Titik Berat. da y. Suatu elemen da

Ukuran: px
Mulai penontonan dengan halaman:

Download "Titik Berat. da y. Suatu elemen da"

Transkripsi

1 Titik Berat da Suatu eleme da Titik erat atau pusat suatu luasa adala suatu titik dimaa luasa terkosetrasi da tetap meiggalka mome ag tidak erua teradap semarag sumu. Pada umuma leak titik erat diataka seagai jarak pada koordiat da. Baa jar Mekaika Baa Mulati, MT

2 Mome pertama luasa eleme da teradap sumu adala dq da da teradap sumu adala dq da Selajuta mome pertama luasa terigga diataka dega : Q X dq Q dq Jadiletak titik erat atau pusat suatu luasa degakoordiat seagai erikut : da da Q Q dimaa adala luasa Baa jar Mekaika Baa Mulati, MT

3 Luasa da titik erat eerapa etuk peampag : a. Empat persegi pajag Luas. Titik erat : ½ ½. Segi tiga sama kaki Luas ½. Titik erat : ½ / Baa jar Mekaika Baa Mulati, MT

4 c. Segi tiga siku siku Luas ½. Titik erat : / / d. Segi tiga tidak sama kaki Luas ½. Titik erat : /( + ; /( + / Baa jar Mekaika Baa Mulati, MT

5 e. Ligkara r r Luas πr atau ¼ πd Titik erat : r ½ D D f. Setega ligkara r D Luas ½ πr atau /8 πd Titik erat : r ½ D 4r/π Baa jar Mekaika Baa Mulati, MT

6 Utuk luasa idag ag tersusu atas su luasa i, dega masig masig koordiat da diketaui, titik erat dapat ditetuka dega cara megaggap luasa peampag seagai erat, kemudia erdasarka jumla mome dari agia agia g luasa peampag p teradap garis semarag sama dega mome keselurua peampag teradap garis ag sama, maka letak titik erat dapat ditetuka : i. i i i. i i da i i i i seigga, i i i i. i i da i i i i. i i Baa jar Mekaika Baa Mulati, MT

7 Mome ersia da Suatu eleme da Mome iersia suatu luasa eleme teradap suatu sumu di dalam idag luasa dierika dega produk luasa eleme da kuadrat jarak (tegak lurus atara eleme dega sumu. Mome iersia eleme teradap sumu adala dl da da teradap sumu adala dl da Baa jar Mekaika Baa Mulati, MT

8 Mome iersia suatu luasa terigga teradap suatu sumu di dalam idag luasa dierika dega jumla mome iersia teradap sumu ag sama dari seluru eleme ag ada pada luasa terigga terseut, diataka dalam etuk itegral : dl da da dl da Utuk suatu idag ag tersusu atas su idag i, dimaa masig masig mome iersiaa teradap sumu da sumu diketaui, maka etuk itegral dapat digati dega etuk pejumlaa : ( i da ( i i i Satua utuk mome iersia adala pagkat empat dari satua pajag. Baa jar Mekaika Baa Mulati, MT

9 Mome iersia teradap sumu ag melalui titik erat eerapa etuk peampag : a. Empat persegi pajag... Segi tiga sama kki kaki Baa jar Mekaika Baa Mulati, MT

10 c. Segi tiga siku siku d. Segi tiga tidak sama kaki. 6. (. + 6 Baa jar Mekaika Baa Mulati, MT

11 e. Ligkara r r π d 64 4 D f. Setega ligkara r 8 r 4 π D Baa jar Mekaika Baa Mulati, MT

12 G da G Suatu eleme da Mome iersia i suatu eleme teradap sumu ag ergeser dari ititik erat, maka mome iersia teradap sumu da sumu adala : + G G. +. Baa jar Mekaika Baa Mulati, MT

13 Jari jari putara, jika mome iersia luasa teradap sumu diataka dega, maka jari jari putara r dapat didefiisika dega : r da jika mome iersia luasa teradap sumu diataka dega, maka jari jari putara r adala : r Baa jar Mekaika Baa Mulati, MT

14 Coto Soal da Pemaasa Peelesaia : a. Letak titik erat... 5.(060 5.( 4. π.0 5. cm (060 (. π ( ( 4. π.0 7,89cm (0 60 (..0 π 4 Baa jar Mekaika Baa Mulati, MT

15 . Mome iersia peampag. ( ' ( ' 4 ( (060.7,89 (. π.0 + ( 4. π.0.40, ,. cm 4 64 ( (.. +. '.. +. ' ( ( (060. o. π.0 + (..0.0 π 746,0. cm Baa jar Mekaika Baa Mulati, MT

Evaluasi Belajar Tahap Akir Nasional Tahun 1987 Matematika

Evaluasi Belajar Tahap Akir Nasional Tahun 1987 Matematika Evaluasi Belajar Tahap Akir Nasioal Tahu 987 Matematika EBTANAS SMP 87 0 Diagram di awah yag merupaka jarig-jarig kuus adalah I II III IV I, II da IV I, II da III II, III da IV I, III da IV EBTANAS SMP

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bitaro Sektor 7, Bitaro Jaa Tagerag Selata 154 PENDAHULUAN Megapa mempelajari kekuata taah? Keamaa

Lebih terperinci

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan:

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan: BAB II PEMBAHASAN A. Keadaa Makro da Keadaa Mikro Masalah utama yag dihadapi dalam mekaika statistik adalah meetuka sebara yag mugki dari partikel- partikel kedalam tigkat- tigkat eergi da keadaa- keadaa

Lebih terperinci

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D

Lebih terperinci

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n)

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n) BAB IV ERSAMAAN TINGKAT SATU DERAJAT TI NGGI 1- Stadar Kometesi Setelah memelajari okok bahasa ii diharaka mahasiswa daat memahami ara-ara meetuka selesaia umum ersamaa dieresial tigkat satu derajat tiggi.

Lebih terperinci

BAB II DASAR TEORI 2.1 Aeroelastik Statik

BAB II DASAR TEORI 2.1 Aeroelastik Statik 6 BB II DSR TEORI Feomea aeroelastik merupaka sala satu atasa dalam peracaga suatu struktur kedaraa terag. Ole karea itu muculla suatu disipli ilmu yag mempelajari tetag feomea terseut yag diamaka aeroelastisitas.

Lebih terperinci

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak.

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak. BAB III METODOLOGI 3.. ALUR PROGRAM (FLOW CHART) Seerti telah dijelaska sebelumya, bahwa tujua dari eelitia ii adalah utuk megaalisis suatu kasus stabilitas lereg. Aalisis stabilitas lereg tergatug ada

Lebih terperinci

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Buleti Ilmia Mat. Stat. da Terapaa (Bimaster) Volume 0, No. (0), al 07 6. METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Apriadi, Bau Priadoo, Evi Noviai INTISARI Metode

Lebih terperinci

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II SINYAL WAKTU Pegolaha Siyal Digital Miggu II 24 Goodrich, Tamassia PENDAHULUAN Defiisi Siyal x(t) Fugsi dari variabel bebas yag memiliki ilai real/skalar yag meyampaika iformasi tetag keadaa atau ligkuga

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

STABILITAS LERENG runi_ runi asma _ ran asma t ran t ub.ac.id

STABILITAS LERENG runi_ runi asma _ ran asma t ran t ub.ac.id STABILITAS LERENG rui_asmarato@ub.ac.id ANALISA STABILITAS LERENG Dalam bayak kasus, para isiyur sipil/pegaira diharapka mampu membuat perhituga stabilitas lereg gua memeriksa keamaa suatu kodisi : Lereg

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta Oleh: Bambag Widodo, SPd SMA Negeri 9 Yogyakarta PETA KONSEP Prisip Superposisi Liier Sefase π π beda faseya : 0,2, 4,. beda litasa : 0,,2, 3,. terjadi iterferesi Kostruktif/ salig meguatka, amplitudo

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

Matematika ITB Tahun 1975

Matematika ITB Tahun 1975 Matematika ITB Taun 975 ITB-75-0 + 5 6 tidak tau ITB-75-0 Nilai-nilai yang memenui ketidaksamaan kuadrat 5 7 0 atau atau 0 < ITB-75-0 Persamaan garis yang melalui A(,) dan tegak lurus garis + y = 0 + y

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Formula Multiplier Output

Formula Multiplier Output Formula Multiplier Output Utuk meghitug agka multiplier atau peggada output diperoleh dega rumus: 1 M K = [ I A] dimaa M K = matriks multiplier/peggada output berukura x ; dapat diterapka utuk I = matriks

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang ahan jar Statika Mulyati, ST., MT ertemuan XI, XII, XIII VI. Konstruksi Rangka atang VI. endahuluan Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka

Lebih terperinci

Lampiran 1. Data Hasil Uji Kekerasan, Uji Friabilitas, dan Uji Waktu

Lampiran 1. Data Hasil Uji Kekerasan, Uji Friabilitas, dan Uji Waktu Lampira 1. Data Hasil Uji Kekerasa, Uji Friabilitas, da Uji Waktu A. Uji Kekerasa tablet No G. Idofarma G. Uiversal Kekerasa Tablet (kg) Varsemol Farmadol Rakyat B. Sediri 1 1.5 9 7.5 9.5 1 5.5 1.5 8 8.75

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupaka pegembaga dari ANAVA 1 Jala Jika pada ANAVA 1 jala 1 Faktor Jika pada ANAVA jala Faktor Model Liier i i 1,..., a j 1,..., Satu faktor ag diteliti Aava 1 jala k i j k i 1,,...,

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

AYUNAN FISIS. I. Tujuan Percobaan

AYUNAN FISIS. I. Tujuan Percobaan 1 AYUNAN FISIS I. Tujua Percobaa a. Memahami proses ayua fisis b. Meetuka pusat massa berbagai betuk beda tegar c. Meetuka pusat massa dega ayua fisis d. Meetuka percepata gravitasi dega meetuka ayua fisis

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Geometri Analitika Ruang. Semester IV (3 SKS)

Geometri Analitika Ruang. Semester IV (3 SKS) Geoetri Aalitika Ruag Seester IV ( SKS rofil Dose Naa Alaat : Ilha Rais Arviato M.d : Grha urwoukti A RT 7 RW Radusari urwoartai Kalasa Slea Yogakarta. 5557 No. H : 08 480 488 Eail Blog : ilha.arviato@ahoo.co

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

UM UNPAD 2007 Matematika Dasar

UM UNPAD 2007 Matematika Dasar UM UNPAD 007 Matematika Dasar Kode Soal Doc. Name: UMUNPAD007MATDAS999 Version : 0- halaman 0. Jika A e adalah komplemen dari A, maka daerah yang diarsir pada diagram Venn di awah ini dapat dinyatakan

Lebih terperinci

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0 B.3 Fungsi Kuadrat a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menentukan titik potong grafik fungsi dengan sumu koordinat, sumu simetri dan nilai ekstrim suatu fungsi Menggamar

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

ANALISIS PENGARUH LAJU KOROSI TERHADAP KAPASITAS BUCKLING PADA KONDISI ELASTIC PADA BAJA PROFIL I BEAM

ANALISIS PENGARUH LAJU KOROSI TERHADAP KAPASITAS BUCKLING PADA KONDISI ELASTIC PADA BAJA PROFIL I BEAM ANALISIS PENGARUH LAJU KOROSI TERHADAP KAPASITAS BUCKLING PADA KONDISI ELASTIC PADA BAJA PROFIL I BEA Redokso S, Daiel Rumi Terua Departeme Tekik Sipil, Uiversitas Sumatera Utara, Jl. Dr. aysur eda Email:

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

Bab 3 Kerangka Pemecahan Masalah

Bab 3 Kerangka Pemecahan Masalah Bab 3 Keragka Pemecaha Masalah 3.1. Metode Pemecaha Masalah Peelitia ii disajika dalam lagkah-lagkah seperti ag terdapat pada gambar dibawah ii. Peajia secara sistematis dibuat agar masalah ag dikaji dalam

Lebih terperinci

3 PERANCANGAN PELAT LENTUR Pelat letur merupaka salah satu eleme petig dari struktur bagua gedug. Pada umumya bagua gedug tersusu dari pelat latai, balok aak, balok iduk, kolom,da podasi. Idealisasi pelat

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

INTEGRAL CONTOUR. 2. Fungsi f tetap, C dipandang sebagai variabel

INTEGRAL CONTOUR. 2. Fungsi f tetap, C dipandang sebagai variabel INTEGRAL ONTOUR Tujua Perkuliaha: Mahasiswa dapat memahami kosep itegral cotour da meyelesaika masalah dalam itegral otour. Defiisi: Diberika fugsi z = z(t) utuk a t b, Mewakili sebuah litasa yag diperpajag

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B. Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f

Lebih terperinci

METODOLOGI QUICK COUNT PILPRES

METODOLOGI QUICK COUNT PILPRES SAIFULMUJANI RESEARCH AND CONSULTING (SMRC) LEMBAGA SURVEI INDONESIA (LSI) METODOLOGI QUICK COUNT PILPRES METODOLOGI Populasi Quick Cout adala seluru suara sa dari pemili di seluru TPS (tempat pemuguta

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

4. Mononom dan Polinom

4. Mononom dan Polinom Darpulic www.darpulic.com 4. Mononom dan Polinom Sudaratno Sudirham Mononom adalah pernataan tunggal ang erentuk k n, dengan k adalah tetapan dan n adalah ilangan ulat termasuk nol. Fungsi polinom merupakan

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

STUDI PERBANDINGAN METODE SAMPLING ANTARA SIMPLE RANDOM DENGAN STRATIFIED RANDOM

STUDI PERBANDINGAN METODE SAMPLING ANTARA SIMPLE RANDOM DENGAN STRATIFIED RANDOM Jural Basis Data, ICT Researc Ceter UA Vol.3 o. Mei 008 I 978-9483 TUDI ERBADIGA METODE AMLIG ATARA IMLE RADOM DEGA TRATIFIED RADOM urayati Jurusa iem Iformasi, Fakultas Tekologi Komuikasi da Iformatika,

Lebih terperinci

I. Kombinasi momen lentur dengan gaya aksial tarik

I. Kombinasi momen lentur dengan gaya aksial tarik VII. BALOK KOLOM Komponen struktur seringkali menderita kominasi eerapa macam gaya secara ersama-sama, salah satu contohnya adalah komponen struktur alok-kolom. Pada alok-kolom, dua macam gaya ekerja secara

Lebih terperinci

Mengenal Sifat Material (1) oleh:

Mengenal Sifat Material (1) oleh: Ope Course Megeal Sifat Material 1 ole: Sudaryato Sudiram Cakupa Baasa Perkembaga Kosep Atom Elektro Sebagai Partikel da Gelombag Persamaa Gelombag Scrödiger Aplikasi Persamaa Scrödiger Kofigurasi Elektro

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. STABILITAS LERENG Suatu permukaa taah yag mirig yag membetuk sudut tertetu terhadap bidag horisotal disebut sebagai lereg (slope). Lereg dapat terjadi secara alamiah atau dibetuk

Lebih terperinci

BAB II PEMBAHASAN. 1

BAB II PEMBAHASAN. 1 BAB II PEMBAHASAN A. Keadaa Makro da Keadaa Mikro Masalah utama yag dihadapi dalam mekaika statistic adalah meetuka sebara yag mugki dari partikel-partikel kedalam tigkattigkat eergi da keadaa-keadaa atau

Lebih terperinci

SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR

SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR A- Riigsih, Idah Emilia Wijayati 2 Mahasiswa S Jurusa Matematika FMIPA Uiversitas Gadjah Mada 2 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Abstrak Skema pembagia

Lebih terperinci

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Baut Pertemuan - 13

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Baut Pertemuan - 13 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Samungan Baut Pertemuan - 13 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur aja eserta alat samungnya TIK : Mahasiswa mampu

Lebih terperinci

BAB VI PERHITUNGAN TEKNIS

BAB VI PERHITUNGAN TEKNIS BAB VI PERHITUNGAN TEKNIS 6.. TINJAUAN UMUM Pada perecaaa ormalisasi ii, dilakuka perbaika peampag sugai maupu dega perbaika taggul da pembuata taggul baru pada titik titik yag memerluka. Pada bab ii aka

Lebih terperinci

BAB II Elektron Dalam Struktur Kuantum

BAB II Elektron Dalam Struktur Kuantum 5 BAB II lekto Dalam Stuktu Kuatum Peilaku pembawa muata (elekto/ole) pada devais bestuktu kuatum sepeti quatum well quatum wies seta quatum dot sagat meaik utuk dikaji kaea efek mekaika kuatum sagat bepea

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Kita meilai diri kita dega megukur dari apa yag kita rasa mampu utuk kerjaka, orag lai megukur kita dega megukur dari adap yag telah kita

Lebih terperinci

Konstruksi Rangka Batang

Konstruksi Rangka Batang Konstruksi Rangka atang Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka atang merupakan suatu konstruksi yang terdiri dari sejumlah atang atang

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).

Lebih terperinci

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN

Lebih terperinci

RUANG VEKTOR MATRIKS FUZZY

RUANG VEKTOR MATRIKS FUZZY RUANG VEKTOR MATRIKS FUZZY Siti Robiatul Adawiyah 1, Rade Sulaima 2 1 Jurusa Matematika, Fakultas Matematika da Ilmu Pegetahua Alam, Uiversitas Negeri Surabaya, 60231 2 Jurusa Matematika, Fakultas Matematika

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN : JURNAL MATEMATKA DAN KOMPUTER Vol 5 No, 39-46, April 22, SSN : 4-858 MENCAR SOLUS PENAKSR PARAMETER PADA ANALSS VARANS DENGAN PENDEKATAN GENERAL NVERS Sukestiaro Jurusa Matematika FMPA Uiversitas Negeri

Lebih terperinci

PROGRAM ANALISIS STABILITAS LERENG

PROGRAM ANALISIS STABILITAS LERENG LAPORAN TUGAS AKHIR PROGRAM ANALISIS STABILITAS LERENG SLOPE STABILITY ANALYSIS PROGRAM Diajuka utuk memeuhi persyarata dalam meyelesaika pedidika Tigkat Sarjaa (S1) pada Jurusa Tekik Sipil Fakultas Tekik

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series Jural ILM DASAR, Vol, No, Juli : 9-98 9 Metode Beda Higga da Teorema Newto utuk Meetuka Jumlah Deret Fiite Differece Method ad Newto's Theorem to Determie the Sum of Series Tri Mulyai,*), Moh Hasa ), Slami

Lebih terperinci

PENYUSUNAN RANCANGAN NEAR-ORTHOGONAL FRACTIONAL FACTORIAL SPLIT-PLOT

PENYUSUNAN RANCANGAN NEAR-ORTHOGONAL FRACTIONAL FACTORIAL SPLIT-PLOT PENYUSUNAN RANCANGAN NEAR-ORTHOGONAL FRACTIONAL FACTORIAL SPLIT-PLOT Idahati, Yei Agraii, Bagus Sartoo Departeme Statista FMIPA Istitut Pertaia Bogor idahati_43@yahoo.co.id yagraii11@gmail.com agusco@gmail.com

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

Hidraulika Terapan. Bunga Rampai Permasalahan di Lapangan

Hidraulika Terapan. Bunga Rampai Permasalahan di Lapangan Hidraulika Terapan Bunga Rampai Permasalaan di Lapangan Djoko Luknanto 10/15/2015 1 Kecepatan Vertikal muka air Sebua saluran mempunyai kecepatan vertikal (u) yang tergantung dari kedalaman, seingga dalam

Lebih terperinci

W A L I K O T A Y O G Y A K A R T A

W A L I K O T A Y O G Y A K A R T A W A L I K O T A Y O G Y A K A R T A P E R A T U R A N W A L I K O T A Y O G Y A K A R T A N O M O R 83 T A H U N 2 0 1 2 T E N T A N G T U N J A N G A N R E S I K O P E L A Y A N A N K E S E H A T A N

Lebih terperinci

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI - Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB DISTRIBUSI FREKUENSI A. Review Pelajara SMA A. Pegumpula Data. Peelitia lapaga (Pegamata Lagsug). Wawacara (Iterview). Agket (Kuisioer) 4. Berdasarka

Lebih terperinci

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1 Kuliah : Rekayasa Hidrologi II TA : Geap 2015/2016 Dose : 1. Novriati.,MT 1 Materi : 1.Limpasa: Limpasa Metoda Rasioal 2. Uit Hidrograf & Hidrograf Satua Metoda SCS Statistik Hidrologi Metode Gumbel Metode

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

Supriyadi Wibowo Jurusan Matematika F MIPA UNS

Supriyadi Wibowo Jurusan Matematika F MIPA UNS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA akultas MIPA, Uiversitas Negeri Yogyakarta, 16 Mei 29 HUBUNGAN ANTARA ORDER DERIVATI- DARI UNGSI f : DENGAN DIMENSI-γ DARI HIMPUNAN RAKTAL Supriyadi

Lebih terperinci

Geometri Ruang (Dimensi 3)

Geometri Ruang (Dimensi 3) Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =

Lebih terperinci

Modul 2 PENGUKURAN JARAK ANTAR NODE MENGGUNAKAN X-Bee. RSSI 10x

Modul 2 PENGUKURAN JARAK ANTAR NODE MENGGUNAKAN X-Bee. RSSI 10x Modul ENGUKURAN JARAK ANTAR NODE MENGGUNAKAN X-Bee. TUJUAN a. Memperkiraka jarak atar ode berdasarka model komuikasi irkabel b. Megukur kuat siyal terima dari modul komuikasi X Bee c. Medapatka karakteristik

Lebih terperinci

II. TINJAUAN PUSTAKA. LPG adalah kependekan dari Liquefied Petroleum Gas, merupakan gas hasil

II. TINJAUAN PUSTAKA. LPG adalah kependekan dari Liquefied Petroleum Gas, merupakan gas hasil II. TINJAUAN PUSTAKA LPG adala kependekan dari Liquefied Petroleum Gas, merupakan gas asil produksi dari kilang minyak atau kilang gas, yang komponen utamanya adala gas propane (C 3 H 8 ) dan utane (C

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan September sampai dengan

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan September sampai dengan III. METODE PENELITIAN 3.1. Waktu da Tempat Peelitia Peelitia ii dilaksaaka pada bula September sampai dega November 2014 di Fasilitas Karatia Marie Research Ceter (MRC), PT. Cetral Pertiwi Bahari (CPB)

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

Abstrak. Kata Kunci: motor DC kompon, posisi sikat. 1. Pendahuluan. 2. Motor DC Penguatan Kompon

Abstrak. Kata Kunci: motor DC kompon, posisi sikat. 1. Pendahuluan. 2. Motor DC Penguatan Kompon ANALSS PERBANDNGAN PENGARUH POSS SKAT TERHADAP EFSENS DAN TORS MOTOR DC PENGUATAN KOMPON PANJANG DENGAN MOTOR DC PENGUATAN KOMPON PENDEK (Aplikasi pada Laboratorium Koversi Eergi Listrik FTUSU) Rizky Hardiasyah,

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi 8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala

Lebih terperinci

ARRAY. Pertemuan 2. Array dapat didefinisikan sebagai suatu himpunan hingga elemen yang terurut dan homogen.

ARRAY. Pertemuan 2. Array dapat didefinisikan sebagai suatu himpunan hingga elemen yang terurut dan homogen. ARRAY Pertemua Array atau Larik merupaka Struktur Data Sederhaa yag dapat didefiisika sebagai pemesaa alokasi memory semetara pada komputer. Array dapat didefiisika sebagai suatu himpua higga eleme yag

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

APLIKASI KONSEP BERBASIS PERPINDAHAN PADA PERENCANAAN PILAR BETON BERTULANG UNTUK STRUKTUR JEMBATAN

APLIKASI KONSEP BERBASIS PERPINDAHAN PADA PERENCANAAN PILAR BETON BERTULANG UNTUK STRUKTUR JEMBATAN Dimesi Tekik Sipil, Vol. 4, No., 51-59, September ISSN 141-95 APLIKASI KONSEP BERBASIS PERPINDAHAN PADA PERENCANAAN PILAR BETON BERTULANG UNTUK STRUKTUR JEMBATAN Takim Adrioo, Wog Foek Tjog Dose Fakultas

Lebih terperinci

METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Finite Difference Method and Newton's Theorem to Determine the Sum of Series)

METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Finite Difference Method and Newton's Theorem to Determine the Sum of Series) Prosidig emiar Nasioal Matematika, Uiversitas Jember, 9 November 8 METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Fiite Differece Method ad Newto's Theorem to Determie the um of eries)

Lebih terperinci

SINGUDA ENSIKOM VOL. 6 NO.2 /February 2014

SINGUDA ENSIKOM VOL. 6 NO.2 /February 2014 SINGUDA ENSIKOM VOL. 6 NO.2 /February ANALISIS PENGARUH JATUH TEGANGAN TERHADAP TORSI DAN PUTARAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT (Aplikasi pada Laboratorium Koversi Eergi Listrik FT-USU) Agug Khairi,

Lebih terperinci

dapat dihampiri oleh:

dapat dihampiri oleh: BAB V PENGGUNAAN TURUNAN Setela pada bab sebelumnya kita membaas pengertian, sifat-sifat, dan rumus-rumus dasar turunan, pada bab ini kita akan membaas tentang aplikasi turunan, diantaranya untuk mengitung

Lebih terperinci

ANALISIS TENTANG GRAF PERFECT

ANALISIS TENTANG GRAF PERFECT Aalisis Tetag Graf Perfect ANALISIS TENTANG GRAF PERFET Nurul Imamah AH Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Pesatre Tiggi Darul Ulum Jombag urul.imamah86@gmail.com Abstrak Seirig perkembaga

Lebih terperinci