BAB II TINJAUAN PUSTAKA. proses pembakaran bahan bakar di dalam ruang bakar. Karena pembakaran ini

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. proses pembakaran bahan bakar di dalam ruang bakar. Karena pembakaran ini"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Motor Bensin Penjelasan Umum Motor bensin merupakan suatu motor yang menghasilkan tenaga dari proses pembakaran bahan bakar di dalam ruang bakar. Karena pembakaran ini berlangsung di dalam ruang bakar maka motor ini dikategorikan pesawat kalor dengan pembakaran dalam (Iternal Combustion Engine). Motor bensin dilengkapi dengan busi dan karburator. Karburator dalam motor bensin merupakan suatu tempat pencampuran bahan bakar dan udara. Setelah pencampuran udara dan bahan bakar terjadi kemudian dari karburator diisap ke dalam ruang bakar melalui katup masuk. Kemudian di dalam ruang bakar loncatan bunga api listrik dari busi menjelang akhir langkah kompresi membakar campuran tersebut sehingga terjadilah pembakaran yang kemudian menghasilkan daya motor. Tapi saat ini sudah ada motor bensin yang menggunakan injektor sebagai pengganti karburator. Pada motor bensin seperti ini, bahan bakar disemprotkan langsung ke dalam ruang bakar, tanpa melalui pencampuran bahan bakar dan udara pada karburator. Jadi dengan sistem injektor pemakaian bahan bakar menjadi lebih efisien dan pembakaran lebih sempurna. Karena pada sistem ini bahan bakar dikabutkan langsung ke ruang bakar, jadi kemungkinan bahan bakar terbuang lebih sedikit. 10

2 11 Motor bensin dibedakan menjadi dua jenis yaitu motor bensin 4 langkah dan motor bensin 2 langkah. Motor bensin 2 langkah adalah motor bensin yang memerlukan dua kali langkah torak atau satu kali putaran poros engkol untuk menghasilkan satu kali pembakaran dan satu kali langkah kerja.sedangkan motor bensin 4 langkah adalah motor bensin yang memerlukan 4 kali langkah torak atau dua kali putaran poros engkol untuk menghasilkan satu pembakaran dan satu langkah kerja. Siklus kerja 4 langkah ini dipertemukan pertama kali oleh seorang ilmuan Jerman Nicholas August Otto pada tahun Siklus Otto Siklus mesin 4 langkah dapat dijabarkan dalam siklus Otto udara standar yang terdiri dari 6 fase yaitu: pemasukan, pemampatan, pemanasan, pendayaan, pendinginan dan pembuangan. Enam fase siklus ini dapat digambarkan dalam diagram PVT (Pressure, Volume, Temprature) sebagai berikut. (a) (b)

3 12 (c) Gambar 2.1 (a) P-V, (b) T-S Diagram, (c) P-V dan T-S diagram Fase Pemasukan (Campuran Bahan Bakar dan Udara) Garis T0 T1 adalah garis fase proses tekanan tetap dan suhu tetap yang menggambarkan langkah pemasukan gas campuran udara dan bahan bakar pada tekanan dan suhu tetap dari karburator ke silinder mesin, ketika katup masuk membuka dan piston turun 180 derajat, ruang silinder membesar. Dalam proses ini, tekanan gas P dan suhu gas T tetap dan setara tekanan dan suhu standar normal udara luar, karena katup masuk terbuka. Volume silinder V membesar dar V1 ke V2, sehingga bobot molekul gas campuran bahan bakar dan udara dalam silinder bertambah. Fase Pemampatan (Kompresi Gas) Garis T 1 T 2 adalah garis fase proses yang menggambarkan langkah pemampatan gas campuran udara dan bahan bakar dalam silinder, ketika

4 13 katup masuk tertutup dan katup buang tertutup dan piston naik 180 derajat, ruang silinder mengecil. Dalam proses ini volume silinder dan volume gas V mengecil dari V1 ke V2, bobot molekul gas campuran bahan bakar dan udara tetap.tekanan gas P meningkat dari P1 ke P2 dan suhu gas T meningkat dari T1 ke T2. Fase Pemanasan dan Pembakaran Gas Garis T2 T3 adalah proses pada volume tetap yang mengambarkan proses pemanasan dan penyalaan dan pembakaran gas campuran bahan bakar dan udara oleh percikan api busi, ketika kedua katup tertutup. Dalam proses ini volume gas tetap pada V1, tetapi karena pemanasan, tekanan gas meningkat naik dari P2 ke P3, sehingga suhu meningkat naik dari T2 ke T3 dan terjadi peledakan gas campuran bahan bakar dan udara oleh percikan api busi. Fase Pendayaan (Usaha) Garis T3 T4 adalah garis proses yang menggambarkan langkah pendayaan karena pembakaran gas campuran udara dan bahan bakar dalam silinder ketika kedua katup tertutup sehingga silinder turun 180 derajat, ruang silinder membesar. Dalam proses ini volume silinder V membesar dari V1 ke V2, bobot gas campuran tetap, tekanan gas V merosot turun dari P3 ke P4 dan suhu gas T merosot turun dari T3 ke T4. Fase Pendinginan Gas Sisa Pembakaran. Garis T4 T1 adalah proses volume konstan yang mengambarkan proses pendinginan dan pengeluaran tenaga panas hasil pembakaran, ketika katup

5 14 buang terbuka. dalam proses ini, volume gas tetap pada V2, bobot gas campuran tetap tekanan gas turun dari P4 ke P1 sehingga suhu gas merosot turun dari T4 ke T1. Fase Pembuangan (Pengeluaran Gas Sisa Pembakaran). Garis T1 T0 adalah fase proses tekanan tetap yang menggambarkan langkah pembuangan sisa pembakaran, piston naik, ruang silinder mengecil, dimana tekanan gas P dan suhu gas T tetap setara tekanan atmosfer (udara luar) karena katup buang terbuka. Volume silinder V mengecil dari V2 ke V1, sehingga bobot gas sisa pembakaran berkurang Proses Pembakaran pada Motor Bensin Pembakaran adalah merupakan suatu proses secara kimiawi yang berlangsung dengan cepat antara oksigen (O2) dengan unsur yang mudah terbakar dari bahan bakar pada suhu dan tekanan tertentu. Unsur-unsur yang penting di dalam bahan bakar yaitu, karbon, nitrogen dan sulfur. Pada umumnya udara terdiri dari dua komponen utama yaitu oksigen dan nitrogen.

6 15 Tabel 2.1 Komposisi Oksigen dan Nitrogen Unsur Persentasi Volume(%) Persentasi Berat(%) Oksigen (O2) 20,99 23,15 Nitrogen (N2) 78,03 76,85 Lain-lain 0,98 0 Di dalam suatu pembakaran, energi kimia diubah menjadi energi panas dimana pada setiap terjadi pembakaran akan selalu menghasilkan gas buang yang meliputi komponen-komponen gas buang antara lain: CO2, NO2, H2O, SO2, dan CO. Proses pembakaran menghasilkan perubahan energi bahan bakar menjadi tenaga gerak, perubahan energi bersumber dari hasil pembakaran bahan bakar. Dalam pembakaran yang sempurna secara teoritis, reaksi pembakaran adalah sebagai berikut: C8H ,5O2 8CO2 + 9H2O + Energi.(2.1) Tetapi dalam prakteknya, udara mengandung ± 21 % O2 dan ± 79% N2. Serta pembakaran yang 100 % sempurna hanya didapat dalam laboratorium. Sehingga dalam prakteknya, pembakaran akan berlangsung : C8H ,5(O2 + 79/21N2) 8CO2 + 9H2O + 2,5(79/21N2)+Energi..(2.2) Jadi untuk pembakaran 1 mol bahan bakar memerlukan udara pembakaran (12,5) mol udara, serta menghasilkan 8 mol CO2, 9 mol H2O, 12,5(79/21) mol N2 dan Energi. Pembakaran bahan bakar pada motor bensin dimulai dengan pemasukan campuran udara dan bahan bakar dari karburator

7 16 menuju ruang bakar lewat katup masuk yang kemudian dinyalakan oleh percikan nyala api dari busi pada tekanan tertentu. Percikan nyala api busi tersebut kemudian membakar campuran yang telah siap untuk terbakar dengan kecepatan yang sangat tinggi. Sehingga terjadilah suatu pembakaran yang kemudian bisa mendorong torak dari Titik Mati Atas ke Titik Mati Bawah untuk menggerakkan poros engkol dan terjadilah putaran atau usaha pada motor Rasio Udara Bahan Bakar Rasio udara adalah suatu perbandingan antara udara dengan bahan bakar yang akan masuk ke ruang bakar. Rasio udara dan bahan bakar dapat dirumuskan dengan skema sebagai berikut : Dapat diketahui sebelumnya bahwa Bensin merupakan campuran dari isomer-isomer heptana (C7H16), oktana (C8H18) dan unsur mikro lainnya. Perbandingan antara heptana dengan oktana tergantung dari jenis bensin, sebagai contoh bensin dengan RON 88. Untuk mempermudah perhitungan bensin RON 88 terdiri atas 12% heptana dan 88% oktana, dengan Ar. O=16, H=1 dan C=12, maka Mr. C7H16=100; C8H18=114. Anggap massa jenis bensin 0.95 g/cm³, g/cc. Satu liter bensin massanya = massa jenis bensin x volume = 0.95 g/cc x 1000 cc = 950 g. Massa heptana = 12% x 950 g = 114 g. Jumlah mol heptana = massa heptana/mr.heptana = 114/100 = 1,14 mol. Massa oktana = 88% x 950 g = 836 g. Jumlah mol oktana = massa oktana/mr.oktana = 836/114 = 7,3 mol

8 17 Reaksi pembakaran :... C7H O > 7 CO H2O... 2 C8H O > 16 CO H2O Kebutuhan udara (O2) pembakaran heptana = mol heptana x koefisien reaksi O2/koefisien reaksi heptana = 1,14 x 11/1 = 12,54 mol. Kebutuhan udara (O2) pembakaran oktana = mol oktana x koefisien reaksi O2/koefisien reaksi oktana = 7,3 x 25/2 = 91,25 mol. Jumlah oksigen yang dibutuhkan untuk pembakaran = 12, ,25 = 103,79 mol. Oksigen untuk pembakaran diambil dari udara, anggap udara mengandung 20% oksigen. Maka jumlah mol udara yang dibutuhkan = 103,79/20% = 519 mol. Pada keadaan STP 1 mol udara volumenya 22,4 liter. Maka volume udara yang dibutuhkan untuk membakar 1 liter bensin = 521 x 22,4 liter = 11624,4 liter = 11, 62 meter kubik. Jadi berat udara : berat bahan bakar = : 1 Untuk bahan bakar LGV: LGV merupakan senyawa hydrokarbon yang dikenal sebagai butana, propana, isobutana atau campuran antara butana dengan propana. Perbandingan komposisi propana dengan butana adalah 30 : 70. Berat jenis LPG lebih besar dari udara yaitu, butana memiliki berat jenis dua kali berat udara dan propana memiliki berat jenis satu setengah kali berat udara. Secara kimia, reaksi pembakaran LGV adalah sebagai berikut: 2,16(0,3 C3H8+0,7 C4H10) + 13,07(02+3,76N2) 8 CO2+ 10,15 H2O+13,07(3,76N2) (2.3)

9 18 Maka rasio bahan bakar - udara untuk LPG: 1 : 6,05 Berdasarkan rasio bahan bakar di atas, maka diameter saluran udara pada karburator untuk pemakaian bahan bakar LGV dihitung dengan persamaan di bawah. Ukuran diameter saluran udara untuk standar bensin adalah: 3.7 cm Maka: A1 = 4 1 π D1 2 A1 = 4 1 x 3,14 x 3,7 2 Ukuran untuk saluran udara untuk LGV: = 10,74665 cm 2 A 1 X ,05 = A2 A 2 = 2 10,74665cm x 6,05 = 5,1997 cm 2 12,5 A2 = 4 1 x π x D 2 2 5,1997 cm 2 = 0,785.D2 2 D2 2 = 5,1997 cm 0,785 2 D2 2 = 6,623cm 2 D2 = 6, 623 cm 2 D2 = 2,573 cm...(2.4) Dimana : A1 : Luas penampang pada saluran udara untuk karburator memakai bahan bakar bensin.

10 19 D1 : Diameter saluran udara untuk karburator memakai bahan bakar bensin. A2 : Luas Penampang pada saluran udara untuk karburator memakai bahan bakar LGV. D2 : Diameter saluran udara untuk karburator memakai bahan bakar LGV. 2.2 Prinsip Kerja Motor Bensin Empat Langkah Prinsip kerja dari motor bensin empat langkah adalah mengikuti siklus Otto yaitu untuk menghasilkan satu kali tenaga kerja memerlukan empat kali langkah torak dua kali putaran poros engkol. Berikut ini adalah skema langkah keja motor bensin empat langkah: 1) langkah isap 2) langkah kompresi 3) langkah usaha 4) langkah buang Gambar 2.2 Prinsip Kerja Motor Bensin 4 Langkah (Toyota, 1998) 1. Langkah Isap Torak bergerak ke bawah meninggalkan Titik Mati Atas (TMA) ke Titik Mati Bawah (TMB) sambil mengisap campuran udara dan bensin ke

11 20 dalam silinder. Selama langkah ini katup isap membuka dan katup buang dalam keadaan menutup. Poros engkol membuat setengah putaran pertama. 2. Langkah Kompresi Torak bergerak dari TMB ke TMA memampatkan campuran udara dan bensin yang berada dalam silinder. Campuran udara dan bensin ini dimampatkan diantara torak dan dasar atas silinder (ruang bakar). Selama langkah ini katup isap dan katup buang berada dalam keadaan tertutup. Pada gerak kompresi ini poros engkol membuat setengah putaran yang kedua. 3. Langkah Kerja Bila telah mencapai TMA, campuran udara dan bensin yang dimampatkan tadi dibakar oleh percikan api listrik yang keluar dari busi, menyebabkan terbakarnya gas-gas dan menimbulkan tenaga yang mendorong torak ke TMB. Selama gerak ini katup-katup isap dan buang dalam keadaan tertutup. Poros engkol membuat setengah putaran yang ketiga. 4. Langkah Buang Torak bergerak ke TMA mendorong gas-gas yang telah terbakar keluar melalui katup buang. Katup isap dalam keadaan tertutup dan katup buang membuka selama torak bergerak ke TMA. Selama gerak buang ini poros engkol membuat setengah putaran keempat, pada akhirnya torak kembali pada kedudukannya semula dan torak telah melakukan 4 gerakan

12 21 sepenuhnya. Dan kemudian akan kembali melakukan proses yang sama secara berulang-ulang. 2.3 Bahan Bakar Bensin Bahan bakar bensin atau minyak bakar yang dipakai untuk motor bensin adalah jenis gasoline atau petrol. Bensin pada umumnya merupakan suatu campuran dari hasil pengilangan yang mengandung parafin,naphthene dan aromatic dengan perbandingan yang bervariasi.dewasa ini tersedia tiga jenis bensin, yaitu premium, pertamax, dan pertamax plus. Ketiganya mempunyai mutu atau prilaku (perfomance) yang berbeda. Mutu bensin dipergunakan dengan istilah bilangan oktana (Octane Number). Bensin disebut juga dengan kata lain Petrol atau Gasoline yaitu campuran berbagai hidrokarbon yang diperoleh melalui proses destilasi/pengilangan dari minyak mentah (Crude Oil). Ada beberapa persyaratan yang harus dipenuhi bensin sebagai bahan bakar mesin pembakaran dalam yaitu : Mudah bercampur dengan udara Tahan terhadap knocking. Tidak mudah terbakar sendiri sebelum waktu yang ditentukan. Tidak memiliki kecenderungan menurunkan efisiensi volumetris mesin. Murah dan mudah didapat. Menghasilkan pembakaran bersih, tanpa menyisakan korosi pada komponen peralatan mesin. Memiliki nilai kalor yang cukup tinggi.

13 Angka Oktan Angka oktan pada bensin adalah suatu bilangan yang menunjukan kemampuan bertahan terhadap knocking (detonasi). Makin besar angka oktannya, makin besar pula kemampuan bertahan mesin terhadap knocking.dengan berkurangnya intensitas untuk berdetonasi, maka campuran udara dan bahan bakar yang di kompresikan oleh torak dapat terbakar lebih baik. Sehingga kadar karbon monoksida pada gas buang akan berkurang, dan pemakaian bahan bakar menjadi hemat. Angka oktan tergantung pada struktur senyawa hidrokarbon yang terdapat pada bensin tersebut. Besarnya angka oktan suatu bahan bakar ini tergantung pada prosentase iso oktan dan normal heptana yang terkandung didalamnya. Kalau di dalam suatu bahan bakar terkandung 80 % iso oktan dan 20 % normal heptana maka dapat dikatakan bahwa angka oktan bahan bakar tersebut adalah 80. Iso oktan (C8H18) mempunyai sifat tahan terhadap knocking dan tingkat oktannya adalah 100, sedangkan normal heptana (C7H16) cenderung menambah terhadap terjadinya knocking dan tingkat oktannya adalah nol. Penambahan iso oktan didalam bensin akan menghemat bahan bakar. Dengan bertambahnya isooktan bertambah pula angka oktan. Untuk mesin yang mempunyai perbandingan kompresi yang tinggi memerlukan bahan bakar bensin yang mempunyai kadar oktan yang tinggi untuk menghilangkan terjadinya detonasi. 2.5 Liquefied Gas Vehicle (LGV) Penjelasan umum tentang LGV

14 23 Definisi tentang LGV LGV merupakan bahan bakar gas yang diformulasikan untuk kendaraan bermotor yang menggunakan spark ignition engine terdiri dari campuran propane (C3) dan butane (C4). Singkatnya, LGV merupakan LPG untuk kendaraan. Adapun kualitas pembakaran LGV setara dengan bensin berkualitas RON 98 (pertamax plus) dan ramah lingkungan. Tekanannya berkisar antara 8-12 bar, jauh lebih kecil ketimbang CNG yang tekanannya mencapai 200 bar. Karena kualitasnya lebih tinggi, harga LGV memang lebih tinggi dibandingkan dengan BBM bersubsidi (premium), tetapi lebih rendah dari harga BBM non subsidi (pertamax cs). LGV lebih fleksibel digunakan untuk daerah-daerah yang jauh dari sumber gas atau tidak memiliki pipa gas bumi. Sementara Compressed Natural Gas (CNG) merupakan bahan bakar gas yang dibuat dengan melakukan kompresi metana (CH4) yang diekstrak dari gas alam. CNG disimpan dan didistribusikan dalam bejana tekan, biasanya berbentuk silinder. CNG memiliki tekanan 200 bar, dengan tangki yang lebih besar ketimbang LGV. Ciri khas LGV Bahan bakar gas LGV mempunyai ciri khas sebagai berikut : 1. Sensitif terhadap api. 2. Mudah terbakar. 3. Tidak berwarna.

15 24 Sifat khas LGV Perlu diketahui, LGV bersifat FLAMMABLE (mudah terbakar). Dalam batas flammabality, LGV adalah sumber api yang terbuka sehingga letup (percikan api) yang sekecil mungkin dapat segera menyambar gas LGV. Sifat umum LGV Sebagai bahan bakar gas, LGV mudah terbakar apabila terjadi persenyawaan di udara. Untuk mencegah hal-hal yang tidak diinginkan perlu diketahui beberpa sifat umumnya : 1. Tekanan LGV cukup besar, sehingga bila terjadi kebocoran LGV akan membentuk gas secara cepat, memuai dan sangat cepat terbakar. 2. LGV menghambur di udara secara berlahan sehingga sulit mengetahuinya secara dini. 3. Berat jenis LGV lebih besar dari pada udara sehingga cenderung bergerak ke bawah. 4. LGV tidak mengandung racun. 5. Daya pemanasannya cukup tinggi, namun tidak meninggalkan debu (sisa pembakaran). 6. Cara penggunaannya cukup praktis dan mudah. Pada dasarnya tujuan penggunaan LGV adalah semata-mata untuk mempermudah pekerjaan rutin sehari-hari. Dengan konsep cepat, tepat dan

16 25 aman, LGV siap membantu mempermudah dan memperlancar pekerjaan sehari-hari dan tentunya dapat menghemat waktu dan energi. 2.6 Regulator Regulator merupakan suatu alat untuk mengatur aliran gas yang keluar dari tabung. Regulator standar yang dipakai untuk kompor gas mempunyai laju aliran gas 3 kilogram/jam. Menurut penelitian yang dilakukan oleh salah satu mahasiswa Teknik Mesin Universitas Udayana yang menguji Bio Gas untuk bahan bakar pada sepeda motor 4 langkah 125 cc. (Hendra, 2008), pemakaian regulator standar (3kg/jam) untuk penyaluran bahan bakar gas ke ruang bakar mesin sepeda motor menghasilkan akselerasi yang kurang baik dan putaran idle mesin yang terlalu tinggi, karena kurangnya suplai bahan bakar ke ruang bakar. Untuk dapat menghasilkan akselerasi yang setara atau mendekati dengan akselerasi menggunakan bahan bakar bensin, maka harus menggunakan regulator yang mempunyai laju aliran yang lebih besar,jadi harus menggunakan regulator yang mempunyai laju aliran massa gas yang bervariasi dari 3-10 kg/jam,yang bila dihitung sama dengan gram/jam.jadi untuk rasio udara dan bahan bakar untuk penggunaan bahan bakar LGV agar energi yang dihasilkan mendekati penggunaan bahan bakar bensin,maka rasio udara dan bahan bakar dapat dirumuskan sebagai berikut: Untuk bahan bakar LGV : 2,16(0,3 C3H8+0,7 C4H10) + 13,07( N2) 8 CO2 + 10,15 H2O+13,07(3.76N2) (2.5)

17 26 Sehingga untuk pemakaian bahan bakar LGV memerlukan 2,16 kali mol bensin agar sebanding dengan energi yang dihasilkan 1 mol bensin.untuk mendapatkan massa bahan bakar dan oksigen untuk proses pembakaran bensin dan LGV digunakan rumus sebagai berikut: Massa bahan bakar LGV: Massa (0,3C3H8+0,7C4H10) = mol (0,3C3H8+0,7C4H10) X berat molekul (0,3C3H8+0,7C4H10) Massa udara untuk LGV : = 2,16 x (15+ 46,2) = 2,16 x 61,2 = 132,19 gram...(2.6) Massa udara untuk LGV= mol udara untuk LGV X berat molekul udara untuk LGV = 13,07 x 137,28 = 1794,25 gram...(2.7) Massa bahan bakar bensin: Massa C8H18= mol C8H18 X berat molekul C8H18 = 1 X114 =114gram... (2.8) Mol udara untuk bensin : Massa udara untuk bensin = mol udara untuk bensin x berat molekul udara untuk bensin

18 27 = 12,5 x 137,28 = 1716 gram... (2.8) Dan untuk mendapatkan volume dari bahan bakar dan udara pada proses pembakaran bahan bakar bensin dan bahan bakar LGV, digunakan rumus sebagi berikut: Volume bahan bakar bensin: Volume = Massa bensin Massa jenis bensin = 0,114 kg Volume udara pada pembakaran bensin: 0,7 kg/liter = 0,163 liter...(2.9) Volume = Massa udara untuk bensin Maasa jenis udara = 1,716 kg 0, kg/liter = 1525,3 liter...(2.10) Dan untuk rasio volume bahan bakar dengan udara pada pembakaran bahan bakar bensin adalah: 1 : 9357,7 Volume bahan bakar LGV: Volume = Massa LGV Massa jenis LGV = 0,13219 kg 0,0015 kg/liter = 88,13 liter...(2.11) Volume udara pada pembakaran LGV:

19 28 Volume = Massa udara untuk LGV Massa jenis udara = 1,79425 kg 0, kg/liter = 1595 liter...(2.12) Jadi rasio volume bahan bakar dengan udara pada proses pembakaran LGV adalah: 1 : 18,09 Jadi untuk mendapatkan hasil akselerasi yang lebih maksimal dari pemakaian bahan bakar LGV,maka harus dilakukan pengujian bahan bakar LGV dengan laju aliran massa bahan bakar yang bervariasi,yaitu dari 3 kg/jam sampai dengan 10 kg/jam.karena dari latar belakang diatas,pemakaian regulator standar(3kg/jam),suplai bahan bakar keruang bakar masih kurang.sehingga untuk mendapatkan rasio bahan bakar dan udara 1: 18,09 pada proses pembakaran LGV,maka harus dilakukan variasi laju aliran massa bahan bakar yang masuk dalam ruang keruang bakar agar mendapatkan akselerasi kendaraan yang lebih maksimal. 2.7 Converter kits Converter kits adalah peralatan utama pada mesin dengan bahan bakar LPG. Converter kits terdiri dari dua baian utama. Bagian pertama dinamakan regulator tekanan, berfungsi untuk menurunkan tekanan LPG dari tabung menjadi tekanan output. Penurunan tekanan pada regulator mengakibatkan perubahan fasa LPG dari cair ke gas. Untuk membantu proses penguapan, air pendingin mesin dialirkan disekeliling regulator. Bagian kedua, dinamakan

20 29 dengan regulator aliran. Regulator aliran berupa katup yang dikendalikan oleh kevakuman throtle body. Katup regulator digerakkan oleh lever. Lever berupa pengungkit dengan titik tumpu ditengah. Satu ujung dikaitkan dengan diafragma dan ujung yang lain ditahan oleh pegas lever. Jumlah gas yang mengalir dari regulator tekanan ke ruang diafragma dipengaruhi oleh kekuatan pegas lever dan kevakuman ruang diafragma. Pegas lever dapat diatur dengan memutar baut penyetel yang terdapat pada bagian luar converter kits. kevakuman ruang diafragma tergantung dari kecepatan aliran udara pada throttle body. Converter kits juga dilengkapi dengan katup solenoid dan katup aliran gas pada saluran output. Solenoid berfungsi untuk membuka dan menutup saluran gas didalam converter kits. Solenoid dikendalikan oleh tegangan listrik dari sistem kelistrikan kendaraan. Katup aliran gas berfungsi untuk mengatur kapasitas aliran pada sisi output converter kits. Katup aliran gas dapat diatur untuk mengurangi atau menambah luasan saluran output. Bentuk fisik converter kits LPG ini dapat dilihat pada gambar berikut : Gambar 2.3 Bentuk fisik coverter kits LPG

21 30 Untuk memasukkan LPG ke saluran manifold, digunakan sebuah diffuser yang dipasang pada sisi depan throtle body. Diffuser memiliki beberapa lubang memanjang yang mengelilingi lingkaran dalam. LPG dalam fasa gas mengalir dari converter kits ke diffuser melalui katup aliran gas ( katup akselerasi). 2.8 Parameter Pengukur Tenaga Mesin Dinamometer Dinamometer adalah alat untuk mengukur daya mekanik (kecepatan dan torsi) yang di keluarkan mesin.dinamometer menggunakan sensor untuk mengindikasikan kecepatan dan torsi. Untuk mengukur tenaga mesin secara langsung belum bisa digunakan.dua metode yang biasa digunakan dalam industri mesin adalah : 1. Dinamometer mesin Jika kita ingin mengetahui tenaga dari mesin,maka kita menggunakan dinamometer yang dikhususkan untuk mesin. Ini menyerupai pada manufaktur outputshaft dari mesin kendaraan. Mesin diletakan pada dudukan kemudian dihubungkan pada dinamometer,biasanya menggunakan propeler shaft (as kopel ) yang di hubungkan pada bagian belakang dari poros engkol (atau pada roda gila). Hasil dari power yang diukur dengan cara ini umumnya disebut sebagai flywheelpower dinamometer ini membutuhkan pengereman dimana digunakan untuk mengetahui torsi (atau beban) dari mesin tersebut. Pada saat mesin di tahan pada kecepatan tetap dengan beban yang di berikan

22 31 oleh dinamometer kemudian torsi yang telah diberikan oleh dinamometer harus dengan tepat menyamakan dengan torsi yang dihasilkan oleh mesin. Dari sini akan mendapatkan grafik torsi dari keseluruhan putaran mesin. 2. Rolling road Dynamometer (Chassis Dynamometer) Rolling road dynamometer dipergunakan untuk mengukur daya output mesin dengan mengetes kendaraan dalam bentuk seutuhnya,digunakan untuk mengetahui performa output,effisiensi energi maksimum dan tingkat kebisingan. Cara kerja rolling road dinamometer: Kendaraan dinaikan ke atas chassis dyno dan letakkan roda di roller kemudian di ikat menggunakan strap. Beban pengereman dihasilkan oleh salah satu roller dengan menggunakan hidrolik atau dengan sistem elektrik sama pada engine-dyno yang mengaplikasikan torsi pada crankshaft dari mesin. Perhitungan umum yang sama, BHP = torsi(ft/lbs) x rpm /5252, bisa digunakan untuk menghitung bhp pada roller dengan mengetahui torsi dan rpm pada roller (bukan rpm pada mesin). 2.9 Parameter Unjuk Kerja Motor Pembakaran Dalam Proses Pembakaran Pembakaran didalam ruang bakar ( combustion chamber ) suatu motor bakar merupakan gabungan suatu proses fisika dan proses kimia yang kompleks, meliputi persiapan pembakaran, perkembangan pembakaran, dan proses setelah pembakaran. Proses tersebut tergantung dari jenis dan kecepatan reaksi kimia, keadaan panas dan pertukaran masa selama proses, serta perambatan panas ke

23 32 sekelilingnya ( Faisal Dasuki; 1977 ). Untuk menghasilkan suatu proses pembakaran, minimal harus ada tiga komponen utama, yaitu bahan bakar, oksigen (udara), dan panas. Panas didapat dari letikan bunga api listrik pada motor bensin ( Spark Ignition Engine) atau tekanan kompresi yang tinggi pada motor diesel (Compression Ignition Engine). Tanpa salah satu komponen diatas mustahil proses pembakaran akan terjadi. Secara praktis prestasi mesin ditunjukkan oleh torsi dan daya. Parameter ini relatif penting untuk mesin dengan variasi kecepatan operasi dan tingkat pembebanan. Daya poros maksimum menggambarkan sebagai kemampuan maksimum mesin. Torsi poros maksimum pada putaran mesin tertentu mengindikasikan kemampuan untuk memperoleh aliran udara (campuran bahan bakar dan udara) yang masuk ke dalam mesin pada putaran mesin tersebut. Tujuan utama dari penggunaan engine adalah daya (mechanical power) Daya poros efektif Tujuan utama dari penggunaan engine adalah daya (mechanical power). Daya didefinisikan sebagai laju kerja dan sama dengan perkalian antara gaya dengan kecepatan linear atau torsi dengan kecepatan angular. Sehingga dalam pengukuran daya melibatkan pengukuran gaya atau torsi dan kecepatan. Pengukuran dilakukan dengan menggunakan dinamometer dan tachometer atau alat lain dengan fungsi yang sama. Daya (Bhp) = [HP].(2.13) Torsi Torsi merupakan harga yang ditunjukkan oleh momen motor pada out put poros engkol (crank shaft). Torsi merupakan perkalian antara gaya yang

24 33 dihasilkan dari tekanan hasil pembakaran pada torak dikalikan dengan jari-jari lingkar poros engkol. Semakin sempurna pembakaran suatu motor, maka torsi yang terbangkit akan semakin maksimal. Bila radius tenaga yang bekerja adalah r (m) dan tenaga yang diberikan adalah F (kgf) maka momennya adalah: T = F.r (kgf.m)...(2.14) Konsumsi Bahan Bakar Spesifik Konsumsi bahan bakar spesifik (spesific fuel consumption) didefenisikan sebagai jumlah bahan bakar yang dipakai untuk menghasilkan satu satuan daya dalam waktu satu jam dan dirumuskan sebagai: SFC = [ L/HP.h]...(2.15) Dimana untuk FC dapat dirumuskan sebagai : FC = [L/h].(2.16) Pengukuran Gas Buang Proses pembakaran yang terjadi didalam ruang bakar merupakan serangkaian kimia yang melibatkan campuran bahan bakar berupa HC dengan oksigen. Proses pembakaran menghasilkan empat macam gas buang berupa CO2, CO, NOX dan HC. Keempat macam gas buang ini terbentuk pada proses pembakaran sempurna dan tidak sempurna. Pada proses pembakaran sempurna, hasil pembakaran yang terbentuk adalah CO 2 dan H 2 O. Proses pembakaran sempurna dapat dinyatakan dalam reaksi berikut: CXHY + n (O2 + 3,76 N2) a CO2 + b H2O + 3,76 n N2

25 34 Sedangkan proses pembakaran tidak sempurna menghasilkan gas buang berupa CO, NOX, HC dan partikulat pengotor lainnya. Proses pembakaran tidak sempurna dapat dituliskan dalam reaksi sebagai berikut: P CXHY + q (O N2) a CO2 + b H2O + c CO + d HC + e NOX + 3,76 n N2 + partikulat pengotor lainnya HC merupakan sisa bahan bakar yang tidak ikut terbakar. CO terbentuk akibat kurangnya kadar O2 dalam proses pembakaran, sehingga yang terbentuk bukanlah CO2 melainkan CO karena HC yang ada berikatan dengan O2. NOX terbentuk pada temperatur tinggi disaat campuran udara dengan bahan bakar berlebihan. Gas analyzer merupakan rangkaian peralatan yang digunakan untuk mendeteksi keberadaan gas buang dalam bentuk CO2, CO, NOX, HC dan juga kadar O2 yang ikut terbuang. Metode yang umum digunakan dalam proses pendekteksian keberadaan gas buang adalah melalui metode ionisasi. Hasil keluaran gas analyzer berupa konsentrasi gas- gas CO2,CO,NOX,O2 dan HC. Dari hasil yang didapatkan, ternyata terdapat korelasi antara rasio A/F dengan konsentrasi keluaran gas-gas tersebut. Pertimbangan pengujian suatu engine ditentukan oleh unjuk kerja engine dan kadar emisi gas buang hasil pembakaran. Unjuk kerja menjadi pentingkarena berkaitan dengan tujuan penggunaan engine dan faktor ekonomisnya sedangkan tinggi rendahnya emisi gas buang berhubungan dengan faktor lingkungan. Unjuk rasa suatu engine sangat tergantung pada energi yang dihasilkan dari campuran bahan bakar yang diterima oleh engine dan efisiensi thermis dari engine tersebut (kemampuan engine untuk mengubah energi kimia bahan bakar

26 35 menjadi kerja efektif dari engine). Bahan bakar bensin mengandung campuran dari beberapa hidrokarbon dan jika terbakar secara sempurna, pada gas buang hanya akan mengandung karbon dioksida (CO2) dan uap air (H2O) serta udara yang tidak ikut dalam proses pembakaran. Namun untuk beberapa alasan, pembakaran yang terjadi adalah tidak sempurna dan akan menghasilkan karbon monoksida(co), gas beracun yang mematikan dan hidrokarbon yang tidak terbakar (Unburned Hidrocarbon, UBHC) pada gas buang. Disamping CO dan HC, emisi utama yang ketiga adalah oksida dari nitrogen (NOX) yang terbentuk oleh reaksi antara nitrogen dengan oksigen karena temperatur pembakaran yang tinggi, yaitu lebih dari 1100 o C [1] Emisi Gas Buang Motor Bensin Emisi gas yang dihasilkan oleh pembakaran kendaraan bermotor pada umumnya berdampak negatif terhadap lingkungan. Sehingga perlu diambil beberapa langkah untuk dapat mengendalikan gas buang yang dihasilkan tersebut. Salah satu caranya adalah dengan pemeriksaan atau uji emisi berkala untuk mengetahui kandungan gas buang kendaraan yang berpotensi mencemari lingkungan. Pada negara-negara yang memiliki standar emisi gas buang kendaraan yang ketat, ada 5 unsur dalam gas buang kendaraan yang akan diukur yaitu senyawa HC, CO, CO2, O2 dan senyawa NOx. Sedangkan pada negaranegara yang standar emisinya tidak terlalu ketat, hanya mengukur 4 unsur dalam gas buang yaitu senyawa HC, CO, CO2 dan O2. (

27 36 Bahan bakar bensin mengandung campuran dari beberapa hidrokarbon dan jika terbakar secara sempurna, pada gas buang hanya akan mengandung karbon dioksida (CO2) dan uap air (H2O) serta udara yang tidak ikut dalam proses pembakaran. Namun untuk beberapa alasan, pembakaran yang terjadi adalah tidak sempurna dan akan menghasilkan karbon monoksida (CO), gas beracun yang mematikan dan hidrokarbon yang tidak terbakar (Unburned Hidrocarbon, UBHC) pada gas buang. Disamping CO dan HC, emisi utama yang ketiga adalah oksida dari nitrogen (NOX) yang terbentuk oleh reaksi antara nitrogen dengan oksigen karena pembakaran yang tinggi, yaitu lebih dari 1100 o C. 1. Karbon Monoksida (CO) Gas karbonmonoksida adalah gas yang relative tidak stabil dan cenderung bereaksi dengan unsur lain. Karbon monoksida, dapat diubah dengan mudah menjadi CO2 dengan bantuan sedikit oksigen dan panas. Saat mesin bekerja dengan AFR yang tepat, emisi CO pada ujung knalpot berkisar 0.5% sampai 1% untuk mesin yang dilengkapi dengan sistem injeksi atau sekitar 2.5% untuk mesin yang masih menggunakan karburator. Dengan bantuan air injection, maka CO dapat dibuat serendah mungkin mendekati 0%. Apabila AFR sedikit saja lebih kaya dari angka idealnya (AFR ideal = lambda = 1.00) maka emisi CO akan naik secara drastis. Jadi tingginya angka CO menunjukkan bahwa AFR terlalu kaya dan ini bisa disebabkan antara lain karena masalah di fuel injection system seperti fuel pressure yang terlalu tinggi, sensor suhu mesin yang tidak normal, air filter yang kotor, PCV system yang tidak normal, karburator yang kotor atau setelannya yang tidak tepat.karbon monoksida merupakan gas yang tidak berwarna dan tidak

28 37 berbau dan gas beracun. Gas ini timbul pada saat kondisi campuran di dalam mesin kaya. Dimana tidak tersedianya cukup oksigen untuk membentuk CO menjadi CO2, sehingga beberapa carbon berakhir menjadi CO. Biasanya untuk mesin bensin kadarnya 0,2% - 0,5%. Kekuatannya berkaitan dengan hemoglobin di dalam darah sangat lebij kuat dari pada oksigen. Bahkan konsentrasi yang rendah pun dapat menyebabkan terjadinya sufokasi. Konsentrasi didalam udara maksimal yang diijinkan adalah 33 mg/ m Hidrokarbon (HC) Bensin adalah senyawa hidrokarbon, jadi setiap HC yang didapat di gas buang kendaraan menunjukkan adanya bensin yang tidak terbakar dan terbuang bersama sisa pembakaran. Apabila suatu senyawa hidrokarbon terbakar sempurna (bereaksi dengan oksigen) maka hasil reaksi pembakaran tersebut adalah karbondioksida (CO2) dan air(h 2O). Walaupun rasio perbandingan antara udara dan bensin (AFR=Air-to-Fuel-Ratio) sudah tepat dan didukung oleh desain ruang bakar mesin saat ini yang sudah mendekati ideal, tetapi tetap saja sebagian dari bensin seolah-olah tetap dapat bersembunyi dari api saat terjadi proses pembakaran dan menyebabkan emisi HC pada ujung knalpot cukup tinggi. Untuk mobil yang tidak dilengkapi dengan Catalytic Converter (CC), emisi HC yang dapat ditolerir adalah 500 ppm dan untuk mobil yang dilengkapi dengan CC, emisi HC yang dapat ditolerir adalah 50 ppm.emisi HC ini dapat ditekan dengan cara memberikan tambahan panas dan oksigen diluar ruang bakar untuk menuntaskan proses pembakaran. Proses injeksi oksigen tepat setelah exhaust port akan dapat menekan emisi HC secara drastis. Saat ini, beberapa mesin mobil

29 38 sudah dilengkapi dengan electronic air injection reaction pump yang langsung bekerja saat cold-start untuk menurunkan emisi HC sesaat sebelum CC mencapai suhu kerja ideal. Apabila emisi HC tinggi, menunjukkan ada 3 kemungkinan penyebabnya yaitu CC yang tidak berfungsi, AFR yang tidak tepat (terlalu kaya) atau bensin tidak terbakar dengan sempurna di ruang bakar. Apabila mobil dilengkapi dengan CC, maka harus dilakukan pengujian terlebih dahulu terhadap CC denganc aramengukur perbedaan suhu antara inlet CC dan outletnya. Seharusnya suhu di outlet akan lebih tinggi minimal 10% daripada inletnya. Apabila CC bekerja dengan normal tapi HC tetap tinggi, maka hal ini menunjukkan gejala bahwa AFR yang tidak tepat atau terjadi misfire. AFR yang terlalu kaya akan menyebabkan emisi HC menjadi tinggi. Ini bias disebabkan antara lain kebocoran fuel pressure regulator, setelan karburator tidak tepat, filter udara yang tersumbat, sensor temperature mesin yang tidak normal dan sebagainya yang dapat membuat AFR terlalu kaya. Injector yang kotor atau fuel pressure yang terlalu rendah dapat membuat butiran bensin menjadi terlalu besar untuk terbakar dengna sempurna dan ini juga akan membuat emisi HC menjadi tinggi. Apapun alasannya, AFR yang terlalu kaya juga akan membuat emisi CO menjadi tinggi dan bahkan menyebabkan outlet dari Cylinder Cap mengalami overheat, tetapi CO dan HC yang tinggi juga bisa disebabkan oleh rembasnya pelumas ke ruang bakar. Apabila hanya HC yang tinggi, maka harus ditelusuri penyebab yang membuat ECU memerintahkan injector untuk menyemprotkan bensin hanya sedikit sehingga AFR terlalu kurus yang menyebabkan terjadinya intermittent misfire.

30 39 Pada mobil yang masih menggunakan karburator, penyebab misfire antara lain adalah kabel busi yang tidak baik, timing pengapian yang terlalu mundur, kebocoran udara disekitar intake manifold atau mechanical problem yang menyebabkan angka kompresi mesin rendah. Untuk mobil yang dilengkapi dengan sistem EFI, gejala misfire ini harus segera diatasi karena apabila didiamkan, ECU akan terus menerus berusaha membuat AFR menjadi kaya karena membaca bahwa masih ada oksigen yang tidak terbakar ini. Akibatnya Cylinder Cap akan mengalami overheat. Gas buang hidrokarbon yang dihasilkan pada SI engine mencapai 6000 ppm, komposisinya setara dengan 1-1,5 % bahan bakar. Pembentukan gas buang HC dipengaruhi oleh komposisi bahan bakar, geometri dari ruang bakar, dan parameter operasi mesin. Gas buang hidrokarbon dapat menyebabkan iritasi dan kanker. 3. Nitrogen Oxide (NOX) Emisi NOx tidak dipentingkan dalam melakukan diagnose terhadap mesin. Senyawa NOx adalah ikatan kimia antara unsur nitrogen dan oksigen. Dalam kondisi normal atmosphere, nitrogen adalah gas inert yang amat stabil yang tidak akan berikatan dengan unsur lain. Tetapi dalam kondisi suhu tinggi dan tekanan tinggi dalam ruang bakar, nitrogen akan memecah ikatannya dan berikatan dengan oksigen. Senyawa NOx ini sangat tidak stabil dan bila terlepas ke udara bebas, akan berikatan dengan oksigen untuk membentuk NO2. Inilah yang amat berbahaya karena senyawa ini amat beracun dan bila terkena air akan membentuk asam nitrat. Tingginya konsentrasi senyawa NOx disebabkan karena tingginya konsentrasi oksigen ditambah dengan tingginya suhu ruang bakar. Untuk menjaga

31 40 agar konsentrasi NOx tidak tinggi maka diperlukan kontrol secara tepat terhadap AFR dan suhu ruang bakar harus dijaga agar tidak terlalu tinggi baik dengan EGR maupun long valve overlap. Normalnya NOx pada saat idle tidak melebihi 100 ppm. Apabila AFR terlalu kurus, timing pengapian yang terlalu tinggi atau sebab lainnya yang menyebabkan suhu ruang bakar meningkat, akan meningkatkan konsentrasi NOx dan ini tidak akan dapat diatasi oleh CC atau sistem EGR yang canggih sekalipun. Tumpukan kerak karbon yang berada di ruang bakar juga akan meningkatkan kompresi mesin dan dapat menyebabkan timbulnya titik panas yang dapat meningkatkan kadar NOx. Mesin yang sering detonasi juga akan menyebabkan tingginya konsentrasi NOx. Gas buang NOx yang dihasilkan engine dapat mencapai 2000 ppm. Nitrogen pada atmosfir merupakan struktur diatomic yang stabil pada temperatur rendah. Akan tetapi pada temperatur tinggi ( K) yang terjadi pada ruang bakar, sejumlah N2 berubah menjadi 2N, setelah itu bereaksi dengan O2 sehingga membentuk NO2, Gas NO2 yang keluar dari exhaust kendaraan akan bereaksi dengan sinar matahari dan menghasilkan NO + O + smog, monoatomik oksigen (O) akan bereaksi dengan O2 menghasilkan O3 (ozon), terbentuknya ozon pada permukaan bumi dapat menyebabkan radang paru- paru, dan juga berbahaya untuk tanaman.

BAB II TINJAUAN LITERATUR

BAB II TINJAUAN LITERATUR BAB II TINJAUAN LITERATUR Motor bakar merupakan motor penggerak yang banyak digunakan untuk menggerakan kendaraan-kendaraan bermotor di jalan raya. Motor bakar adalah suatu mesin yang mengubah energi panas

Lebih terperinci

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum 4 BAB II DASAR TEORI 2.1. Motor Bensin 2.1.1. Penjelasan Umum Motor bensin merupakan suatu motor yang menghasilkan tenaga dari proses pembakaran bahan bakar di dalam ruang bakar. Karena pembakaran ini

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Landasan Teori Apabila meninjau mesin apa saja, pada umumnya adalah suatu pesawat yang dapat mengubah bentuk energi tertentu menjadi kerja mekanik. Misalnya mesin listrik,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Motor Bakar. Motor bakar torak merupakan internal combustion engine, yaitu mesin yang fluida kerjanya dipanaskan dengan pembakaran bahan bakar di ruang mesin tersebut. Fluida

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bakar 3.2 Hukum Utama Termodinamika Penjelasan Umum

BAB II DASAR TEORI 2.1 Motor Bakar 3.2 Hukum Utama Termodinamika Penjelasan Umum 4 BAB II DASAR TEORI 2.1 Motor Bakar Motor bakar adalah sebuah mekanisme yang menstransformasikan energi panas menjadi energi mekanik melalui sebuah konstruksi mesin. Perubahan, energi panas menjadi energi

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4..1. Analisis Reaksi Proses Proses Pembakaran 4.1.1 Perhitungan stoikiometry udara yang dibutuhkan untuk pembakaran Untuk pembakaran diperlukan udara. Jumlah udara

Lebih terperinci

PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX

PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX THE INFLUENCE OF INDUCT PORTING INTAKE AND EXHAUST FOR THE 4 STROKES 200 cc PERFORMANCE

Lebih terperinci

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA Homepage jurnal: http://jurnal.untirta.ac.id/index.php/jwl ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL Sadar Wahjudi 1

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bensin Prinsip Dasar Motor Bensin

BAB II DASAR TEORI 2.1 Motor Bensin Prinsip Dasar Motor Bensin 3 BAB II DASAR TEORI 2.1 Motor Bensin Motor bensin dapat juga disebut sebagai motor otto. Motor tersebut dilengkapi dengan busi dan karburator. Busi menghasilkan loncatan bunga api listrik yang membakar

Lebih terperinci

Pengaruh Penggunaan Bahan Bakar Liquefied Gas for Vehicle (LGV) terhadap Konsumsi Bahan Bakar, SFC dan Emisi Gas Buang Pada Mobil

Pengaruh Penggunaan Bahan Bakar Liquefied Gas for Vehicle (LGV) terhadap Konsumsi Bahan Bakar, SFC dan Emisi Gas Buang Pada Mobil Jurnal METTEK Volume 2 No 2 (2016) pp 83 92 ISSN 2502-3829 ojs.unud.ac.id/index.php/mettek Pengaruh Penggunaan Bahan Bakar Liquefied Gas for Vehicle (LGV) terhadap Konsumsi Bahan Bakar, SFC dan Emisi Gas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Definisi Motor Bakar Motor bakar adalah mesin atau peswat tenaga yang merupakan mesin kalor dengan menggunakan energi thermal dan potensial untuk melakukan kerja mekanik dengan

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap analisis pengaruh jenis bahan bakar terhadap unjuk kerja

BAB II KAJIAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap analisis pengaruh jenis bahan bakar terhadap unjuk kerja BAB II KAJIAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Observasi terhadap analisis pengaruh jenis bahan bakar terhadap unjuk kerja mesin serta mencari refrensi yang memiliki relevansi terhadap judul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Bahan bakar yang dipergunakan motor bakar dapat diklasifikasikan dalam tiga kelompok yakni : berwujud gas, cair dan padat (Surbhakty 1978 : 33) Bahan bakar (fuel)

Lebih terperinci

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA 3.1 Metode Pengujian 3.1.1 Pengujian Dual Fuel Proses pembakaran di dalam ruang silinder pada motor diesel menggunakan sistem injeksi langsung.

Lebih terperinci

Jika diperhatikan lebih jauh terdapat banyak perbedaan antara motor bensin dan motor diesel antara lain:

Jika diperhatikan lebih jauh terdapat banyak perbedaan antara motor bensin dan motor diesel antara lain: BAB 2 TINJAUAN PUSTAKA 2.1 Motor diesel Motor diesel adalah jenis khusus dari mesin pembakaran dalam karakteristik utama pada mesin diesel yang membedakannya dari motor bakar yang lain, terletak pada metode

Lebih terperinci

PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG

PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG Bambang Yunianto Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro

Lebih terperinci

FINONDANG JANUARIZKA L SIKLUS OTTO

FINONDANG JANUARIZKA L SIKLUS OTTO FINONDANG JANUARIZKA L 125060700111051 SIKLUS OTTO Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Motor Bakar Motor bakar adalah suatu tenaga atau bagian kendaran yang mengubah energi termal menjadi energi mekanis. Energi itu sendiri diperoleh dari proses pembakaran. Pada

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perkembangan teknologi yang terjadi saat ini banyak sekali inovasi baru yang tercipta khususnya di dalam dunia otomotif. Dalam perkembanganya banyak orang yang

Lebih terperinci

UNJUK KERJA MOBIL BERTRANSMISI MANUAL MENGGUNAKAN BAHAN BAKAR LIQUIFIED GAS FOR VEHICLE (LGV)

UNJUK KERJA MOBIL BERTRANSMISI MANUAL MENGGUNAKAN BAHAN BAKAR LIQUIFIED GAS FOR VEHICLE (LGV) Jurnal METTEK Volume 2 No 2 (2016) pp 75 82 ISSN 2502-3829 ojs.unud.ac.id/index.php/mettek UNJUK KERJA MOBIL BERTRANSMISI MANUAL MENGGUNAKAN BAHAN BAKAR LIQUIFIED GAS FOR VEHICLE (LGV) I Dewa Gede Ari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian Motor Bakar Motor bakar adalah motor penggerak mula yang pada prinsipnya adalah sebuah alat yang mengubah energi kimia menjadi energi panas dan diubah ke energi

Lebih terperinci

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC Riza Bayu K. 2106.100.036 Dosen Pembimbing : Prof. Dr. Ir. H.D. Sungkono K,M.Eng.Sc

Lebih terperinci

ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT

ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT NO. 2, TAHUN 9, OKTOBER 2011 130 ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT Muhammad Arsyad Habe, A.M. Anzarih, Yosrihard B 1) Abstrak: Tujuan penelitian ini ialah

Lebih terperinci

PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI

PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI Robertus Simanungkalit 1,Tulus B. Sitorus 2 1,2, Departemen Teknik Mesin, Fakultas

Lebih terperinci

BAB II DASAR TEORI 2.1 Kajian Pustaka

BAB II DASAR TEORI 2.1 Kajian Pustaka BAB II DASAR TEORI 2.1 Kajian Pustaka 2.1.1 Fenomena Cyclone Pada proses pembakaran yang terjadi di dalam mesin bensin bergantung pada campuran antara bahan bakar dan udara yang masuk ke dalam ruang bakar.

Lebih terperinci

KONTROL SISTEM BAHAN BAKAR PADA ELECTRONIC FUEL INJECTION (EFI) Oleh Sutiman, M.T

KONTROL SISTEM BAHAN BAKAR PADA ELECTRONIC FUEL INJECTION (EFI) Oleh Sutiman, M.T KONTROL SISTEM BAHAN BAKAR PADA ELECTRONIC FUEL INJECTION (EFI) Oleh Sutiman, M.T Pendahuluan Tujuan dari penggunaan sistem kontrol pada engine adalah untuk menyajikan dan memberikan daya mesin yang optimal

Lebih terperinci

II. TEORI DASAR. kelompokaan menjadi dua jenis pembakaran yaitu pembakaran dalam (Internal

II. TEORI DASAR. kelompokaan menjadi dua jenis pembakaran yaitu pembakaran dalam (Internal II. TEORI DASAR A. Motor Bakar Motor bakar adalah suatu pesawat kalor yang mengubah energi panas menjadi energi mekanis untuk melakukan kerja. Mesin kalor secara garis besar di kelompokaan menjadi dua

Lebih terperinci

PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG

PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG Bambang Yunianto Magister Teknik, Fakultas Teknik Universitas

Lebih terperinci

Gambar 1. Motor Bensin 4 langkah

Gambar 1. Motor Bensin 4 langkah PENGERTIAN SIKLUS OTTO Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Hidrogen Hidrogen adalah unsur kimia terkecil karena hanya terdiri dari satu proton dalam intinya. Simbol hidrogen adalah H, dan nomor atom hidrogen adalah 1. Memiliki berat

Lebih terperinci

BAB II DASAR TEORI Motor Bakar Empat Langkah [4].

BAB II DASAR TEORI Motor Bakar Empat Langkah [4]. BAB II DASAR TEORI 2.1. Motor Bakar Empat Langkah [4]. Pada motor bakar berdasarkan sistem penyalaannya terbagi spark ignition dan compression ignition. Dan berdasarkan siklus kerjanya terbagi menjadi

Lebih terperinci

BAB II TEORI DASAR Komponen sistem pengapian dan fungsinya

BAB II TEORI DASAR Komponen sistem pengapian dan fungsinya BAB II TEORI DASAR 2.1 Teori Dasar Pengapian Sistem pengapian pada kendaraan Honda Supra X 125 (NF-125 SD) menggunakan sistem pengapian CDI (Capasitor Discharge Ignition) yang merupakan penyempurnaan dari

Lebih terperinci

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS Rio Arinedo Sembiring 1, Himsar Ambarita 2. Email: rio_gurky@yahoo.com 1,2 Jurusan Teknik Mesin, Universitas Sumatera

Lebih terperinci

STUDI KARAKTERISTIK TEKANAN INJEKSI DAN WAKTU INJEKSI PADA TWO STROKE GASOLINE DIRECT INJECTION ENGINE

STUDI KARAKTERISTIK TEKANAN INJEKSI DAN WAKTU INJEKSI PADA TWO STROKE GASOLINE DIRECT INJECTION ENGINE STUDI KARAKTERISTIK TEKANAN INJEKSI DAN WAKTU INJEKSI PADA TWO STROKE GASOLINE DIRECT INJECTION ENGINE Darwin R.B Syaka 1*, Ragil Sukarno 1, Mohammad Waritsu 1 1 Program Studi Pendidikan Teknik Mesin,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka Heru Setiyanto (2007), meneliti tentang pengaruh modifikasi katup buluh dan variasi bahan bakar terhadap unjuk kerja mesin pada motor bensin dua langkah 110

Lebih terperinci

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel A. Karakteristik Motor 2 Langkah dan 4 Langkah 1. Prinsip Kerja Motor 2 Langkah dan 4 Langkah a. Prinsip Kerja Motor

Lebih terperinci

Oleh : Gunadi, S.Pd NIP

Oleh : Gunadi, S.Pd NIP HASIL PENELITIAN PENGARUH WAKTU PENGAPIAN (IGNITION TIMING) TERHADAP EMISI GAS BUANG PADA MOBIL DENGAN SISTEM BAHAN BAHAN BAKAR INJEKSI (EFI) Oleh : Gunadi, S.Pd NIP. 19770625 200312 1 002 Dibiayai oleh

Lebih terperinci

ANALISA KINERJA MESIN OTTO BERBAHAN BAKAR PREMIUM DENGAN PENAMBAHAN ADITIF OKSIGENAT DAN ADITIF PASARAN

ANALISA KINERJA MESIN OTTO BERBAHAN BAKAR PREMIUM DENGAN PENAMBAHAN ADITIF OKSIGENAT DAN ADITIF PASARAN Seminar Nasional Tahunan Teknik Mesin, SNTTM-VI, 2007 Jurusan Teknik Mesin, Universitas Syiah Kuala ANALISA KINERJA MESIN OTTO BERBAHAN BAKAR PREMIUM DENGAN PENAMBAHAN ADITIF OKSIGENAT DAN ADITIF PASARAN

Lebih terperinci

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA TUGAS AKHIR PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA Disusun : JOKO BROTO WALUYO NIM : D.200.92.0069 NIRM : 04.6.106.03030.50130 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

Lebih terperinci

BAB IV PENGOLAHAN DAN ANALISA DATA

BAB IV PENGOLAHAN DAN ANALISA DATA BAB IV PENGOLAHAN DAN ANALISA DATA 4.1 Data Hasil Penelitian Mesin Supra X 125 cc PGM FI yang akan digunakan sebagai alat uji dirancang untuk penggunaan bahan bakar bensin. Mesin Ini menggunakan sistem

Lebih terperinci

VARIASI PENGGUNAAN IONIZER DAN JENIS BAHAN BAKAR TERHADAP KANDUNGAN GAS BUANG KENDARAAN

VARIASI PENGGUNAAN IONIZER DAN JENIS BAHAN BAKAR TERHADAP KANDUNGAN GAS BUANG KENDARAAN VARIASI PENGGUNAAN IONIZER DAN JENIS BAHAN BAKAR TERHADAP KANDUNGAN GAS BUANG KENDARAAN Wachid Yahya, S.Pd, M.Pd Mesin Otomotif, Politeknik Indonusa Surakarta email : yahya.polinus@gmail.com Abstrak Penelitian

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan energi semakin bertambah seiring dengan meningkatnya produktivitas manusia. Energi yang digunakan sebagai bahan bakar mesin umumnya adalah bahan bakar fosil.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian dilakukan untuk mengetahui fenomena yang terjadi pada mesin Otto dengan penggunaan bahan bakar yang ditambahkan aditif dengan variasi komposisi

Lebih terperinci

BAB II LANDASAN TEORI. Motor pembakaran dalam (internal combustion engine) adalah motor

BAB II LANDASAN TEORI. Motor pembakaran dalam (internal combustion engine) adalah motor BAB II LANDASAN TEORI Motor pembakaran dalam (internal combustion engine) adalah motor bakar yang fluida kerjanya dihasilkan di dalam pesawat itu sendiri. Motor jenis ini banyak digunakan sebagai sumber

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bensin Penjelasan Umum

BAB II DASAR TEORI 2.1 Motor Bensin Penjelasan Umum 4 BAB II DASAR TEORI 2.1 Motor Bensin 2.1.1 Penjelasan Umum Motor bensin merupakan suatu motor yang menghasilkan tenaga dari proses pembakaran bahan bakar di dalam ruang bakar. Karena pembakaran ini berlangsung

Lebih terperinci

PENGARUH LGV TERHADAP PERFORMA DAN EMISI GAS BUANG PADA MOBIL TRANSMISI MANUAL

PENGARUH LGV TERHADAP PERFORMA DAN EMISI GAS BUANG PADA MOBIL TRANSMISI MANUAL PENGARUH LGV TERHADAP PERFORMA DAN EMISI GAS BUANG PADA MOBIL TRANSMISI MANUAL Aris Budi Sulistyo 1)**, I Gusti Bagus Wijaya Kusuma 2), dan I Nyoman Budiarsa 2) (1) S2 Teknik Mesin Program Pascasarjana,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dewasa ini teknologi merupakan sudah menjadi kebutuhan manusia, dikarenakan dikarenakan adanya teknologi dapat membantu dan mempermudah pekerjaan manusia. Oleh karena

Lebih terperinci

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas BAB II LANDASAN TEORI 2.1 Motor Bensin Motor bensin adalah suatu motor yang mengunakan bahan bakar bensin. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas yang kemudian

Lebih terperinci

PENGARUH IGNITION TIMING DENGAN BAHAN BAKAR LPG TERHADAP UNJUK KERJA MESIN BENSIN EMPAT LANGKAH SATU SILINDER

PENGARUH IGNITION TIMING DENGAN BAHAN BAKAR LPG TERHADAP UNJUK KERJA MESIN BENSIN EMPAT LANGKAH SATU SILINDER PENGARUH IGNITION TIMING DENGAN BAHAN BAKAR LPG TERHADAP UNJUK KERJA MESIN BENSIN EMPAT LANGKAH SATU SILINDER I Made Mara, Made Wirawan, Towilan Ma bud Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

MOTOR BAKAR TORAK. 3. Langkah Usaha/kerja (power stroke)

MOTOR BAKAR TORAK. 3. Langkah Usaha/kerja (power stroke) MOTOR BAKAR TORAK Motor bakar torak (piston) terdiri dari silinder yang dilengkapi dengan piston. Piston bergerak secara translasi (bolak-balik) kemudian oleh poros engkol dirubah menjadi gerakan berputar.

Lebih terperinci

KARAKTERISTIK PEMBAKARAN DARI VARIASI CAMPURAN ETHANOL-GASOLINE (E30-E50) TERHADAP UNJUK KERJA SEPEDA MOTOR 4 LANGKAH FUEL INJECTION 125 CC

KARAKTERISTIK PEMBAKARAN DARI VARIASI CAMPURAN ETHANOL-GASOLINE (E30-E50) TERHADAP UNJUK KERJA SEPEDA MOTOR 4 LANGKAH FUEL INJECTION 125 CC KARAKTERISTIK PEMBAKARAN DARI VARIASI CAMPURAN ETHANOL-GASOLINE (E30-E50) TERHADAP UNJUK KERJA SEPEDA MOTOR 4 LANGKAH FUEL INJECTION 125 CC TUGAS AKHIR Oleh REKSA MARDANI 0405220455 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

Julius Hidayat, Agus Suyatno,Suriansyah, (2012), PROTON, Vol. 4 No 2 / Hal 23-29

Julius Hidayat, Agus Suyatno,Suriansyah, (2012), PROTON, Vol. 4 No 2 / Hal 23-29 PENGARUH PEMANASAN BAHAN BAKAR PADA RADIATOR TERHADAP KONSUMSI BAHAN BAKAR DAN KADAR EMISI GAS BUANG DAIHATSU HIJET 1000 Julius Hidayat (1) Agus Suyatno (2).Suriansyah (3) ABSTRAK Emisi gas buang adalah

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Identifikasi Kendaraan Gambar 4.1 Yamaha RX Z Spesifikasi Yamaha RX Z Mesin : - Tipe : 2 Langkah, satu silinder - Jenis karburator : karburator jenis piston - Sistem Pelumasan

Lebih terperinci

ANALISA PENGARUH PENGATURAN VOLUME BIOETHANOL SEBAGAI CAMPURAN BAHAN BAKAR MELALUI MAIN JET SECARA INDEPENDENT TERHADAP EMISI PADA MESIN OTTO

ANALISA PENGARUH PENGATURAN VOLUME BIOETHANOL SEBAGAI CAMPURAN BAHAN BAKAR MELALUI MAIN JET SECARA INDEPENDENT TERHADAP EMISI PADA MESIN OTTO ANALISA PENGARUH PENGATURAN VOLUME BIOETHANOL SEBAGAI CAMPURAN BAHAN BAKAR MELALUI MAIN JET SECARA INDEPENDENT TERHADAP EMISI PADA MESIN OTTO Iqbal Yamin Departemen Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

ek SIPIL MESIN ARSITEKTUR ELEKTRO

ek SIPIL MESIN ARSITEKTUR ELEKTRO ek SIPIL MESIN ARSITEKTUR ELEKTRO ANALISA KINERJA MESIN BENSIN BERDASARKAN HASIL UJI EMISI Awal Syahrani * Abstract Analysis of engine performance based on emission test is to understand effective process

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi saat ini menjadikan teknologi otomotif juga semakin berkembang. Perkembangan terjadi pada sistem pembakaran dimana sistem tersebut

Lebih terperinci

Motor diesel dikategorikan dalam motor bakar torak dan mesin pembakaran dalam merubah energi kimia menjadi energi mekanis.

Motor diesel dikategorikan dalam motor bakar torak dan mesin pembakaran dalam merubah energi kimia menjadi energi mekanis. A. Sebenernya apa sih perbedaan antara mesin diesel dengan mesin bensin?? berikut ulasannya. Motor diesel dikategorikan dalam motor bakar torak dan mesin pembakaran dalam (internal combustion engine) (simplenya

Lebih terperinci

PENGARUH FILTER UDARA PADA KARBURATOR TERHADAP UNJUK KERJA MESIN SEPEDA MOTOR

PENGARUH FILTER UDARA PADA KARBURATOR TERHADAP UNJUK KERJA MESIN SEPEDA MOTOR PENGARUH FILTER UDARA PADA KARBURATOR TERHADAP UNJUK KERJA MESIN SEPEDA MOTOR Naif Fuhaid 1) ABSTRAK Sepeda motor merupakan produk otomotif yang banyak diminati saat ini. Salah satu komponennya adalah

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI BAB II DASAR TEORI 2. 1 Sistem Pengapian Sistem pengapian sangat berpengaruh pada suatu kendaraan bermotor, karena berfungsi untuk mengatur proses pembakaran campuran antara bensin dan udara di dalam ruang

Lebih terperinci

Karakteristik Emisi Gas Buang Kendaraan Berbahan Bakar LPG untuk Mesin Bensin Single Piston

Karakteristik Emisi Gas Buang Kendaraan Berbahan Bakar LPG untuk Mesin Bensin Single Piston Karakteristik Emisi Gas Buang Kendaraan Berbahan Bakar LPG untuk Mesin Bensin Single Piston Bagiyo Condro Purnomo 1*, Noto Widodo 2, Suroto Munahar 3, Muji Setiyo 4, Budi Waluyo 5. 1,2,3,4,5 Program Studi

Lebih terperinci

UPAYA PENGENDALIAN PENCEMARAN UDARA MELALUI PENGEMBANGAN TEKNOLOGI MOTOR BENSIN DAN EMS. Disampaikan oleh Sutiman Dosen Teknik Otomotif FT UNY

UPAYA PENGENDALIAN PENCEMARAN UDARA MELALUI PENGEMBANGAN TEKNOLOGI MOTOR BENSIN DAN EMS. Disampaikan oleh Sutiman Dosen Teknik Otomotif FT UNY UPAYA PENGENDALIAN PENCEMARAN UDARA MELALUI PENGEMBANGAN TEKNOLOGI MOTOR BENSIN DAN EMS Disampaikan oleh Sutiman Dosen Teknik Otomotif FT UNY A. Pendahuluan Pencemaran udara merupakan masalah yang memerlukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada Bab ini dibahas tentang jenis serta spesifikasi motor bakar dan Pemakaian Motor Bakar Sebagai Bahan Penggerak

BAB II TINJAUAN PUSTAKA. Pada Bab ini dibahas tentang jenis serta spesifikasi motor bakar dan Pemakaian Motor Bakar Sebagai Bahan Penggerak BAB II TINJAUAN PUSTAKA Pada Bab ini dibahas tentang jenis serta spesifikasi motor bakar dan mekanisme di dalam ruang bakar yang akan digunakan untuk mesin penggerak kendaraan roda dua. Dari dua jenis

Lebih terperinci

Pengaruh Kerenggangan Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin

Pengaruh Kerenggangan Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin Jurnal Kompetensi Teknik Vol. 4, No. 1, November 212 1 Pengaruh Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin Syahril Machmud 1, Untoro Budi Surono 2, Yokie Gendro Irawan 3 1, 2 Jurusan Teknik

Lebih terperinci

PENGARUH PEMAKAIAN ALAT PEMANAS BAHAN BAKAR TERHADAP PEMAKAIAN BAHAN BAKAR DAN EMISI GAS BUANG MOTOR DIESEL MITSUBISHI MODEL 4D34-2A17 Indartono 1 dan Murni 2 ABSTRAK Efisiensi motor diesel dipengaruhi

Lebih terperinci

SFC = Dimana : 1 HP = 0,7457 KW mf = Jika : = 20 cc = s = 0,7471 (kg/liter) Masa jenis bahan bakar premium.

SFC = Dimana : 1 HP = 0,7457 KW mf = Jika : = 20 cc = s = 0,7471 (kg/liter) Masa jenis bahan bakar premium. BAB IV HASIL DAN PEMBAHASAN Perhitungan dan pembahasan dari proses pengambilan data dan pengumpulan data yang dikumpulkan meliputi data spesifikasi obyek penelitian dan hasil pengujian. Data-data tersebut

Lebih terperinci

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL Jurnal Konversi Energi dan Manufaktur UNJ, Edisi terbit II Oktober 217 Terbit 64 halaman PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

Lebih terperinci

KINERJA MESIN SEPEDA MOTOR SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN ETANOL DENGAN MODIFIKASI RASIO KOMPRESI

KINERJA MESIN SEPEDA MOTOR SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN ETANOL DENGAN MODIFIKASI RASIO KOMPRESI KINERJA MESIN SEPEDA MOTOR SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN ETANOL DENGAN MODIFIKASI RASIO KOMPRESI Sepvinolist Tulus Pardede 1,Tulus B. Sitorus 2 Email: pardede_sepvinolist@yahoo.co.id 1,2

Lebih terperinci

BAB 4 PENGOLAHAN DAN ANALISA DATA

BAB 4 PENGOLAHAN DAN ANALISA DATA BAB 4 PENGOLAHAN DAN ANALISA DATA 4.1. Data Hasil Penelitian Mesin Supra X 125 cc PGM FI yang akan digunakan sebagai alat uji dirancang untuk penggunaan bahan bakar bensin. Mesin Ini menggunakan sistem

Lebih terperinci

Jurnal Teknik Mesin UMY

Jurnal Teknik Mesin UMY PENGARUH PENGGUNAAN VARIASI 3 JENIS BUSI TERHADAP KARAKTERISTIK PERCIKAN BUNGA API DAN KINERJA MOTOR HONDA BLADE 110 CC BERBAHAN BAKAR PREMIUM DAN PERTAMAX 95 Erlangga Bagus Fiandry 1 Jurusan Teknik Mesin,

Lebih terperinci

PENGARUH PENGGUNAAN FREKUENSI LISTRIK TERHADAP PERFORMA GENERATOR HHO DAN UNJUK KERJA ENGINE HONDA KHARISMA 125CC

PENGARUH PENGGUNAAN FREKUENSI LISTRIK TERHADAP PERFORMA GENERATOR HHO DAN UNJUK KERJA ENGINE HONDA KHARISMA 125CC TUGAS AKHIR RM 1541 (KE) PENGARUH PENGGUNAAN FREKUENSI LISTRIK TERHADAP PERFORMA GENERATOR HHO DAN UNJUK KERJA ENGINE HONDA KHARISMA 125CC RIZKY AKBAR PRATAMA 2106 100 119 Dosen Pembimbing : Prof. Dr.

Lebih terperinci

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS ANDITYA YUDISTIRA 2107100124 Dosen Pembimbing : Prof. Dr. Ir. H D Sungkono K, M.Eng.Sc Kemajuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Motor Bensin Motor bensin adalah suatu motor yang menggunakan bahan bakar bensin. Sebelum bahan bakar ini masuk ke dalam ruang silinder terlebih dahulu terjadi percampuran bahan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. SEJARAH MOTOR DIESEL Pada tahun 1893 Dr. Rudolf Diesel memulai karier mengadakan eksperimen sebuah motor percobaan. Setelah banyak mengalami kegagalan dan kesukaran, mak akhirnya

Lebih terperinci

1 PENDAHULUAN Latar Belakang

1 PENDAHULUAN Latar Belakang 1 1 PENDAHULUAN Latar Belakang Bahan Bakar Minyak (BBM) merupakan komoditi utama bagi nelayan yang memiliki perahu bermotor untuk menjalankan usaha penangkapan ikan. BBM bersubsidi saat ini menjadi permasalahan

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis Penggunaan Venturi..., Muhammad Iqbal Ilhamdani, FT UI, Universitas Indonesia

BAB 1 PENDAHULUAN. Analisis Penggunaan Venturi..., Muhammad Iqbal Ilhamdani, FT UI, Universitas Indonesia 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Pesatnya Perkembangan Teknologi khususnya dalam dunia otomotif telah memberikan sarana yang mendukung serta kebebasan bagi konsumen untuk memilih produk-produk teknologi

Lebih terperinci

BAB III PROSEDUR PENGUJIAN STUDI PUSTAKA KONDISI MESIN DALAM KEADAAN BAIK KESIMPULAN. Gambar 3.1. Diagram alir metodologi pengujian

BAB III PROSEDUR PENGUJIAN STUDI PUSTAKA KONDISI MESIN DALAM KEADAAN BAIK KESIMPULAN. Gambar 3.1. Diagram alir metodologi pengujian BAB III PROSEDUR PENGUJIAN 3.1 Diagram alir Metodologi Pengujian STUDI PUSTAKA PERSIAPAN MESIN UJI DYNO TEST DYNOJET PEMERIKSAAN DAN PENGETESAN MESIN SERVICE MESIN UJI KONDISI MESIN DALAM KEADAAN BAIK

Lebih terperinci

TUGAS. MAKALAH TENTANG Gasoline Direct Injection (GDI) Penyusun : 1. A an fanna fairuz (01) 2. Aji prasetyo utomo (03) 3. Alfian alfansuri (04)

TUGAS. MAKALAH TENTANG Gasoline Direct Injection (GDI) Penyusun : 1. A an fanna fairuz (01) 2. Aji prasetyo utomo (03) 3. Alfian alfansuri (04) TUGAS MAKALAH TENTANG Gasoline Direct Injection (GDI) Penyusun : 1. A an fanna fairuz (01) 2. Aji prasetyo utomo (03) 3. Alfian alfansuri (04) 4. Fajar setyawan (09) 5. M. Nidzar zulmi (20) Kelas : XII

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. MESIN OTTO Motor otto merupakan salah satu dari jenis motor pembakaran dalam. Motor ini menggunakan campuran bahan bakar dengan udara yang dikompres di ruang bakar sebelum terjadinya

Lebih terperinci

ASPEK TORSI DAN DAYA PADA MESIN SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR CAMPURAN PREMIUM METHANOL

ASPEK TORSI DAN DAYA PADA MESIN SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR CAMPURAN PREMIUM METHANOL ASPEK TORSI DAN DAYA PADA MESIN SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR CAMPURAN PREMIUM METHANOL Ojo Kurdi 1), Arijanto, 2) Abstrak Persedian minyak bumi yang terus menipis mendorong manusia menemukan

Lebih terperinci

PENGARUH PEMASANGAN KAWAT KASA DI INTAKE MANIFOLD TERHADAP KONSUMSI BAHAN BAKAR DAN EMISI GAS BUANG PADA MESIN BENSIN KONVENSIONAL TOYOTA KIJANG 4K

PENGARUH PEMASANGAN KAWAT KASA DI INTAKE MANIFOLD TERHADAP KONSUMSI BAHAN BAKAR DAN EMISI GAS BUANG PADA MESIN BENSIN KONVENSIONAL TOYOTA KIJANG 4K PENGARUH PEMASANGAN KAWAT KASA DI INTAKE MANIFOLD TERHADAP KONSUMSI BAHAN BAKAR DAN EMISI GAS BUANG PADA MESIN BENSIN KONVENSIONAL TOYOTA KIJANG 4K Adi Purwanto 1, Mustaqim 2, Siswiyanti 3 1 Mahasiswa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Motor Bensin Motor adalah gabungan dari alat-alat yang bergerak (dinamis) yang bila bekerja dapat menimbulkan tenaga/energi. Sedangkan pengertian motor bakar

Lebih terperinci

STUDI EKSPERIMENTAL KARAKTERISTIK KINERJA SEPEDA MOTOR DENGAN VARIASI JENIS BAHAN BAKAR BENSIN

STUDI EKSPERIMENTAL KARAKTERISTIK KINERJA SEPEDA MOTOR DENGAN VARIASI JENIS BAHAN BAKAR BENSIN EKSERGI Jurnal Teknik Energi Vol. No.1 Januari 2015, 1 - STUDI EKSPERIMENTAL KARAKTERISTIK KINERJA SEPEDA MOTOR DENGAN VARIASI JENIS BAHAN BAKAR BENSIN Nazaruddin Sinaga 1) ; Mulyono 2) 1) Magister Teknik

Lebih terperinci

Pengaturan Kondisi Idle dan Akselerasi pada Motor Berbahan Bakar Gas

Pengaturan Kondisi Idle dan Akselerasi pada Motor Berbahan Bakar Gas Pengaturan Kondisi Idle dan Akselerasi pada Motor Berbahan Bakar Gas Philip Kristanto Dosen Fakultas Teknologi Industri Jurusan Teknik Mesin Universitas Kristen Petra Jemy Gunawan Alumnus Fakultas Teknologi

Lebih terperinci

BAB III DATA DAN PEMBAHASAN

BAB III DATA DAN PEMBAHASAN BAB III DATA DAN PEMBAHASAN Dari hasil pengujian yang dilakukan, dengan adanya proses penambahan gas hydrogen maka didapat hasil yaitu berupa penurunan emisi gas buang yang sangat signifikan. 3.1 Hasil

Lebih terperinci

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Penggerak Mula Materi Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Motor Bakar (Combustion Engine) Alat yang mengubah energi kimia yang ada pada bahan bakar menjadi energi mekanis

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN

BAB III PERENCANAAN DAN PERHITUNGAN BAB III PERENCANAAN DAN PERHITUNGAN 3.1. Pengertian Perencanaan dan perhitungan diperlukan untuk mengetahui kinerja dari suatu mesin (Toyota Corolla 3K). apakah kemapuan kerja dari mesin tersebut masih

Lebih terperinci

: exhaust gas emissions of CO and HC, electric turbo, modified of air filter

: exhaust gas emissions of CO and HC, electric turbo, modified of air filter PENGARUH PENGGUNAAN TURBO ELEKTRIK DAN SARINGAN UDARA MODIFIKASITERHADAP KADAR EMISI GAS BUANG CO DAN HC SEPEDA MOTORHONDA SUPRA X 125 TAHUN 2009 Surya Catur Sudrajat, Ranto, dan C. Sudibyo Program Studi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Motor Pembakaran Dalam Motor pembakaran dalam (internal combustion engine) adalah motor bakar yang fluida kerjanya dihasilkan di dalam pesawat itu sendiri. Motor

Lebih terperinci

ANALISA GAS BUANG MESIN BERTEKNOLOGI EFI DENGAN BAHAN BAKAR PREMIUM

ANALISA GAS BUANG MESIN BERTEKNOLOGI EFI DENGAN BAHAN BAKAR PREMIUM 81 INFO TEKNIK, Volume 13 No. 1, Juli 212 ANALISA GAS BUANG MESIN BERTEKNOLOGI EFI DENGAN BAHAN BAKAR PREMIUM Mustafa Bakeri, Akhmad Syarief, Ach. Kusairi S Abstrak - Perkembangan ilmu pengetahuan dan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON. Panjang langkah (L) : 59 mm = 5,9 cm. Jumlah silinder (z) : 1 buah

BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON. Panjang langkah (L) : 59 mm = 5,9 cm. Jumlah silinder (z) : 1 buah BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON 4.1 Analisa Peningkatan Performa Dalam perhitungan perlu diperhatikan hal-hal yang berkaitan dengan kamampuan mesin, yang meliputi

Lebih terperinci

PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL ABSTRAK

PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL ABSTRAK PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL Didi Eryadi 1), Toni Dwi Putra 2), Indah Dwi Endayani 3) ABSTRAK Seiring dengan pertumbuhan dunia

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 KAJIAN PUSTAKA Manurung (2012) menyatakan bahwa kehadiran air pada sistem pembakaran memang memungkinkan meningkatkan efisiensi pembakaran karena mengubah mekanisme dan menyempurnakan

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Hasil Pengujian Mobil Normal 4.1.1 Hasil Pemeriksaan pada Mercedes E280 tahun 2008 dengan kondisi mesin normal dan putaran idle Tabel 4. Aktual data Mercedes E280

Lebih terperinci

BAB IV PENGUJIAN ALAT

BAB IV PENGUJIAN ALAT 25 BAB IV PENGUJIAN ALAT Pembuatan alat pengukur sudut derajat saat pengapian pada mobil bensin ini diharapkan nantinya bisa digunakan bagi para mekanik untuk mempermudah dalam pengecekan saat pengapian

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Indonesia

BAB 1 PENDAHULUAN. Universitas Indonesia BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Pengembangan teknologi di Indonesia untuk lebih mengoptimalkan sumber daya potensial yang ada di lingkungan sekitar masih terus digalakkan, tak terkecuali di dunia

Lebih terperinci

PENGARUH VARIASI UKURAN MAIN JET KARBURATOR DAN VARIASI PUTARAN MESIN TERHADAP KONSUMSI BAHAN BAKAR PADA SEPEDA MOTOR HONDA SUPRA X 125

PENGARUH VARIASI UKURAN MAIN JET KARBURATOR DAN VARIASI PUTARAN MESIN TERHADAP KONSUMSI BAHAN BAKAR PADA SEPEDA MOTOR HONDA SUPRA X 125 PENGARUH VARIASI UKURAN MAIN JET KARBURATOR DAN VARIASI PUTARAN MESIN TERHADAP KONSUMSI BAHAN BAKAR PADA SEPEDA MOTOR HONDA SUPRA X 125 Program Studi Teknik Mesin Fakultas Teknik Universitas Sultan Fatah

Lebih terperinci

Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid

Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid Darwin Rio Budi Syaka, Furqon Bastian dan Ahmad Kholil Universitas Negeri Jakarta, Fakultas Teknik,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Hasil dan pembahasan dimulai dari proses pengambilan dan pengumpulan data meliputi durasi standard camshaft dan after market camshaft, lift standard camshaft dan after market

Lebih terperinci

III. METODOLOGI PENELITIAN. Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin

III. METODOLOGI PENELITIAN. Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin III. METODOLOGI PENELITIAN A. Alat dan Bahan Pengujian Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin bensin 4-langkah, alat ukur yang digunakan, bahan utama dan bahan tambahan..

Lebih terperinci

PEMERIKSAAN EMISI GAS BUANG dan CEK KOMPRESI PADA. ENGINE TOYOTA KIJANG INNOVA di km. Laporan Tugas Akhir

PEMERIKSAAN EMISI GAS BUANG dan CEK KOMPRESI PADA. ENGINE TOYOTA KIJANG INNOVA di km. Laporan Tugas Akhir PEMERIKSAAN EMISI GAS BUANG dan CEK KOMPRESI PADA ENGINE TOYOTA KIJANG INNOVA di 127000km Laporan Tugas Akhir Disusun dalam rangka menyelesaikan Studi Diploma III Untuk memperoleh gelar Ahli Madya Teknik

Lebih terperinci