ANALISA FUNGSI ENERGI DAN FUNGSI GELOMBANG DARI POTENSIAL ECKART PLUS HULTHEN DIMENSI-D DENGAN METODE NIKIFOROV UVAROV

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISA FUNGSI ENERGI DAN FUNGSI GELOMBANG DARI POTENSIAL ECKART PLUS HULTHEN DIMENSI-D DENGAN METODE NIKIFOROV UVAROV"

Transkripsi

1 ANALISA FUNGSI ENERGI DAN FUNGSI GELOMBANG DARI POTENSIAL ECKART PLUS HULTHEN DIMENSI-D DENGAN METODE NIKIFOROV UVAROV Luqman Hakim 1, Cari 2, Suparmi 2 1 Mahasiswa Program Studi Ilmu Fisika Pascasarjana, Universitas Sebelas Maret, Surakarta 23 Program Studi Ilmu Fisika Pascasarjana, Universitas Sebelas Maret, Surakarta ABSTRAK Telah dilakukan analisis pendekatan persamaan Schrodinger dimensi-d pada potensial Eckart plus Hulthen dengan metode Nikiforov Uvarav (NU). Metode NU didasari oleh pereduksian persamaan diferensial orde dua menjadi persamaan umum diferensial orde dua tipe hipergeometrik.pendekatan analisis dengan metode NU digunakan untuk memperoleh fungsi energi dan fungsi gelombang dari potensial uji. Pendekatan fungsi gelombang diekspresikan dalam bentuk polinomial Jacobi. Kata kunci:dimensi-d;eckart plus Hulthen; Metode Nikiforov-Uvarov;Polinomial Jacobi PENDAHULUAN Pada akhir abad ke-19 dan awal abad ke-20, semakin jelas bahwa fisika (konsep-konsep fisika) klasik memerlukan revisi atau penyempurnaan. Hal ini disebabkan semakin banyaknya hasil-hasil eksperimen dan gejala-gejala fisika yang tidak bisa dijelaskan dengan konsep-konsep fisika yang telah dikuasai pada saat itu (fisika klasik), sekalipun dengan pendekatan. Masalah-masalah yang telah berkembang terutama pada obyek-obyek fisis yang berukuran mikroskopik, seperti partikel-partikel elementer dan atom serta interaksinya dengan radiasi atau medan elektromagnetik.mekanika kuantummerupakan dasar untuk pemahaman tentang fenomena fisik pada skala mikroskopik. Sifat-sifat material dapat ditinjau dari gerakan partikel dan tingkat energi eigen terkait [1]. Persamaan gerak partikel dapat diselesaikan mengunakan persamaan Schrodinger, persamaan Klein Gordon dan persamaan Dirac [2]. Persamaan Schrödinger merupakan hal mendasar dalam mekanika kuantum, yang mendeskripsikan bagaimana keadaan kuantum (quantum state) suatu sistem fisika yang berubah terhadap waktu [3]. 226 Penyelesaian persamaan Schrödinger secara eksak hanya mungkin ketika bilangan orbital l 0, sedangkan ketika l 0, persamaan Schrödinger hanya bisa diselesaikan dengan pendekatan subtitusi yang sesuai [4]. Beberapa metode yang digunakan antara lain: metode polinomial Romanovsky [5], metode confluent hypergeometric [6,7], dan metode NU [8]. Salah satu metode yang sering digunakan saat ini adalah metode NU. Metode NU merupakan persamaan diferensial hipergeometrik yang memiliki bentuk penyelesaian yang paling umum karena persamaan diferensial fungsi lain dapat direduksimenjadi persamaan diferensial hipergeometrik. Beberapa penelitian yang menggunakan persamaan Schrodinger dimensi-d antara lain: pendekatan persamaan Schrodinger dimensi-d untuk potensial scarf hyperbolic dengan metode NU [9],solusi persamaan Schrodinger dimensi-d untuk energi yang bergantung potensial dengan metode NU [10], solusi pendekatan analisis scattering dari potensial Hulthen dimensi-d [11], dan solusi eksak dari potensial Kratzer termodifikasi plus potensial ring-shaped dalam persamaan Schrodinegr dimensi-d dengan metode NU [12]. Penelitian ini bertujuan untuk mendeskripsikan fungsi gelombang dari potensial Eckart plus

2 Hulthendimensi-D. Potensial Eckart sering digunakan untuk memperkirakan koreksi tunneling mekanika kuantum untuk konstanta laju kimia teoritis yang ditentukan [13]. Potensial Hulthen merupakan potensial berjangkauan pendek yang berperilaku seperti potensial Coulomb untuk nilai rkecil dan menurun secara eksponesial untuk r besar. Potensial Hulthen sering digunakan dalam fisika nuklir dan partikel, fisika atom, fisika zat padat, dan lain sebagainya [14]. Kombinasi kedua potensial diatas menjadi potensial Eckart plus Hulthen, secara matematis dituliskan sebagai [3]: dengan,, dan bernilai konstan positif. (1) Persamaan Schrodinger dimensi-d didasari dengan penggunaan koordinat polar D-dimensi dengan hypersperical coordinates dan dalam dimensi-d. Persamaan Schrodinger dalam dimensi-d dituliskan sebagai [16]: Schrodinger dimensi-d bagian sudut harus memenuhi persamaan nilai eigen: (6) Dengan mensubsitusikan persamaan nilai eigen (6) dalam persamaan operator Laplace (3) dan persamaan Schrodinger dimensi-d (2), maka (7) Persamaan (7) merupakan persamaan Schrodinger dimensi-d untuk bagian radial. Tujuan dari penelitian ini adalah untuk memperoleh fungsi energi dan fungsi gelombang radial dari potensial Eckart plus Hulthen. BAHAN DAN METODE Bahan Penelitian ini merupakan penelitian analisis dengan bahan berupa potensial uji, yaitu potensial Eckart plus Hulthen di persamaan (1). (2) dengan merupakan operator Laplace dalam dimensi-d, yaitu (3) Nilai merupakan operator momentum anguler dimensi-d, yaitu: (4) Penyelesaian persamaan Schrodinger dimensi-d dengan melakukan separasi variabel dengan memisalkan, (5) dengan dan adalah bagian radial dari persamaan adalah bagian sudutnya. Persamaan Metode Metode dalam penelitian ini adalah metode NU. Metode NU ini didasari oleh pereduksian persamaan diferensial orde dua menjadi persamaan umum diferensial orde dua tipe hipergeometrik. Persamaan deferensial hipergeometrik, yang dapat diselesaikan dengan metode NU memiliki bentuk [8] (8) dimana dan merupakan polinomial berderajat dua dan merupakan polinomial berderajat satu. Persamaan (8) dapat diselesaikan dengan pemisahan variabel, yaitu (9) Persamaan (9) dapat direduksi dengan mensubsitusikan persamaan (8), sehingga (10) Persamaan (10) merupakan persamaan (8). Parameter-parameter dalam metode NU, dan didefinisikan sebagai 227

3 (11) (12) Harga pada persamaan (11) dapat dari kondisi bahwa pernyataan kuadrat di bawah akar merupakan kuadrat sempurna dari polinomial derajat satu, sehingga diskriminan di bawah akar harus nol. Persamaan tingkat energi dapat dari persamaan (12) dengan hubungan dan ditentukan dengan persamaan (13) (14) Untuk mendapatkan tingkat energi dan fungsi gelombang yang terkait, diperlukan kondisi. Solusi bagian pertama dari fungsi gelombang dengan persamaan (15) Solusi bagian kedua fungsi gelombang yang bersesuaian dengan relasi Rodrigues ditunjukan oleh persamaan berikut: (16) dimana C n merupakan konstanta normalisasi yang berdasarkan orthogonal fungsi gelombang dan fungsi bobot harus tergantung pada kondisi (17) HASIL DAN DISKUSI Penelitian ini bertujuan untuk memperoleh fungsi energi dan fungsi gelombang dari potensial Eckart plus Hulthen. Setelah dilakukan substitusi potensial Eckart plus Hulthen dalam persamaan Schrodinger dimensi-d dan dilakukan pemisahan variable persamaan (19) Dengan fungsi hiperbolik bahwa nilai (19) dapat ditulis sebagai Untuk, maka dimana dengan memisalkan dan, maka persamaan (20) (21). Persamaan diferensial orde dua persamaan (21), sehingga pada (18) Untuk memperoleh penyelesaikan persamaan (18), dilakukan pemisalan sehingga (22) Persamaan (22) merupakan persamaan diferensial orde dua hipergeometrik yang ditunjukkan oleh persamaan (8), sehingga hubungan 228

4 , (23), maka, (24), (25) Untuk memperoleh nilai, maka dilakukan subsitusi persamaan (23), persamaan (24) dan persamaan (25) ke persamaan (11), sehingga Energi nilai eigen dan fungsi eigen dapat kondisi bahwa, sehingga nilai diambil negatif. (31) (32) Kemudian dilakukan penghitungan untuk menentukan nilai dan pada kondisi umum dengan mengambil nilai negatif (keadaan bound state). (26) Harga pada persamaan (26) dapat dari kondisi bahwa pernyataan kuadrat di bawah akar merupakan kuadrat sempurna dari polinomial derajat satu sehingga determinan dari persamaan dibawah akar sama dengan nol, sehingga. (33) Tingkat energi dengan menyamakan nilai eigen dengan nilai eigen baru, dengan menyamakan persamaan (30) dan persamaan (32), yaitu (34). (27) Dengan memisalkan agar makna fisis, nilai adalah, maka. (35) Berdasarkan persamaan (35), dengan mengambil tanda akar yang sama, maka. (36) Untuk memperoleh energi nilai eigen, maka dilakukan dengan menyamakan persamaan (28) dan persamaan (36), sehingga dan nilai adalah (28). (29) Nilai sebesar. (30) 229. (37)

5 Dengan mengembalikan bahwa nilai, nilai energi dari potensial Eckart plus Hulthen dimensi-d, yaitu. (38) Pada kondisi khusus, maka. (42) Pada kondisi khusus, maka (39) Berdasarkan persamaan (39), dengan mengambil tanda akar yang berbeda, maka. (43) Berdasar persamaan (39) dan persamaan (42) nilai spektrum energi untuk potensial Eckart plus Hulten sesuai dengan penelitian terdahulu adalah persamaan (39), sehingga nilai spektrum energi untuk potensial Eckart plus Hulten dimensi-d adalah persamaan (38), yaitu[3]. (40) Langkah selanjutnya untuk menentukan nilai energi adalah dengan menyamakan persamaan (28) dengan persamaan (40), sehingga. (41) Dengan mengembalikan bahwa nilai, nilai energi dari potensial Eckart plus Hulthen dimensi-d, yaitu 230. (44) Untuk menentukan fungsi gelombang pada potensial Eckart plus Hulthen dimensi-d, langkah pertama adalah menentukan fungsi gelombang bagian pertama yang dari persamaan (24) dan persamaan (29) yang diselesaikan dengan persamaan (15), sehingga

6 (45). (46) Persamaan (46) digunakan untuk menggambarkan sebaran atau distribusi elektron (probabilitas ditemukannya elektron) jika dikombinasikan dengan persamaan fungsi gelombang radial bagian kedua.fungsi gelombang sudut bagian kedua dari potensial Eckart plus Hulthen ditentukan dengan mengetahui fungsi bobot terlebih dahulu. Fungsi bobot dengan mensubsitusikan persamaan (24) dan persamaan (33) ke persamaan (17), sehingga Fungsi gelombang lengkap pada potensial Eckart plus Hulthen dimensi-d adalah dengan mengalikan bagian pertama dan bagian kedua.. (54) Karena dan, maka (47) dan fungsi bobot sebesar (48) Solusi bagian kedua fungsi gelombang yang bersesuaian dengan relasi Rodrigues ditunjukan oleh persamaan (16) dengan fungsi bobot pada persamaan (48), sehingga. (49) Persamaan (49) merupakan polinomial Jacobi dalam bentuk Nilai dapat ditulis sebagai (50), (55) dengan merupakan konstanta normalisasi. KESIMPULAN 1. Fungsi energi dari potensial Eckart plus Hulthen dimensi-d dapat diselesaikan dengan metode NU. 2. Fungsi gelombang dari potensial Eckart plus Hulthen dimensi-d dapat diselesaikan dengan metode NU. 3. Analisis fungsi energi dan fungsi gelombang dari potensial Eckart plus Hulthen dapat dilakukan dengan metode yang lainnya. UCAPAN TERIMA KASIH Penulis mengucapkan terima kasih kepada Rektor Universitas Palangkaraya dan Direktorat Jendral DIKTI atas pemberian beasiswa BPPDN dan Dikti nomer kontrak 351/UN 27.11/PN dengan dan, (51) (52). (53) DAFTAR PUSTAKA [1] M.O.Tjia dan Sutjahja,Orbital Kuantum Pengantar Teori dan Contoh Aplikasinya. Bandung: Karya Putra Darwati, [2] A. A. Rajabi dan M. Hamzavi, A new Coulomb Ring-shaped Potential via Generalized Parametric Nikiforov Uvarov 231

7 Method. Journal of Theoretical and intheory. Physics,vol. 55, pp , Applied Physics, [3] Cari dan Suparmi, Approximate Solution of Schrodinger Equation for Hulthen Potential plus Eckart Potential with Centrifugal Term [12] S. M. Ikhdair danr. Sever, Exact Solutions of The Modified Kratzer Potential Plus Ring-shaped Potential in The D-dimensional in terms of Finite Romanovski Schrodinger Equation by The Nikiforov Polynomials. International Journal of Uvarov Method. Journal of Quantum Applied Physics and Mathematics, vol. 2, Physics, vol.1, no. 3, [13] V. Vahidi dan H. Gourdarzi, [4] A. D. Antia, A. N. Ikot, danl. E. Akpabio, Supersymmetric Approach for Eckart Exact Solutions of The Schrödinger Potential Using the NU Method.Adv. Equation with Manning-Rosen Potential Plus A Ring-Shaped Like Potential by Studies Theor. Phys., vol. 5, no. 10, pp , Nikiforov Uvarov Method. European [14] A. K. Roy, The Generalized Pseudospectral Journal of Scientific Research, vol. 46, pp , Approach to The Bound States of The Hulthen and The Yukawa Potentials. [5] V. G. Romanovski dan D. S. Shafer, The Pramana-Journal of Physics,vol. 65, no.1, Center and Cyclicity Problems: A pp. 1 15, Computational Algebra Approach. [15] S. M. Ikhdair dan R. Sever, Approximate l- Birkhauser, Bassel, state Solutions of The D-dimensional [6] G. N. Georgiev dan M. N. Grosse, The Schrodinger Equation for Manning Rosen Kummer Confluent Hypergeometric Potential. Journal of Quantum Function and Some of Its Applications in Physics,vol.1, The Theory of Azimuthally Magnetized Circular Ferrite Waveguides. Journal of Telecommunications and Information Technology, vol. 3, [7] H. Nagoya, Hypergeometric Solutions to Schrodinger Equations for The Quantum Painlev e Equations.Journal of Math Physics, vol.52, [8] A. V. Nikiforov dan V. B. Uvarov, Special Functions of Mathematical Physics. Birkhauser, Bassel, [9] U. A. Deta, Suparmi, dan Cari. Approximate Solution of Schrödinger Equation in D-Dimensions for Scarf Hyperbolic Potential Using Nikiforov Uvarov Method. Adv. Studies Theor. Phys., vol. 7, no. 13, pp , [10] H. Hassanabadi, L. L. Lu, S. Zarrinkamar, G. H. Liu, dan H. Rahimov, Approximate Solutions of Schrodinger Equation under Manning Rosen Potential in Arbitrary Dimension via SUSYQM. ACTA PHYS POLONICAA,vol.122, no.4, [11] C. C. Yuan, S. D. Sheng, L. C. Lin, dan L. F. Lin. Approximate Analytical Solutions for Scattering States of D-dimensional Hulthen Potential. Communications 232

BAB I PENDAHULUAN. (konsep-konsep fisika) klasik memerlukan revisi atau penyempurnaan. Hal ini

BAB I PENDAHULUAN. (konsep-konsep fisika) klasik memerlukan revisi atau penyempurnaan. Hal ini 1 BAB I PENDAHULUAN A. Latar Belakang Pada akhir abad ke -19 dan awal abad ke -20, semakin jelas bahwa fisika (konsep-konsep fisika) klasik memerlukan revisi atau penyempurnaan. Hal ini disebabkan semakin

Lebih terperinci

PENYELESAIAN PERSAMAAN DIRAC UNTUK POTENSIAL ROSEN MORSE HIPERBOLIK DENGAN COULOMB LIKE TENSOR UNTUK SPIN SIMETRI MENGGUNAKAN METODE HIPERGEOMETRI

PENYELESAIAN PERSAMAAN DIRAC UNTUK POTENSIAL ROSEN MORSE HIPERBOLIK DENGAN COULOMB LIKE TENSOR UNTUK SPIN SIMETRI MENGGUNAKAN METODE HIPERGEOMETRI PENYELESAIAN PERSAMAAN DIRAC UNTUK POTENSIAL ROSEN MORSE HIPERBOLIK DENGAN COULOMB LIKE TENSOR UNTUK SPIN SIMETRI MENGGUNAKAN METODE HIPERGEOMETRI Tri Jayanti 1, Suparmi, Cari Program Studi Ilmu Fisika

Lebih terperinci

Solusi Persamaan Schrödinger untuk Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov

Solusi Persamaan Schrödinger untuk Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov ISSN:89 33 Indonesian Journal of Applied Physics (3) Vol.3 No. Halaman 69 Oktober 3 Solusi Persamaan Schrödinger Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov

Lebih terperinci

JURNAL INFORMATIKA HAMZANWADI Vol. 2 No. 1, Mei 2017, hal. 20-27 ISSN: 2527-6069 SOLUSI PERSAMAAN DIRAC UNTUK POTENSIAL POSCH-TELLER TERMODIFIKASI DENGAN POTENSIAL TENSOR TIPE COULOMB PADA SPIN SIMETRI

Lebih terperinci

SOLUSI PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI UNTUK POTENSIAL SCARF TRIGONOMETRIK PLUS COULOMB LIKE TENSOR DENGAN METODE POLINOMIAL ROMANOVSKI

SOLUSI PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI UNTUK POTENSIAL SCARF TRIGONOMETRIK PLUS COULOMB LIKE TENSOR DENGAN METODE POLINOMIAL ROMANOVSKI SOLUSI PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI UNTUK POTENSIAL SCARF TRIGONOMETRIK PLUS COULOMB LIKE TENSOR DENGAN METODE POLINOMIAL ROMANOVSKI Alpiana Hidayatulloh 1, Suparmi, Cari Jurusan Ilmu Fisika

Lebih terperinci

Persamaan Dirac, Potensial Scarf Hiperbolik, Pseudospin symetri, Coulomb like tensor, metode Polynomial Romanovski PENDAHULUAN

Persamaan Dirac, Potensial Scarf Hiperbolik, Pseudospin symetri, Coulomb like tensor, metode Polynomial Romanovski PENDAHULUAN Jurnal Sangkareang Mataram 51 FUNGSI GELOMBANG SPIN SIMETRI UNTUK POTENSIAL SCARF HIPERBOLIK PLUS COULOMB LIKE TENSOR DENGAN MENGGUNAKAN METODE POLYNOMIAL ROMANOVSKI Oleh: Alpiana Hidayatulloh Dosen Tetap

Lebih terperinci

Alpiana Hidayatulloh Dosen Tetap pada Fakultas Teknik UNTB

Alpiana Hidayatulloh Dosen Tetap pada Fakultas Teknik UNTB 6 Jurnal Sangkareang Mataram ISSN No. -99 SOLUSI PERSAMAAN DIRAC DENGAN PSEUDOSPIN SIMETRI UNTUK POTENSIAL SCARF TRIGONOMETRIK PLUS COULOMB LIKE TENSOR DENGAN MENGGUNAKAN METODE POLYNOMIAL ROMANOVSKI Oleh:

Lebih terperinci

SOLUSI PERSAMAAN DIRAC DENGAN PSEUDOSPIN SIMETRI UNTUK POTENSIAL ROSEN MORSE PLUS COULOMB LIKE TENSOR DENGAN MENGGUNAKAN METODE POLYNOMIAL ROMANOVSKI

SOLUSI PERSAMAAN DIRAC DENGAN PSEUDOSPIN SIMETRI UNTUK POTENSIAL ROSEN MORSE PLUS COULOMB LIKE TENSOR DENGAN MENGGUNAKAN METODE POLYNOMIAL ROMANOVSKI 32 Jurnal Sangkareang Mataram SOLUSI PERSAMAAN DIRAC DENGAN PSEUDOSPIN SIMETRI UNTUK POTENSIAL ROSEN MORSE PLUS COULOMB LIKE TENSOR DENGAN MENGGUNAKAN METODE POLYNOMIAL ROMANOVSKI Oleh: Alpiana Hidayatulloh

Lebih terperinci

BAB I PENDAHULUAN. penelaahan gejala dan sifat berbagai sistem mikroskopik. Perkembangan

BAB I PENDAHULUAN. penelaahan gejala dan sifat berbagai sistem mikroskopik. Perkembangan digilib.uns.ac.id BAB I PENDAHULUAN A. Latar Belakang Mekanika kuantum sudah lama dikenal sebagai ilmu dasar bagi penelaahan gejala dan sifat berbagai sistem mikroskopik. Perkembangan mekanika kuantum

Lebih terperinci

Universitas Sebelas Maret, Jl. Ir. Sutami no 36A Kentingan Surakarta Ph , Fax

Universitas Sebelas Maret, Jl. Ir. Sutami no 36A Kentingan Surakarta Ph , Fax 41 Analisis Spektrum Energi dan Fungsi Gelombang Potensial Non-Sentral Poschl-Teller Termodifikasi plus Potensial Scarf Trigonometri Menggunakan Persamaan Hipergeometri Suparmi, Cari, Hadma Yuliani, Dwi

Lebih terperinci

SOLUSI PERSAMAAN DIRAC UNTUK POTENSIAL SCARF II TRIGONOMETRI TERDEFORMASI-Q PLUS TENSOR TIPE COULOMB DENGAN MENGGUNAKAN METODE NIKIFOROV UVAROV

SOLUSI PERSAMAAN DIRAC UNTUK POTENSIAL SCARF II TRIGONOMETRI TERDEFORMASI-Q PLUS TENSOR TIPE COULOMB DENGAN MENGGUNAKAN METODE NIKIFOROV UVAROV Salatiga, Juni 4, Vol 5, No., ISSN :87-9 SOLUSI PERSAMAAN DIRAC UNTUK POTENSIAL SCARF II TRIGONOMETRI TERDEFORMASI-Q PLUS TENSOR TIPE COULOMB DENGAN MENGGUNAKAN METODE NIKIFOROV UVAROV ST. Nurul Fitriani,

Lebih terperinci

Spektra: Jurnal Fisika dan Aplikasinya, Vol. 16, No. 2, Oktober 2015

Spektra: Jurnal Fisika dan Aplikasinya, Vol. 16, No. 2, Oktober 2015 Spektra: Jurnal Fisika dan Aplikasinya, Vol. 16, No., Oktober 15 Analisis Persamaan Dirac untuk Potensial Pöschl-Teller Trigonometrik dan Potensial Scarf Trigonometrik pada Kasus Spin Simetri Bagian Radial

Lebih terperinci

Spektra: Jurnal Fisika dan Aplikasinya, Vol. 16, No. 2, Oktober 2015

Spektra: Jurnal Fisika dan Aplikasinya, Vol. 16, No. 2, Oktober 2015 PENYELESAIAN PERSAMAAN SCHRÖDINGER POTENSIAL NON- SENTRAL SCARF HIPERBOLIK PLUS ROSEN-MORSE TRIGONOMETRIK MENGGUNAKAN METODE SUPERSIMETRI MEKANIKA KUANTUM M. Syaifudin,Suparmi, Cari Pascasarjana Ilmu Fisika,

Lebih terperinci

Penentuan Spektrum Energi dan Fungsi Gelombang Potensial Morse dengan Koreksi Sentrifugal Menggunakan Metode SWKB dan Operator SUSY

Penentuan Spektrum Energi dan Fungsi Gelombang Potensial Morse dengan Koreksi Sentrifugal Menggunakan Metode SWKB dan Operator SUSY ISSN:2089 0133 Indonesian Journal of Applied Physics (2012) Vol.2 No.2 halaman 112 Oktober 2012 Penentuan Spektrum Energi dan Fungsi Gelombang Potensial Morse dengan Koreksi Sentrifugal Menggunakan Metode

Lebih terperinci

ANALISIS FUNGSI GELOMBANG DAN ENERGI PERSAMAAN DIRAC UNTUK POTENSIAL NON SENTRAL MENGGUNAKAN POLINOMIAL ROMANOVSKI

ANALISIS FUNGSI GELOMBANG DAN ENERGI PERSAMAAN DIRAC UNTUK POTENSIAL NON SENTRAL MENGGUNAKAN POLINOMIAL ROMANOVSKI ANALISIS FUNGSI GELOMBANG DAN ENERGI PERSAMAAN DIRAC UNTUK POTENSIAL NON SENTRAL MENGGUNAKAN POLINOMIAL ROMANOVSKI TESIS Untuk Memenuhi Sebagian Persyaratan untuk Mencapai Derajat Magister Program Studi

Lebih terperinci

ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG PERSAMAAN SCHRODINGER POTENSIAL NON- SENTRAL SHAPE. INVARIANCE q-deformasi MENGGUNAKAN METODE

ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG PERSAMAAN SCHRODINGER POTENSIAL NON- SENTRAL SHAPE. INVARIANCE q-deformasi MENGGUNAKAN METODE ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG PERSAMAAN SCHRODINGER POTENSIAL NON- SENTRAL SHAPE INVARIANCE q-deformasi MENGGUNAKAN METODE NIKIFOROV-UVAROV TESIS Untuk Memenuhi Sebagian Persyaratan untuk

Lebih terperinci

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK Disusun oleh : Muhammad Nur Farizky M0212053 SKRIPSI PROGRAM STUDI

Lebih terperinci

SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV

SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV Disusun oleh : NANI SUNARMI M0209036 SKRIPSI Diajukan untuk memenuhi sebagian

Lebih terperinci

ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG

ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG KOMBINASI POTENSIAL MANNING-ROSEN HIPERBOLIK DAN ROSEN-MORSE TRIGONOMETRI DENGAN MENGGUNAKAN METODE HIPERGEOMETRI Disusun oleh : DWI YUNIATI M0209017 SKRIPSI

Lebih terperinci

BAB I PENDAHULUAN. klasik dan mempunyai dua cabang utama yaitu mekanika klasik Newtonian dan teori

BAB I PENDAHULUAN. klasik dan mempunyai dua cabang utama yaitu mekanika klasik Newtonian dan teori BAB I PENDAHULUAN A. Latar Belakang Masalah Fisika yang berkembang sampai akhir abad yang ke 19 dikenal sebagai fisika klasik dan mempunyai dua cabang utama yaitu mekanika klasik Newtonian dan teori medan

Lebih terperinci

SOLUSI PERSAMAAN SCHRODINGER D-DIMENSI UNTUK POTENSIAL NON SENTRAL SHAPE INVARIANT DENGAN METODE NIKIFOROV-UVAROV

SOLUSI PERSAMAAN SCHRODINGER D-DIMENSI UNTUK POTENSIAL NON SENTRAL SHAPE INVARIANT DENGAN METODE NIKIFOROV-UVAROV SOLUSI PERSAMAAN SCHRODINGER D-DIMENSI UNTUK POTENSIAL NON SENTRAL SHAPE INVARIANT DENGAN METODE NIKIFOROV-UVAROV TESIS Untuk Memenuhi Sebagian Persyaratan untuk Mencapai Derajat Magister Program Studi

Lebih terperinci

ANALISIS ENERGI DAN FUNGSI GELOMBANG RELATIVISTIK PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI UNTUK POTENSIAL ECKART DAN POTENSIAL MANNING

ANALISIS ENERGI DAN FUNGSI GELOMBANG RELATIVISTIK PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI UNTUK POTENSIAL ECKART DAN POTENSIAL MANNING ANALISIS ENERGI DAN FUNGSI GELOMBANG RELATIVISTIK PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI UNTUK POTENSIAL ECKART DAN POTENSIAL MANNING ROSEN TRIGONOMETRI MENGGUNAKAN ASYMPTOTIC ITERATION METHOD

Lebih terperinci

Kata kunci: persamaan Schrӧdinger, potensial Pöschl-Teller, potensial Scarf II terdeformasi-q, potensial Scarf Trigonometrik, metode iterasi asimtot.

Kata kunci: persamaan Schrӧdinger, potensial Pöschl-Teller, potensial Scarf II terdeformasi-q, potensial Scarf Trigonometrik, metode iterasi asimtot. Penyelesaian Persamaan Schrӧdinger menggunakan AIM untuk Potensial Scarf II Terdeformasi-q Plus Potensial Pӧschl-Teller dan Potensial Scarf Trigonometrik Fery Widiyanto, Suparmi, dan Cari Jurusan Fisika

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

Disusun oleh: BETA NUR PRATIWI M SKRIPSI. Diajukan untuk memenuhi sebagian persyaratan mendapatkan gelar Sarjana Sains

Disusun oleh: BETA NUR PRATIWI M SKRIPSI. Diajukan untuk memenuhi sebagian persyaratan mendapatkan gelar Sarjana Sains PENYELESAIAN SIMETRI SPIN PERSAMAAN DIRAC DENGAN POTENSIAL P SCHL-TELLER TERMODIFIKASI DAN POTENSIAL NON-SENTRAL SCARF II TRIGONOMETRIK MENGGUNAKAN ASYMPTOTIC ITERATION METHOD (AIM) Disusun oleh: BETA

Lebih terperinci

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder:

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder: LAMPIRAN A.TRANSFORMASI KOORDINAT 1. Koordinat silinder Hubungan antara koordinat kartesian dengan koordinat silinder: Vector kedudukan adalah Jadi, kuadrat elemen panjang busur adalah: Maka: Misalkan

Lebih terperinci

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator ISSN:2089 0133 Indonesian Journal of Applied Physics (2012) Vol.2 No.1 halaman 6 April 2012 Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator Fuzi Marati Sholihah

Lebih terperinci

ANALISIS ENERGI, FUNGSI GELOMBANG, DAN INFORMASI SHANNON ENTROPI PARTIKEL BERSPIN-NOL UNTUK POTENSIAL PӦSCHL-TELLER TRIGONOMETRI DAN KRATZER

ANALISIS ENERGI, FUNGSI GELOMBANG, DAN INFORMASI SHANNON ENTROPI PARTIKEL BERSPIN-NOL UNTUK POTENSIAL PӦSCHL-TELLER TRIGONOMETRI DAN KRATZER ANALISIS ENERGI, FUNGSI GELOMBANG, DAN INFORMASI SHANNON ENTROPI PARTIKEL BERSPIN-NOL UNTUK POTENSIAL PӦSCHL-TELLER TRIGONOMETRI DAN KRATZER HALAMAN JUDUL TESIS Disusun untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon F. Manfaat Penelitian Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon di dalam inti atom yang menggunakan potensial Yukawa. 2. Dapat

Lebih terperinci

MEKANIKA KUANTUM DALAM TIGA DIMENSI

MEKANIKA KUANTUM DALAM TIGA DIMENSI MEKANIKA KUANTUM DALAM TIGA DIMENSI Sebelumnya telah dibahas mengenai penerapan Persamaan Schrödinger dalam meninjau sistem kuantum satu dimensi untuk memperoleh fungsi gelombang serta energi dari sistem.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb

Lebih terperinci

TUGAS AKHIR ANALISIS DIMENSI ATOM HIDROGEN DAN APLIKASINYA PADA EFEK STARK ANDREW SUWANDI NPM :

TUGAS AKHIR ANALISIS DIMENSI ATOM HIDROGEN DAN APLIKASINYA PADA EFEK STARK ANDREW SUWANDI NPM : TUGAS AKHIR ANALISIS DIMENSI ATOM HIDROGEN DAN APLIKASINYA PADA EFEK STARK ANDREW SUWANDI NPM : 0170008 PROGRAM STUDI FISIKA FAKULTAS TEKNOLOGI INFROMASI DAN SAINS UNIVERSITAS KATOLIK PARAHYANGAN 017 FINAL

Lebih terperinci

BAB I PENDAHULUAN. akibat dari interaksi di antara penyusun inti tersebut. Penyusun inti meliputi

BAB I PENDAHULUAN. akibat dari interaksi di antara penyusun inti tersebut. Penyusun inti meliputi BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem inti dapat dipelajari melalui kesatuan sistem penyusun inti sebagai akibat dari interaksi di antara penyusun inti tersebut. Penyusun inti meliputi proton

Lebih terperinci

ANALISIS ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON SENTRAL ROSEN MORSE PLUS HULTHEN, ROSEN MORSE, DAN COULOMB MENGGUNAKAN POLINOMIAL ROMANOVSKI

ANALISIS ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON SENTRAL ROSEN MORSE PLUS HULTHEN, ROSEN MORSE, DAN COULOMB MENGGUNAKAN POLINOMIAL ROMANOVSKI ANALISIS ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON SENTRAL ROSEN MORSE PLUS HULTHEN, ROSEN MORSE, DAN COULOMB MENGGUNAKAN POLINOMIAL ROMANOVSKI TESIS Untuk Memenuhi Sebagian Persyaratan untuk Mencapai

Lebih terperinci

ANALISIS ENERGI RELATIVISTIK DAN FUNGSI

ANALISIS ENERGI RELATIVISTIK DAN FUNGSI ANALISIS ENERGI RELATIVISTIK DAN FUNGSI GELOMBANG PERSAMAAN DIRAC UNTUK POTENSIAL RADIAL ECKART PLUS MANNING ROSEN YANG DIKOPLING DENGAN POTENSIAL TENSOR TIPE- COULOMB UNTUK EXACT SPIN SIMETRI DAN EXACT

Lebih terperinci

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( )

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( ) PENDAHULUAN FISIKA KUANTUM FI363 / 3 sks Asep Sutiadi (1974)/(0008097002) TUJUAN PERKULIAHAN Selesai mengikuti mata kuliah ini mahasiswa diharapkan mampu menjelaskan pada kondisi seperti apa suatu permasalahan

Lebih terperinci

PERHITUNGAN TAMPANG LINTANG DIFERENSIAL HAMBURAN ELASTIK ELEKTRON-ARGON PADA 10,4 EV DENGAN ANALISIS GELOMBANG PARSIAL

PERHITUNGAN TAMPANG LINTANG DIFERENSIAL HAMBURAN ELASTIK ELEKTRON-ARGON PADA 10,4 EV DENGAN ANALISIS GELOMBANG PARSIAL PERHITUNGAN TAMPANG LINTANG DIFERENSIAL HAMBURAN ELASTIK ELEKTRON-ARGON PADA 10,4 EV DENGAN ANALISIS GELOMBANG PARSIAL Paken Pandiangan (1), Suhartono (2), dan A. Arkundato (3) ( (1) PMIPA FKIP Universitas

Lebih terperinci

Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah Abstrak

Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah   Abstrak Kajian Metode Analisa Data Goal Seek (Microsoft Excel) untuk Penyelesaian Persamaan Schrödinger Dalam Menentukan Kuantisasi ergi Dibawah Pengaruh Potensial Lennard-Jones Wahyu Kurniawan 1,, Suryasatriya

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Struktur atom Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran

Lebih terperinci

APLIKASI BASIS L 2 LAGUERRE PADA INTERAKSI TOLAK MENOLAK ANTARA ATOM TARGET HIDROGEN DAN POSITRON. Ade S. Dwitama

APLIKASI BASIS L 2 LAGUERRE PADA INTERAKSI TOLAK MENOLAK ANTARA ATOM TARGET HIDROGEN DAN POSITRON. Ade S. Dwitama APLIKASI BASIS L 2 LAGUERRE PADA INTERAKSI TOLAK MENOLAK ANTARA ATOM TARGET HIDROGEN DAN POSITRON Ade S. Dwitama PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Atom Pion Atom pion sama seperti atom hidrogen hanya elektron nya diganti menjadi sebuah pion negatif. Partikel ini telah diteliti sekitar empat puluh tahun yang lalu, tetapi

Lebih terperinci

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3)

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3) 2. Osilator Harmonik Pada mekanika klasik, salah satu bentuk osilator harmonik adalah sistem pegas massa, yaitu suatu beban bermassa m yang terikat pada salah satu ujung pegas dengan konstanta pegas k.

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

PENYELESAIAN PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI DENGAN POTENSIAL SCARF II TRIGONOMETRI PLUS

PENYELESAIAN PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI DENGAN POTENSIAL SCARF II TRIGONOMETRI PLUS PENYELESAIAN PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI DENGAN POTENSIAL SCARF II TRIGONOMETRI PLUS POTENSIAL NON-SENTRAL P SCHL-TELLER TRIGONOMETRI MENGGUNAKAN ASYMPTOTIC ITERATION

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.

Lebih terperinci

PROFIL DENSITAS MODEL THOMAS-FERMI-DIRAC-VON WEIZSACKER

PROFIL DENSITAS MODEL THOMAS-FERMI-DIRAC-VON WEIZSACKER PROFIL DENSITAS MODEL THOMAS-FERMI-DIRAC-VON WEIZSACKER Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang Email: yuniblr@yahoo.com Abstrak. Model Thomas-Fermi-Dirac-von

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay" + b Y' + cy = 0

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay + b Y' + cy = 0 1 PARTIKEL DALAM BOX Elektron dalam atom dan molekul dapat dibayangkan mirip partikel dalam box. daerah di dalam box tempat partikel tersebut bergerak berpotensial nol, sedang daerah diluar box berpotensial

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5 Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani Program Studi Pendidikan Fisika FKIP Universitas Jember email: schrodinger_risma@yahoo.com

Lebih terperinci

SOLUSI PERSAMAAN SCHRODINGER UNTUK POTENSIAL NON SENTRAL KOMBINASI POTENSIAL COULOMB, ECKART PLUS POTENSIAL PÖSCHL-TELLER I MENGGUNAKAN METODE

SOLUSI PERSAMAAN SCHRODINGER UNTUK POTENSIAL NON SENTRAL KOMBINASI POTENSIAL COULOMB, ECKART PLUS POTENSIAL PÖSCHL-TELLER I MENGGUNAKAN METODE digilib.uns.ac.id SOLUSI PERSAMAAN SCHRODINGER UNTUK POTENSIAL NON SENTRAL KOMBINASI POTENSIAL COULOMB, ECKART PLUS POTENSIAL PÖSCHL-TELLER I MENGGUNAKAN METODE NIKIFOROV-UVAROV TESIS Untuk Memenuhi Sebagian

Lebih terperinci

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein BAB II DASAR TEORI Sebagaimana telah diketahui dalam kinematika relativistik, persamaanpersamaannya diturunkan dari dua postulat relativitas. Dua kerangka inersia yang bergerak relatif satu dengan yang

Lebih terperinci

Jurnal MIPA 39 (1)(2016): Jurnal MIPA.

Jurnal MIPA 39 (1)(2016): Jurnal MIPA. Jurnal MIPA 39 (1)(16): 34-39 Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm KAJIAN METODE ANALISA DATA GOAL SEEK (MICROSOFT EXCEL) UNTUK PENYELESAIAN PERSAMAAN SCHRÖDINGER DALAM MENENTUKAN KUANTISASI

Lebih terperinci

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL

Lebih terperinci

KONTRAK PERKULIAHAN. Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 : Telah mengikuti kuliah Fisika Modern

KONTRAK PERKULIAHAN. Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 : Telah mengikuti kuliah Fisika Modern KONTRAK PERKULIAHAN Mata Kuliah : Fisika Kuantum Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 Prasyarat : Telah mengikuti kuliah Fisika Modern Kelas : A Jumlah Pertemuan

Lebih terperinci

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM POKOK-POKOK MATERI FISIKA KUANTUM PENDAHULUAN Dalam Kurikulum Program S-1 Pendidikan Fisika dan S-1 Fisika, hampir sebagian besar digunakan untuk menelaah alam mikro (= alam lelembutan micro-world): Fisika

Lebih terperinci

POSITRON, Vol. VI, No. 2 (2016), Hal ISSN :

POSITRON, Vol. VI, No. 2 (2016), Hal ISSN : Penentuan Energi Keadaan Dasar Osilator Kuantum Anharmonik Menggunakan Metode Kuantum Difusi Monte Carlo Nurul Wahdah a, Yudha Arman a *,Boni Pahlanop Lapanporo a a JurusanFisika FMIPA Universitas Tanjungpura,

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN Okmi Zerlan 1*, M. Natsir 2, Eng Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika

Lebih terperinci

Oleh : Rahayu Dwi Harnum ( )

Oleh : Rahayu Dwi Harnum ( ) LAPORAN PRAKTIKUM EKSPERIMEN FISIKA II SPEKTRUM ATOM SODIUM Diajukan untuk memenuhi salah satu tugas mata kuliah Eksperimen Fisika II Dosen Pengampu : Drs. Parlindungan Sinaga, M.Si Oleh : Rahayu Dwi Harnum

Lebih terperinci

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan 1 Pendahuluan Tujuan perkuliahan Setelah mempelajari bab 1 ini, mahasiswa diharapkan 1. Mengetahui gambaran perkuliahan. Mengerti konsep dari satuan alamiah dan satuan-satuan dalam fisika partikel 1.1.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Atom Bohr Pada tahun 1913, Niels Bohr, fisikawan berkebangsaan Swedia, mengikuti jejak Einstein menerapkan teori kuantum untuk menerangkan hasil studinya mengenai spektrum

Lebih terperinci

ENERGI TOTAL KEADAAN EKSITASI ATOM LITIUM DENGAN METODE VARIASI

ENERGI TOTAL KEADAAN EKSITASI ATOM LITIUM DENGAN METODE VARIASI Jurnal Ilmu dan Inovasi Fisika Vol 01, No 01 (2017) 6 10 Departemen Fisika FMIPA Universitas Padjadjaran ENERGI TOTAL KEADAAN EKSITASI ATOM LITIUM DENGAN METODE VARIASI LIU KIN MEN* DAN SETIANTO Departemen

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA Kristiani Panjaitan 1, Syamsudhuha 2, Leli Deswita 2 1 Mahasiswi Program

Lebih terperinci

PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI

PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI oleh AMELIA FEBRIYANTI RESKA M0109008 SKRIPSI ditulis dan diajukan untuk memenuhi

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Mata Kuliah : Fisika Kuantum Kode : SKS : 2 sks Semester : VIII/VII Nama Dosen : Drs. Iyon Suyana, M.Si Pustaka : Buku utama SATUAN ACARA PERKULIAHAN Standar Kompotensi : Menguasai pengetahuan yang mendalam

Lebih terperinci

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat 1 I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat : Tidak Ada IV. Status Matakuliah : Wajib V. Deskripsi Mata Kuliah Mata kuliah ini merupakan mata kuliah wajib Program Studi

Lebih terperinci

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 9 16. PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

Lebih terperinci

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA PILLAR OF PHYSICS, Vol. 1. April 2014, 17-24 PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA Hanifah Rahmayani *), Hidayati **) dan

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

FUNGSI GELOMBANG. Persamaan Schrödinger

FUNGSI GELOMBANG. Persamaan Schrödinger Persamaan Schrödinger FUNGSI GELOMBANG Kuantitas yang diperlukan dalam mekanika kuantum adalah fungsi gelombang partikel Ψ. Jika Ψ diketahui maka informasi mengenai kedudukan, momentum, momentum sudut,

Lebih terperinci

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace M. Nizam Muhaijir 1, Wartono 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S Standar : Setelah mengikuti perkuliahan ini mahasiswa diharapkan memiliki

Lebih terperinci

KAJIAN TAMPANG LINTANG HAMBURAN ELEKTRON DENGAN ION MELALUI TEORI HAMBURAN BERGANDA ( MULTIPLE SCATTERING THEORY)

KAJIAN TAMPANG LINTANG HAMBURAN ELEKTRON DENGAN ION MELALUI TEORI HAMBURAN BERGANDA ( MULTIPLE SCATTERING THEORY) Youngster Physics Journal ISSN : 2302-7371 Vol. 3, No. 4, Oktober 2014, Hal 351-356 KAJIAN TAMPANG LINTANG HAMBUAN ELEKTON DENGAN ION MELALUI TEOI HAMBUAN BEGANDA ( MULTIPLE SCATTEING THEOY) Nouval Khamdani,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Metode Beda Hingga Metode perbedaan beda hingga adalah metode yang sangat popular. Pada intinya metode ini mengubah masalah Persamaan Differensial Biasa (PDB) nilai batas dari

Lebih terperinci

ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON-CENTRAL MENGGUNAKAN SUPERSIMETRI MEKANIKA KUANTUM

ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON-CENTRAL MENGGUNAKAN SUPERSIMETRI MEKANIKA KUANTUM P-ISSN: 33-83 Jurnal Ilmiah Pendidikan Fisika Al-BiRuNi 4 () (5) 93-3 e-issn: 53-3X DOI:.44/jipf%al-biruni.v4i.9 Oktober 5 ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON-CENTRAL MENGGUNAKAN

Lebih terperinci

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu:

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu: KB.2 Fisika Molekul 2.1 Prinsip Pauli. Konsep fungsi gelombang-fungsi gelombang simetri dan antisimetri berlaku untuk sistem yang mengandung partikel-partikel identik. Ada perbedaan yang fundamental antara

Lebih terperinci

Silabus dan Rencana Perkuliahan

Silabus dan Rencana Perkuliahan Silabus dan Rencana Perkuliahan Mata kuliah : PEND.FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Team Dosen Pend fisika Kuantum Yuyu R.T, Parlindungan S. dan Asep S Standar Kompetensi : Setelah mengikuti

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS Tinjauan kasus persamaan... (Agus Supratama) 67 TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS ANALITICALLY REVIEW WAVE EQUATIONS IN ONE-DIMENSIONAL WITH VARIOUS

Lebih terperinci

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Jurnal LOG!K@, Jilid 6, No. 1, 2016, Hal. 11-22 ISSN 1978 8568 SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Afo Rakaiwa dan Suma inna Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Muliana 1, Syamsudhuha 2, Musraini 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

2. Deskripsi Statistik Sistem Partikel

2. Deskripsi Statistik Sistem Partikel . Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen, suatu variabel dependen, dan satu atau lebih turunan dari

Lebih terperinci

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel Vol.14, No., 180-186, Januari 018 Solusi Problem Dirichlet pada Daerah Persegi Metode Pemisahan Variabel M. Saleh AF Abstrak Dalam keadaan distribusi temperatur setimbang (tidak tergantung pada waktu)

Lebih terperinci

Fungsi Gelombang Radial dan Tingkat Energi Atom Hidrogen

Fungsi Gelombang Radial dan Tingkat Energi Atom Hidrogen Fungsi Gelombang adial dan Tingkat Energi Atom Hidrogen z -e (r, Bilangan kuantum r atom hidrogenik Ze y x Fungsi gelombang atom hidrogenik bergantung pada tiga bilangan kuantum: nlm nl Principal quantum

Lebih terperinci

KOMPUTASI NUMERIK GERAK PROYEKTIL DUA DIMENSI MEMPERHITUNGKAN GAYA HAMBATAN UDARA DENGAN METODE RUNGE-KUTTA4 DAN DIVISUALISASIKAN DI GUI MATLAB

KOMPUTASI NUMERIK GERAK PROYEKTIL DUA DIMENSI MEMPERHITUNGKAN GAYA HAMBATAN UDARA DENGAN METODE RUNGE-KUTTA4 DAN DIVISUALISASIKAN DI GUI MATLAB KOMPUTASI NUMERIK GERAK PROYEKTIL DUA DIMENSI MEMPERHITUNGKAN GAYA HAMBATAN UDARA DENGAN METODE RUNGE-KUTTA4 DAN DIVISUALISASIKAN DI GUI MATLAB Tatik Juwariyah Fakultas Teknik Universitas Pembangunan Nasional

Lebih terperinci

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA oleh FIQIH SOFIANA M0109030 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10 ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 1 Syahrul Humaidi 1,a), Tua Raja Simbolon 1,b), Russell Ong 1,c), Widya Nazri Afrida

Lebih terperinci

ENERGI TOTAL KEADAAN DASAR ATOM BERILIUM DENGAN TEORI GANGGUAN

ENERGI TOTAL KEADAAN DASAR ATOM BERILIUM DENGAN TEORI GANGGUAN Jurnal Ilmu dan Inovasi Fisika Vol. 0, No. 02 (207) 28 33 Departemen Fisika FMIPA Universitas Padjadjaran ENERGI TOTAL KEADAAN DASAR ATOM BERILIUM DENGAN TEORI GANGGUAN LIU KIN MEN *, SETIANTO, BAMBANG

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Alam tersusun atas empat jenis komponen materi yakni padat, cair, gas, dan plasma. Setiap materi memiliki komponen terkecil yang disebut atom. Atom tersusun atas inti

Lebih terperinci

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

PENENTUAN ENERGI EIGEN PERSAMAAN SCHRODINGER DENGAN SUMUR POTENSIAL SEMBARANG MENGGUNAKAN METODE MATRIKS TRANSFER NUMERIK

PENENTUAN ENERGI EIGEN PERSAMAAN SCHRODINGER DENGAN SUMUR POTENSIAL SEMBARANG MENGGUNAKAN METODE MATRIKS TRANSFER NUMERIK PENENTUAN ENERGI EIGEN PERSAMAAN SCHRODINGER DENGAN SUMUR POTENSIAL SEMBARANG MENGGUNAKAN METODE MATRIKS TRANSFER NUMERIK Nuraina Fika Lubis, Salomo, Defrianto Mahasiswa Program Studi S Fisika Fakultas

Lebih terperinci