BAB 2 PDB Linier Order Satu 2

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 PDB Linier Order Satu 2"

Transkripsi

1 BAB 1 Konsep Dasar 1

2 BAB 2 PDB Linier Order Satu 2

3 BAB 3 Aplikasi PDB Order Satu 3

4 BAB 4 PDB Linier Order Dua 4

5 BAB 5 Aplikasi PDB Order Dua 5

6 BAB 6 Sistem PDB 6

7 BAB 7 PDB Nonlinier dan Kesetimbangan 7

8 BAB 8 Potret Fase Sistem PDB Nonlinier dan Aplikasi Pada bagian ini akan dibahas potret fase sistem otonomus nonlinier dalam aplikasi. Suatu teorema mengenai potret fase sistem otonomus nonlinier x 1 = ax 1 + bx 2 + f 1 (x 1 x 2 ) (8.1) x 2 = ax 1 + bx 2 + f 2 (x 1 x 2 ) (8.2) Misal r 1 r 2 adalah akar-akar persamaan karakteristik (nilai eigen) dari sistem yang dilinierkan maka potert fase dan stabilitasnya dapat dilihat dalam tabel berikut Interaksi Populasi Dalam bagian ini akan dibahas dua spesies yang berbeda, satu spesies disebut pemangsa dan spisies lainnya disebut mangsa (Predator-Prey). Spesies mangsa mempunyai persediaan makanan yang berlebihan sedangkan spesies pemangsa 100

9 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 101 x 0 = Ax det(a ; ri) = 0 det A 6= 0 Nilai eigen Tipe titik kritis Stabilitas r 1 > r 2 > 0 Simpul Tidak stabil r 1 < r 2 < 0 Simpul Stabil asimtotik r 1 < 0 > r 2 Titik plana Tidak stabil r 1 = r 2 > 0 Simpul atau Titik spiral (Fokus) Tidak stabil r 1 = r 2 < 0 Simpul atau Titik spiral (Fokus) Stabil asimtotik r 1 r 2 = i Titik spiral (Fokus) > 0 Tidak stabil < 0 Stabil asimtotik r 1 = i r 2 = ;i Pusat atau Titik spiral (Fokus) Taktentu Tabel 8.1: Potret fase dan stabilitas sistem PDB otonomus nonlinier diberi makanan spesies mangsa. Kajian matematis mengenai ekosistem seperti ini pertama kali diperkenalkan oleh Lotka dan Volterra dalam pertengahan tahun Misalkan x 1 (t) dan x 2 (t) masing-masing menunjukkan banyaknya spesies mangsa dan pemangsa pada saat t maka bila kedua spesies itu terpisah model matematisnya digambarkan sebagai berikut: x 0 1 = a 1 x 1 (8.3) x 0 2 = ;a 1 x 2 : (8.4) Dalam hal ini a 1 > 0 karena populasi mangsa akan terus bertambah dengan adanya makanan yang banyak, sedangkan spesies pemangsa akan berkurang jumlahnya sehingga ;a 1 < 0. Akan tetapi bila kedua spesies itu berinteraksi maka model matematis yang diungkapkan oleh Lotka dan Volterra menjadi x 0 1 = a 1 x 1 ; a 2 x 1 x 2 (8.5) x 0 2 = ;a 3 x 2 + a 4 x 1 x 2 : (8.6) Populasi pemangsa akan memakan populasi mangsa sehingga beralasan untuk

10 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 102 mengandaikan bahwa jumlah yang membunuh besarnya tiap satuan waktu berbanding lurus dengan x 1 dan x 2, yaitu x 1 x 2. Jadi populasi mangsa akan berkurang sedangkan populasi pemangsa akan bertambah. Persamaan ( ) ini tak linier dan sulit diselesaikan dengan cara analitik untuk menentukan solusi eksplisitnya. Namun demikian dengan teori kualitatif sistem semacam ini dapat dianalisa untuk membuat ramalan tentang kelakuan kedua spesies tersebut. Dengan menyelesaikan sistem a 1 x 1 ; a 2 x 1 x 2 = 0 (8.7) ;a 3 x 2 + a 4 x 1 x 2 = 0 (8.8) untuk menentukan titik kritisnya didapat (0 0) dan (a 3 =a 4 a 1 =a 2 ). Dengan demikian sistem ini akan mencapai solusi seimbang pada x 1 (t) = 0 x 2 (t) = 0 dan x 1 (t) = a 3 =a 4 x 2 (t) = a 1 =a 2. Dalam hal ini solusi seimbang kedua akan dikaji. Secara intuitif dapatlah ditentukan solusi sistem itu, yaitu x 1 (t) = 0 x 2 (t) = x 2 (0)e ;a 3t merupakan solusi khusus dengan trayektori sumbu x 2 positif dan x 2 (t) = 0 x 1 (t) = x 1 (0)e a 1t merupakan solusi khusus dengan trayektori sumbu x 1 positif. Karena ketunggalan penyelesaian ini, maka setiap penyelesaian sistem ini yang pada t = 0 berawal pada kuadran pertama tidak akan memotong sumbu x 1 dan x 2 oleh karena itu solusi itu akan tetap berada pada kuadran pertama. Trayektori sistem ini diperoleh dari dx 2 dx 1 = ;a 3x 2 + a 4 x 1 x 2 a 1 x 1 ; a 2 x 1 x 2 = (;a 3 + a 4 x 1 )x 2 (a 1 ; a 2 x 2 )x 1 a 1 ; a 2 x 2 x 2 dx 2 = ;a 3 + a 4 x 1 x 1 dx 1

11 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 103 atau a1 x 2 ; a 2 dx 2 = ; a 3 + a 4 dx 1 x 1 Inegralkan kedua ruas persamaan ini diperoleh penyelesaian umum a 1 ln x 2 ; a 2 x 2 = ;a 4 ln x 1 + a 4 x 1 + k ln x a ln x a 3 1 = a 2 x 2 + a 4 x 1 + k x a 1 2 e a 2x 2 x a 1 2 xa 3 1 = e a 2x 2 +a 4 x 1 +k dimana K = e k dan k merupakan konstanta sebarang. x a 3 1 e a 4x 2 = K (8.9) Dapat dilihat bahwa bila K > 0, trayektori (8.9) merupakan kurva tertutup, lihat Gambar 8.1, dan karena itu tiap penyelesaian (x 1 (t) x 2 (t)) dari ( ) dengan nilai awal (x 1 (0) x 2 (0)) dalam kuadran pertama merupakan fungsi dari waktu yang periodik. Jika T merupakan periode dari penyelesaian x 1 (t) x 2 (t), yaitu, jika (x 1 (t + T ) x 2 (t + T ) = x 1 (t) x 2 (t) untuk semua t 0, maka nilai rata-rata dari populasi x 1 (t) dan x 2 (t) adalah x 1 = 1 T Z T x 1 (t)dt x 2 = 1 T Z T x 2 (t)dt: 0 0 Untuk menentukan nilai integral ini dapatlah diturunkan langsung dari persamaan ( ) tanpa mengetahu solusi eksplisit. Dalam hal ini x 0 2 = ;a 3 x 2 + a 4 x 1 x 2 Z T x 0 2 x 2 = ;a 3 + a 4 x 1 : Integralkan kedua ruas dari 0 sampai dengan T, 0 1 x 2 (t) dx 2 = Z T ln x 2 (T ) ; ln x 2 (0) = ;a 3 T + a 4 0 Z T (;a 3 + a 4 x 1 (t))dt 0 x 1 (t)dt:

12 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 104 Karena x 2 (T ) = 0 maka ;a 3 T + a 4 Z T 0 x 1 (t)dt = 0 atau 1 T Z T 0 x 1 (t)dt = a 3 a 4 : Dengan demikian x 1 = a 3 a 4 : Dengan cara yang sama akan diperoleh x 2 = a 1 a 2 : Dari (8.10) dan (8.10) dapatlah dibuat ramalan yang menarik bahwa ukuran rata-rata dari dua populasi x 1 (t) dan x 2 (t) yang berinteraksi sesuai dengan model matematis yang digambarkan pada persamaan ( ) akan tepat mempunyai nilai setimbang pada x 1 = a 3 =a 4 dan x 2 = a 1 =a 2. Selanjutnya de-ngan menggunakan pengamatan ini dapatlah dibuat ramalan lain yang menarik. Misal populasi mangsa x 1 (t) berkurang dalam jumlah yang sedang, maka po-pulasi mangsa dan pemangsa akan berkurang jumlahnya pada laju, katakanlah, x 1 (t) dan x 2 (t). Sehingga sistem menjadi x 0 1 = a 1 x 1 ; a 2 x 1 x 2 ; x 1 x 0 2 = ;a 3 x 2 + a 4 x 1 x 2 ; x 2 : atau x 0 1 = (a 1 ; )x 1 ; a 2 x 1 x 2 (8.10) x 0 2 = ;(a 3 + )x 2 + a 4 x 1 x 2 : (8.11) Dengan menerapkan persamaan ( ) dapat ditentukan bahwa rata-rata

13 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 105 populasi mangsa dan pemangsa setelah adanya pengurangan masing-masing adalah x 1 = a 3 + a 4 (8.12) x 2 = a 1 ; a 2 : (8.13) Dengan kata lain rata-rata populasi mangsa akan lebih besar sedikit dari ratarata sebelum adanya pengurangan sedangkan rata-rata populasi pemangsa sedikit lebih kecil dari rata-rata sebelumnya. x 2 a1 a 2 a3 (, a a a 4 1 ) 2 a a 3 4 x 1 Gambar 8.1: Potret fase model interaksi Pemangsa dan Mangsa Melalui fungsi DEplot didapat potret fase umum berikut. Gambar 8.2: Potret fase sistem secara umum

14 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI Mekanika Taklinier Ayunan Sederhana Ayunan sederhana terdiri dari sebuah bandul B bermassa m pada spotong tongkat yang ringan dan kaku sepanjang L, diikat bagian atasnya sedemikian hingga sisem itu dapat berayun pada bidang vertikal, lihat Gambar θ C T C L B s A mg sinθ mg mg cosθ Gambar 8.3: Ayunan Bandul Bila bandul itu ditarik satu arah dan dilepas dari keadaan diam pada saat t = 0 dan misal (t) merupakan perpindahan sudut dari tongkat pada saat t dari keadaan setimbang )A dimana sudut (t) positif bila bandul berada disebelah kanan dari kedudukan setimbang dan negatif bila berada disebelah kiri. Kita ingin mengkaji (t) bila bandul berayun kembali dan bergerak sepanjang busur lingkaran CC 0. Dari informasi yang ada telah diketahui (0) = 0 0 (0) = 0 dimana (0) = 0 adalah perpindahaan sudut awal dari tongkat dan (0) = 0 karena bandul dilepas dari keadaan diam. Ada dua gaya yang berkerja yaitu gaya berat (;mg) dan gaya tegangan tongkat T. Gaya ;mg dipecah menjadi dua komponen ;mg cos dan ;mg sin, lihat Gambarband. Gaya ;mg cos mengimbangi tegangan T pada tongkat, sedang gaya ;mg sin menggerakkan

15 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 107 bandul sepanjang busur lingkaran BA. Menurut H.K. Newton II diperoleh dimana s adalah panjang busur AB dan d2 s dt 2 m d2 s = ;mg sin (8.14) 2 dt L merupakan panjang tongkat maka panjang busur s = L. atau m d2 s dt 2 percepatan sepanjang busur. Karena 2 = Ld (8.15) dt 2 d 2 dt + g sin = 0 (8.16) 2 L (0) = 0 0 (0) = 0: (8.17) Kedua persamaan terakhir ini menggambarkan secara lengkap gerak pendulum itu bersama nilai awalnya. Selanjutnya persamaan ini dapat dirubah kedalam sistem PDB order satu, dengan memisalkan! 2 = g L x 1 = dan x 2 = 0, sehingga diperoleh x 0 1 = x 2 (8.18) x 0 2 = ;! 2 sin x 1 : (8.19) Untuk menganalisa titik kritis persamaan ini, dapat ditentukan dari mengnolkan ruas kiri, sehingga x 2 = 0 ;! 2 sin x 1 = 0: Dengan menyelesaikan persamaan kedua diperoleh x 1 = = : : : sehinggga titik kritisnya adalah : : : (;2 0) (; 0) (0 0) ( 0) (2 0) : : :

16 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 108 Memahami sin x adalah fungsi periodik maka cukup dipelajari (0 0) ( 0) saja. Untuk (0 0) maka ekspansi deret Taylor disekitar x = 0 adalah sin x = x ; x3 3! + x 5 5! ; : : : sehingga persamaan ( ) dapat dihampiri oleh sistem linier x 0 1 = x 2 x 0 2 = ;!2 x: (8.20) Dengan demikian persamaan karakteristik (8.20) adalah r 2 +! 2 = 0 dengan akarakar r 12 =!i. Menurut Tabel?? Tabel 8.1 dan maka titik kritis (0 0) adalah stabil pusat untuk sistem (8.20) dan merupakan titik pusat atau fokus untuk sistem ( ), lihat Gambar 8.3. Panah pada trayektori menunjukkan arah perputaran jarum jam karena persamaan pertama dalam (8.20) yaitu x membesar bila y positif. Analog dengan ini sistem ( ) juga mempunyai titik kritis pada (2n 0) untuk n = 1 2 : : :. x 2 2π π 0 π 2π x 1 Gambar 8.4: Trayekktori sistem ayunan bandul Selanjutnya kita kaji titik kritis ( 0). Ekspansi deret Taylor untuk sin x disekitar x = diberikan oleh sin x = ;(x ; ) + (x ; )3 3 ; (x ; )5 5! + : : : :

17 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 109 Jadi sistem yang dilinierkan berbentuk x 0 1 = x 2 x 0 2 =! 2 (x ; ): (8.21) dan mempunyai titik kritis pada ( 0). Titik kritis dapat dipetakan ke (0 0) dengan memisalkan v = x ; sehingga menjadi v 0 = x 2 x 0 2 =! 2 v: (8.22) Persamaan karakteristiknya adalah r 2 ;! 2 = 0 dengan akar-akar r 12 =!. Karena akar-akarnya riel dan tandanya berlawanan, maka titik kritis (0 0) merupakan titik plana oleh karena itu merupakan titik kesetimbangan takstabil dari (8.22). Sebagai implikasinya, titik kritis ( 0) juga merupakan titik plana dan karena itu merupakan titik kesetimbangan takstabil dari sistem yang dilinierkan (8.21), lihat Tabel??. Selanjutnya menurut Tabel 8.1, diperoleh kenyataan bahwa karena ( 0) merupakan titik plana maka titik ini merupakan kesetimbangan stabil dari sistem ( ). Sistem ini juga akan mempunyai sebuah titik plana pada titik (2n+1) 0) untuk n = 1 2 : : :, dan selengkapnya dapat dilihat dalam Gambar 8.5. Dengan menggunakan fungsi DEplot diperoleh potret x 2 4π 3π 2π π 0 π 2π 3π 4π x 1 Gambar 8.5: Potret fase fase dapat dilihat dalam Gambar 8.6.

18 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 110 2π π π 2π Gambar 8.6: Potret fase secara umum Secara eksplisit kita juga dapat menurunkan persamaan trayektori persamaan ( ). Dengan menggabungkan kedua persamaan itu, yaitu dx 2 dx 1 = ;! 2 sin x 1 x 2 maka persamaan ini merupakan PDB terpisah dimana solusinya adalah 1 2 x2 2 ;!2 cos x 1 = c: (8.23) Untuk menggambarkan potret fase dari persamaan ini adalah tepat sekali untuk menyatakan c dalam syarat awal. Andaikan bahwa x 2 = (x 2 ) 0 bila x 1 = 0 maka dari (8.23) didapat bahwa c = 1 2 (x 2) 2 0 ;!2 1 2 x2 2 ;!2 cos x 1 = 1 2 (x 2) 2 0 ;!2 x ! 2 (1 ; cos x 1 ) = (x 2 ) 2 0 x !2 sin 2 x 1 2 = (x 2 ) 2 0 (8.24) Persamaan terakhir ini merupakan persamaan yang menggambarkan tiga tipe kurva yang beraputan dalam Gambar 8.5 dalam tiga kasus berikut.

19 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 111 KASUS 1 j(x 2 ) 0 j < 2!. Nilai maksimum dari sudut x 1 (ingat bahwa x 1 = ) dicapai bila x 2 = 0 dan x maks = 2 arcsin (x 2) 0 2! < : Dalam kasus ini ayunan itu berosilasi antara sudut ekstrem x maks. Trayektorinya merupakan kurva tertutup sebagaimana terlihat dalam bagian paling dalam kurva dalam Gambar 8.5. KASUS 2 j(x 2 ) 0 j > 2!. Dalam kasus ini ayunan membuat putaran lengkap. Trayektorinya akan berbentuk kurva ombak pada bagian atas dan bawah kurva dalam Gambar 8.5. KASUS 3 j(x 2 ) 0 j = 2!. Dalam hal ini trayektori berbentuk simpal (kop) tebal yang memisahkan trayektori tertutup dan trayektori ombak dalam Gambar 8.5. Persamaan trayektori ini dapat diturunkan langsung dari persamaan (8.24) jika kita substitusikan 2! dalam (x 2 ) 0 sehingga diperoleh x 2 = 2! cos x 2

20 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 112 Latihan Tutorial 3 1. Dalam interaksi mangsa dan pemangsa, misal populasi mangsa mempunyai persediaan makanan yang terbatas maka model persamaan interaksi itu akan menjadi x 0 1 = a 1 x 1 ; a 2 x 1 x 2 ; 1 x 2 1 x0 2 = ;a 3 x 2 + a 4 x 1 x 2 ; 2 x 2 2 dimana 1 1 > 0. Sebagi contoh khusus model ini adalah x 0 1 = 3x 1 ; x 1 x 2 ; 2x 2 1 x0 2 = ;x 2 + 2x 1 x 2 ; x 2 2, dimana x 1 x 2 diukur dalam ratusan mahluk. Kajilah stabilitsa dari tiap titik kritisnya dan tentukan apakah ini merupakan titik simpul, plana atau fokus. 2. Persamaan difrensial 00 + k +! 2 sin = 0 k > 0 merupakan gerak ayunan yang dipengaruhi gaya gesekan (gaya peredam) yang berbanding lurus dengan kecepatan sudut. Transformasikan PDB ini kedalam sistem PDB order satu dan buktikan bahwa hanya (n 0) untuk n = : : : merupakan titik kritis dari sistem ini. Dalam setiap kasus kajilah stabilitas sistem pada (0 0) dan tentukan apakah (0 0) merupakan titik simpul, plana atau fokus untuk (a) k < 2! (b) k = 2! (c) k > 2! 3. Persamaan difrensial x 00 + (x 2 ; 1)x 0 + x = 0 > 0 disebut persamaan vanderp ol dan mengatur rangkaian listrik tertentu yang mengandung pipa hampa. Transformasikan PDB ini kedalam sistem PDB

21 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 113 order satu dan buktikan bahwa hanya (0 0) satu-satunya titik kritis dari sistem ini. Kajilah stabilitas sistem pada (0 0) bila < 2 dabn > 2. Dalam setiap kasus tentukan apakah (0 0) merupakan titik simpul, plana atau fokus. 4. Dua tangki saling berhubungan (lihat Gambar 1). Awal mula tangki I berisi 30 Lt air yang berisi 20 gram garam, sementara tangki II berisi 20 Lt air dengan 15 gram garam. Kemudian air yang berisi 1 gram/lt dituangkan kedalam tangki I dengan laju 2 Lt/menit dan bercampur sempurna dalam tangki I, pada saat yang bersamaan campuran itu mengalir ke tangki II dengan laju 4 Lt/menit. Disisi lain air yang berisi 3 gram/lt dituangkan kedalam tangki II dengan laju 1 Lt/menit dan bercampur sempurna dalam tangki II dan pada saat yang bersamaan pula campuran itu mengalir ke luar dimana 2 Lt/menit mengalir kembali ke tangki I dan 3 Lt/menit mengalir keluar meninggalkan sistem. 2 Lt/min, 1 gram/lt 1 Lt/min, 3 gram/lt 4 Lt/min 2 Lt/min 3 Lt/min Gambar 8.7: Dua tangki yang saling berhubungan. (a) Tentukan model matematik lengkap dengan masalah nilai awalnya dari

22 BAB 8. POTRET FASE SISTEM PDB NONLINIER DAN APLIKASI 114 peristiwa ini. (b) Tentukan titik kesetimbangan (titik kritis) dari dari sistem PD order pertama tersebut. (c) Tentukan ekspresi model matematik yang menyatakan banyaknya garam dalam tangki I dan II setiap saat. 5. Suatu rangkaian tertutup seri dari hambatan (R), induktor (L) dan kapasitor (C) dihubungkan dengan sumber tegangan bolak balik E = 100 sin 60t Volt, lihat Gambar 2 dibawah ini. Jika muatan listrik awal dan arus listrik awal sama dengan nol, tentukan fungsi muatan listrik Q dalam kapasitor setelah saat tertentu t > 0. R = 2 ohm E I Keterangan: R : Hambatan L : Induktor C : Kapasitor C=1/260 farad L=1/10 henry Gambar 8.8: Rangkaian tertutup seri R L dan C.

23 Daftar Pustaka Boyce, W. E. & Diprima, R. C Elementary Dierential Equations and Boudary Value Problems. John Wiley & Sons, Inc. Singapore Burden, R. L. and Faires, J. D Numerical Analysis. Brooks/Cole Publishing Company. U.S. Lambert, J.D Numerical Methods for Ordinary Dierential Systems. John Wiley & Sons, Inc. Singapore Powell, M.J.D Approximation Theory and Methods. Cambridge University Press. U.K. Ross, S. L Introduction to Ordinary Dierential Equations. John Wiley & Sons, Inc. New York. U.S. Shampine, L. F. & Baca, L.S Computer Solution of Ordinary Dierential Equations: The Initial Value Problem. Freeman. San Francisco. 115

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5.

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. SISTEM DINAMIK KONTINU LINEAR Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. Lisa Risfana Sari Sistem Dinamik D Sistem dinamik adalah sistem yang dapat diketahui

Lebih terperinci

MODEL DINAMIK INTERAKSI DUA POPULASI (Dynamic Model Interaction of Two Population)

MODEL DINAMIK INTERAKSI DUA POPULASI (Dynamic Model Interaction of Two Population) Jurnal Barekeng Vol. 5 No. 1 Hal. 9 13 (211) MODEL DINAMIK INTERAKSI DUA POPULASI (Dynamic Model Interaction of Two Population) FRANCIS Y. RUMLAWANG 1, TRIFENA SAMPELILING 2 1 Staf Jurusan Matematika,

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: Penyelesaian PDB orde satu dengan integrasi secara langsung Jika PDB dapat disusun dalam bentuk,

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB 1 Konsep Dasar 1 BAB Solusi Persamaan Fungsi Polinomial BAB 3 Interpolasi dan Aproksimasi Polinomial 3 BAB 4 Metoda Numeris untuk Sistem Nonlinier 4 BAB 5 Metoda Numeris Untuk Masalah Nilai Awal 5

Lebih terperinci

Bab I. Bilangan Kompleks

Bab I. Bilangan Kompleks Bab I Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan kompleks. Himpunan bilangan real yang kita pakai sehari-hari merupakan himpunan bagian dari himpunan

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan

Lebih terperinci

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan Prosiding Matematika ISSN: 2460-6464 Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan 1 Ai Yeni, 2 Gani Gunawan, 3 Icih Sukarsih 1,2,3 Prodi Matematika, Fakultas Matematika

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: = f(x, y) M(x, y) + N(x, y) = 0 Penyelesaian PDB orde satu dengan integrasi secara langsung Jika

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) ABSTRAK

ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) ABSTRAK ISBN : 978-979-7763-3- ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) Oleh Ahmadin Departemen Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS

SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah 1209 100 703 Dosen Pembimbing: Dr Erna Apriliani,

Lebih terperinci

PERSAMAAN DIFERENSIAL BIASA ORDE SATU

PERSAMAAN DIFERENSIAL BIASA ORDE SATU PERSAMAAN DIFERENSIAL BIASA ORDE SATU Definisi: Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen x, suatu variabel dependen y, dan satu atau lebih turunan y terhadap

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Pertemuan I Jurusan Pendidikan Matematika FMIPA UNY September 8, 2016 Skydiver Figure: Penerjun Payung Skydiver Asumsi untuk pergerakan skydiver 1 gaya gravitasi 2 gaya hambat karena atmosfer Hukum Newton

Lebih terperinci

Bab 16. Model Pemangsa-Mangsa

Bab 16. Model Pemangsa-Mangsa Bab 16. Model Pemangsa-Mangsa Pada Bab ini akan dipelajari model matematis dari masalah dua spesies hidup dalam habitat yang sama, yang dalam hal ini keduanya berinteraksi dalam hubungan pemangsa dan mangsa.

Lebih terperinci

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h

Lebih terperinci

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons SILABUS : 1.Getaran a. Getaran pada sistem pegas b. Getaran teredam c. Energi dalam gerak harmonik sederhana 2.Gelombang a. Gelombang sinusoidal b. Kecepatan phase dan kecepatan grup c. Superposisi gelombang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

PEMBENTUKAN MODEL RANGKAIAN LISTRIK

PEMBENTUKAN MODEL RANGKAIAN LISTRIK PEMBENTUKAN MODEL RANGKAIAN LISTRIK Pada sub bab ini akan membahas tentang sistem listrik. Pembahasan ini berperan sebagai suatu contoh yang mengesankan dari kenyataan penting, bahwa sistem fisis yang

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana MODUL PERKULIAHAN OSILASI Bagian- Fakultas Program Studi atap Muka Kode MK Disusun Oleh eknik eknik Elektro 3 MK4008, S. M Abstract Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik

Lebih terperinci

ANALISIS DINAMIKA MODEL KOMPETISI DUA POPULASI YANG HIDUP BERSAMA DI TITIK KESETIMBANGAN TIDAK TERDEFINISI

ANALISIS DINAMIKA MODEL KOMPETISI DUA POPULASI YANG HIDUP BERSAMA DI TITIK KESETIMBANGAN TIDAK TERDEFINISI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal 197 204. ANALISIS DINAMIKA MODEL KOMPETISI DUA POPULASI YANG HIDUP BERSAMA DI TITIK KESETIMBANGAN TIDAK TERDEFINISI Eka

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER. Oleh: Supardi. Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta

ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER. Oleh: Supardi. Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER Oleh: Supardi Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta Penelitian tentang gejala chaos pada pendulum nonlinier telah dilakukan.

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB 1 Konsep Dasar 1 BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3.1 Masalah Dalam Mekanik Misal 4x adalah perubahan jarak yang ditimbulkan benda bergerak selama waktu 4t maka kecepatan

Lebih terperinci

KARAKTERISTIK GERAK HARMONIK SEDERHANA

KARAKTERISTIK GERAK HARMONIK SEDERHANA KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU 1 Persamaan diferensial orde satu Persamaan diferensial menyatakan hubungan dinamik antara variabel bebas dan variabel tak bebas, maksudnya

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR Oleh: Drs. M. Setijo Winarko, M.Si Drs. I Gusti Ngurah Rai Usadha, M.Si Subchan, Ph.D Drs. Kamiran, M.Si Noveria

Lebih terperinci

Pengantar Persamaan Differensial (1)

Pengantar Persamaan Differensial (1) Program Studi Modul Mata Kuliah Kode MK Disusun Oleh Sistem Komputer 01 Persamaan Differensial MKK103 Albaar Rubhasy, S.Si, MTI Pengantar Persamaan Differensial (1) Materi Pembahasan: Deskripsi Perkuliahan

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

Lebih terperinci

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH Sugimin Jurusan Matematika FMIPA UT ugi@mail.ut.ac.id ABSTRAK Suatu persamaan vektor berbentuk x & = f (x dengan variabel bebas t yang tidak dinyatakan

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial 2 BAB 3 Interpolasi dan Aproksimasi Polinomial 3 BAB 4 Metoda Numeris untuk Sistem Nonlinier 4 BAB 5 Metoda Numeris Untuk Masalah Nilai Awal

Lebih terperinci

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA Thoufina Kurniyati Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang E-mail:

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

KATA PENGANTAR. Semarang, 28 Mei Penyusun

KATA PENGANTAR. Semarang, 28 Mei Penyusun KATA PENGANTAR Segala puji syukur kami panjatkan ke hadirat Tuhan Yang MahaEsa. Berkat rahmat dan karunia-nya, kami bisa menyelesaikan makalah ini. Dalam penulisan makalah ini, penyusun menyadari masih

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus

Lebih terperinci

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel).

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). BAB IV DINAMIKA PARIKEL A. SANDAR KOMPEENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). B. KOMPEENSI DASAR : 1. Menjelaskan Hukum Newton sebagai konsep dasar

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK Kasus-kasus fisika yang diangkat pada mata kuliah Fisika Komputasi akan dijawab secara numerik. Validasi jawaban

Lebih terperinci

Bab 7 Persamaan Differensial Non-homogen

Bab 7 Persamaan Differensial Non-homogen Bab 7 Persamaan Differensial Non-homogen Persamaan Differensial Orde- Non Homogen Bentuk hukum : d y dy + p( ) + Q( ) y R( ) (*) Dimana, P(), Q(), dan R() dapat juga berwujud suatu leoust Solusinya : y

Lebih terperinci

OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK

OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK 1 Last Time Induktansi Diri 2 Induktansi Diri Menghitung: 1. Asumsikan arus I mengalir 2. Hitung B akibat adanya I tersebut 3. Hitung fluks akibat adanya B tersebut

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

C.1 OSILASI GANDENG PEGAS

C.1 OSILASI GANDENG PEGAS Mata Kuliah GELOMBANG-OPTIK OPTIK TOPIK I SUB TOPIK OSILASI GANDENG C. SISTEM OSILASI DUA DERAJAT KEBEBASAN:OSILASI GANDENG Satu derajat kebebasan: Misalkan: pegas yang memiliki satu simpangan Dua derajat

Lebih terperinci

Gerak Harmonis. Sederhana SUB- BAB. A. Gaya Pemulih

Gerak Harmonis. Sederhana SUB- BAB. A. Gaya Pemulih SUB- BAB Gerak Harmonis A. Gaya Pemulih Sederhana B. Persamaan Simpangan, Kecepatan dan Percepatan Getaran C. Periode Getaran D. Hukum Hooke E. Manfaat Pegas Sebagai Produk Perkembangan Konsep dan Keahlian

Lebih terperinci

Penerapan Bilangan Kompleks pada Rangkaian RLC

Penerapan Bilangan Kompleks pada Rangkaian RLC Penerapan Bilangan Kompleks pada Rangkaian RLC Hishshah Ghassani - 354056 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung 403, Indonesia

Lebih terperinci

PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng.

PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng. PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng. 1 Teknik Elektro, http://sigitkus@ub.ac.id Pengantar: Modul ini menjelaskan pemodelan rangkaian listrik RL dan

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, dan Kus Prihantoso Krisnawan,M.

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, dan Kus Prihantoso Krisnawan,M. 1 Abstrak ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, Kus Prihantoso Krisnawan,M.Si 3 1 Mahasiswa Jurusan Pendidikan Matematika, Universitas

Lebih terperinci

DIKTAT. Persamaan Diferensial

DIKTAT. Persamaan Diferensial Diktat Persamaan Diferensial; Dwi Lestari, M.S. 3 DIKTAT Persamaan Diferensial Disusun oleh: Dwi Lestari, M.S email: dwilestari@un.a.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Fisika UMPTN Tahun 1986

Fisika UMPTN Tahun 1986 Fisika UMPTN Tahun 986 UMPTN-86-0 Sebuah benda dengan massa kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari, m. Jika

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

KESTABILAN SISTEM PREDATOR-PREY LESLIE

KESTABILAN SISTEM PREDATOR-PREY LESLIE Jurnal Matematika Murni dan Terapan Vol. 3 No. Desember 009: 51-59 KESTABILAN SISTEM PREDATOR-PREY LESLIE Dewi Purnamasari, Faisal, Aisjah Juliani Noor Program Studi Matematika Universitas Lambung Mangkurat

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika, BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR TUGAS AKHIR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ( S TA B I L I T Y A N A LY S I S O F A P R E D AT O R - P R E Y M O D E L W I T H I N F E C T

Lebih terperinci

KESTABILAN POPULASI MODEL LOTKA-VOLTERRA TIGA SPESIES DENGAN TITIK KESETIMBANGAN ABSTRACT

KESTABILAN POPULASI MODEL LOTKA-VOLTERRA TIGA SPESIES DENGAN TITIK KESETIMBANGAN ABSTRACT KESTABILAN POPULASI MODEL LOTKA-VOLTERRA TIGA SPESIES DENGAN TITIK KESETIMBANGAN Ritania Monica, Leli Deswita, Rolan Pane Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

BAB PDB Linier Order Satu

BAB PDB Linier Order Satu BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Persiapan Penilaian Akhir Semester (PAS) Ganjil Doc. Name: RK13AR12FIS01PAS Version: 2016-11 halaman 1 01. Perhatikan rangkaian hambatan listrik berikut. Hambatan pengganti

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya

Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 2337-3520 (2301-928X Print) 1 Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah, Erna Apriliani Jurusan

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika

Lebih terperinci

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart 1. Hipotesis tentang gejala kelistrikan dan ke-magnetan yang disusun Maxwell ialah... a. perubahan medan listrik akan menghasilkan medan magnet b. di sekitar muatan listrik terdapatat medan listrik c.

Lebih terperinci

Syarat Cukup Osilasi Persamaan Diferensial Linier Homogen Orde Dua Dengan Redaman

Syarat Cukup Osilasi Persamaan Diferensial Linier Homogen Orde Dua Dengan Redaman SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 10 Syarat Cukup Osilasi Persamaan Diferensial Linier Homogen Orde Dua Dengan Redaman Maulana Malik, Sri Mardiyati Departemen Matematika

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

1. a) Kesetimbangan silinder m: sejajar bidang miring. katrol licin. T f mg sin =0, (1) tegak lurus bidang miring. N mg cos =0, (13) lantai kasar

1. a) Kesetimbangan silinder m: sejajar bidang miring. katrol licin. T f mg sin =0, (1) tegak lurus bidang miring. N mg cos =0, (13) lantai kasar 1. a) Kesetimbangan silinder m: sejajar bidang miring katrol licin T f mg sin =0, (1) tegak lurus bidang miring N mg cos =0, (2) torka terhadap pusat silinder: TR fr=0. () Dari persamaan () didapat T=f.

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA GELOMBAG : Gerak Harmonik Sederhana M. Ishaq Pendahuluan Gerak harmonik adalah sebuah kajian yang penting terutama jika anda bergelut dalam bidang teknik, elektronika, geofisika dan lain-lain. Banyak gejala

Lebih terperinci