Titik Berat. da y. Suatu elemen da

Ukuran: px
Mulai penontonan dengan halaman:

Download "Titik Berat. da y. Suatu elemen da"

Transkripsi

1 Titik Berat da Suatu eleme da Titik erat atau pusat suatu luasa adala suatu titik dimaa luasa terkosetrasi da tetap meiggalka mome ag tidak erua teradap semarag sumu. Pada umuma leak titik erat diataka seagai jarak pada koordiat da. Baa jar Mekaika Baa Mulati, MT

2 Mome pertama luasa eleme da teradap sumu adala dq da da teradap sumu adala dq da Selajuta mome pertama luasa terigga diataka dega : Q X dq Q dq Jadiletak titik erat atau pusat suatu luasa degakoordiat seagai erikut : da da Q Q dimaa adala luasa Baa jar Mekaika Baa Mulati, MT

3 Luasa da titik erat eerapa etuk peampag : a. Empat persegi pajag Luas. Titik erat : ½ ½. Segi tiga sama kaki Luas ½. Titik erat : ½ / Baa jar Mekaika Baa Mulati, MT

4 c. Segi tiga siku siku Luas ½. Titik erat : / / d. Segi tiga tidak sama kaki Luas ½. Titik erat : /( + ; /( + / Baa jar Mekaika Baa Mulati, MT

5 e. Ligkara r r Luas πr atau ¼ πd Titik erat : r ½ D D f. Setega ligkara r D Luas ½ πr atau /8 πd Titik erat : r ½ D 4r/π Baa jar Mekaika Baa Mulati, MT

6 Utuk luasa idag ag tersusu atas su luasa i, dega masig masig koordiat da diketaui, titik erat dapat ditetuka dega cara megaggap luasa peampag seagai erat, kemudia erdasarka jumla mome dari agia agia g luasa peampag p teradap garis semarag sama dega mome keselurua peampag teradap garis ag sama, maka letak titik erat dapat ditetuka : i. i i i. i i da i i i i seigga, i i i i. i i da i i i i. i i Baa jar Mekaika Baa Mulati, MT

7 Mome ersia da Suatu eleme da Mome iersia suatu luasa eleme teradap suatu sumu di dalam idag luasa dierika dega produk luasa eleme da kuadrat jarak (tegak lurus atara eleme dega sumu. Mome iersia eleme teradap sumu adala dl da da teradap sumu adala dl da Baa jar Mekaika Baa Mulati, MT

8 Mome iersia suatu luasa terigga teradap suatu sumu di dalam idag luasa dierika dega jumla mome iersia teradap sumu ag sama dari seluru eleme ag ada pada luasa terigga terseut, diataka dalam etuk itegral : dl da da dl da Utuk suatu idag ag tersusu atas su idag i, dimaa masig masig mome iersiaa teradap sumu da sumu diketaui, maka etuk itegral dapat digati dega etuk pejumlaa : ( i da ( i i i Satua utuk mome iersia adala pagkat empat dari satua pajag. Baa jar Mekaika Baa Mulati, MT

9 Mome iersia teradap sumu ag melalui titik erat eerapa etuk peampag : a. Empat persegi pajag... Segi tiga sama kki kaki Baa jar Mekaika Baa Mulati, MT

10 c. Segi tiga siku siku d. Segi tiga tidak sama kaki. 6. (. + 6 Baa jar Mekaika Baa Mulati, MT

11 e. Ligkara r r π d 64 4 D f. Setega ligkara r 8 r 4 π D Baa jar Mekaika Baa Mulati, MT

12 G da G Suatu eleme da Mome iersia i suatu eleme teradap sumu ag ergeser dari ititik erat, maka mome iersia teradap sumu da sumu adala : + G G. +. Baa jar Mekaika Baa Mulati, MT

13 Jari jari putara, jika mome iersia luasa teradap sumu diataka dega, maka jari jari putara r dapat didefiisika dega : r da jika mome iersia luasa teradap sumu diataka dega, maka jari jari putara r adala : r Baa jar Mekaika Baa Mulati, MT

14 Coto Soal da Pemaasa Peelesaia : a. Letak titik erat... 5.(060 5.( 4. π.0 5. cm (060 (. π ( ( 4. π.0 7,89cm (0 60 (..0 π 4 Baa jar Mekaika Baa Mulati, MT

15 . Mome iersia peampag. ( ' ( ' 4 ( (060.7,89 (. π.0 + ( 4. π.0.40, ,. cm 4 64 ( (.. +. '.. +. ' ( ( (060. o. π.0 + (..0.0 π 746,0. cm Baa jar Mekaika Baa Mulati, MT

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

Evaluasi Belajar Tahap Akir Nasional Tahun 1987 Matematika

Evaluasi Belajar Tahap Akir Nasional Tahun 1987 Matematika Evaluasi Belajar Tahap Akir Nasioal Tahu 987 Matematika EBTANAS SMP 87 0 Diagram di awah yag merupaka jarig-jarig kuus adalah I II III IV I, II da IV I, II da III II, III da IV I, III da IV EBTANAS SMP

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bitaro Sektor 7, Bitaro Jaa Tagerag Selata 154 PENDAHULUAN Megapa mempelajari kekuata taah? Keamaa

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM07 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pd metode ii, utuk meetuka

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA ADAPTIF CLUSTER

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA ADAPTIF CLUSTER PEAKI AIO UTUK ATA-ATA POPUAI PADA AMPIG ACAK BETATA ADAPTIF CUTE Dita Ardii uam Efedi Buami Maasisa Program Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetaua Alam Uiversitas iau Kampus

Lebih terperinci

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2015 Nomor Soal: 81-90

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2015 Nomor Soal: 81-90 Slusi Pegayaa Matematika disi Maret Peka Ke-, 0 Nmr Sal: -0. ari titik da pada ligkara, garis siggug P da Q digambarka sama, seperti diperlihatka pada gambar. uktika bahwa membagi PQ sama pajag. Q P Perpajag

Lebih terperinci

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan:

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan: BAB II PEMBAHASAN A. Keadaa Makro da Keadaa Mikro Masalah utama yag dihadapi dalam mekaika statistik adalah meetuka sebara yag mugki dari partikel- partikel kedalam tigkat- tigkat eergi da keadaa- keadaa

Lebih terperinci

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (

Lebih terperinci

TURUNAN FUNGSI. absis titik C dan absis titik C sama dengan h, maka x 3 = x 1 + h, sehingga gradien garis AC sama dengan

TURUNAN FUNGSI. absis titik C dan absis titik C sama dengan h, maka x 3 = x 1 + h, sehingga gradien garis AC sama dengan TURUNAN FUNGSI. Gardie Garis siggug Kurva Peratika graik ugsi pada gambar berikut. 8 B 6 C A Gambar Titik A, B, da C terletak pada graik, bila absisa berturut-turut,, da, maka koordiat titik A,, B,, da

Lebih terperinci

BAB I BILANGAN KOMPLEKS

BAB I BILANGAN KOMPLEKS BAB I BILANGAN KOMPLEKS Di dalam bab ii, kita aka meelidiki struktur aljabar da geometri dari sistim bilaga kompleks. Kita aggap bahwa berbagai sifat ag berhubuga dega bilaga real sudah diketahui.. PENJUMLAHAN

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci

PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR

PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR Naharuddi 1 1 Staf Pegajar Jurusa Tekik Mesi, Utad Abstrak. Tujua peelitia ii adalah utuk meetuka ilai frekuesi pribadi getara

Lebih terperinci

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D

Lebih terperinci

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda 4/9/06 Regresi Liier Bergada Program Studi Tekik Idustri Uiversitas Brawijaa Ihwa Hamdala, ST., MT SI - Regresi & Korelasi Bergada Regresi Bergada Cotoh SI - Regresi & Korelasi Bergada Meguji huuga liier

Lebih terperinci

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n)

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n) BAB IV ERSAMAAN TINGKAT SATU DERAJAT TI NGGI 1- Stadar Kometesi Setelah memelajari okok bahasa ii diharaka mahasiswa daat memahami ara-ara meetuka selesaia umum ersamaa dieresial tigkat satu derajat tiggi.

Lebih terperinci

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan.

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan. III. MATERI DAN METODE 3.1. Waktu da Tempat Peelitia Peelitia ii telah dilaksaaka pada Bula Oktober sampai November 013 di peteraka yag ada di Kota Pekabaru. 3.. Materi Peelitia a. Peelitia ii megguaka

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

Disusun oleh : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2009

Disusun oleh : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2009 Disusu ole : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 009 KRITERIA PERENCANAAN DATA- DATA BANGUNAN Nama agua : Gedug Type B SMKN

Lebih terperinci

BAB II DASAR TEORI 2.1 Aeroelastik Statik

BAB II DASAR TEORI 2.1 Aeroelastik Statik 6 BB II DSR TEORI Feomea aeroelastik merupaka sala satu atasa dalam peracaga suatu struktur kedaraa terag. Ole karea itu muculla suatu disipli ilmu yag mempelajari tetag feomea terseut yag diamaka aeroelastisitas.

Lebih terperinci

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak.

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak. BAB III METODOLOGI 3.. ALUR PROGRAM (FLOW CHART) Seerti telah dijelaska sebelumya, bahwa tujua dari eelitia ii adalah utuk megaalisis suatu kasus stabilitas lereg. Aalisis stabilitas lereg tergatug ada

Lebih terperinci

BAB II DASAR TEORI. dalam bentuk lantai dan atap bangunan untuk menompang beban normal pada

BAB II DASAR TEORI. dalam bentuk lantai dan atap bangunan untuk menompang beban normal pada BAB II DASAR TEORI.1 Umum Pelat beto (slab) merupaka eleme struktur ag palig luas diguaka dalam betuk latai da atap bagua utuk meompag beba ormal pada permukaaa. Pelat tersebut dapat ditopag pada didig

Lebih terperinci

BAB 12 BARISAN DAN DERET

BAB 12 BARISAN DAN DERET BAB 1 BARISAN DAN DERET TIPE 1: Jika dari barisa aritmetika diketahui suku ke-m adalah um u b. m Cotoh: Diketahui barisa aritmetika, suku ke-5 adalah 4 da suku ke-8 adalah 6. Tetuka beda barisa aritmetika

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Buleti Ilmia Mat. Stat. da Terapaa (Bimaster) Volume 0, No. (0), al 07 6. METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Apriadi, Bau Priadoo, Evi Noviai INTISARI Metode

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pegertia Turua Fugsi Defiisi Turua fugsi f adala fugsi f yag ilaiya di c adala f c f c f c 0 asalka it ii ada. Coto Jika f 3 + +4, maka turua f di adala f f f 0 3 4 3.. 4 0 34 4 4 4

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Penelititan ini menggunakan 30 ekor Sapi Bali jantan umur berkisar antara

III BAHAN DAN METODE PENELITIAN. Penelititan ini menggunakan 30 ekor Sapi Bali jantan umur berkisar antara III BAHAN DAN METODE PENELITIAN 3. Baha da Peralata Peelitia 3.. Baha Peelitia Peelitita ii megguaka 30 ekor Sapi Bali jata umur berkisar atara -3 tahu dega bobot bada berkisar atara 50-500 kg atau dalam

Lebih terperinci

DAFTAR NOTASI. = Luas tulangan tarik non pratekan. As' Ast. be = Lebar efektif balok pada penampang T dan L. b = Lebar efektifjoin balok kolom, mm.

DAFTAR NOTASI. = Luas tulangan tarik non pratekan. As' Ast. be = Lebar efektif balok pada penampang T dan L. b = Lebar efektifjoin balok kolom, mm. DAFT AR NOT ASI vii DAFTAR NOTASI a Ac Ag As As' Ast Av b = Tiggi blok persegi tegaga beto ekivale. = Luas peampag beto. = Luas bruto peampag. = Luas tulaga tarik o prateka. = Luas tulaga teka. = Luas

Lebih terperinci

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II SINYAL WAKTU Pegolaha Siyal Digital Miggu II 24 Goodrich, Tamassia PENDAHULUAN Defiisi Siyal x(t) Fugsi dari variabel bebas yag memiliki ilai real/skalar yag meyampaika iformasi tetag keadaa atau ligkuga

Lebih terperinci

Fakultas Teknik Jurusan Teknik Sipil Universitas Brawijaya

Fakultas Teknik Jurusan Teknik Sipil Universitas Brawijaya Fakulas Teknik Jurusan Teknik Sipil Universias Brawijaa B Momen Sais a Penampang Bidang Berenuk Tak Berauran Momen sais dari suau luasan eradap sumu dan didefinisikan seagai inegral dari asil kali luas

Lebih terperinci

STRUKTUR BAJA I. Perhitungan Sambungan Las

STRUKTUR BAJA I. Perhitungan Sambungan Las STRUKTUR BAJA I rhituga Samuga Las Samuga Las Samuga as ada dua macam, yaitu: - as tumpu - as sudut Tgaga: σ as σ 0, 6σ a Las Tumpu: s s sa Utuk s s ---- ta as tumpu (a) s Utuk s s ----- ta as tumpu (a)

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

τ = r x F KESETIMBANGAN

τ = r x F KESETIMBANGAN KESETIMBG Moe Gaa ( τ ) Moe gaa atau torsi adalah besara ag dapat eebabka beda berotasi atau berputar. Besar oe gaa didefiisika sebagai hasil kali atara gaa ag bekerja dega lega. Moe gaa terasuk dala besara

Lebih terperinci

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta Oleh: Bambag Widodo, SPd SMA Negeri 9 Yogyakarta PETA KONSEP Prisip Superposisi Liier Sefase π π beda faseya : 0,2, 4,. beda litasa : 0,,2, 3,. terjadi iterferesi Kostruktif/ salig meguatka, amplitudo

Lebih terperinci

STABILITAS LERENG runi_ runi asma _ ran asma t ran t ub.ac.id

STABILITAS LERENG runi_ runi asma _ ran asma t ran t ub.ac.id STABILITAS LERENG rui_asmarato@ub.ac.id ANALISA STABILITAS LERENG Dalam bayak kasus, para isiyur sipil/pegaira diharapka mampu membuat perhituga stabilitas lereg gua memeriksa keamaa suatu kodisi : Lereg

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

Bab II Dasar Teori Analitik Shell

Bab II Dasar Teori Analitik Shell Bab II Dasar Teori Aalitik Shell II. Kosep Dasar II.. Persamaa Differesial Shell Perbedaa yag utama atara struktur cagkag (shell) da struktur pelat adalah pada kelegkugaya. Dega adaya kelegkuga awal mempegaruhi

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1. Struktur Beto Bertulag.1.1. Pegertia da Deiii Beto Bertulag Beto ertulag adalah gauga atara eto da tulag aja. Beto merupaka ampura atara eme, pair, kerikil da air ag etelah megera

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

BAB V TURUNAN FUNGSI. Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB V TURUNAN FUNGSI. Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB V TURUNAN FUNGSI Stadar Kompetesi Meggaka kosep it gsi da tra gsi dalam pemecaa masala Kompetesi Dasar Meggaka siat da atra tra dalam peritga tra gsi aljabar Meggaka tra tk meetka karakteristik sat

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Jenis data yang digunakan berupa data sekunder yang menggunakan Tabel

BAB III METODOLOGI PENELITIAN. Jenis data yang digunakan berupa data sekunder yang menggunakan Tabel 49 BAB III METODOLOGI PENELITIAN 3.1 Jeis da Sumber Data Jeis data yag diguaka berupa data sekuder yag megguaka Tabel Iput Output Idoesia Tau 2005 dega klasifikasi 9 sektor. Data tersebut berasal dari

Lebih terperinci

PERTEMUAN 3 dan 4 MOMEN INERSIA & RADIUS GIRASI

PERTEMUAN 3 dan 4 MOMEN INERSIA & RADIUS GIRASI PERTEMUAN an 4 MOMEN INERSIA & RADIUS GIRASI MOMEN INERSIA? ILMU FISIKA Momen inersia aalah suatu ukuran kelemaman seuah partikel terhaap peruahan keuukan alam gerak lintasan rotasi Momen inersia aalah

Lebih terperinci

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

Matematika ITB Tahun 1975

Matematika ITB Tahun 1975 Matematika ITB Taun 975 ITB-75-0 + 5 6 tidak tau ITB-75-0 Nilai-nilai yang memenui ketidaksamaan kuadrat 5 7 0 atau atau 0 < ITB-75-0 Persamaan garis yang melalui A(,) dan tegak lurus garis + y = 0 + y

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER

LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER LAMPIRAN LAMPIRAN PEMBENUKAN FUNGSI PERIODIZER Fugsi p c x x, merupaka fugsi garis lurus simetris dega variabel bebas x, mejadi fugsi dasar pembetuka gelombag sawtooth. Fugsi p c x ii yag aka disubstitusi

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Formula Multiplier Output

Formula Multiplier Output Formula Multiplier Output Utuk meghitug agka multiplier atau peggada output diperoleh dega rumus: 1 M K = [ I A] dimaa M K = matriks multiplier/peggada output berukura x ; dapat diterapka utuk I = matriks

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SBMPTN - SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b = 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB

Lebih terperinci

PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 6-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK PPS Cluster Samplig Misalka suatu daerah terdiri dari N cluster yag masig-masig cluster terdiri dari eleme. Dari populasi tersebut,

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

MODEL DINAMIK INTERAKSI ANTARA VEKTOR TERINFEKSI LEPTOSPIROSIS DAN POPULASI MANUSIA TUGAS AKHIR

MODEL DINAMIK INTERAKSI ANTARA VEKTOR TERINFEKSI LEPTOSPIROSIS DAN POPULASI MANUSIA TUGAS AKHIR ODEL DNAK NTEAK ANTAA VEKTO TENFEK LEPTOPO DAN POPULA ANUA TUGA AKH Disusu seagai ala atu yarat utuk emperole Gelar arjaa ais pada Jurusa atematika Ole UHAAD ZAL 84474 FAKULTA AN DAN TEKNOLOG UNVETA LA

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

2. Spektrum Atom Hidrogen

2. Spektrum Atom Hidrogen Struktur Atom 1. Teori Atom (Model Atom) 1.1 Dalto Hukum Lavoisier & Proust kosep: atom 1. Tomso Hatara listrik Tabug siar katoda Peemua elektro Radioaktifitas kosep: elektro 1.3 Ruterford Percobaa berkas

Lebih terperinci

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan JMP : Vol. 8 No., Des. 016, al. 33-40 ISSN 085-1456 ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI Novita Eka Cadra Uiversitas Islam Darul Ulum Lamoga ovitaekacadra@gmail.com Masriai Mayuddi Uiversitas

Lebih terperinci

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang ahan jar Statika Mulyati, ST., MT ertemuan XI, XII, XIII VI. Konstruksi Rangka atang VI. endahuluan Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupaka pegembaga dari ANAVA 1 Jala Jika pada ANAVA 1 jala 1 Faktor Jika pada ANAVA jala Faktor Model Liier i i 1,..., a j 1,..., Satu faktor ag diteliti Aava 1 jala k i j k i 1,,...,

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Regresi 4/13/2015 REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NONLINEAR HUBUNGAN LEBIH DARI DUA VARIABEL REGRESI LINEAR BERGANDA

Regresi 4/13/2015 REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NONLINEAR HUBUNGAN LEBIH DARI DUA VARIABEL REGRESI LINEAR BERGANDA 4/3/05 REGRESI LINER BERGND DN REGRESI (TREND) NONLINER Oleh : Fauza mi Sei, 3 pil 05` GDL (07.30-0.50) Regesi Dai deajat (pagkat) tiap peuah eas Liie (ila pagkatya ) No-liie (ila pagkatya uka ) Dai ayakya

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

Komputasi Aliran Panas pada sebuah Batang Logam Dengan Menggunakan Algoritma Numerov dan Bahasa Pemrograman Borland Delphi 6.0

Komputasi Aliran Panas pada sebuah Batang Logam Dengan Menggunakan Algoritma Numerov dan Bahasa Pemrograman Borland Delphi 6.0 Berkala Fisika ISSN : 40-966 Vol. 6, No. 3, Juli 003, al. 7-78 Komputasi Alira Paas pada sebua Batag Logam Dega Megguaka Algoritma Numerov da Baasa Pemrograma Borlad Delpi 6.0 Sumaria, K. Sofa Firdausi

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

= 8 = 7. x 4 = 24 = 8 = 5 = 13. pada persamaan ketiga dan x 3 = 5

= 8 = 7. x 4 = 24 = 8 = 5 = 13. pada persamaan ketiga dan x 3 = 5 III. REDUKSI GANJIL-GENAP/REDUKSI SIKLIS.. Alortma Sequesal Coto 9. Selesaka sstem persamaa erkut : Jawa 6 x + x = 8 x + x 5 x = 7 x + x 6 x = 5 x + 8 x = Vektor x = [ x x x x ] T dperole melalu prosedur

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

Lampiran 1. Data Hasil Uji Kekerasan, Uji Friabilitas, dan Uji Waktu

Lampiran 1. Data Hasil Uji Kekerasan, Uji Friabilitas, dan Uji Waktu Lampira 1. Data Hasil Uji Kekerasa, Uji Friabilitas, da Uji Waktu A. Uji Kekerasa tablet No G. Idofarma G. Uiversal Kekerasa Tablet (kg) Varsemol Farmadol Rakyat B. Sediri 1 1.5 9 7.5 9.5 1 5.5 1.5 8 8.75

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

Geometri Analitika Ruang. Semester IV (3 SKS)

Geometri Analitika Ruang. Semester IV (3 SKS) Geoetri Aalitika Ruag Seester IV ( SKS rofil Dose Naa Alaat : Ilha Rais Arviato M.d : Grha urwoukti A RT 7 RW Radusari urwoartai Kalasa Slea Yogakarta. 5557 No. H : 08 480 488 Eail Blog : ilha.arviato@ahoo.co

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

AYUNAN FISIS. I. Tujuan Percobaan

AYUNAN FISIS. I. Tujuan Percobaan 1 AYUNAN FISIS I. Tujua Percobaa a. Memahami proses ayua fisis b. Meetuka pusat massa berbagai betuk beda tegar c. Meetuka pusat massa dega ayua fisis d. Meetuka percepata gravitasi dega meetuka ayua fisis

Lebih terperinci

Perbandingan Metode Pendugaan Kemungkinan Maksimum (MLE) dan Pendugaan Kuadrat Terkecil (LSE) Dalam Distribusi Keandalan

Perbandingan Metode Pendugaan Kemungkinan Maksimum (MLE) dan Pendugaan Kuadrat Terkecil (LSE) Dalam Distribusi Keandalan Semiar Nasioal Statistika IX Istitut Tekologi Sepuluh Nopemer, 7 Novemer 009 Peradiga Metode Pedugaa Kemugkia Maksimum (MLE) da Pedugaa Kuadrat Terkecil (LSE) Dalam Distriusi Keadala I Nyoma Latra, da

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

PERANCANGAN MESIN PERAJANG TEMBAKAU MENGGUNAKAN TIGA MATA PISAU PADA KAPASITAS 120 KG/JAM

PERANCANGAN MESIN PERAJANG TEMBAKAU MENGGUNAKAN TIGA MATA PISAU PADA KAPASITAS 120 KG/JAM Widya Tekika Vol. o.; Maret 0 WIDYA TEKIKA Vol. o.; MARET 0: 5 60 ISS 0660: 5 60 PERACAGA MESI PERAJAG TEMBAKAU MEGGUAKA TIGA MATA PISAU PADA KAPASITAS 0 KG/JAM Vitri Pitradjalisari Toi Dwi Putra ABSTRAK

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

DISTRIBUSI KHUSUS YANG DIKENAL

DISTRIBUSI KHUSUS YANG DIKENAL 0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci