BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial"

Transkripsi

1 BAB III KUANTOR Untuk mengubah kalimat tebuka menjadi kalimat deklaratif, selain dengan jalan mengganti variabel dengan konstanta, dapat juga dilakukan dengan menggunakan kuantor, yaitu dengan menggunakan ungkapan. 1. Kuantor Universal Untuk semua berlaku... atau Untuk setiap berlaku... Sebagai contoh misalkan semesta pembicaraannya himpunan semua bilangan asli. 1. merupakan kalimat terbuka 2. Untuk semua berlakulah merupakan kalimat deklaratif bernilai salah, sebab dapat ditemukan bilangan asli yang memenuhi 3. Kuantor Eksistensial Terdapat sedemikian hingga... atau Ada sedemikian hingga... Dengan semestanya himpunan semua bilangan asli. 1. merupakan kalimat terbuka 2. Terdapat sedemikian hingga merupakan kalimat deklaratif bernilai benar, sebab untuk berlakulah Di dalam contoh di atas kalimat dapat dibaca dengan mempunyai sifat lebih besar daripada 1. Jika kondisi tersebut dinyatakan mempunyai sifat dan ditulis dengan simbol, maka kalimat, Untuk semua berlakulah dapat ditulis dengan:. Secara umum bentuk dapat dibaca dengan, 1. Semua bersifat 2. Setiap mempunyai sifat 3. Untuk semua berlaku sifat Kalimat Terdapat suatu yang memenuhi (sifat) dapat ditulis dengan: Secara umum bentuk dapat dibaca dengan, 1. Terdapat yang mempunyai sifat 2. Beberapa mempunyai sifat 3. Paling sedikit ada satu yang mempunyai sifat.

2 Selanjutnyaperlu diperhatikan, bahwa dalam penulisan simbol kuantor mengikat lebih kuat dibandingkan kata penghubung lainnya. Sebagai contoh kalimat, yang dimaksud adalah Di dalam praktiknya, di bidang ilmu eksakta untuk mengungkapkan sifat-sifat (hukum-hukum) yang berlaku umum tidak jarang kuantor universal tidak ditulis, walaupun eksistensinya memang diakui. Sebagai contoh rumus, Bentuk sesungguhnya dari rumus tersebut seharusnya, Dalam pemakaiannya seringkali di dalam suatu kalimat kuantor yang digunakan tidak tunggal dan mungkin juga antara kuantor universal dan eksistensial digunakan bersamaan, baik di awal kalimat maupun di tengah kalimat. Sebagai contoh kalimat-kalimat berikut ini dengan himpunan semua bilangan real, ! Simbolisma-simbolisma di atas dibaca: 1. Untuk semua dan untuk semua berlaku jika " lebih keil daripada dan lebih kecil daripada # maka lebih kecil daripada Dapat juga diucapkan dengan kalimat: Setiap pasangan bilangan real dan kuadrat. 2. Untuk setiap terdapatlah yang memenuhi dikurung sama dengan 0 dan 0 sama dengan ditambah Dengan bahasa keseharian dapat diucapkan: Setiap bilangan memiliki kebalikan terhadap operasi pengurangan, yaitu dirinya sendiri. kalimat ini bernilai benar. 3. Terdapat yang memenuhi untuk semua berlaku ditambah sama dengan ditambah yang sama dengan. Dengan bahasa keseharian dapat diucapkan:

3 Ada bilangan yang memenuhi sifat ditambahkan kepada setiap bilangan hasilnya akan sama dengan bilangan yang kedua. 4. Untuk setiap berlaku, jika tidak sama dengan 0, maka terdapat yang memenuhi dikali sama dengan dikali, sama dengan 1. Dapat diucapkan: Setiap bilangan yang tidak nol mempunyai bilangan yang berlawanan (terhadap perkalian). Kalimat ini bernilai benar, sebagai contoh bilangan 5 lawannya. $ 3.1 Urutan, Sifat-sifat, dan Hubungan Antar Kuantor Urutan dan letak kuantor di dalam suatu pernyataan harus diperhatikan secara seksama. Penempatan kuantor yang tidak tepat akan berakibat makna pernyataan akan berbeda dengan fakta yang ingin disampaikan. Hal ini juga berdampak pada nilai kebenaran dari pernyataan tersebut. Selanjutnya misalkan adalah suatu predikat tertentu. Tata tulis dua kuantor secara berurutan mempunyai bentuk umum: 1. #, juga ditulis dengan # #. Dibaca: Untuk semua dan berlaku dan bersifat. 2. # Dibaca: Untuk semua terdapat yang memenuhi dan bersifat. 3. #. Dibaca: Terdapat yang memenuhi untuk semua berlaku dan mempunyai sifat. 4. #, juga ditulis dengan # #. Dibaca: Terdapat dan yang memenuhi sifat. Teorema berikut ini menunjukkan, bahwa kuantor-kuantor yang sejenis bisa ditukar letaknya. Teorema 3.1 %# &%# Teorema 3.2 %#&%#. Kalimat # mempunyai arti yang berbeda dengan #. Sebagai contoh perhatikan kalimat: 1., dan

4 2., dengan semesta pembicaraan himpunan semua bilangan nyata. kalimat ke-1 bernilai benar. Untuk setiap, pasti ada yaitu yang memenuhi. Sedangkan kalimat ke-2 bernilai salah, sebab jika ada yang memenuhi kondisi tersebut, maka dan. Akibatnya, sehingga terjadi kontradiksi. Teorema 3.3 %#%#. Sifat ini berlaku untuk semua pembicaraan dan semua predikat %. Contoh Kalimat: akan berakibat:, sebab anteseden benar, sehingga eksistensi yang memenuhi, untuk semua dijamin di dalam semestanya. jadi untuk sebarang, berlaku. Selanjutnya bentuk ingkaran dari kalimat, Semua mempunyai sifat. Dengan kata lain pernyataan yang merupakan ingkaran, bahwa setiap anggota semestanya mempunyai sifat ', adalah sama dengan mengatakan terdapat anggota yang tidak mempunyai sifat ', sehingga berlaku, Teorema 3.4 ' ((((((((((((( &' ((((((. Contoh ) Jika semestanya himpunan semua bilangan nyata, tentukan ingkaran dari kalimat-kalimat berikut ini: 2. * + +* + * 1. (((((((((((((((( ) Sama dengan :, Atau 2. * ((((((((((((((((((((((((((((((( + + * +* : Sama dengan : * ((((((((((((((( ((((((((((((((((((((((((((((( + +* + Dengan kata lain : * + + *- (((((((((( + *

5 Mempunyai makna yang sama dengan: * + + *- * Ingkaran bahwa terdapat anggota semestanya yang sifat ' sama dengan menyatakan, bahwa tidak ada anggota semestanya yang mempunyai sifat '. Hal ini sama dengan mengatakan semua anggota semestanya tidak mempunyai sifat '. Teorema 3.5 ' ((((((((((( &' ((((((. Contoh Tentukan ingkaran dari kalimat-kalimat berikut ini. 1. Ada mahasiswa yang IPK-nya lebih besar daripada 3, dengan semesta himpunan bilangan nyata:. 1. Tidak ada mahasiswa yang IPK-nya lebih besar daripada 3,85 Sama dengan : Semua mahasiswa IPK-nya tidak lebih besar daripada 3.85 Atau : Semua mahasiswa IPK-nya kurang dari atau sama dengan 3,85 2. ((((((((((((((((((((((( Sama dengan :. Dengan kata lain: ) Berdasarkan sifat-sifat ingkaran kalimat di atas dapat diturunkan bentuk-bentuk ingkaran kalimat yang lain, yang di dalamnya juga memuat kuantor. Contoh Dengan semesta pembicaraan himpunan semua bilangan nyata, tentukan ingkaran dari kalimat-kalimat berikut ini /010 /# & Ingkaran dari : adalah: ((((((((((((((((((((((((((( ((((((((((((((((((((( (((((((((((((((!

6 2. Ingkaran dari : /010 /#02 adalah: /00 ((((((((((((((((((((((((((((((((((( /#0 /010 ((((((((((((((((((((((((((((( /#02 /00 ((((((((((((((((((((( /#0 /00 -(((((((( /#0 3. Ingkaran dari : &33-3 adalah: ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( & 33-3 ((((((((((((((((((((((((((((((((((((((((((((((((((((( &33-3 (((((((((((((((((((((((((((((((((((((((((((( &33-3 (((((((((33 (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( ((((((((((((((((((((((((((((((((( - 3 (((((((((33 ((((((((((((((((((((((((((((((((((((((((((((( ((((((((((((((((((((((((((((((((((((((((((((( (((((((((((((((((((((((((((((( - 3 (((((((((( -33 (((((((((((((((((((((((((((((((((33-3 ((((((((((((((((((((((((((((((((( ((((((((( (((((((((((((((((((((((((((((((( ! Berikut ini diberikan contoh-contoh menentukan nilai logika kalimat yang menggunakan kuantor. Contoh Semesta pembicaraan adalah himpunan semua bilangan real. Tentukan nilai logika dari kalimat ini ! : : 1. Bernilai salah, sebab untuk berlaku + 2. Bernilai benar, sebab untuk berlaku ;. 3. Bernilai salah, sebab untuk berlaku,

7 4. 5 < => 5? >!. 5. Bernilai benar, contohnya >. 6. Bernilai benar, sebab jika, maka, jika @ C. B D 7. Bernilai salah, sebab untuk # berapapun A berlaku B!. 8. Bernilai benar Contoh Semesta pembicaraan adalah himpunan bilangan 0, 1, 2, 3 dan 4. Tentukan nilai logika dari kalimat berikut ini. 1. ) E Bernilai benar, sebab paling kecil dan Jadi pasti ). 2. Bernilai benar, sebab contohnya berlaku. 3. Bernilai benar, sebab paling besar adalah ; dan ; E. 4. Bernilai salah, sebab semua anggota semestanya positif, sehingga 5. Latihan Diberikan semesta pembicaraan himpunan semua manusia. Didefiniskan simbol-simbol sebagai berikut: FG merupakan mahasiswa G orang yang pandai HG suka berolah raga. Tuliskan pernyataan-pernyataan ini dengan menggunakan kuantor dan simbolsimbol di atas. 1. Ada manusia yang suka berolah raga tetapi tidak pandai. 2. Semua mahasiswa pandai. 3. Ada mahasiswa yang pandai dan suka berolah raga 4. Semua manusia yang tidak pandai tetapi suka berolah raga pasti bukan mahasiswa.

8 5. Ada manusia, yang suka berolah raga tetapi bukan mahasiswa. 6. Semua orang pandai pasti tidak menyukai olah raga. 2. Diberikan semesta pembicaraanya himpunan semua bilangan nyata. Bacalah kalimat-kalimat di bawah ini, kemudian renungkan artinya dan ucapkanlah dengan menggunakan bahasa sehari-hari (dengan makna yang sama dengan bentuk simbolnya). Selanjutnya tentukan nilai kebenarannya II 5.! Tentukanlah ingkaran bentuk simbolisma dari kalimat-kalimat: Saol , kemudian terjemahkan dalam bahasa sehari-hari. 4. Tentukanlah ingkaran bentuk simbolisma dari kalimat-kalimat: Soal , kemudian terjemahkan dalam bahasa sehari-hari dan tentukan nilai kebenarannya. 3.2 Kuantor Jenis Lain dan Kuantifikasi Terbatas Di bidang matematika terdapat suatu kuantor jenis lain yang mempunyai simbol khusus, yaitu yang mewakili pernyataan Terdapatlah satu dan hanya satu... di dalam semestanya. Untuk itu perhatikan kalimat: Terdapatlah satu dan hanya satu yang mempunyai sifat Simbol dari pernyataan tersebut adalah: - yaitu ada yang memenuhi sifat dan untuk setiap yang memenuhi sifat, maka sama dengan. Kuantor ini diberi simbol dengan J, sehingga kalimat selengkapnya dapat ditulis dengan:

9 - dan dibaca Terdapat dengan tunggal yang mempunyai sifat. Contoh Diberikan kalimat-kalimat berikut ini: 1. Terdapat yang positif dan bersifat 2. Terdapat K yang merupakan elemen L dan bersifat 3. Semua yang positif mempunyai sifat 4. Semua K anggota L mempunyai sifat Bentuk simbolis dari kalimat-kalimat tersebut adalah: 1. - Kalimat tersebut dapat juga ditulis: dan dibaca: Terdapat suatu positif yang bersifat L- 2 Kalimat tersebut dapat juga ditulis: 0L dan dibaca: terdapat suatu elemen L yang bersifat Kalimat tersebut dapat juga ditulis: dan dibaca: Semua positif mempunyai sifat Simbolisasi dari kalimat tersebut bukan: 1-2# karena terjemahan dari - adalah Setiap pasti positif dan mempunyai sifat Kalimat ini tidak sesuai dengan kalimat aslinya L 2 Kalimat tersebut dapat juga ditulis: 0M dan dibaca: Semua elemen L mempunyai sifat

10 Bentuk ingkaran dari kalimat-kalimat dalam contoh di atas adalah: 1. (((((((((((((((((((( yaitu (((((((((((((((((((((((((( - ((((((((((((((((((( - ((((((((( (((((( 0L (((((( 0L ((((((( # dan dibaca: Semua elemen M tidak mempunyai sifat. 2. 0L ((((((((((((((((((( yaitu (((((((((((((((((((((((((( 0L- 0L- (((((((((((((((((((( 0L ((((((((( (((((((( 0L (((((( 0L ((((((, dan dibaca: Semua elemen M tidak mempunyai sifat 3. (((((((((((((((((((( yaitu (((((((((((((((((((((((((((( 10L 2 0L ((((((((((((((((((( ((((((((( 0L- (((((( 0L ((((((, dan dibaca: Terdapat elemen M yang tidak mempunyai sifat. Contoh Tentukanlah negasi (ingkaran) dari kalimat-kalimat berikut ini, jika semestanya adalah himpunan orang-orang. 1. Bagi wisudawan yang memiliki IPK lebih dari 3,75meraih derajad cumlaude. 2. Ada bayi yang berat badan lahirnya kurang dari 2 kg yang tidak dimasukkan ke dalam inkubator. 3. Setiap mahasiswa semester satu harus mengambil kalkulus I.

11 1. Kalimatnya sama artinya dengan kalimat, setiap wisudawan yang memiliki IPK lebih dari 3,75 mempunyai derajad cumlaude, sehingga ingkarannya adalah ada wisudawan yang memiliki IPK lebih dari 3,75 tapi tidak meraih derajad cumlaude. 2. Ada bayi yang berat badan lahirnya kurang dari 2 kg pasti dimasukkan ke dalam inkubator. 3. Ada mahasiswa semester satu yang tidak harus mengambil kalkulusi. Kalimat ini sama artinya dengan kalimat: Ada mahasiswa semester satu yang diperbolehkan tidak mengambil kalkulus I. Contoh Tulislah dengan simbolisma logika kalimat-kalimat berikut ini. 1. Sekurang-kurangnya ada satu yang mempunyai sifat. 2. Paling banyak ada satu yang mempunyai sifat. 3. Hanya ada satu yang mempunyai sifat. 4. Paling banyak ada satu bilangan positif yang bersifat. 5. Sekurang-kurangnya ada dua bersifat. 6. Paling banyak ada dua elemen N yang bersifat Ekuivalen dengan! (((((( ((((((.! ((((((((. # ((((((((((((((((((((((((((((((((((((((!- - Perlu diperhatikan, bahwa kalimat ini mengandung arti di dalam semestanya tidak ada kepastian ada yang bersifat. Namun jika yang memenuhi sifat, maka elemen sedemikian tunggal adanya Kalimat ini berbeda dengan kalimat 2, sebab adanya elemen yang bersifat dijamin ada dan tunggal ! :1 - - :2 : :. Contoh Diberikan semesta pembicaraan himpunan semua bilangan bulat. Tulislah dengan simbolisma logika kalimat-kalimat berikut ini.

12 1. Untuk setiap bilangan positif 0 terdapat bilangan positif O yang bersifat IOI0. 2. Ada bilangan P yang memenuhi untuk setiap bilangan positif Qterdapat bilangan positif O yang bersifat IOI0. Untuk setiap bilangan positif O sedemikian hingga untuk setiap anggota N R yang memenuhi I*I O berlaku ISPI0 3. Ada bilangan P sedemikian hingga untuk bilangan positif 0 terdapat bilangan positif O sedemikian hingga untuk setiap anggota N R yang memenuhi I*IO berlaku ISPI0. Latihan Tentukan negasi dari simbolisma-simbolisma logika kalimat-kalimat di dalam Contoh 3.2.4, kemudian terjemahkan dengan bahasa sehari-hari. 2. Tentukan negasi dari simbolisma-simbolisma logika kalimat-kalimat di dalam Contoh 3.2.5, kemudian terjemahkan dengan bahasa sehari-hari 3. Diberikan semesta pembicaraan himpunan semua bilangan real. Tentukanlah nilai kebenaran dari ungkapan-ungkapan berikut ini: II T U QV 0. W X 3.3 F 0 I9I F. Tulislah dalam bentuk simbolisma logika! 4. Tulislah definisi YZ[ \ ] untuk ^_. 5. Tulislah definisi YZ[ \ ] untuk ^_. 6. Tulislah definisi YZ[ \ ] untuk ^_`. 7. Tulislah definisi fungsi \ tidak mempunyai limit di _. 8. Tulislah definisi fungsi \ mempunyai derivatif di _. 9. Tulislah definisi fungsi \ kontinu di _. 10. Tulislah definisi fungsi \ tidak kontinu di _ 11. Paling banyak ada dua dimana \ tidak kontinu di. 12. Fungsi \ kontinu pada interval a. 13. Fungsi \ mempunyai derivatif di setiap Qa kecuali mungkin di _. 14. Tulislah definisi barisan b c d ce konvergen, kemudian tentukan ingkarannya.

BAB III INDUKSI MATEMATIKA

BAB III INDUKSI MATEMATIKA BAB III INDUKSI MATEMATIKA BAB III INDUKSI MATEMATIKA 3.1 Pendahuluan Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau

Lebih terperinci

BAB III INDUKSI MATEMATIKA

BAB III INDUKSI MATEMATIKA 3.1 Pendahuluan BAB III INDUKSI MATEMATIKA Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau bulat seperti barisan atau

Lebih terperinci

KUANTOR (Minggu ke-7)

KUANTOR (Minggu ke-7) KUANTOR (Minggu ke-7) 1 4 Pendahuluan 1. Kuantor Universal: Untuk semua x berlaku atau Untuk setiap x berlaku. S P : Himpunan semua bilangan asli. 1. x > 1 merupakan kalimat terbuka 2. Untuk semua x berlakulah

Lebih terperinci

KUANTOR KHUSUS (Minggu ke-8)

KUANTOR KHUSUS (Minggu ke-8) KUANTOR KHUSUS (Minggu ke-8) 1 4 Kuantor Jenis Lain Terdapatlah satu dan hanya satu x yang mempunyai sifat P. ( x)(p(x) ( y)(p(y) = y = x)) Terdapat x yang memenuhi sifat p dan untuk setiap y yang memenuhi

Lebih terperinci

Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor

Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan

Lebih terperinci

BAB I LOGIKA MATEMATIKA

BAB I LOGIKA MATEMATIKA BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut

Lebih terperinci

Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor

Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan

Lebih terperinci

Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.

Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI. Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses. Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,

Lebih terperinci

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya

Lebih terperinci

KALKULUS PREDIKAT KALIMAT BERKUANTOR

KALKULUS PREDIKAT KALIMAT BERKUANTOR 1 KALKULUS PREDIKAT KALIMAT BERKUANTOR A. PREDIKAT DAN KALIMAT BERKUANTOR Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Dalam ilmu logika, kalimat-kalimat

Lebih terperinci

KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA. Disusun Oleh : Dra. Noeryanti, M.Si 31 MODUL LOGIKA MATEMATIKA

KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA. Disusun Oleh : Dra. Noeryanti, M.Si 31 MODUL LOGIKA MATEMATIKA KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 31 DAFTAR ISI Cover pokok bahasan... 31 Daftar isi.... 3 Judul Pokok Bahasan... 33.1. Pengantar... 33.. Kompetensi... 33.3

Lebih terperinci

Matematika Industri I

Matematika Industri I LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai

Lebih terperinci

KALIMAT DEKLARATIF (Minggu ke-1 dan 2)

KALIMAT DEKLARATIF (Minggu ke-1 dan 2) KALIMAT DEKLARATIF (Minggu ke-1 dan 2) 1 1 Kalimat Definisi 1.1 Kalimat dikatakan lengkap jika paling sedikit memuat subyek dan predikat. Contoh: 1. Toni makan L 2. Menulis buku TL 3. Setiap hari matahari

Lebih terperinci

PTI 206 Logika. Semester I 2007/2008. Ratna Wardani

PTI 206 Logika. Semester I 2007/2008. Ratna Wardani PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Materi Logika Predikatif Fungsi proposisi Kuantor : Universal dan Eksistensial Kuantor bersusun 2 Logika Predikat Logika Predikat adalah perluasan dari

Lebih terperinci

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi

Lebih terperinci

PERNYATAAN MAJEMUK & NILAI KEBENARAN

PERNYATAAN MAJEMUK & NILAI KEBENARAN PERNYATAAN MAJEMUK & NILAI KEBENARAN 1. Pernyataan Majemuk Perhatikan pernyataan hari ini hujan dan aku berjalan-jalan. Pernyataan tersebut terdiri dari dua pernyataan pokok/tunggal (prime sentence), yaitu

Lebih terperinci

BAB I LOGIKA KALIMAT

BAB I LOGIKA KALIMAT BAB I LOGIKA KALIMA Dalam suatu pernyataan kalimat, baik verbal maupun dalam bentuk tulisan, sering muncul ketidak mengertian, kesalah tafsiran dan bahkan keslah pahaman oleh karena beberapa aspek yang

Lebih terperinci

I. PERNYATAAN DAN NEGASINYA

I. PERNYATAAN DAN NEGASINYA 1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan (Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: hgunawan@math.itb.ac.id. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang

Lebih terperinci

BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi juga dapat diterapkan

Lebih terperinci

LOGIKA MATEMATIKA (Pendalaman Materi SMA)

LOGIKA MATEMATIKA (Pendalaman Materi SMA) LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan

Lebih terperinci

Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup.

Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. LOGIKA MATEMATIKA Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. Beberapa hal yang digunakan dalam logika

Lebih terperinci

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri BAB II KAJIAN TEORI Analisis kekonvergenan pada barisan fungsi, apakah barisan fungsi itu? Apakah berbeda dengan barisan pada umumnya? Tentunya sebelum membahas mengenai barisan fungsi, apa saja jenis

Lebih terperinci

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1 2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

PENALARAN DALAM MATEMATIKA

PENALARAN DALAM MATEMATIKA PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara

Lebih terperinci

PERNYATAAN (PROPOSISI)

PERNYATAAN (PROPOSISI) Logika Gambaran Umum Logika : - Logika Pernyataan membicarakan tentang pernyataan tunggal dan kata hubungnya sehingga didapat kalimat majemuk yang berupa kalimat deklaratif. - Logika Predikat menelaah

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu

Lebih terperinci

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN Budi Surodjo Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a. LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

LOGIKA PREDIKAT. Altien Jonathan Rindengan, S.Si, M.Kom

LOGIKA PREDIKAT. Altien Jonathan Rindengan, S.Si, M.Kom LOGIKA PREDIKAT Altien Jonathan Rindengan, S.Si, M.Kom Logika Predikat Seringkali kita harus memeriksa argumen yang berisi proposisi-proposisi yang berkenaan dengan kumpulan objek. Misalkan, memeriksa

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN. Budi Surodjo

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN. Budi Surodjo RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN Budi Surodjo Jurusan Matematika Fakultas Matematikan dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)

NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

Logika & Himpunan 2013 LOGIKA MATEMATIKA. Oleh NUR INSANI, M.SC. Disadur dari BUDIHARTI, S.Si.

Logika & Himpunan 2013 LOGIKA MATEMATIKA. Oleh NUR INSANI, M.SC. Disadur dari BUDIHARTI, S.Si. LOGIKA MATEMATIKA Oleh NUR INSANI, M.SC Disadur dari BUDIHARTI, S.Si. Logika adalah ilmu yang mempelajari secara sistematis kaidah-kaidah penalaran yang absah/valid. Ada dua macam penalaran, yaitu: penalaran

Lebih terperinci

Pembahasan Soal-Soal Latihan 1.1

Pembahasan Soal-Soal Latihan 1.1 Pembahasan Soal-Soal Latihan. Oleh : Fendi Alfi Fauzi Anda pasti masih ingat bagaimana memanipulasi bilangan, tetapi tidak ada salahnya untuk mengulang kembali sejenak. Dalam Soal-soal 0, sederhanakanlah

Lebih terperinci

TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P. Hasil Telaah

TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P. Hasil Telaah TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P Nama Matakuliah: Logika Matematika. SKS : 2 Semester : 7 Penulis : Drs. Mujono, M.Pd. I. Tinjauan matakuliah: tidak ada Hasil Telaah II. Sajian Materi: a. Relevansi

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

KALIMAT BERKUANTOR. Pertemuan 4 Senin, 11 Maret 2013

KALIMAT BERKUANTOR. Pertemuan 4 Senin, 11 Maret 2013 KALIMAT BERKUANTOR Pertemuan 4 Senin, 11 Maret 2013 Pokok Bahasan 1. Predikat dan kalimat berkuantor 2. Ingkaran kalimat berkuantor 3. Kalimat berkuantor ganda 4. Aplikasi logika matematika dalam ilmu

Lebih terperinci

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya

Lebih terperinci

NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG

NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan

Lebih terperinci

Jadi penting itu baik, tapi jadi baik jauh lebih penting

Jadi penting itu baik, tapi jadi baik jauh lebih penting LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

PERTEMUAN Logika Matematika

PERTEMUAN Logika Matematika 3-1 PERTEMUAN 3 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengamu : Dr. Suarman E-mail : matdis@netcourrier.com HP : 0813801198 Judul Pokok Bahasan Tujuan Pembelajaran : 3. Logika Matematika

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL Ukhti Raudhatul Jannah Program Studi Pendidikan Matematika, FKIP, Universitas Madura Alamat Jalan Raya Panglegur 3,5 KM Pamekasan Abstrak: Tulisan

Lebih terperinci

LOGIKA. Arum Handini Primandari

LOGIKA. Arum Handini Primandari LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

DASAR-DASAR MATEMATIKA

DASAR-DASAR MATEMATIKA DASAR-DASAR MATEMATIKA Manfaat Matematika Pengertian Karakteristik Matematika Perbedaan matematika dan Pendidikan Matematika Refleksi Pengantar Dasar Matematika 1 MANFAAT MEMPELAJARI MATEMATIKA PERDAGANGAN

Lebih terperinci

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6) RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p

Lebih terperinci

LOGIKA Matematika Industri I

LOGIKA Matematika Industri I LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan

Lebih terperinci

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik 16. BARISAN FUNGSI 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik Bila pada bab-bab sebelumnya kita membahas fungsi sebagai sebuah objek individual, maka pada bab ini dan selanjutnya kita akan

Lebih terperinci

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal

Lebih terperinci

LOGIKA MATEMATIKA I. PENDAHULUAN

LOGIKA MATEMATIKA I. PENDAHULUAN LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1 LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya

B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)

MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Ekivalensi dan Kuantifikasi Jember, 2015 1 / 20

Lebih terperinci

KATA PENGANTAR. Assalamu alaikum Wr. Wb.

KATA PENGANTAR. Assalamu alaikum Wr. Wb. KATA PENGANTAR Assalamu alaikum Wr. Wb. Matematika tidak dapat terlepas dalam kehidupan manusia sehari-hari, baik saat mempelajari matematika itu sendiri maupun mata kuliah lainnya. Mata kuliah Pengantar

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Pertemuan Standar kompetensi: mahasiswa memahami cara membangun sistem bilangan real, aturan dan sifat-sifat dasarnya. Kompetensi dasar Memahami aksioma atau sifat aljabar bilangan real Memahami fakta-fakta

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah

Lebih terperinci

1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran

1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran Modul 1 Logika Matematika Pendahuluan Pada Modul ini akan dibahas materi yang berkaitan dengan logika proposisi dan logika predikat, serta berbagai macam manipulasi didalamnya. Tujuan Instruksional Umum

Lebih terperinci

KUANTIFIKASI Nur Insani, M.Sc

KUANTIFIKASI Nur Insani, M.Sc KUANTIFIKASI Nur Insani, M.Sc Pada validitas : Banyak argumen valid, namun validitasnya tak dapat diuji dengan alat uji validitas yang ada. 2 Bagaimana Validitas Argumen ini? Semua kucing adalah hewan

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci