PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODA GUIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODA GUIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI"

Transkripsi

1 PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODA GUIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI Hendro Nugroho 1, Sri Widiyantoro 2, dan Gunawan Ibrahim 2 1 Program Magister Sains Kebumian, Institut Teknologi Bandung 2 Kelompok Keahlian Ilmu dan Teknik Geofisika, Institut Teknologi Bandung ABSTRAK Salah satu penelitian ilmu kebumian yang perlu dilakukan untuk membantu upaya mitigasi bencana gempabumi adalah menentukan pusat gempa dengan presisi tinggi. Dalam hal ini ketelitian sangat diperlukan oleh karena adanya heterogenitas materi bumi yang dilewati gelombang gempa dari hiposenter ke stasiun pencatat. Oleh karena itu dengan bantuan model geotomografi (model struktur 3D kecepatan rambat gelombang gempa) diharapkan akan dapat diperoleh posisi sumber gempa yang lebih baik. Untuk studi ini daerah penelitian yang diambil adalah Jawa dan sekitarnya, yaitu : 7 LS - 11 LS dan 105 BT BT. Data yang digunakan adalah waktu tiba gelombang P dari seismogram yang direkam pada seismograf broadband di Indonesia. Penentuan hiposenter menggunakan metoda guided grid search dengan model kecepatan 3D untuk busur Sunda. Hasil penentuan hiposenter gempa dengan pendekatan ini memberikan tingkat kesalahan yang lebih kecil dibandingkan dengan jika digunakan model kecepatan 1D. PENDAHULUAN Kepulauan Indonesia terletak pada tenggara Lempeng Eurasia dan dibatasi disebelah selatan dan barat dengan Lempeng Indo-Australia (Samudera Indonesia) dan disebelah timur dengan Lempeng Laut Filipina dan Lempeng Pasifik. Batas lempeng-lempeng ini merupakan sebuah zona subduksi sehingga terbentuk busur pegunungan dan struktur-struktur kompresi. Zona subduksi adalah zona aktif gempabumi sehingga lajur gempabumi di Indonesia membentang sepanjang tidak kurang dari km mulai dari Andaman sampai ke Busur Banda Timur. Lajur kemudian menerus ke wilayah Maluku hingga Sulawesi Utara. Daerah-daerah sepanjang pantai barat Sumatera, pantai selatan Jawa, NTB dan NTT serta Maluku merupakan wilayah rawan gempabumi dan tsunami. Data yang diperoleh dari Badan Meteorologi dan Geofisika menunjukkan dalam satu bulan rata-rata terjadi tidak kurang dari 20 gempa. Dampak kondisi geografis diatas mengakibatkan Indonesia menjadi daerah sangat rawan bencana alam kebumian khususnya gempabumi. Untuk meminimalisasi dampak bencana tentunya upaya mitigasi perlu dilakukan secara dini dan optimal. Upaya mitigasi dapat dilakukan dengan penelitian ilmu kebumian yang makin intens, pemasangan jaringan pemantau yang representatif dan mutakhir serta diseminasi informasi. Salah satu penelitian ilmu kebumian yang perlu dilakukan adalah merelokasi episenter gempabumi dengan model 48

2 struktur kecepatan 3D. Hal ini perlu dilakukan dikarenakan heterogenitas batuan yang dilewati gelombang gempa dari hiposenter ke stasiun pencatat. Oleh karena itu dengan bantuan tomografi, hasil relokasi ini akan memberikan parameter gempa yang lebih representatif terhadap geologi wilayahnya. GEOLOGI UMUM Daerah penelitian terbentang sepanjang Pulau Jawa dan Samudera Indonesia. Perkembangan tektonik Pulau Jawa tidak berbeda jauh dengan perkembangan tektonik Pulau Sumatera. Hal ini disebabkan keduanya masih bagian dari lempeng Mikro Sunda dan dalam sistem konvergensi yang sama antara lempeng Indo-Australia dan lempeng Eurasia. Perbedaan utama dalam pola interaksi ini terletak pada gejala geologi yang berlainan antara Jawa dan Sumatera : 1. Batuan dasar di Pulau Jawa terdiri dari kelompok melange berumur kapur-tersier awal. 2. Di Pulau Jawa tidak ditemui tandatanda unsur kerak benua. Unsur-unsur tektonik yang membentuk Pulau Jawa : 1. Jalur subduksi kapur-paleosen yang memotong Jawa Barat, Jawa Tengah dan terus ke timur laut menuju Kalimantan Tenggara. 2. Jalur magma kapur di utara Jawa. 3. Jalur magma tersier sepanjang selatan Jawa. 4. Jalur subduksi tersier yang menempati punggungan bawah laut di selatan Jawa. 5. Palung laut disebelah selatan Jawa. GAMBAR 1: Lokasi penelitian. METODOLOGI Guided Grid Search Metoda yang digunakan dalam relokasi episenter ini adalah guided grid search. Metoda ini dikembangkan dari metoda solusi inversi non-linear menggunakan pendekatan global (grid search). Pada metoda grid search ruang model didefinisikan terlebih dahulu dengan menentukan secara a priori interval (batas minimum dan maksimum) harga setiap parameter model yang mungkin. Kemudian dilakukan diskretisasi pada interval tersebut sehingga diperoleh grid yang dapat saja tidak homogen namun meliputi seluruh ruang model yang telah didefinisikan. Informasi mengenai harga fungsi obyektif untuk semua grid pada ruang model dapat digunakan untuk menetukan solusi, yaitu model dengan harga fungsi obyektif minimum. Pada metode guided grid search ruang model dibagi menjadi delapan blok dan setiap titik tengah blok dijadikan model awal untuk dilakukan perhitungan forward modelling (gambar 2). Solusi awal dilakukan dengan memperhatikan harga fungsi obyektif minimum delapan titik model tersebut. Titik tengah blok (model) yang memiliki fungsi obyektif minimum tersebut yang kita pilih. Selanjutnya blok yang terpilih dibagi lagi menjadi delapan blok dengan ukuran yang lebih kecil. Hal itu terus diulang hingga mendapatkan fungsi obyektif paling minumum. Dalam penentuan parameter gempa bumi fungsi obyektif tersebut adalah selisih waktu tiba PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODE GIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI Hendro Nugroho, Sri Widiyantoro, dan Gunawan Ibrahim 49

3 observasi dengan waktu tiba perhitungan (tobs-tcal) Pada metoda ini hal yang sangat diperhatikan adalah bentuk volume balok yang akan kita bagi. Semakin simetris bentuk balok akan diperoleh keakuratan dan kecepatan waktu yang sangat baik Bila dibandingkan dengan metoda grid search, metoda guided grid search memiliki keakuratan hasil dan kecepatan waktu dalam penentuan sumber gempa lebih cepat Dengan n adalah jumlah titik pada lintasan, X K adalah vektor posisi pada titik ke-k, V k adalah kecepatan pada titik ke-k. Jika travel time diminimumkan secara bersamaan pada setiap segmen dari lintasan ray, maka akan menghasilkan solusi dari persamaan non-linear. Selanjutnya diasumsikan dua titik akhir X k-1 dan X k+1 merupakan titik-titik lintasan sebelum pertubarsi, titik baru X k yang merupakan pengganti dari titik sebelumnya ditentukan dengan cara meminimumkan travel time sepanjang segmen ray dar X k-1 ke X k+1. Dua variabel yang dihitung untuk menentukan titik baru Xk adalah menentukan vektor gradien kecepatan normal (n) dan panjangnya (R) dari titik tengah (X mid ). X mid GAMBAR 2: Pembagian blok untuk pemodelan kedepan. n gradv X k+1 Ray Tracing dengan Pseudo Bending X k-1 X k Ray tracing dengan pseudo bending menggunakan prinsip Fermat di mana gelombang gempa menjalar dari suatu titik sumber ke titik penerima dengan waktu tercepat dengan cara meminimumkan travel time secara intensif (Koketsu dan Sekine, 1998). Travel time T sepanjang lintasannya diekspresikan sebagai integral garis antara 2 titik ujung. GAMBAR 3: Ilustrasi skema perturbasi 3 titik dalam metode pseudo bending (Um dan Thurber, 1987). Penentuan Waktu Gempa (OT) Dalam menentukan waktu gempa atau origin time (OT), dengan menggunakan data tp dan ts-tp dari sejumlah n stasiun seperti pada gambar 4. (Nugraha, 2005) 50 T =1/V ds (1) Dengan ds adalah panjang lintasan dan V kecepatan seismik. Perhitungan travel time dilakukan menggunakan somasi numerik sepanjang segmen lintasan gelombang, dan persamaan travel time dapat dituliskan dalam persamaan : T= X k X k-1 {1/V k + 1/V k-1 }/2 (2) Gambar 4: Kurva tp vs ts-tp metode Wadati (Lay dan Wallace, 1995). tp to ts-tp

4 DATA DAN PENGOLAHAN Data Koordinat tersebut kemudian dibagi menjadi delapan blok untuk diperoleh fungsi obyektif minimumnya. Data yang digunakan dalam penulisan ini terdiri dari data sumber gempa sintetik dan data sumber gempa sesungguhnya yang dicatat oleh BMG. Untuk gempa sintetik dilakukan dengan membuat suatu sumber gempa baik didalam maupun diluar jaringan stasiun pencatat untuk kepentingan verifikasi program yang digunakan. Sedangkan sumber gempa sesungguhnya digunakan beberapa kejadian gempabumi baik yang sangat merusak maupun kejadian gempa yang masih menjadi perdebatan lokasinya. Struktur kecepatan yang digunakan adalah stuktur kecepatan 3D hasil penelitian tomografi busur sunda dan struktur kecepatan 1D AK-135. Pengolahan Data Alur pengolahan data dalam paper ini adalah 1. Menentukan tobs episenter hipotetik dari stasiun pengamatan 2. Mencari hiposenter gempa hipotetik dengan metoda guided grid search di mana travel time dihitung dari ray tracing 3D pseudo bending (Um dan Thurber). 3. Melakukan verivikasi hasil dengan episenter hipotetik. 4. Melakukan relokasi beberapa kejadian gempabumi yang dicatat oleh BMG. Koordinat geografi yang digunakan sudah mempertimbangkan bentuk spheris bumi (spherical coordinate system). Metode guided grid search yang digunakan penulis adalah dengan membuat blok forward model : Xmax = 114; Xmin = 100; Ymax = -2; Ymin = -14; Zmax = 0; Zmin = HASIL DAN ANALISIS Sumber Gempa Sintetik Data episenter hipotetik yang digunakan sebanyak lima buah tersebar di daerah penelitian. Hasil pengolahan data episenter hipotetik dapat dilihat pada tabel I. Dari tabel tersebut pada umumnya hasil penentuan episenter hipotetik memberikan hasil yang cukup memuaskan dilihat dari E RMS yang ditimbulkannya. Pergeseran kedalaman yang cukup besar terjadi pada episenter hipotetik no 1. Hal ini diduga diakibatkan episenter hipotetik berada diluar sebagian besar jaringan stasiun pengamatan. Hanya satu stasiun yang mengikat sumber gempa diluar jaringan pengamatan milik Indonesia yaitu stasiun milik Australia di kepulauan Christmas. Sebaran stasiun pengamatan dapat dilihat pada daftar lampiran A. Perkembangan kurva error terhadap waktu bersifat konvergen, hal ini ditunjukkan kurva iterasi semua kejadian gempa baik episenter hipotetik maupun hasil penentuan sumber untuk gempabumi hasil pengamatan BMG (daftar lampiran). Hasil penentuan sumber gempa sangat baik ditunjukkan episenter hipotetik no2. E RMS yang dihasilkannya sebesar Hasil yang baik ini dikarenakan episenter sintetik tepat berada di dalam jaringan stasiun pengamatan dan stasiun pencatatnya pun sangat banyak. Secara keseluruhan episenter hipotetik ini tidak mengalami pergeseran PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODE GIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI Hendro Nugroho, Sri Widiyantoro, dan Gunawan Ibrahim 51

5 koordinat posisi horisontal baik bujur maupun lintangnya yang cukup signifikan. Meskipun episenter hipotetik ini berada di luar jaringan pengamatan stasiun seperti di selatan Jawa. Sehingga program relokasi ini dapat digunakan untuk merelokasi episenter gempa bumi sesungguhnya. Hiposenter BMG Hasil relokasi episenter BMG yang dilakukan penulis dapat dilihat pada tabel.2. Pada tabel tersebut dapat dilihat hasil penentuan sumber gempa memberikan posisi hiposenter yang lebih baik. Kedalaman sumber gempa 0 km (33 km) dapat direlokasi menjadi kedalaman gempa yang dapat lebih dipercaya. Pada kasus gempa Yogyakarta 26 Mei 2006, di mana masih menjadi silang pendapat atau perbedaan antara BMG dan USGS tentang posisi hiposenter saat gempa utama (main shock), penulis berhasil menentukan posisi hiposenter yang lebih baik (lampiran B). Posisi sumber gempa hasil relokasi lebih bergeser kearah pantai (mendekati hasil USGS) sedangkan kedalaman bergeser menjadi 5 km. Dalam paper ini penulis juga melakukan relokasi kejadian gempa dengan struktur kecepatan 1D (AK- 135). Tujuannya adalah untuk dapat membuktikan relokasi gempa dengan struktur kecepatan 3D dapat menghasilkan hasil yang lebih baik atau tidak. Hasil relokasi dengan struktur kecepatan 3D ternyata memiliki hasil yang lebih baik daripada struktur kecepatan 1D. Hal ini dapat dilihat dari nilai ERMS yang lebih kecil (lebih baik) pada struktur kecepatan 3D daripada struktur kecepatan 1D. Hasil relokasi diatas semakin mempertajam tercapainya tujuan semula penulisan yaitu mendapatkan parameter gempa (hiposenter) yang lebih baik. Hal ini dikarenakan model struktur kecepatan 3D yang digunakan dapat mewakili kondisi geologi setempat. Waktu yang diperlukan untuk melakukan relokasi cukup cepat kurang lebih 1-2 menit. Sehingga metoda ini cukup efisien untuk diterapkan pada penentuan parameter gempa sesunggunya. KESIMPULAN Kesimpulan penelitian diantaranya : 1. Penentuan hiposenter gempa dengan metoda guded grid search dan model struktur kecepatan 3D menghasilkan posisi hiposenter yang lebih baik. 2. Metoda guided grid search sensitif terhadap pemilihan model blok awal. Model blok harus lebih simetris (kubus). 3. Relokasi hiposenter gempa sangat perlu dilakukan untuk memperoleh hiposenter yang lebih baik, sehingga BMG memiliki historis data gempa yang baik. 4. Metoda guided grid search dapat dikembangkan dalam skala lebih regional dengan membuat model stuktur kecepatan 3D pada wilayah tersebut. UCAPAN TERIMA KASIH Terimakasih penulis sampaikan kepada BMG yang telah mendanai penelitian ini melalui Program Riset Prediktabilitas Gempa Bumi

6 DAFTAR PUSTAKA 1. Chao-ying, B. and Greenhalgh, S., D Local Earthquake Hypocenter Determination with an Irregular Shortest-Path Method, BSSA, 99,6, Stamps, D.S. and Smalley, R. Jr., Strings and Things for Locating Erathquake, Seismological Research Letters, 77,6, Grandis, H., Buku Ajar Inversi Geofisika, Institut Teknologi Bandung. 4. Hamilton, W., 1979, Tectonics of The Indonesian Region, USGS Prof. Paper, Koketsu, K. and Sekine, S., Pseudo-Bending Method for Three- Dimensional Seismic Ray Tracing in a Spherical Earth with Discontinuities, Geophysics Journal International, 132, Lay, T. and Wallace, T.C., Modern Global Seismology, Academic Press. 7. Nugraha, A.D., Studi Tomografi 3-D Non Linar untuk Gunung Guntur dengan Menggunakan Waktu Tiba Gelombang P dan S. Tesis Magister, Departemen Geofisika dan Meteorologi, Institut Teknologi Bandung. 8. Um, J. and Thurber, C., A Fast Algorithm for Two Points Seismic Ray Tracing, BSSA, 77,3, Widiyantoro, S., and van der Hilst, R.D., 1996, Stucture and Evolution of Lithospheric Slab Beneath the Sunda arc, Indonesia, Science, 271, PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODE GIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI Hendro Nugroho, Sri Widiyantoro, dan Gunawan Ibrahim 53

7 LAMPIRAN Lampiran A. Sumber Gempa Sintetik No Episenter Hipotetik Hasil Penentuan Episenter (penulis) Lintang (LS) Bujur (BT) Kedalaman (km) nsta Lintang (LS) Bujur (BT) Kedalaman (km) RMS TABEL 1: Perbandingan episenter hipotetik dengan hasil penentuan episenter (penulis). GAMBAR 5A: Sebaran stasiun pengamatan dan episenter hipotetik serta episenter hasil relokasi (Tabel 1. no.1). 54

8 GAMBAR 5B: Sebaran stasiun pengamatan dan hiposenter hipotetik serta hiposenter hasil relokasi (Tabel 1. no.1). 15 KURVA ITERASI 10 rms jumlah iterasi GAMBAR 5C: Kurva iterasi (Tabel 1. no.1). PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODE GIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI Hendro Nugroho, Sri Widiyantoro, dan Gunawan Ibrahim 55

9 GAMBAR 6A: Sebaran stasiun pengamatan dan episenter hipotetik serta episenter hasil relokasi (Tabel 1. no.2). GAMBAR 6B: Sebaran stasiun pengamatan dan hiposenter hipotetik serta hiposenter hasil relokasi (Tabel 1. no.2). 18 KURVA ITERASI rms jumlah iterasi GAMBAR 6C: Kurva iterasi (Tabel 1. no.2). 56

10 Lampiran B. Hiposenter BMG Tanggal Waktu Episenter BMG Episenter relokasi Episenter relokasi nsta (Struktur kecepatan 3D) (Struktur kecepatan 1D) jam menit detik bujur lintang ked bujur lintang ked ERMS bujur lintang ked ERMS TABEL 2: Perbandingan episenter BMG dengan episenter hasil relokasi serta USGS. PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODE GIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI Hendro Nugroho, Sri Widiyantoro, dan Gunawan Ibrahim 57

11 GAMBAR 7A: Sebaran stasiun pengamatan dan episenter BMG serta episenter hasil relokasi (gempa Yogyakarta dan Sukabumi). GAMBAR 7B: Sebaran stasiun pengamatan dan episenter BMG serta episenter hasil relokasi (close up); gempa Yogyakarta dan Sukabumi. 58

12 GAMBAR 7C: Sebaran stasiun pengamatan dan hiposenter hipotetik serta hiposenter relokasi. GAMBAR 7D: Kurva iterasi gempa Jogja 26 Mei 2006 PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODE GIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI Hendro Nugroho, Sri Widiyantoro, dan Gunawan Ibrahim 59

13 GAMBAR 7E: Kurva iterasi gempa Sukabumi 17 Juli

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Secara tektonik, Indonesia terletak pada pertemuan lempeng Eurasia, lempeng Indo-Australia, lempeng Pasifik, dan lempeng mikro Filipina. Interaksi antar lempeng mengakibatkan

Lebih terperinci

ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON

ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON Hapsoro Agung Nugroho Stasiun Geofisika Sanglah Denpasar soro_dnp@yahoo.co.id ABSTRACT Bali is located on the boundaries of the two

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA DAFTAR ISI HALAMAN JUDUL.... i HALAMAN PENGESAHAN.... ii PERNYATAAN KEASLIAN KARYA ILMIAH.... iii KATA PENGANTAR.... iv ABSTRAK.... v ABSTRACT.... vi DAFTAR ISI.... vii DAFTAR GAMBAR.... ix DAFTAR TABEL....

Lebih terperinci

Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima

Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima Ahmad Syahputra dan Andri Dian Nugraha Teknik Geofisika, Fakultas Teknik Pertambangan dan

Lebih terperinci

PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI Oleh ZULHAM SUGITO 1

PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI Oleh ZULHAM SUGITO 1 PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI 2018 Oleh ZULHAM SUGITO 1 1 PMG Stasiun Geofisika Mata Ie Banda Aceh Pendahuluan Aktifitas tektonik di Provinsi Aceh dipengaruhi

Lebih terperinci

BAB I PENDAHULUAN. Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. lempeng tektonik, yaitu Lempeng Eurasia, Lempeng Indo Australia, dan

BAB I PENDAHULUAN. Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. lempeng tektonik, yaitu Lempeng Eurasia, Lempeng Indo Australia, dan BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian ini berjudul Analisa Sudut Penunjaman Lempeng Tektonik Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. I.2. Latar Belakang Indonesia merupakan negara

Lebih terperinci

BAB I PENDAHULUAN Latar belakang

BAB I PENDAHULUAN Latar belakang BAB I PENDAHULUAN 1.1. Latar belakang Indonesia merupakan salah satu negara dimana terdapat pertemuan 3 lempeng tektonik utama bumi. Lempeng tersebut meliputi lempeng Eurasia, lempeng Indo-Australia, dan

Lebih terperinci

SEISMISITAS DAN MODEL ZONA SUBDUKSI DI INDONESIA RESOLUSI TINGGI

SEISMISITAS DAN MODEL ZONA SUBDUKSI DI INDONESIA RESOLUSI TINGGI SEISMISITAS DAN MODEL ZONA SUBDUKSI DI INDONESIA RESOLUSI TINGGI Sri Widiyantoro KK (Kelompok Keahlian) Ilmu dan Teknik Geofisika Fakultas Teknik Pertambangan dan Perminyakan Institut Teknologi Bandung

Lebih terperinci

tektonik utama yaitu Lempeng Eurasia di sebelah Utara, Lempeng Pasifik di

tektonik utama yaitu Lempeng Eurasia di sebelah Utara, Lempeng Pasifik di BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan suatu wilayah yang sangat aktif kegempaannya. Hal ini disebabkan oleh letak Indonesia yang berada pada pertemuan tiga lempeng tektonik utama yaitu

Lebih terperinci

batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik.

batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik. BAB I PENDAHULUAN 1.1 Latar Belakang Gempa bumi merupakan peristiwa bergetarnya bumi karena pergeseran batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik. Pergerakan tiba-tiba

Lebih terperinci

Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda?

Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda? Gempabumi Sumba 12 Februari 2016, Konsekuensi Subduksi Lempeng Indo-Australia di Bawah Busur Sunda Ataukah Busur Banda? Supriyanto Rohadi, Bambang Sunardi, Rasmid Pusat Penelitian dan Pengembangan BMKG

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Sebaran episenter gempa di wilayah Indonesia (Irsyam dkk, 2010). P. Lombok

BAB I PENDAHULUAN. Gambar 1.1 Sebaran episenter gempa di wilayah Indonesia (Irsyam dkk, 2010). P. Lombok 2 BAB I PENDAHULUAN 1.1 Latar Belakang Gempabumi sangat sering terjadi di daerah sekitar pertemuan lempeng, dalam hal ini antara lempeng benua dan lempeng samudra akibat dari tumbukan antar lempeng tersebut.

Lebih terperinci

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS. Bayu Baskara

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS. Bayu Baskara PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS Bayu Baskara ABSTRAK Bali merupakan salah satu daerah rawan bencana gempa bumi dan tsunami karena berada di wilayah pertemuan

Lebih terperinci

INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA

INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG Rasmid 1, Muhamad Imam Ramdhan 2 1 Stasiun Geofisika klas I BMKG Bandung, INDONESIA 2 Fisika Fakultas Sains dan Teknologi UIN SGD Bandung, INDONESIA

Lebih terperinci

RELOKASI DAN KLASIFIKASI GEMPABUMI UNTUK DATABASE STRONG GROUND MOTION DI WILAYAH JAWA TIMUR

RELOKASI DAN KLASIFIKASI GEMPABUMI UNTUK DATABASE STRONG GROUND MOTION DI WILAYAH JAWA TIMUR RELOKASI DAN KLASIFIKASI GEMPABUMI UNTUK DATABASE STRONG GROUND MOTION DI WILAYAH JAWA TIMUR Rian Mahendra 1*, Supriyanto 2, Ariska Rudyanto 2 1 Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Jakarta

Lebih terperinci

POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA. Oleh : Hendro Murtianto*)

POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA. Oleh : Hendro Murtianto*) POTENSI KERUSAKAN GEMPA BUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA Oleh : Hendro Murtianto*) Abstrak Aktivitas zona patahan Sumatera bagian tengah patut mendapatkan perhatian,

Lebih terperinci

Sulawesi. Dari pencatatan yang ada selama satu abad ini rata-rata sepuluh gempa

Sulawesi. Dari pencatatan yang ada selama satu abad ini rata-rata sepuluh gempa BAB I PENDAHULUAN 1.1 Latar Belakang Gempa bumi merupakan satu bencana alam yang disebabkan kerusakan kerak bumi yang terjadi secara tiba-tiba dan umumnya diikuti dengan terjadinya patahan atau sesar.

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) B-53

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) B-53 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) 2337-3520 (2301-928X Print) B-53 Relokasi Hiposenter untuk Data Gempa Bumi di Wilayah Sumatera Barat dan Sekitarnya dengan Menggunakan Hypo71 (2009-10-01

Lebih terperinci

MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH

MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH Oleh Abdi Jihad dan Vrieslend Haris Banyunegoro PMG Stasiun Geofisika Mata Ie Banda Aceh disampaikan dalam Workshop II Tsunami Drill Aceh 2017 Ditinjau

Lebih terperinci

ANALISIS SEISMISITAS DAN PERIODE ULANG GEMPA BUMI WILAYAH SULAWESI TENGGARA BERDASARKAN B-VALUE METODE LEAST SQUARE OLEH :

ANALISIS SEISMISITAS DAN PERIODE ULANG GEMPA BUMI WILAYAH SULAWESI TENGGARA BERDASARKAN B-VALUE METODE LEAST SQUARE OLEH : ANALISIS SEISMISITAS DAN PERIODE ULANG GEMPA BUMI WILAYAH SULAWESI TENGGARA BERDASARKAN B-VALUE METODE LEAST SQUARE OLEH : Astari Dewi Ratih, Bambang Harimei, Syamsuddin Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN. tatanan tektonik terletak pada zona pertemuan lempeng lempeng tektonik. Indonesia

BAB I PENDAHULUAN. tatanan tektonik terletak pada zona pertemuan lempeng lempeng tektonik. Indonesia BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian ini berjudul Analisis Sudut Penunjaman Lempeng Tektonik Berdasarkan Data Gempa di Pulau Seram dan Pulau Buru. I.2. Latar Belakang Fenomena gempabumi merupakan

Lebih terperinci

BAB I PENDAHULUAN. Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng

BAB I PENDAHULUAN. Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng BAB I PENDAHULUAN A. Latar Belakang Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng Eurasia, Indo-Australia dan Pasifik. Konsekuensi tumbukkan lempeng tersebut mengakibatkan negara

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN 52 V. HASIL DAN PEMBAHASAN 5.1. Distribusi Hiposenter Gempa dan Mekanisme Vulkanik Pada persebaran hiposenter Gunung Sinabung (gambar 31), persebaran hiposenter untuk gempa vulkanik sangat terlihat adanya

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Indonesia termasuk daerah yang rawan terjadi gempabumi karena berada pada pertemuan tiga lempeng, yaitu lempeng Indo-Australia, Eurasia, dan Pasifik. Aktivitas kegempaan

Lebih terperinci

KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN

KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN KARAKTERISTIK GEMPABUMI DI SUMATERA DAN JAWA PERIODE TAHUN 1950-2013 Samodra, S.B. & Chandra, V. R. Diterima tanggal : 15 November 2013 Abstrak Pulau Sumatera dan Pulau Jawa merupakan tempat yang sering

Lebih terperinci

STRUKTUR KECEPATAN GELOMBANG P REGIONAL SATU DIMENSI WILAYAH PERAIRAN BANDA VELOCITY MODEL OF REGIONAL P WAVE ONE DIMENSIONS OF OCEAN AREA OF BANDA

STRUKTUR KECEPATAN GELOMBANG P REGIONAL SATU DIMENSI WILAYAH PERAIRAN BANDA VELOCITY MODEL OF REGIONAL P WAVE ONE DIMENSIONS OF OCEAN AREA OF BANDA STRUKTUR KECEPATAN GELOMBANG P REGIONAL SATU DIMENSI WILAYAH PERAIRAN BANDA VELOCITY MODEL OF REGIONAL P WAVE ONE DIMENSIONS OF OCEAN AREA OF BANDA 1 Dimas Salomo J. Sianipar, 2 Wiko Setyonegoro, 3 Thomas

Lebih terperinci

SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA

SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA Yasa SUPARMAN dkk Pusat Vulkanologi dan Mitigasi Bencana Geologi Badan

Lebih terperinci

BAB 1 PENDAHULUAN. tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah

BAB 1 PENDAHULUAN. tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Permasalahan Negara Kesatuan Republik Indonesia adalah negara kepulauan dengan tingkat kepadatan penduduk nomor empat tertinggi di dunia, dengan jumlah penduduk lebih

Lebih terperinci

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu 364 Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu Rahmad Aperus 1,*, Dwi Pujiastuti 1, Rachmad Billyanto 2 Jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Lempeng tektonik kepulauan Indonesia terletak di pertemuan tiga lempeng utama yaitu lempeng Indo-Australia, Eurasia dan Pasifik. Interaksi dari ke tiga lempeng tersebut

Lebih terperinci

1. Deskripsi Riset I

1. Deskripsi Riset I 1. Deskripsi Riset I (Karakterisasi struktur kerak di bawah zona transisi busur Sunda-Banda menggunakan metoda inversi gabungan gelombang permukaan dan gelombang bodi dari data rekaman gempa dan bising

Lebih terperinci

Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan.

Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan. 1.1 Apakah Gempa Itu? Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan. Getaran tersebut disebabkan oleh pergerakan

Lebih terperinci

M MODEL KECEPATAN BAWAH PERMUKAAN MENGGUNAKAN METODE TOMOGRAFI DATA MICROEARTHQUAKE DI LAPANGAN PANAS BUMI ALPHA

M MODEL KECEPATAN BAWAH PERMUKAAN MENGGUNAKAN METODE TOMOGRAFI DATA MICROEARTHQUAKE DI LAPANGAN PANAS BUMI ALPHA BAB I PENDAHULUAN 1.1 Latar Belakang Energi panas bumi telah lama menjadi sumber kekuatan di daerah vulkanik aktif yang berasal dari aktivitas tektonik di dalam bumi. Indonesia merupakan negara dengan

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang subduksi Gempabumi Bengkulu 12 September 2007 magnitud gempa utama 8.5

BAB I PENDAHULUAN I.1. Latar Belakang subduksi Gempabumi Bengkulu 12 September 2007 magnitud gempa utama 8.5 BAB I PENDAHULUAN I.1. Latar Belakang Indonesia terletak pada pertemuan antara lempeng Australia, Eurasia, dan Pasifik. Lempeng Australia dan lempeng Pasifik merupakan jenis lempeng samudera dan bersifat

Lebih terperinci

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian BAB I PENDAHULUAN A. Latar Belakang Masalah Kepulauan Indonesia terletak pada pertemuan tiga lempeng tektonik utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian Utara, dan

Lebih terperinci

Bab IV Kegempaan dan Cakupan Sinar Gelombang di Kompleks Gunung Guntur

Bab IV Kegempaan dan Cakupan Sinar Gelombang di Kompleks Gunung Guntur Bab IV Kegempaan dan Cakupan Sinar Gelombang di Kompleks Gunung Guntur IV.1 Seismisitas Gunung Guntur Seismisitas atau kegempaan Gunung Guntur diamati secara menerus dari Pos Pengamatan Gunungapi Guntur

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI BARAT LAUT KEP. SANGIHE SULAWESI UTARA Oleh Artadi Pria Sakti*, Robby Wallansha*, Ariska

Lebih terperinci

PERKUAT MITIGASI, SADAR EVAKUASI MANDIRI DALAM MENGHADAPI BENCANA TSUNAMI

PERKUAT MITIGASI, SADAR EVAKUASI MANDIRI DALAM MENGHADAPI BENCANA TSUNAMI PERKUAT MITIGASI, SADAR EVAKUASI MANDIRI DALAM MENGHADAPI BENCANA TSUNAMI Oleh : Rahmat Triyono, ST, MSc Kepala Stasiun Geofisika Klas I Padang Panjang Email : rahmat.triyono@bmkg.go.id (Hasil Penelitian

Lebih terperinci

BAB I PENDAHULUAN I.1. Judul Penelitian I.2. Latar Belakang Masalah

BAB I PENDAHULUAN I.1. Judul Penelitian I.2. Latar Belakang Masalah BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian ini berjudul Hubungan Persebaran Episenter Gempa Dangkal dan Kelurusan Berdasarkan Digital Elevation Model di Wilayah Daerah Istimewa Yogyakarta I.2.

Lebih terperinci

RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2

RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2 RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET 2018 Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2 1 Stasiun Geofisika Mata Ie Banda Aceh 2 Bidang Mitigasi Gempabumi dan Tsunami Pendahuluan

Lebih terperinci

BAB I PENDAHULUAN. komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar

BAB I PENDAHULUAN. komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar BAB I PENDAHULUAN I.1. Latar Belakang Indonesia merupakan Negara yang memiliki tatanan geologi yang cukup komplek yang terletak pada lempeng benua Eurasia bagian tenggara (Gambar I.1). Indonesia dibatasi

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN 1.1. Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Wilayah Indonesia merupakan salah satu negara dengan kondisi geologis yang secara tektonik sangat labil karena dikelilingi oleh Lempeng Eurasia, Lempeng Indo-Australia

Lebih terperinci

Karakteristik mikrotremor dan analisis seismisitas pada jalur sesar Opak, kabupaten Bantul, Yogyakarta

Karakteristik mikrotremor dan analisis seismisitas pada jalur sesar Opak, kabupaten Bantul, Yogyakarta J. Sains Dasar 2014 3(1) 95 101 Karakteristik mikrotremor dan analisis seismisitas pada jalur sesar Opak, kabupaten Bantul, Yogyakarta (Microtremor characteristics and analysis of seismicity on Opak fault

Lebih terperinci

Persebaran Hiposenter Maluku Selatan Menggunakan Metode Double Difference

Persebaran Hiposenter Maluku Selatan Menggunakan Metode Double Difference JURNAL SAINS DAN SENI ITS Vol. 5 No. 2 (2016) 2337-3520 (2301-928X Print) B-11 Persebaran Hiposenter Maluku Selatan Menggunakan Metode Double Difference Ryandi Bachrudin Yusuf, Bagus Jaya Santosa. Jurusan

Lebih terperinci

(Analisis model geomekanika pada zona penunjaman lempeng untuk estimasi potensi gempa besar di Indonesia)

(Analisis model geomekanika pada zona penunjaman lempeng untuk estimasi potensi gempa besar di Indonesia) 1. Judul dan Deskripsi Riset I (Analisis model geomekanika pada zona penunjaman lempeng untuk estimasi potensi gempa besar di Indonesia) 1.1 Deskripsi singkat Pencitraan tomografi gempa bumi untuk zona

Lebih terperinci

PEMODELAN STRUKTUR KECEPATAN GELOMBANG P DI BAWAH GUNUNG GUNTUR DENGAN METODA SIMULATED ANNEALING TUGAS AKHIR

PEMODELAN STRUKTUR KECEPATAN GELOMBANG P DI BAWAH GUNUNG GUNTUR DENGAN METODA SIMULATED ANNEALING TUGAS AKHIR PEMODELAN STRUKTUR KECEPATAN GELOMBANG P DI BAWAH GUNUNG GUNTUR DENGAN METODA SIMULATED ANNEALING TUGAS AKHIR Disusun untuk memenuhi syarat kurikuler Program Sarjana Geofisika Oleh : JOKO PRIHANTONO 10401016

Lebih terperinci

EVALUASI KEJADIAN GEMPABUMI TEKTONIK DI INDONSESIA TRIWULAN IV TAHUN 2008 (OKTOBER-DESEMBER 2008)

EVALUASI KEJADIAN GEMPABUMI TEKTONIK DI INDONSESIA TRIWULAN IV TAHUN 2008 (OKTOBER-DESEMBER 2008) EVALUASI KEJADIAN GEMPABUMI TEKTONIK DI INDONSESIA TRIWULAN IV TAHUN 2008 (OKTOBER-DESEMBER 2008) GEDE SUANTIKA Sub Bidang Pengamatan Gempabumi Bidang Pengamatan Gempabumi dan Gerakan Tanah Pusat Vulkanologi

Lebih terperinci

BAB I PENDAHULUAN. Gayaberat merupakan salah satu metode dalam geofisika. Nilai Gayaberat di

BAB I PENDAHULUAN. Gayaberat merupakan salah satu metode dalam geofisika. Nilai Gayaberat di BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Gayaberat merupakan salah satu metode dalam geofisika. Nilai Gayaberat di setiap tempat di permukaan bumi berbeda-beda, disebabkan oleh beberapa faktor seperti

Lebih terperinci

BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini

BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini BAB III METODE PENELITIAN 3.1 METODE SEISMIK Metode geofisika yang digunakan adalah metode seimik. Metode ini memanfaatkan perambatan gelombang yang melewati bumi. Gelombang yang dirambatkannya berasal

Lebih terperinci

BAB I PENDAHULUAN. yaitu Lempeng Euro-Asia dibagian Utara, Lempeng Indo-Australia. dibagian Selatan dan Lempeng Samudera Pasifik dibagian Timur.

BAB I PENDAHULUAN. yaitu Lempeng Euro-Asia dibagian Utara, Lempeng Indo-Australia. dibagian Selatan dan Lempeng Samudera Pasifik dibagian Timur. BAB I PENDAHULUAN A. Latar Belakang Masalah Penelitian Kepulauan Indonesia secara astronomis terletak pada titik koordinat 6 LU - 11 LS 95 BT - 141 BT dan merupakan Negara kepulauan yang terletak pada

Lebih terperinci

RELOKASI HIPOSENTER GEMPA BUMI DI SULAWESI TENGAH DENGAN MENGGUNAKAN METODE GEIGER DAN COUPLED VELOCITY-HYPOCENTER

RELOKASI HIPOSENTER GEMPA BUMI DI SULAWESI TENGAH DENGAN MENGGUNAKAN METODE GEIGER DAN COUPLED VELOCITY-HYPOCENTER Jurnal Fisika. Volume 03 Nomor 02 Tahun 2014, hal 107-112 RELOKASI HIPOSENTER GEMPA BUMI DI SULAWESI TENGAH DENGAN MENGGUNAKAN METODE GEIGER DAN COUPLED VELOCITY-HYPOCENTER Sherly Ardhya Garini, Madlazim,

Lebih terperinci

ANALISIS RELOKASI HIPOSENTER GEMPABUMI MENGGUNAKAN ALGORITMA DOUBLE DIFFERENCE WILAYAH SULAWESI TENGAH (Periode Januari-April 2018)

ANALISIS RELOKASI HIPOSENTER GEMPABUMI MENGGUNAKAN ALGORITMA DOUBLE DIFFERENCE WILAYAH SULAWESI TENGAH (Periode Januari-April 2018) ANALISIS RELOKASI HIPOSENTER GEMPABUMI MENGGUNAKAN ALGORITMA DOUBLE DIFFERENCE WILAYAH SULAWESI TENGAH (Periode Januari-April 2018) Oleh Mariska N. Rande 1, Emi Ulfiana 2 1 Stasiun Geofisika Kelas I Palu

Lebih terperinci

Bab I Pendahuluan I.1 Latar Belakang I.1.1 Lokasi Kompleks Gunung Guntur

Bab I Pendahuluan I.1 Latar Belakang I.1.1 Lokasi Kompleks Gunung Guntur Bab I Pendahuluan I.1 Latar Belakang I.1.1 Lokasi Kompleks Gunung Guntur Daerah penelitian meliputi Kompleks Gunung Guntur terdiri dari Kaldera Pangkalan atau Kamojang, Kaldera Gandapura, dan puncak-puncak

Lebih terperinci

BAB I PENDAHULUAN. menyebabkan Indonesia termasuk dalam daerah rawan bencana gempabumi

BAB I PENDAHULUAN. menyebabkan Indonesia termasuk dalam daerah rawan bencana gempabumi BAB I PENDAHULUAN A. Latar Belakang Kepulauan Indonesia terletak pada pertemuan tiga lempeng tektonik utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian Utara, dan lempeng

Lebih terperinci

Akhmad Fanani Akbar 1, Andri Dian Nugraha 1, M. Rachmat Sule 1, Aditya Abdurrahman Juanda 2

Akhmad Fanani Akbar 1, Andri Dian Nugraha 1, M. Rachmat Sule 1, Aditya Abdurrahman Juanda 2 Penentuan Hiposenter Menggunakan Simulated Annealing Dan Guided Error Search Serta Penentuan Model Kecepatan Gelombang Seismik 1-D Pada Lapangan Geothermal Akhmad Fanani Akbar 1, Andri Dian Nugraha 1,

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA TENGGARA DENPASAR BALI 22 MARET 2017

ULASAN GUNCANGAN TANAH AKIBAT GEMPA TENGGARA DENPASAR BALI 22 MARET 2017 ULASAN GUNCANGAN TANAH AKIBAT GEMPA TENGGARA DENPASAR BALI 22 MARET 2017 ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI TENGGARA DENPASAR BALI Oleh Trisnawati*, Moehajirin*, Furqon Dawwam R*,Ariska Rudyanto*,

Lebih terperinci

Penentuan Hiposenter Gempa Mikro Menggunakan Metode Inversi Simulated Annealing pada Lapangan Geotermal RR

Penentuan Hiposenter Gempa Mikro Menggunakan Metode Inversi Simulated Annealing pada Lapangan Geotermal RR Penentuan Hiposenter Gempa Mikro Menggunakan Metode Inversi Simulated Annealing pada Lapangan Geotermal RR Rexha Verdhora Ry, Andri Dian Nugraha Teknik Geofisika, Fakultas Teknik Pertambangan dan Perminyakan,

Lebih terperinci

LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010

LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010 LAPORAN GEMPABUMI Mentawai, 25 Oktober 2010 BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA JAKARTA 2010 1 OUTLINE I. LOKASI GEMPABUMI MENTAWAI SUMATERA BARAT II. 1. TIME LINE GEMPABUMI MENTAWAI SUMATERA BARAT.

Lebih terperinci

Tomografi Waktu Tempuh Gelombang S dan Struktur 3-D Zona Penunjaman Di Bawah Busur Sunda

Tomografi Waktu Tempuh Gelombang S dan Struktur 3-D Zona Penunjaman Di Bawah Busur Sunda JMS Vol. 3 No. 2, hal. 97-104, Oktober 1998 Tomografi Waktu Tempuh Gelombang S dan Struktur 3-D Zona Penunjaman Di Bawah Busur Sunda Sri Widiyantoro dan Nanang T. Puspito Jurusan Geofisika dan Meteorologi,

Lebih terperinci

Berkala Fisika ISSN : Vol. 18, No. 1, Januari 2015, hal 25-42

Berkala Fisika ISSN : Vol. 18, No. 1, Januari 2015, hal 25-42 Berkala Fisika ISSN : 1410-9662 Vol. 18, No. 1, Januari 2015, hal 25-42 STUDI PROBABILITAS GEMPA DAN PERBANDINGAN ATENUASI PERCEPATAN TANAH METODE JOYNER DAN BOORE (1988), CROUSE (1991) DAN SADIGH (1997)

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Dzikri Wahdan Hakiki, 2015

BAB I PENDAHULUAN 1.1 Latar Belakang Dzikri Wahdan Hakiki, 2015 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terdiri dari 3 lempeng tektonik yang bergerak aktif, yaitu lempeng Eurasia diutara, lempeng Indo-Australia yang menujam dibawah lempeng Eurasia dari selatan,

Lebih terperinci

RELOKASI HIPOSENTER GEMPA BUMI DENGAN MAGNITUDO 5,0 DI WILAYAH SUMATERA UTARA PERIODE TAHUN

RELOKASI HIPOSENTER GEMPA BUMI DENGAN MAGNITUDO 5,0 DI WILAYAH SUMATERA UTARA PERIODE TAHUN Jurnal Inovasi Fisika Indonesia (IFI) Volume 06 Nomor 02 Tahun 2017, hal 23-27 RELOKASI HIPOSENTER GEMPA BUMI DENGAN MAGNITUDO 5,0 DI WILAYAH SUMATERA UTARA PERIODE TAHUN 2012-2016 Isnaini 1), Madlazim

Lebih terperinci

Oleh: Dr. Darsiharjo, M.S.

Oleh: Dr. Darsiharjo, M.S. Oleh: Dr. Darsiharjo, M.S. SEMINAR NASIONAL PENGEMBANGAN MODEL PENDIDIKAN DAN PENYADARAN MASYARAKAT TERHADAP BAHAYA BENCANA GEMPA DAN TSUNAMI TANGGAL 20 APRIL 2005 G e o g r a f i KAJIAN GEOGRAFI Fenomena

Lebih terperinci

Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun Dengan Menggunakan Rumusan Mcguire

Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun Dengan Menggunakan Rumusan Mcguire Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun 1976 2016 Dengan Menggunakan Rumusan Mcguire Rido Nofaslah *, Dwi Pujiastuti Laboratorium Fisika Bumi, Jurusan

Lebih terperinci

BAB I PENDAHULUAN. bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan

BAB I PENDAHULUAN. bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan 1 BAB I PENDAHULUAN A. Latar Belakang Penelitian Mitigasi bencana merupakan serangkaian upaya untuk mengurangi resiko bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan kemampuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Gempabumi Gempabumi adalah peristiwa bergetarnya bumi akibat pelepasan energi di dalam bumi secara tiba-tiba yang ditandai dengan patahnya lapisan batuan pada kerak

Lebih terperinci

Keywords: circle method, intensity scale, P wave velocity

Keywords: circle method, intensity scale, P wave velocity JURNAL SAINS DAN PENDIDIKAN FISIKA (JSPF) Jilid Nomor, Desember ISSN 88-X STUDI TENTANG PERGERAKAN TANAH BERDASARKAN POLA KECEPATAN TANAH MAKSIMUM (PEAK GROUND VELOCITY) AKIBAT GEMPA BUMI (STUDI KASUS

Lebih terperinci

RELOKASI HIPOSENTER GEMPA BUMI UTAMA DAN GEMPA BUMI SUSULAN MENGGUNAKAN METODE MODIFIED JOINT HYPOCENTER DETERMINATION DI BALI

RELOKASI HIPOSENTER GEMPA BUMI UTAMA DAN GEMPA BUMI SUSULAN MENGGUNAKAN METODE MODIFIED JOINT HYPOCENTER DETERMINATION DI BALI Jurnal Fisika. Volume 03 Nomor 02 Tahun 2014, hal 100-106 RELOKASI HIPOSENTER GEMPA BUMI UTAMA DAN GEMPA BUMI SUSULAN MENGGUNAKAN METODE MODIFIED JOINT HYPOCENTER DETERMINATION DI BALI Anita Rahmasari

Lebih terperinci

Relokasi Hiposenter Gempa Bumi di Sumatera Selatan dengan Menggunakan Hypo71

Relokasi Hiposenter Gempa Bumi di Sumatera Selatan dengan Menggunakan Hypo71 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) 2337-3520 (2301-928X Print) B-82 Relokasi Hiposenter Gempa Bumi di Sumatera Selatan dengan Menggunakan Hypo71 Yungi Yudiar Rahman, Bagus Jaya Santosa Jurusan

Lebih terperinci

Bab I Pendahuluan. I.1 Latar Belakang

Bab I Pendahuluan. I.1 Latar Belakang Bab I Pendahuluan I.1 Latar Belakang Selama peradaban manusia, gempa bumi telah dikenal sebagai fenomena alam yang menimbulkan efek bencana yang terbesar, baik secara moril maupun materiil. Suatu gempa

Lebih terperinci

TOMOGRAFI SEISMIK 3-D PADA LAPANGAN PANAS BUMI X

TOMOGRAFI SEISMIK 3-D PADA LAPANGAN PANAS BUMI X TOMOGRAFI SEISMIK 3-D PADA LAPANGAN PANAS BUMI X Akino Iskandar,Lantu, Sabrianto Aswad,Andri Dian Nugrah Program Studi Sarjana Geofisika Universitas Hasanuddin, iskandar.akino@gmail.com SARI BACAAN Perubahan

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA A ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI DELISERDANG SUMATRA UTARA Oleh Fajar Budi Utomo*, Trisnawati*, Nur Hidayati Oktavia*, Ariska Rudyanto*,

Lebih terperinci

ANALISIS PERCEPATAN TANAH MAKSIMUM DENGAN MENGGUNAKAN RUMUSAN ESTEVA DAN DONOVAN (Studi Kasus Pada Semenanjung Utara Pulau Sulawesi)

ANALISIS PERCEPATAN TANAH MAKSIMUM DENGAN MENGGUNAKAN RUMUSAN ESTEVA DAN DONOVAN (Studi Kasus Pada Semenanjung Utara Pulau Sulawesi) ANALISIS PERCEPATAN TANAH MAKSIMUM DENGAN MENGGUNAKAN RUMUSAN ESTEVA DAN DONOVAN (Studi Kasus Pada Semenanjung Utara Pulau Sulawesi) Cloudya Gabriella Kapojos 1), Gerald Tamuntuan 1), Guntur Pasau 1) 1)

Lebih terperinci

Kelompok VI Karakteristik Lempeng Tektonik ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N

Kelompok VI Karakteristik Lempeng Tektonik ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N Kelompok VI Karakteristik Lempeng Tektonik Created By: ASRAWAN TENRIANGKA ATRIA HAPSARI DALIL MALIK. M HANDIKA ARIF. P M. ARIF AROFAH WANDA DIASTI. N 1. JENIS LEMPENG Berdasarkan jenis bahan batuan pembentuknya,

Lebih terperinci

DAFTAR ISI. BAB III. DASAR TEORI 3.1. Seismisitas Gelombang Seismik Gelombang Badan... 16

DAFTAR ISI. BAB III. DASAR TEORI 3.1. Seismisitas Gelombang Seismik Gelombang Badan... 16 DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii PERNYATAAN KEASLIAN KARYA ILMIAH... iii KATA PENGANTAR... iv ABSTRAK... v ABSTRACT... vi DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xv DAFTAR

Lebih terperinci

Relokasi Gempabumi di Wilayah Laut Maluku Menggunakan Metode Double Difference (Hypodd)

Relokasi Gempabumi di Wilayah Laut Maluku Menggunakan Metode Double Difference (Hypodd) Relokasi Gempabumi di Wilayah Laut Maluku Menggunakan Metode Double Difference (Hypodd) Tio Azhar Prakoso Setiadi 1, Iman Suardi 1 1 Sekolah Tinggi Meteorologi Klimatologi dan Geofisika (STMKG), Tangerang

Lebih terperinci

LOKASI POTENSI SUMBER TSUNAMI DI SUMATERA BARAT

LOKASI POTENSI SUMBER TSUNAMI DI SUMATERA BARAT LOKASI POTENSI SUMBER TSUNAMI DI SUMATERA BARAT Badrul Mustafa Jurusan Teknik Sipil, Universitas Andalas Email: rulmustafa@yahoo.com ABSTRAK Akibat tumbukan antara lempeng Indo-Australia dan Eurasia dimana

Lebih terperinci

BAB III METODA PENELITIAN

BAB III METODA PENELITIAN 44 BAB III METODA PENELITIAN 3.1. Metoda Pembacaan Rekaman Gelombang gempa Metode geofisika yang digunakan adalah metode pembacaan rekaman gelombang gempa. Metode ini merupakaan pembacaan dari alat yang

Lebih terperinci

ANALISIS PERUBAHAN POLA DEKLINASI PADA GEMPA BUMI SIGNIFIKAN (M 7.0) WILAYAH SUMATERA

ANALISIS PERUBAHAN POLA DEKLINASI PADA GEMPA BUMI SIGNIFIKAN (M 7.0) WILAYAH SUMATERA DOI: doi.org/10.21009/03.snf2017.02.epa.16 ANALISIS PERUBAHAN POLA DEKLINASI PADA GEMPA BUMI SIGNIFIKAN (M 7.0) WILAYAH SUMATERA Indah Fajerianti 1,a), Sigit Eko Kurniawan 1,b) 1 Sekolah Tinggi Meteorologi

Lebih terperinci

ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR

ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR ANALISIS TERHADAP INTENSITAS DAN PERCEPATAN TANAH MAKSIMUM GEMPA SUMBAR Daz Edwiza Laboratorium Geofisika Jurusan Teknik Sipil Unand ABSTRAK Sehubungan semakin meningkatnya frekuensi gempa bebrapa tahun

Lebih terperinci

BAB I PENDAHULUAN. Indonesia yang terletak di pertemuan tiga lempeng aktif (triple junction) yang saling

BAB I PENDAHULUAN. Indonesia yang terletak di pertemuan tiga lempeng aktif (triple junction) yang saling BAB I PENDAHULUAN I.1. Latar Belakang Indonesia memiliki tatanan tektonik yang kompleks, hal ini karena wilayah Indonesia yang terletak di pertemuan tiga lempeng aktif (triple junction) yang saling bertumbukan,

Lebih terperinci

BAB I PENDAHULUAN. lempeng Indo-Australia dan lempeng Pasifik, serta lempeng mikro yakni lempeng

BAB I PENDAHULUAN. lempeng Indo-Australia dan lempeng Pasifik, serta lempeng mikro yakni lempeng 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada kerangka tektonik yang didominasi oleh interaksi dari tiga lempeng utama (kerak samudera dan kerak benua) yaitu lempeng Eurasia, lempeng Indo-Australia

Lebih terperinci

Fakultas Ilmu dan Teknologi Kebumian

Fakultas Ilmu dan Teknologi Kebumian Fakultas Ilmu dan Teknologi Kebumian Program Studi Meteorologi PENERBITAN ONLINE AWAL Paper ini adalah PDF yang diserahkan oleh penulis kepada Program Studi Meteologi sebagai salah satu syarat kelulusan

Lebih terperinci

BAB I PENDAHULUAN. menyertai kehidupan manusia. Dalam kaitannya dengan vulkanisme, Kashara

BAB I PENDAHULUAN. menyertai kehidupan manusia. Dalam kaitannya dengan vulkanisme, Kashara BAB I PENDAHULUAN 1.1 Latar Belakang Aktivitas vulkanisme dapat mengakibatkan bentuk bencana alam yang menyertai kehidupan manusia. Dalam kaitannya dengan vulkanisme, Kashara (Hariyanto, 1999:14) mengemukakan

Lebih terperinci

BAB I PENDAHULUAN. lempeng besar (Eurasia, Hindia-Australia, dan Pasifik) menjadikannya memiliki

BAB I PENDAHULUAN. lempeng besar (Eurasia, Hindia-Australia, dan Pasifik) menjadikannya memiliki BAB I PENDAHULUAN 1.1. Latar Belakang Posisi Kepulauan Indonesia yang terletak pada pertemuan antara tiga lempeng besar (Eurasia, Hindia-Australia, dan Pasifik) menjadikannya memiliki tatanan tektonik

Lebih terperinci

BAB I PENDAHULUAN. vulkanik aktif yang berasal dari aktivitas tektonik di dalam bumi.indonesia

BAB I PENDAHULUAN. vulkanik aktif yang berasal dari aktivitas tektonik di dalam bumi.indonesia 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi panas bumi telah lama menjadi sumber kekuatan di daerah vulkanik aktif yang berasal dari aktivitas tektonik di dalam bumi.indonesia merupakan negara dengan

Lebih terperinci

Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014)

Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014) Jurnal Fisika Unand Vol. 5, No. 1, Januari 2016 ISSN 2302-8491 Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014) Marlisa 1,*, Dwi Pujiastuti

Lebih terperinci

RESPONS SPEKTRA GEMPA BUMI DI BATUAN DASAR KOTA BITUNG SULAWESI UTARA PADA PERIODE ULANG 2500 TAHUN

RESPONS SPEKTRA GEMPA BUMI DI BATUAN DASAR KOTA BITUNG SULAWESI UTARA PADA PERIODE ULANG 2500 TAHUN RESPONS SPEKTRA GEMPA BUMI DI BATUAN DASAR KOTA BITUNG SULAWESI UTARA PADA PERIODE ULANG 2500 TAHUN Guntur Pasau 1) 1) Program Studi Fisika FMIPA Universitas Sam Ratulangi Manado, 95115 e-mail: pasaujunior@gmail.com

Lebih terperinci

RELOKASI SUMBER GEMPA DI DAERAH SUMATERA BAGIAN UTARA MENGGUNAKAN HASIL INVERSI SIMULTAN RELOKASI DAN KECEPATAN GELOMBANG P TIGA DIMENSI

RELOKASI SUMBER GEMPA DI DAERAH SUMATERA BAGIAN UTARA MENGGUNAKAN HASIL INVERSI SIMULTAN RELOKASI DAN KECEPATAN GELOMBANG P TIGA DIMENSI RELOKASI SUMBER GEMPA DI DAERAH SUMATERA BAGIAN UTARA MENGGUNAKAN HASIL INVERSI SIMULTAN RELOKASI DAN KECEPATAN GELOMBANG P TIGA DIMENSI RELOCATION OF EARTHQUAKES IN NORTHERN SUMATRA USING THE SIMULTANEOUS

Lebih terperinci

BAB 1 PENDAHULUAN BAB I PENDAHULUAN

BAB 1 PENDAHULUAN BAB I PENDAHULUAN BAB 1 PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan Negara kepulauan yang wilayahnya membentang diantara benua Asia dan Australia serta diantara Samudera Pasifik dan Samudera Hindia.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Triantara Nugraha, 2015

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Triantara Nugraha, 2015 1 BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Indonesia Merupakan negara yang terletak di pertemuan tiga lempeng dunia (Ring Of Fire) yaitu lempeng Eurasia, lempeng Indo-Australia dan lempeng Pasifik

Lebih terperinci

ANALISIS PERIODE ULANG DAN AKTIVITAS KEGEMPAAN PADA DAERAH SUMATERA BARAT DAN SEKITARNYA

ANALISIS PERIODE ULANG DAN AKTIVITAS KEGEMPAAN PADA DAERAH SUMATERA BARAT DAN SEKITARNYA ANALISIS PERIODE ULANG DAN AKTIVITAS KEGEMPAAN PADA DAERAH SUMATERA BARAT DAN SEKITARNYA Arif Budiman 1, Riva Nandia 1, dan Moh. Taufik Gunawan 2 1 Laboratorium Fisika Bumi Jurusan Fisika Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dinamika bentuk dan struktur bumi dijabarkan dalam berbagai teori oleh para ilmuwan, salah satu teori yang berkembang yaitu teori tektonik lempeng. Teori ini

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Peta Tektonik Indonesia (Bock, dkk., 2003)

BAB I PENDAHULUAN. Gambar 1.1 Peta Tektonik Indonesia (Bock, dkk., 2003) 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada tiga pertemuan lempeng besar dunia yaitu Lempeng Indo-Australia di bagian selatan, Lempeng Pasifik di bagian timur, dan Lempeng Eurasia di

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia dibentuk oleh tiga lempeng utama dunia, yakni Lempeng Pasifik, Lempeng Indo-Australia, serta Lempeng Eurasia. Konvergensi antara ketiga lempeng ini membentuk

Lebih terperinci

Analisis Bahaya Kegempaan di Wilayah Malang Menggunakan Pendekatan Probabilistik

Analisis Bahaya Kegempaan di Wilayah Malang Menggunakan Pendekatan Probabilistik B0 Analisis Bahaya Kegempaan di Wilayah Malang Menggunakan Pendekatan Probabilistik Pambayun Purbandini 1, Bagus Jaya Santosa 1, dan Bambang Sunardi 1 Departemen Fisika, Fakultas MIPA, Institut Teknologi

Lebih terperinci

BAB I PENDAHULUAN. lempeng besar, yaitu Lempeng Eurasia, Lempeng Indo-Australia dan Lempeng

BAB I PENDAHULUAN. lempeng besar, yaitu Lempeng Eurasia, Lempeng Indo-Australia dan Lempeng BAB I PENDAHULUAN I.1. Latar Belakang Sulawesi dan kepulauan disekitarnya merupakan zona pertemuan antara tiga lempeng besar, yaitu Lempeng Eurasia, Lempeng Indo-Australia dan Lempeng Samudra Pasifik (Surono,

Lebih terperinci

Gambar 1.1 Kondisi tektonik Indonesia dengan panah menunjukan arah pergerakan lempeng (Sumber:

Gambar 1.1 Kondisi tektonik Indonesia dengan panah menunjukan arah pergerakan lempeng (Sumber: BAB I PENDAHULUAN 1.1 Latar Belakang Fenomena non linear merupakan suatu fenomena umum yang terjadi di alam. Sebagai contoh fenomena non linear yang sering dijumpai di alam adalah turbulensi, gelombang

Lebih terperinci

Analisis Daerah Dugaan Seismic Gap di Sulawesi Utara dan sekitarnya

Analisis Daerah Dugaan Seismic Gap di Sulawesi Utara dan sekitarnya JURNAL MIPA UNSRAT ONLINE 3 (1) 53-57 dapat diakses melalui http://ejournal.unsrat.ac.id/index.php/jmuo Analisis Daerah Dugaan Seismic Gap di Sulawesi Utara dan sekitarnya Sandy Nur Eko Wibowo a,b*, As

Lebih terperinci

ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU

ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU ANALISIS NILAI PEAK GROUND ACCELERATION DAN INDEKS KERENTANAN SEISMIK BERDASARKAN DATA MIKROSEISMIK PADA DAERAH RAWAN GEMPABUMI DI KOTA BENGKULU Yeza Febriani, Ika Daruwati, Rindi Genesa Hatika Program

Lebih terperinci