Lebih terperinci

BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ).

BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ). BAB I MATRIKS Aljbr mtriks merupkn slh stu cbng mtemtik yng dikembngkn oleh seorng mtemtikwn Inggris Arthur Cyley (8 89) Mtriks berkembng kren pernnny dlm cbng-cbng Mtemtik linny, mislny bidng ekonomi,

Lebih terperinci

Hands Out Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd.

Hands Out Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd. Hnds Out Mt Kulih: Aljbr Mtriks ( SKS) Dosen: Dr. Hj Ade Rohyti, M. Pd. No. Indiktor Urin Mteri. menyebutkn definisi mtriks.. membut beberp contoh mtriks dengn menggunkn notsi yng tept.. menentukn ordo

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Pket Pilihlh jwbn yng pling tept!. Diberikn premis-premis berikut! Premis : Jik vektor dn b sling tegk lurus, mk besr sudut ntr vektor dn b dlh 90 o. Premis

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

Sistem Persamaan Linear

Sistem Persamaan Linear Sistem Persmn Liner Muhtdin, ST. MT. Metode Numerik & Komputsi. By : Muhtdin Persmn Aljbr Liner Simultn Metode Numerik & Komputsi. By : Muhtdin 9 Menyelesikn SPL sederhn Grphicl Method dri kedu persmn

Lebih terperinci

1. Introduction. Aljabar Linear dan Matriks Semester Pendek TA 2009/2010 S1 Teknik Informatika. Mata Kuliah: Dosen Pengampu: Heri Sismoro, M.Kom.

1. Introduction. Aljabar Linear dan Matriks Semester Pendek TA 2009/2010 S1 Teknik Informatika. Mata Kuliah: Dosen Pengampu: Heri Sismoro, M.Kom. 1. Introduction Mt Kulih: Aljbr Liner dn Mtriks Semester Pendek TA 9/1 S1 Teknik Informtik Dosen Pengmpu: Heri Sismoro, M.Kom. STMIK AMIKOM YOGYAKARTA Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 74 8841

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudrtno Sudirhm Studi Mndiri Fungsi dn Grfik Drpublic BAB 8 Fungsi Logritm turl, Eksponensil, Hiperbolik 8.. Fungsi Logrithm turl. Definisi. Logritm nturl dlh logritm dengn menggunkn bsis bilngn e. Bilngn

Lebih terperinci

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks MATRIKS A. Pengertin, Notsi dn Bgin Dlm Mtriks Dlm kehidupn sehri-hri kit sering menemui dt tu informsi dlm entuk tel, seperti tel pertndingn sepkol, tel sensi kels, tel hrg tiket keret pi dn seginy..

Lebih terperinci

tema 1 diri sendiri liburan ke kota

tema 1 diri sendiri liburan ke kota tem 1 diri sendiri liburn ke kot ku nik ke kels 2 selm liburn ku dijk ke kot ku berlibur ke rumh kkek di kot bnyk kendrn d bus tksi dn sebginy ku meliht bus bernomor 105 d pul tksi bernomor 153 ku bis

Lebih terperinci

Bab. Matriks. A. Pengertian dan Jenis. Matriks. B. Operasi Aljabar pada. Matriks

Bab. Matriks. A. Pengertian dan Jenis. Matriks. B. Operasi Aljabar pada. Matriks Bb IV Sumber: www.gerrysckes.com Mtriks Pd bb sebelumny, And telh mempeljri persmn dn pertidksmn. Bentuk persmn dpt diubh ke bentuk mtriks untuk mempermudh dlm perhitungn, mislny pliksi berikut ini. Ti,

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

2.Matriks & Vektor (1)

2.Matriks & Vektor (1) .triks & Vektor () t Kulih: ljbr Liner dn triks Semester Pendek T. / S Teknik Informtik Dosen Pengmpu: Heri Sismoro,.Kom. STIK IKO YOGYKRT Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 7 88 Fx 7-888 Website:

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X])

(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X]) DADU SICHERMAN (Sutu Apliksi dri Fktorissi Tunggl Pd Z[X]) Elh Nurlelh Jurusn Pendidikn Mtemtik Fkults Pendidikn Mtemtik dn Ilmu Pengethun Alm Universits Pendidikn Indonesi *) ABSTRACT An interesting ppliction

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

BAB I PENDAHULUAN. Sebuah sistem sebarang yang terdiri dari m persamaan linear dengan n M M M M M

BAB I PENDAHULUAN. Sebuah sistem sebarang yang terdiri dari m persamaan linear dengan n M M M M M BAB I PENDAHUUAN Sebuh sistem sebrng yng teriri ri m persmn liner engn n bilngn tk ikethui kn ituliskn sebgi : x + x +... + n x n = b x + x +... + n x n = b n x + n x +... + nn x n = b n imn x, x,...,

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

Bilangan 1. Modul 1 PENDAHULUAN

Bilangan 1. Modul 1 PENDAHULUAN Modul Bilngn M PENDAHULUAN Dr. Edy Bmbng Irwn, M.Pd. teri yng dipeljri dlm Modul ini dlh () opersi bilngn bult dn bilngn rsionl, (2) bilngn berpngkt dn bentuk kr. Bilngn bult dlm modul ini dikenlkn mellui

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Kegitn Beljr Mengjr 3 PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Drs. Zinuddin, M.Pd Kegitn eljr mengjr 3 ini kn memhs tentng persmn kudrt. Kegitn eljr mengjr 3 ini menckup du pokok hsn, yitu pokok hsn I tentng

Lebih terperinci

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Ms Silm UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 9 ALJABAR. HBS (Hogere Burger School) NI dn AMS (Algemeene Middelbre

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-0 D0-P-0- DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMA/MA Mtemtik (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hk Cipt

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 004 TINGKAT PROVINSI TAHUN 003 Prestsi itu dirih bukn didpt!!! SOLUSI SOAL Bidng Mtemtik Bgin Pertm Disusun oleh : Solusi Olimpide Mtemtik Tk Provinsi 003 Bgin Pertm

Lebih terperinci

- - RELASI DAN FUNGSI - - dlp2fungsi

- - RELASI DAN FUNGSI - - dlp2fungsi 804 Mtemtik Relsi dn Fungsi - - RELASI DAN FUNGSI - - Modul ini singkron dengn Apliksi Android, Downlod mellui Ply Store di HP Kmu, ketik di penrin dlpfungsi Jik Kmu kesulitn, Tnykn ke tentor gimn r downlodny.

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Stndr Kompetensi KOMPETENSI DASAR. Melkukn opersi hitung bilngn bult. : SMP : VII : MATEMATIKA : (SATU) KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS

Lebih terperinci

BENTUK PANGKAT/EKSPONEN, AKAR DAN LOGARITMA.

BENTUK PANGKAT/EKSPONEN, AKAR DAN LOGARITMA. Stndr Koetensi Menggunkn oersi dn sift sert niulsi ljbr dl eechn slh yng berkitn dengn bentuk ngkt, kr dn rit, ersn kudrt dn fungsi kudrt, syste ersn linier kudrt, ertidksn stu vrible, ik tetik. BENTUK

Lebih terperinci

Bab. Matriks. A. Pengertian dan Jenis. Matriks. B. Operasi Aljabar pada. Matriks

Bab. Matriks. A. Pengertian dan Jenis. Matriks. B. Operasi Aljabar pada. Matriks Bb IV Sumber: www.gerrysckes.com Mtriks Pd bb sebelumny, And telh mempeljri persmn dn pertidksmn. Bentuk persmn dpt diubh ke bentuk mtriks untuk mempermudh dlm perhitungn, mislny pliksi berikut ini. Ti,

Lebih terperinci

Handout Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd.

Handout Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd. Hndout Mt Kulih: Aljbr Mtriks ( SKS) Dosen: Dr. Hj Ade Rohyti, M. Pd. No. Indiktor Urin Mteri. menyebutkn definisi mtriks.. membut beberp contoh mtriks dengn menggunkn notsi yng tept.. menentukn ordo dri

Lebih terperinci

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks). Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,

Lebih terperinci