BAB 1. DASAR MEKANIKA FLUIDA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 1. DASAR MEKANIKA FLUIDA"

Transkripsi

1 BAB 1. DASAR MEKANIKA FLUIDA 1.1 Properti Fluida Definisi dari fluida adalah substansi yang mengalir karena antar partikel satu dengan lainnya bebas. Secara umum fluida dibagi menjadi fluida compresible (mampu mampat) dan incompresible (tak mampu mampat). Karakteristik fluida bisa dijelaskan dengan properti fluida. Adapun properti fluida yaitu temperatur, tekanan, masa, volume spesifik, dan kerapatan masa. 1.. Massa Jenis Massa jenis suatu fluida adalah massa per volume. Pada volume fluida yang tetap, massa jenis fluida tetap tidak berubah. Perumusannya adalah sebagai berikut : m kg/m 3 V Massa jenis fluida bervariasi tergantung jenis fluidanya. Pada kondisi atmosfer, masa jenis air adalah 1000 kg/m 3, massa jenis udara 1. kg/m 3 dan mercuri kg/m 4. Untuk beberapa fluida massa jenisnya tergantung pada temperatur dan tekanan khususnya untuk fluida gas, perubahan keduanya akan sangat mempengari massa jenis gas. Untuk fluida cairan pengaruh keduanya adalah kecil. Jika massa jenis fluida tidak terpengaruh oleh perubahan temperatur tekanan dinamakan fluida incompressible atau fluida tak mampu mampat. Propertis fluida yang lain yang berhubungan langsung dengan massa jenis adalah volume jenis, berat jenis, dan spesific gravity. Volume jenis adalah kebalikan dari massa jenis yaitu volume fluida dibagi dengan massanya. Untuk berat jenis adalah massa jenis fluida dikalikan dengan percepatan gravitasi atau berat fluida per satuan volume dirumuskan sebagi berikut : g (kg/m 3 )(m/s ). Adapun untuk spesific gravity adalah perbandingan antara massa jenis fluida dengan massa jenis air pada kondisi standar. Pada kondisi standar( 4 0 C, 1atm) massa jenis air adalah 1000 (kg/m 3 ). Perumasan untuk menghitung spessific grafity adalah sebagai berikut S H O. 3

2 1.4. Tekanan Jika permukaan suatu zat (padat, cair dan gas) menerima gaya-gaya luar maka bagian permukaan zat yang menerima gaya tegak lurus akan mengalami tekanan. Bila gaya yang tegak lurus terhadap permukaan dibagi dengan luasan permukaan A disebut dengan tekanan, perumusannya sebagai berikut : F p [ kg/m ; lb/ft ] A Dalam termodinamika tekanan secara umum dinyatakan dalam harga absolutnya. Tekanan absolut tergantung pada tekanan pengukuran sistem, bisa dijelaskan sebagai berikut : 1. bila tekanan pengukuran sistem diatas tekanan atmosfer, maka : tekanan absolut (p abs )= tekanan pengukuran (p gauge ) ditambah tekanan atmosfer (p atm ) p abs = p gauge + p atm. bila tekanan pengukuran dibawah tekanan atmosfer, maka : tekanan absolut (p abs )= tekanan atmosfer (p atm ) dikurangi tekanan pengukuran (p gauge ) p abs = p atm - p gauge 1 standar atmosfer = 1,0134 x 10 6 dyne/cm 3 = 14,6959 lb/in = 1033 kg/m = 1,01x10 5 N/m tekanan pengukuran p gauge tekanan atmosfer (patm ) tekanan vakum p vakum tekanan pengukuran negatif dibawah p atm tekanan mutlak p abs = p atm +p gauge tekanan p abs = 0 tekanan mutlak p abs = p atm -p gauge Gambar 1.1 Pengukuran tekanan 4

3 1.4.1 Pengukuran tekanan Cara pengukuran tekanan berdasarkan pada [1] tinggi kolom, [] Gambar 1. Manometer Hubungan Tekanan dengan ketinggian atau kedalaman h =10 m p = 1 atm h = 15 m p = 1,5 atm h = 30 m p = 3 atm Gambar 1.3 Hubungan tekanan dengan ketinggian 5

4 Apabila sutu benda berada pada kedalam tertentu pada sebuah zat maka untuk menghitung besarnya tekanan dapat menggunakan rumusan sebagai berikut p F A mg Vg p dengan m V, untuk V = AH A A maka perumusan menjadi p Vg A AHg A dari perumusan tersebut dapat diketahui bahwa tekanan suatu zat bergantung dari ketinggian atau kedalaman H Dari gambar diatas dapat dilihat bahwa semakin dalam posisi lubang, tekanan air yang menyebur semakin besar. Perubahan tekanan dengan perubahan ketiggihan tidak terlalu mencolok apabila zat mempunyai massa jenis kecil seperti udara atau gas Kemampumampatan Kemampumampatan ( compressibillity ) k suatu zat adalah pengaruh tekanan terhadap volume suatu zat pada temperatur konstan. Kemampumampatan adalah sama dengan modulus elastisity E v dengan nilai gh berkebalikan. Perumusannya adalah sebagai berikut : k 1 E v 1 v dv dp T 1 d dp T Tanda negatif pada persamaan diatas menunjukan bahwa apabila terjadi kenaikan tekanan, volume zat akan berkurang. Secara sederhana fluida berdasarkan dari kompresibilitasnya dibagi menjadi dua yaitu fluida gas dan fluida cair. Untuk fluida gas yang terdiri dari partikelpartikel yang bergerak bebas dan betuknya mengikuti wadahnya maka perubahan tekanan akan banyak menimbulkan perubahan volume. Perubahan properti gas sangat tergantung dari perubahan dari kondisi temperatur. Untuk fluida gas ideal pada temperatur konstan ( isotermal) persamaan diatas bisa diubah menjadi k 1 d dp T 1 d d RT T k 1 E Jadi pada kondisi isotermal, kemampumampatan fluida gas (ideal) berkebalian dengan nilai tekanannya. Sebagai contoh, pada permukaan air laut udara v 1 RT 1 p 6

5 mempunyai nilai k 0000 kalinya nilai k dari air Viskositas Viskositas atau kekentalan ( adalah sifat fluida yang penting yang menunjukan kemampuan fluida untuk mengalir. Fluida dengan viskositas besar (kental) lebih susah mengalir dibandingkan dengan fluida dengan viskositas kecil (encer). Viskositas suatu fluida sangat bergantung pada kondisi temperatur. Pada temperatur tinggi fluida mempunyai viskositas yang besar, hal ini berkebalikan dengan fluida cair, dengan kenaikan temperatur viskositas zat cair semakin kecil (encer). Gambar 1.4 Gerak fluida pada fluida yang diam Apabila suatu fluida ( gambar) di beri tekanan yang akan menggeser bagian fluida setebal dy dengan kecepatan V menjadi V + dv, maka tegangan gesernya akan sebanding dengan perbandingan perubahan kecepatan dv dengan tebal bagian fluida yang begeser dikalikan dengan suatu konstanta. Kostanta tersebut yang dinamakan dengan viskositas (dinamik). Adapun besar gaya yang diperlukan untuk menggeser bagian fluida adalah F A dv A dy F A dv dy Jadi besar gaya persatuan luas untuk mengeser fluida sebanding dengan konstanta viskositas dikalikan dengan gradien kecepatannya. Gaya akan semakin besar apabila kostanta viskositas besar. Jadi bisa disimpulkan kostanta tersebut adalah suatu tahanan fluida untuk mengalir (bergeser kontinyu). Semakin besar tahanan semakin susah untuk mengalir, sebaliknya tahanan kecil fluida mudah mengalir. Apabila nilai viskositas suatu fluida dibagi dengan nilai massa jenisnya akan ketemu besaran yang sering disebut dengan viskositas kinematik. Adapun perumusan viskositas kinematik adalah sebagai berikut : 7

6 1.6. Aliran Fluida Dalam Pipa Dan Saluran Persamaan dasar Bernoulli Fluida cair ( takmampumampat) yang mengalir melalui suatu penampang sebuah pipa dan saluran apabila diabaikan faktor viskositi ( fluida non viskositas) akan memenui hukum yang dirumuskan oleh Bernoulli. Perumusan tersebut dapat dijabarkan sebagai berikut :Persamaan Energi pada aliran fluida melalui sebuah penampang pipa silinder elemen fluida energi masuk (1) (1/mv + mgz + pv) 1 Energi berubah Energi ditambahkan - Energi hilang - Energi terektrasi energi keluar () (1/mv + mgz + pv) acuan dasar z = 0 Gambar 1.5 Perubahan energi pada saluran Energi masuk + Energi berubah = Energi keluar Energi berubah = Energi ditambahkan - Energi hilang -Energi terektrasi Apabila Energi terekstrasi = 0 Maka persamaan energi bisa disederhanakan menjadi Energi masuk + Energi berubah = Energi keluar Energi masuk + Energi hilang = Energi keluar Energi masuk = (EK + EP + EA) 1 Energi masuk = mv mgz pv 1 Energi keluar = (EK + EP + EA) Energi keluar = mv mgz pv 1 Energi hilang = E los Energi ditambahkan = E ad Persamaan bernoulli djabarkan sebagai berikut : 8

7 mv mgz pv 1 + E ad - E los = mv mgz pv mv mgz pv 1 + E ad = mv mgz pv + E los Apabila penampang saluran pipa dianggap permukaan sempurna sehingga tidak ada gesekan antara aliran fluida cair dengan permukaan pipa dan tidak ada energi yang ditambahkan maka persamaan Bernoulli dapat disederhanakan menjadi Energi masuk = Energi keluar EP EK PV 1 EP EK PV mv mgz pv 1 = mv mgz pv Z Z dibagi dengan m (Nm) Gambar 1.6 Profil saluran Bernouli gz v pv v pv gz m m 1 gz v p 1 gz dibagi dengan g menjadi bentuk persamaan "head" (m) v p V m 1 v p v p Z Z dengan g g g g 1 dikalikan dengan gz menjadi bentuk tekanan N/m V m 1 v gz p 1 v gz p Energi "Head" Pada persamaan bernoulli diatas sering dalam bentuk persamaan energi "Head".. Head adalah bentuk energi yang dinyatakan dalam satuan panjang "m" (SI). Head pada persamaan diatas terdiri dari head ketinggian "Z", head 9

8 kecepatan "v /g", dan head tekanan " p ". Head ketinggian menyatakan energi g potensial yang dibutuhkan untuk mengangkat air setinggi "m" kolom air. Head kecepatan menyatakan energi kinetik yang dibutuhkan untuk mengalirkan air setinggi "m" kolom air. Yang terakhir, head tekanan adalah energi aliran dari "m" kolom air yang mempunyai berat sama dengan tekanan dari kolom "m" air tersebut Modifikasi Persamaan dasar Bernoulli Apabila penampang pipa diatas bukan permukaan sempurna sehingga terjadi gesekan antara aliran fluida dengan permukaan pipa maka persamaan energi menjadi mv mgz pv 1 = mv mgz pv + E los Dalam bentuk head v p v p Z Z + H los g g g g 1 H los = kerugian aliran karena gesekan (friction) Apabila pada penampang saluran ditambahkan energi seperti dapat dilihat pada ambar. H pump Gambar 1.7 Perubahan energi pada pompa Pompa akan memberikan energi tambahan pada aliran fluida sebesar Z ad, sehingga persamaan menjadi : 10

9 v p v p Z H ad Z + H los g g g g 1 v p v p Z H pompa Z + H los H pompa = H ad g g g g Persamaan kontinuitas 1 Fluida yang mengalir melalui suatu penampang akan selalu memenui hukum kontinuitas yaitu laju massa fluida yang masuk m masuk akan selalu sama dengan laju massa fluida yang keluar berikut : m keluar, persamaan kontinuitasa adalah sebagai m masuk = mkeluar AV 1 AV mmasuk m keluar Gambar 1.8 Penampang saluran silinder untuk fluida cair (takmampumampat) 1 AV 1 AV Angka Reynolds Kondisi aliran fluida akan sangat tergantung dari kecepatan aliran fluida, semakin tinggi kecepatan akan mempengarui pola aliran, kondisi aliran akan berubah dari laminar menjadi turbulen. Besaran yang bisa menghubungkan antara kecepatan aliran (v), kondisi fluida (, ), dan kondisi penampang diameter pipa (D) adalah angka Reynold (Re). Perumusannya adalah sebagai berikut : Re vd Angka Reynold akan mewakili kondisi aliran, untuk angka Reynold : Re < 000 Aliran Laminar 000 < Re < 3500 Aliran Transisi Re>3500 Aliran Turbulen 11

10 BAB POMPA Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Zat cair tersebut contonya adalah air, oli atau minyak pelumas, atau fluida lainnya yang tak mampu mampat. Industri-industri banyak menggunakan pompa sebagai salah satu peralatan bantu yang penting untuk proses produksi. Sebagai contoh pada pembangkit listrik tenaga uap, pompa digunakan untuk menyuplai air umpan ke boiler atau membantu sirkulasi air yang akan diuapkan diboiler. tandon air pipa bagian tekan sumber air pompa motor listrik pipa bagian hisap Gambar.1 Instalasi pompa Pada industri, pompa banyak digunakan untuk mensirkulasi air atau minyak pelumas atau pendingin mesin-mesin industri. Pompa juga dipakai pada motor bakar yaitu sebagai pompa pelumas, bensin atau air pendingin. Jadi pompa sangat penting untuk kehidupan manusia secara langsung yang dipakai dirumah tangga atau tidak lansung seperti pada pemakaian pompa di industri. Pada pompa akan terjadi perubahan dari dari energi mekanik menjadi energi fluida. Pada mesin-mesin hidrolik termasuk pompa, energi fluida ini disebut head atau energi persatuan berat zat cair. Ada tiga bentuk head yang mengalami perubahan yaitu head tekan, kecepatan dan potensial. 1

11 .1. Prinsip Kerja Pompa Pada pompa terdapat sudu-sudu impeler [gambar.3] yang berfungsi mengangkat zat cair dari tempat yang lebih rendah ketempat yang lebih tinggi [gambar.]. Impeler dipasang pada poros pompa yang berhubungan dengan motor pengerak, biasanya motor listrik atau motor bakar rumah pompa poros aliran buang impeler aliran masuk Gambar. Proses pemompaan Poros pompa akan berputar apabila pengeraknya berputar. Karena poros pompa berputar impeler dengan sudu-sudu impeler berputar zat cair yang ada didalamnya akan ikut berputar sehingga tekanan dan kecepatanya naik dan terlempar dari tengah pompa ke saluran yang berbentuk volut atau sepiral dan disalurkan keluar melalui nosel. Jadi fungsi impeler pompa adalah merubah energi mekanik yaitu putaran impeler menjadi energi fluida (zat cair). Jadi, zat cair yang masuk pompa akan mengalami pertambahan energi Pertambahan energi pada zat cair mengakibatkan pertambahan head tekan, head kecepatan dan head potensial. Jumlah dari ketiga bentuk head tersebut dinamakan head total. Head total pompa juga bisa didefinisikan sebagai selisih head total (energi persatuan berat ) pada sisi isap pompa dengan sisi keluar pompa. Pada gambar.3 aliran air didalam pompa akan ikut berputar karena gaya sentrifugal dari impeler yang berputar. cut water Gambar.3 Penampang inpeller impeler putaran impeler Gambar.4 Perubahan energi pompa 13

12 .. Klasifikasi Pompa Menurut bentuk impelernyan pompa sentrifugal diklasikasikan menjadi tiga yaitu impeler aliran radial, impeler aliran axial dan impeler aliran radial dan axial [gambar.5]. Pompa radial mempunyai kontruksi yang mengakibatkan zat cair keluar dari impeler akan tegak lurus dengan poros pompa Kebalikanya untuk pompa axial arah alirannya akan sejajar dengan poros pompa, sedangkan pompa aliran campuran arah aliran berbetuk kerucut mengikuti bentuk impelernya. Menurut bentuk rumah pompa, pompa dengan rumah berbentuk volut disebut dengan pompa volut, sedangkan rumah dengan difuser disebut pompa difuser [gambar.7]. Pada pompa difuser, dengan pemasangan difuser pada sekeliling luar impelernya akan memperbaiki efesiensi pompa dan menambah kokoh rumah pompa. Dengan alasan itu, pompa jenis ini banyak dipakai pada pompa besar dengan head tinggi. Berbeda dengan pompa jenis tersebut, pompa aliran campuran sering tidak menggunakan difuser, tetapi rumah volut sehingga zat cair lebih mudah mengalir dan tidak tersumbat, pompa jenis ini banyak dipakai pada pengolahan limbah Gambar.5 Klasifikasi pompa berdasar bentuk impeller Gambar.6 Kalsifiaksi pompa berdasar rumah pompa 14

13 Menurut jumlah aliran yang masuk, pompa sentrifugal diklasifikasikan menjadi pompa satu aliran masuk dan dua aliran masuk [gambar.7]. Pompa isapan tunggal banyak dipakai karena kontruksinya sederhana. Permasalah pada pompa ini yaitu gaya aksial yang timbul dari sisi isap dapat diatasi dengan menambah ruang pengimbang, sehingga tidak perlu lagi menggunakan bantalan aksial yang besar. Untuk pompa dua aliran masuk banyak dipakai pada pompa berukuran besar atau sedang. Kontruksi pompa ini terdiri dua impeler saling membelakangi dan zat cair masuk dari kedua sisi tersebut, dengan kontruksi tersebut permasalahan gaya aksial tidak muncul karena saling mengimbangi. Debit zat cair keluar dua kali dari debit zat cair yang masuk lewat dua sisi impeler. Pompa ini juga bisa beropersi pada putaran yang tinggi. Untuk aliran masuk yang lebih dari dua prinsipnya sama dengan yag dua aliran masuk. dua aliran masuk poros pompa satu aliran masuk 1 Gambar.7 Klasifikasi pompa berdasarkan jumlah aliran masuk Jika pompa hanya mempunyai satu buah impeler disebut pompa satu tingkat [gambar.8], yang lainnya dua tingkat, tiga dan seterusnya dinamakan pompa banyak tingkat [gambar.9]. Pompa satu tingkat hanya mempunyai satu impeler dengan head yang relatif rendah. Untuk yang banyak tingkat mempunyai impeler sejumlah tingkatnya. Head total adalah jumlah dari setiap tingkat sehingga untuk pompa ini mempunyai head yang realtif tinggi. Kontruksi impeler biasanya menghadap satu arah tetapi untuk menghindari gaya aksial yang timbul dibuat saling membelakangi. Pada rumah pompa banyak tingkat, bisanya dipasang diffuser, tetapi ada juga yang menggunakan volut. 15

14 Pemasangan diffuser pada rumah pompa banyak tingkat lebih menguntungkan daripada dengan rumah volut, karena aliran dari satu tingkat ketingkat berikutnya lebih mudah dilakukan. bagian tekan poros pompa bantalan poros impeler bagian isap rumah pompa Gambar.8 Pompa satu tingkat bagian isap bagian tekan bantalan impeler rumah pompa poros pompa Gambar.9 Pompa banyak tingkat ( multistage) Berdasar dari posisi poros, pompa dibedakan menjadi dua yaitu pompa horizontal [gambar.10] dan vertikal [gambar.11]. Pompa poros horizontal mempunyai poros dengan posisi mendatar. sedangkan pompa poros tegak mempunyai poros dengan posisi tegak. Pompa aliran axial dan campuran banyak dibuat dengan poros tegak. Rumah pompa dipasang dengan ditopang pada lantai 16

15 oleh pipa yang menyalurkan zat cair keluar pompa. Posisi poros pompa adalah tegak dan dipasang sepanjang sumbu pipa air keluar dan disambungkan dengan motor penggerak pada lantai. Poros dipegangi dengan beberapa bantalan, sehingga kokoh dan biasanya diselubungi pipa selubung yang berfungsi untuk saluran minyak pelumas. Pompa poros tegak berdasar dari posisi pompanya ada dua macam yaitu pompa sumuran kering dan sumuran basah [gambar.1]. Sumuran kering pompa dipasang di luar tadah hisap gambar, sedangkan sumuran basah sebaliknya. poros mendatar bagian tekan bagian isap Gambar.10 Pompa horizontal bagian tekan tumpuan poros pompa rumah pompa bagian isap Gambar.11 Pompa vertikal dan Pompa sumuran kering dan basah 17

16 BAB 3 KONSTRUKSI POMPA 3.1. Komponen-komponen pompa Komponen-komponen penting dari pompa sentrifugal adalah kompenen yang berputar dan komponen tetap. Komponen berputar terdiri dari poros dan impeler, sedangkan komponen yang tetap adalah rumah pompa (casing), bantalan (bearing), Komponen lainnya dapat dilihat secara lengkap dan nama-nama komponen. [gambar.13] bantalan Gambar 3.1 Kontruksi pompa 18

17 bagian hisap bagian keluar penutup rumah rumah bantalan bantalan bantalan poros impeler rumah volur bagian bergerak bagian tetap impeler sel perapat poros pompa Gambar 3. Kontruksi pompa 19

18 BAB 4 PERFORMASI POMPA 4.1. Kecepatan Spesifik Pada gambar 4.1 memperlihatkan ukuran-ukuran dasar pompa sentrifugal. Zat cair akan masuk melalui sisi isap dengan diamter D 1. Diameter impeler sisi masuk adalah D 1 dan pada sisi keluar adalah D. Ukuran- ukauran tersebut akan menentukan kapasitas pompa dan tinggi tekan pompa. Terutama perbandingan D 1 /D yaitu perbandingan diameter impeler sisi masuk dan keluar pompa. Semakin besar head yang kita inginkan, maka D /D 1 harus dibuat besar, sehingga bisa diperoleh suatu kerja gaya sentrifugal sesuai yang yang diinginkan. impeler poros vane Gambar 4.1 Ukuran-ukuran dasar pompa Dalam merancang pompa besaran yang paling penting untuk ditentukan adalah kecepatan sepesifik. Dengan mengetahui kecepatan spesifik parameterparameter pompa yaitu kapasitas pompa, tinggi kenaikan pompa atau head, dan perbandingan diameter impeler dapat ditentukan. Perumusannya adalah n s Q n H Kecepatan spesifik n s adalah kecepatan putar yang sebenarnya n dari pompa pembanding yang mempunyai geometri sudu-sudu impeler sebangun dan dapat menghasilkan tinggi kenaikan H = 1m dan Q = 1 m/dt 4. Dari perumusan 0

19 kecepatan sepesifik diatas dapat disimpulkan bahwa pompa dengan head total yang tinggi dan kapasitas yang kecil cenderung mempunyai harga n s yang kecil, sebaliknya head total rendah dan kapasitas besar mempunyai n s besar Gambar 4. Harga n s dengan bentuk impeler dan jenis pompa Pada gambar 4. menunjukan harga n s dalam hubungannya dengan bentuk impeler yang bersangkutan dan jenis pompa yang sesuai dengan harga n s. Untuk harga n s rendah, impeler berbentuk sentrifugal atau radial dengan pompa sentrifugal isapan tunggal atau ganda. Semakin besar n s, lebar saluran pada impeler akan bertambah besar. Harga n s terus diperbesar sehingga akan diperoleh aliran campur, dimana arah aliran diagonal atau menyudut terhadap sumbu poros. Jika n s dipebesar lagi, maka akan diperoleh arah aliran yaitu axial atau sejajar dengan sumbu poros. Jadi, bentuk-bentuk impeler bisa ditentukan hanya dengan menentukan harga n s. 4.. Kurva Karakteristik Kurva karakteristik menyatakan besarnya head total pompa, daya poros, dan efisiensi pompa terhadap kapasitasnya. Pada gambar 4.3 mewakili nilai n s yang kecil dengan jenis pompa sentrifugal volut, gambar 4.4 nilai n s sedang dengan jenis pompa aliran campur dan gambar 4.5 nilai n s besar dengan pompa aliran axial. Dari gambar-gambar tersebut, menunjukan semakin besar nilai n s, kurva head kapasitas menjadi semakin curam, artinya pada nilai nilai n s besar, harga head mengecil dan kapasitas atau debit menjadi besar. 1

20 Head pada kapasitas 0% semakin besar pada nilai-nilai n s besar. Kurva daya terhadap kapasitas pada kapasitas 0% akan mempunyai harga minimum pada n s kecil, sebaliknya pada ns besar harganya maksimum. Pada kurva efisiensi, kapasitas pada tiga grafik mendekati bentuk busur dan hanya sedikit bergeser dari nilai optimumnya apabila kapasitasnya berubah. kapasitas kapasitas (%) Gambar 4.3 Grafik karakteristik pompa dengan n s kecil dan n s sedang sangat curam kapasitas (%) Gambar 4.4 Grafik karakteristik pompa dengan n s besar

21 4.4. Pemilihan Pompa Penggunaan pompa pada industri, kantor atau rumah tangga harus seefektif mungkin sehingga kebutuhan daya penggerak bisa diminimumkan. Pemilihan pompa yang akan dipasang harus sesuai dengan kebutuhan. Kapasitas atau debit aliran dan head yang diperlukan untuk mengalirkan zat cair yang akan dipompa harus diketahui. Gejala kavitasi selama proses pemompaan juga harus diperhatikan, karena gejala ini akan menurunkan unjuk kerja pompa dan membutuhkan biaya perawatan yang besar. Utuk menghindari kavitasi tersebut, tekanan minumum pada sisi isap pompa yang akan dipasang harus diketahui. Setelah mengetahui tekanan isap minimum kita bisa menentukan putaran pompa. Jadi dalam pemilihan pompa yang akan dipasang harus diperhatikan kebutuhan kapasitas aliran, head total aliran, dan putaran pompa Kapasitas Kapasitas atau debit alian harus ditentukan terlebih dahulu menurut kebutuhan dari pemakai. Jadi harus dianalisa terlebih dulu seberapa besar debit zat cair yang dibutuhkan pemakai. Sebagia contoh pada rumah tangga kebutuhan air dalam sehari relatif lebih kecil dibandingkan kebutuhan air pada perkantoran atau industri Head ( Tinggi Tekan) Pada uraian tentang persamaan Bernoulli yang dimodifikasi untuk aplikasi pada instalasi pompa, terlihat bahwa persamaan Bernoulli dalam bentuk energi "head" terdiri dari empat bagian "head" yaitu head elevasi, head kecepatan, head tekanan, dan head kerugian (gesekan aliran). Persamaan Bernoulli dalam bentuk energi head : Z v g p g 1 H Z v g p g pompa H losses H H v1 v p1 p pompa Z1 Z H losses Z p g g g v g pompa H losses g g 3

22 h statistotal Z p g Z h z = head elevasi, perbedaan tinggi muka air sisi masuk dan ke luar (m). v g p g h p h v = head kecepatan sisi masuk dan ke luar (m) = head tekanan sisi masuk dan ke luar (m) H losses = head kerugian (m) H totalpompa h z h p h v H losses a. Head statis total Head statis adalah penjumlahan dari head elevasi dengan head tekanan. Head statis terdiri dari head statis sisi masuk (head statis hisap) dan sisi ke luar (head statis hisap). Persamaanya adalah sebagai berikut : h statisisap Z p g 1 h statisbuan g Z p g h statistotal Z p g Z 1 p1 g h statistotal = h statisbuang -h statishisap Head statis total H p H p H p1 H p1 Head statis buang Head statis hisap permukaan acuan Gambar.4.5 Head statis total 4

23 tekanan 1 atm Head statis total tekanan 1 atm Head statis buang Head statis hisap Gambar 4.6 Head statis total p 1 = p = 1 atmosfer (tandon terbuka) H p1 H p1 = p g 1 p = 1 atmosfer = 0 Z 1 -Z s = + Z 1 >Z s Z 1 -Z s = - Z 1 <Z s H p1 h Z permukaan acuan Z p g statisisap 1 s statisisap h permukaan acuan hstatisisap Gambar 4.7 Head statis hisap [A] pompa di bawah tandon, [b] pompa di atas tandon ujung terbenam H p ujung mengambang Hp permukaan acuan h Z statisbuang Z s p g permukaan acuan Gambar 4.8 Head statis buang [A] ujung terbenam, [b] ujung mengambang 5

24 permukaan acuan v g v v1 g h k v1 0 v g b. Head Kerugian (Loss) v g hk Gambar 4.9 Head kecepatan Head kerugian yaitu head untuk mengatasi kerugian kerugian yang terdiri dari kerugian gesek aliran di dalam perpipaan, dan head kerugian di dalam belokan-belokan (elbow), percabangan, dan perkatupan (valve) H loss = H gesekan + H sambungan c. Head kerugian gesek di dalam pipa [H gesekan ] Aliran fluida cair yang mengalir di dalam pipa adalah fluida viskos sehingga faktor gesekan fluida dengan dinding pipa tidak dapat diabaikan, untuk menghitung kerugian gesek dapat menggunakan perumusan sebagai berikut : v CR p S q Luas penampang pipa R [Jari jari hidrolik] saluran yang dibasai fluida S h f L [Gradien hidrolik] L v h f [head kerugian gesek dalam pipa] D g dengan v = kecapatan rata-rata aliran di dalam pipa (m/s) C,p,q = Koefesien koefesien = Koefesien kerugian gesek 6

25 g = Percepatan gravitasi m/s L = Panjang pipa (m) D = Diameter dalam pipa (m) Perhitungan kerugian gesek di dalam pipa dipengarui oleh pola aliran, untuk aliran laminar dan turbulen akan menghasilkan nilai koefesian yang berbeda, hal ini karena karakteristik dari aliran tersebut. Adapun perumusan yang dipakai adalah sebagai berikut : A. Aliran Laminar (Re< 300) 64 Re B. Aliran Turbuen Re>4000 0,0 0,0005 D Untuk pipa yang panjang menggunakan rumus sebagai berikut v 0,63 0,54 0,849CR S R Luas penampang pipa saluran yang dibasai fluida [Jari jari hidrolik] S dengan h f L [Gradien hidrolik] 10,66Q C 1,85 D 1,85 h f 4, 85 xl v = kecepatan rata-rata aliran di dalam pipa (m/s) C,p,q = Koefesien koefesien = Koefesien kerugian gesek g = Percepatan gravitasi m/s L = Panjang pipa (m) D = Diameter dalam pipa (m) d. Kerugian head dalam jalur pipa [H sambungan ] Kerugian head jenis ini terjadi karena aliran fluida mengalami gangguan aliran sehingga mengurangi energi alirnya, secara umum rumus kerugian head ini adalah : v h f f g dengan f = koefesien kerugian 7

26 kerugian head ini banyak terjadi pada : A. Pada belokan (elbow) Untuk belokan lengkung koefesien kerugian dihitung dengan rumus f 0,131 1,847 D R 3,5 90 0,5 Untuk belokan patah f 0,946sin,046sin 4 B. Pada perkatupan sepanjang jalur pipa Pemasangan katup pada instalasi pompa adalah untuk pengontrolan kapasitas, tetapi dengan pemasangan katup tersebut akan mengakibatkan kerugian energi aliran karena aliran dicekik. Perumusan untuk menghitung kerugian head karena pemasangan katup adalah sebagai berikut : h v f v v g dengan f v = koefesien kerugian katup Dari uraian di atas secara umum head total pompa dapat dituliskan sebagai berikut H totalpompa h z h p h v H losses H totalpompa h statistotal h v h gesekan h sambunagn f. Head total Head total pompa yang dibutuhkan untuk mengalirkan air dengan kapasitas yang telah ditentukan dapat ditentukan dari kondisi insatalsi pompa yang akan dilayani. Pada gambar diatas head total pompa dapat dirumuskan sebagai berikut H h a h p h l vd g di mana h a = head statis total, perbedaan tinggi muka air sisi keluar dan masuk ; h a Z 1 Z 8

27 h p = perbedaan head tekan yang berada pada permukaan air ; hp hp hp 1 h l = berbagai kerugian head di perpipaan, katup, belokan, sambungan, dan lain-lain. v = head kecepatan keluar g tekanan atmosfer head total HEAD TOTAL tekanan atmosfer tekanan atmosfer head tekan head isap Gambar 4.10 Instalasi pompa dan head total Head Isap Positip Neto NPSH Gejala kavitasi terjadi apabila tekanan statis suatu aliran zat cair turun sampai di bawah tekanan uap jenuhnya. Kavitasi banyak terjadi pada sisi isap pompa, untuk mencegahnya nilai head aliran pada sisi isap harus diatas nilai head pada tekanan uap jenuh zat cair pada temperatur bersangkutan. Pengurangan head yang dimiliki zat cair pada sisi isapnya dengan tekanan zat cair pada tempat tersebut dinamakan Net Positif Suction Head (NPSH) atau nilai head positif neto. Ada dua macam NPSH yaitu NPSH tersedia pada instalasi dan NPSH yang diperlukan pompa. Perumusan dari NPSH tersedia dengan instalasi pompa yang dipasang seperti pada gambar h sv p a p v h s h ls h i 9

28 dimana h sv = NPSH yang tersedia (m) p a = head tekanan atmosfer pada 1 atm (m) p = head tekanan uap jenuh (atm) h s = head isap statis (m) h ls = kerugian head didalam pipa isap (m) Gejala kavitasi terjadi pada titik terdekat setelah sisi masuk sudu impeler di dalam pompa. Di daerah tersebut, tekanan lebih rendah daripada tekanan pada lubang isap pompa. Hal ini disebabkan zat cair mengalir melalui nosel isap sehingga kecepatannya naik. Dengan kenaikan kecepatan, tekanan zat cair menjadi turun. Untuk menghindari kavitasi karena kondisi tersebut, maka tekanan pada lubang masuk pompa dikurangi penurunan tekanan didalam pompa, harus lebih tinggi dari pada tekanan uap jenuh air. Head tekanan yang sama dengan penurunan tekanan disebut NPSH yang diperlukan. Jadi untuk menghindari kavitasi pada pompa harus dipenui persyaratan berikut ; NPSH tersedia > NPSH yang diperlukan Harga NPSH yang diperlukan diperoleh dari pabrik pembuat pompa. Namun, bisa juga menggunakan rumus sebagai beriktu; h sr p a p s h v p v dimana p a = head tekanan atmosfer yang diukur pada ketinggian instalasi pompa (m) p s = head tekanan pengukuran pada sisi isap pompa. h v = head kecepatan (m); v h v g p v = tekanan uap pada temperatur air bersangkutan ( o C) 30

29 Perancangan instalasi pompa harus banyak mempertimbangkan faktor faktor yang bisa mempengarui dari operasi pompa. Perubahan kondisi lingkungan akan mempengarui dari kinerja pompa, khusunya pada perubahan dari NPSH tersedia. Dibawah ini penjelasan masing-masing faktor yang bisa mempengarui dari perubahan tersebut. [1] Pengaruh dari temperatur dari zat cair [] Pengaruh sifat dari zat cair [3] Pengaruh dari tekana dari zat cair yang dihisap Putaran dan jenis pompa Setelah kapasitas, head total pompa, dan NPSH sudah ditentukan, selanjutnya putaran pompa dan jenis pompa dapat ditentukan juga. Pemilihan pompa dengan putarannya harus bisa mengatasi kapasitas dan head yang diperlukan, dan juga pelaksanaan instalasi pompa harus memenui NPSH yang aman bagi timbulnya kavitasi. Pompa berukuran besar atau pompa khusus dapat digunakan untuk memenui kapasitas dan head yang dibutuhkan. Dapat juga digunakan pompapompa berukuran sedang atau kecil produksi pabrik. 1.Putaran pompa Cara menentukan putaran pompa sebagai berikut ; a. Jika menggunakan motor listrik sebagai penggerak pompa, maka putaran harus dipilih dari putaran standar yang ada untuk motor motor tersebut [tabel] b. Dengan memakai putaran yang telah ditentukan, maka kapasitas normal, head normal pompa dan harga n s dapat ditentukaan. c. Jika harga n s sudah diketahui menurut putarannya perlu diperiksa apakah masih dalam daerah yang sesuai dengan jemis pompa yang bersangkutan. d. Putaran pompa juga harus memenui syarat aman dari kavitasi yaitu NPSH tersedia > NPSH dperlukan. 31

30 . Jenis pompa Pemakaian pompa untuk kapasitas dan head total tertentu bisa digunakan beberapa macam jenis pompa. Jenis pompa poros mendatar atau tegak bisa menjadi pilihan dengan pertimbangan-pertimbangan sebagai berikut : 1. Operasi pompa tidak terlalu berat dan sering dibongkar pasang secara ekonomis lebih menguntungkan menggunakan pompa poros mendatar.. Jika pompa harus bekerja head isap statis cukup besar, atau pompa harus bekerja otomatis dan luas ruangan yang tersedia untuk instalasi terbatas, pompa poros tegak menjadi pilihan utama Kerja, Daya dan Efesiensi Pompa Pompa merupakan mesin yang bekerja dengan menggunakan energi luar. Energi dari luar diubah menjadi putaran poros pompa dimana impeler terpasang padanya. Perubahan energi dari satu kebentuk lainnya selalu tidak sempurna dan ketidaksempurnaan perubahan ini yang disebut dengan efisiensi Definisi Ada beberapa definisi yang berhubungan dengan kerja pompa, yaitu ; [1] Efisiensi adalah perbandinga kerja berguna dengan kerja yang dibutuhkan mesin [] Daya rotor ( penggerak motor listrik) adalah jumlah jumlah energi yang masuk motor listrik dikalikan efisiensi motor listrik. Dirumuskan dengan persamaan P rotor DayalistrikX motorlistrik [3] Daya poros pompa atau daya efektif pompa adalah daya dihasilkan dari putaran rotor motor listrik dikalikan dengan efisiensi koplingnya, dihitung dengan persamaan P poros transmisi 1 xp rotor di mana = efisiensi transmisi (tabel ) P rotor = daya rotor (watt) P r = daya poros ( watt) = faktor cadangan 3

31 Tabel 4.1 Faktor cadangan daya dari motor penggerak Motor Penggerak Motor Induksi 0,1-0, Motor Bakar kecil 0,15-0,5 Motor Bakar Besar 0,1-0, Tabel 4. Efisiensi berbagai jenis transmisi Jenis Transmisi Sabuk rata 0,9-0,93 Sabuk V 0,95 Roda gigi 0,9-0,98 Kopling hidrolik 0,95-0,97 [4] Daya air adalah kerja berguna dari pompa persatuan waktuya, kerja berguna ini yang diterima air pada pompa, perumusan dari daya air adalah sebgai berikut. Apabila pompa dengan kapasitas aliran sebesar Q dan head total H maka energi yang diterima air persatuan waktunya adalah P air Q H di mana = berat air persatuan volume N/m 3 Q H P w = kapasitas (m 3 /dtk) = head pompa (m) = daya air (Watt) [5] Efisiensi pompa didefinisikan sebagai perbandingan antar daya air dengan daya pada poros. Perumusan efisiensi adalah sebgai berikut; pompa pompa daya air daya pada poros transmisi P P air poros x Q x Hx 1 x x dayalistrik motorlistik pompa x Q x H xp tranmisi Gambar berikut akan membantu memahami proses perubahan dari kerja pompa. Semua satuan daya dikonversikan ke Horse power sehingga ada istilah istilah sebagi berikut. Untuk daya air bisa disebut Water Horse Power WHP Untuk daya poros bisa disebut Brake Horse Power BHP Untuk daya rotor dalam Hourse power Untuk energi listrik masuk KW rotor 1 33

32 kopling Hp out BHp out WHp motor listrik Gambar 4.11 Pompa dan penggerak mula motor listrik Grafik kerja berguna Grafik hubungan antara head dan kapasitas adalah grafik dasar untuk memahami unjuk kerja dan operas pompa. Dari grafik tersebut menunjukan bahwa dengan kenaikan kapasitas, head pompa akan menurun dan untuk kondisi sebaliknya, kenaikan head pompa, kapasitas menurun. m 3 Gambar 4.1 Grafik kerja berguna Hal yang mempengarui efisiensi pompa Berbagai pengaruh pada pompa yang bisa menurunkan atau menaikan efisiensinya. Khusus untuk impeler pada pompa adalah hal yang paling penting yang mempengarui efisiensi pompa. Hal hal berikut, yang berhubungan dengan impeler pompa ;kecepatan impeler,diameter impeler,jumlah sudu impeler,ketebalan dari impeler, sudut pitch dari sudu impeler Adapun faktor faktor lain yang juga mempengarui dari efisiensi pompa adalah sebagai berikut ini-; m 3 34

33 [1] Kondisi permukaan pada permukaan dalam pompa. [] Kerugian mekanis dari pompa [3] Diameter impeler [4] Kekentalan zat cair. [5] Kondisi zat cair yang dipompa 4.5. Kavitasi Tekanan uap zat cair Tekanan uap dari zat cair adalah tekanan mutlak pada temperatur tertentu dimana pada kondisi tersebut zat cair akan menguap atau berubah fase dari cairan menjadi gas. Tekanan uap zat cair naik demikian juga dengan temperatur zat cair tersebut. Pada tekanan atmosfer temperatur pendidihan air pada suhu C, akan tetapi apabila kondisi tekanan zat cair tersebut diturunkan tekanannya dibawah 1 atm proses pendidihan memerlukan temperatur kurang dari C. Kondisi sebaliknya apabila kondisi tekanan zat cair naik labih dari 1 atm maka akan dibutuhkan temperatur yang lebih tinggi dari C Pada instalasi pompa penurunan tekanan terjadi disepanjang perpipaan terutama bagian pipa isap, didalam pompa sendiri penurunan tekanan pompa terjadi pada bagian nosel isap, karena dibagian tersebut terjadi penyempitan saluran yang mengakibatkan kenaikan kecepatan dan penurunan tekanan Proses kavitasi Dalam pembahasan mesin-mesin hidrolik termasuk pompa ada suatu gejala pada proses aliran zat cair yang cenderung mengurangi unjuk kerja atau efesiensi dari pompa, gejala tersebut adalah kavitasi. Gejala kavitasi terjadi karena menguapnya zat cair yang sedang mengalir didalam pompa atau diluar pompa, karena tekanannya berkurang sampai dibawah tekanan uap jenuhnya. Air pada kondisi biasa akan mendidih dan menguap pada tekanan 1 atm pada suhu C, apabila tekanan berkurang sampai cukup rendah, air pada suhu udara lingkungan yaitu sekitar 0 0 C-33 0 C akan mendidih dan menguap. Penguapan akan menghasilkan gelembung gelembung uap. Tempat-tempat bertekanan rendah atau berkecepatan tinggi mudah terjadi kavitasi, terutama pada sisi isap pompa [gambar 4.9]. Kavitasi akan timbul apabila tekanannya terlalu rendah 35

34 . Gejala kavitasi yang timbul pada pompa biasanya ada suara berisik dan getaran, unjuk kerjanya mejadi turun, kalau dioperasikan dalam jangka waktu lama akan terjadi kerusakan pada permukaan dinding saluran. Permukaan dinding saluran akan berlubang-lubang karena erosi kavitasi sebagai akibat tumbukan gelembung gelembung yang pecah pada dinding secara terus menerus [gambar 4.1] bagian tekan (difuser) tekanan tinggi gelembung-gelebung uap poros pompa nosel isap tekanan rendah A Gambar 4.1 Proses kavitasi air keluar pompa A air masuk pompa gelembung-gelebung uap Gambar 4.13 Proses kavitasi Pencegahan kavitasi Cara menghindari proses kavitasi yang paling tepat adalah dengan memasang instalasi pompa dengan NPSH yang tersedia lebih besar dari pada NPSH yang diperlukan. NPSH yang tersedia bisa diusahakan oleh pemakai pompa sehingga nilainya lebih besar dari NPSH yang diperlukan. Berikut ini halhal yang diperlukan untuk instalasi pompa ; 36

35 1. Ketinggihan letak pompa terhadap permukaan zat cair yang dihisap harus dibuat serendah mungkin agar head isap statis lebih rendah pula. Pipa Isap harus dibuat sependek mungkin. JIka terpaksa dipakai pipa isap yang panjang, sebaiknya diambil pipa yang berdiameter satu nomer lebih besar untuk mengurangi kerugian gesek.. Tidak dibenarkan untuk mengurangi laju aliran dengan menghambat aliran disisi isap. 3. Head total pompa harus ditentukan sedemikian hingga sesuai dengan yang diperlukan pada kondisi operasi yang sesungguhnya. 4. Jika head pompa sangat berfluktuasi, maka pada keadaan head terendah harus diadakan pengamanan terhadap terjadinya kavitasi. Dalam beberapa hal terjadiny akavitasi tidak dapat dihindari dan tidak mempengarui performa pompa, sehingga perlu dipilih bahan impeler yang tahan erosi karena kavitasi. abrasi kerusakan akibat kavitasi pecahan Gambar Gambar 4.14 Kerusakan impeler karena kavitasi 37

36 4.6. Pemilihan Penggerak Mula Penggerak mula yang dipakai untuk meggerakan poros pompa dapat berasal dari dua macam tipe yang umum yaitu motor listrik dan motor bakar. Masing masing mempunyai keuntungan dan kerugian untuk dipakai sebagai penggerak. Di bawah ini dijabarkan keuntungan dan kelebihan dari masing-masing penggerak mula tersebut Motor listrik 1. Keuntungan a. Jika tenaga lisrik ada disekitar instalasi pompa maka penggunaan listrik untuk penggerak pompa menjadi pilihan utama, karena akan lebih ekonomis b. Pengopersiannya lebih mudah dan pemeliharaan atau perawatan murah c. Ringan, tidak menimbulkan getaran dan tidak polusi suara dan udara d. Pengaturan mudah. Kerugian a. Jika aliran listrik padam pompa tidak dapat dipakai samasekali b. JIka pompa tidak diopersikan atau jarang diopersikan, biaya beban tetap harus dibayar c. Jika kondisi instalasi jauh dari sumber listrik, maka biaya penyambungan menjadi kendala utama dan pasti akan mahal motor listrik pompa Gambar 4.15 Pompa tegak dengan penggerak motor listrik 38

37 pompa transmisi motor listrik ponda Gambar 4.16 Pompa dengan penggerak motor listrik 4.6. Motor torak 1.Keuntungan a. Operasi tidak tergantung dari tenaga listrik b. Biaya fasilitas tambahan lebih rendah c. Mudah dipindah pindah sampai daerah terpencil.kerugian a. Mesin lebih mahal b. Biaya perawatan dan pemeliharaan akan mahal c. Pengopersian akan terganggu apabila pasokan bahan -bakar kurang d. Motor torak lebih berat dari pada motor listrik e. Memerlukan air pendingin yang jumlahnya lebih besar f. Getaran dan suara yang ditimbulkan sangat besar motor pompa Gambar 4.17 Pompa portable dengan penggerak motor bakar 39

38 motor bakar pompa Gambar 4.18 Pompa portable dengan penggerak motor bakar Roda gigi transmisi Jika putaran pompa lebih besar atau kecil dari sumber penggeraknya maka untuk memenui kebutuhan putaran yang pas dipasang roda gigi transmisi. Roda gigi transmisi akan mengatur tingkat putaran pada pompa. Untuk pompa-pompa yang kecil bisa dipakai sabuk sebagai media transfer daya dari penggerak ke poros pompa. transmisi sabuk pompa Gambar 4.19 Pompa portable dengan penggerak motor bakar Pompa dengan penggerak turbin angin Turbin angin banyak dipakai sebgai penggerak pompa, khususnya pada daerah dengan kecepatan angin tinggi. Sebagai contoh pada daerah pantai, kecepatan angin bisa diatas rata-rata daerah lain, sehingga bisa diubah menjadi energi yang berguna untuk menggerakan pompa yaitu dengan pemasang turbin angin. Pompa banyak dipakai untuk drainase atau untuk aerasi pada tambaktambak. Tentunya dengan pemilihan penggerak mula yang dipakai adalah turbin angin, permasahan ketiadaan energi listrik untuk motor listrik mejadi selesai. 40

39 Memang ada kendala kalau kecepatan angin pada bulan-bulan tertentu sepanjang tahun tidak besar, yang mengakibatkan kerja pompa tidak maksimal. turbin angin head gesek dengan generator listrik tandon air pipa air kabel head tekan total head pemompaan dinding sumur ketinggian air statis head pemompaan pompa dengan motor listrik kedalaman Gambar 4.0 Instalasi pompa dengan sumber energi angin turbin angin poros penerus daya tandon air head gesek head tekan total head pemompaan head pemompaan ketinggian air statis dinding sumur kedalaman pompa air Gambar 4.1 Pompa dengan penggerak mula turbin angin 41

40 BAB 5 OPERASI POMPA Sebelum pelaksanaan instalasi pompa untuk keperluan tertentu, ada beberapa hal yang penting untuk diperhatikan, seperti pompa harus bisa mengatasi head yang besarnya tergantung dari kapasitas atau laju aliran. Pompa melayani kebutuhan head yang tinggi dengan kapasitas yang rendah, atau pompa harus melayani kebutuhan kapasitas yang besar dengan head yang rendah Kurva Head Kapasitas Pompa dan Sistem Hubungan antara head dan kapasitas pompa dan sistem disajikan dalam grafik kurva head kapasitas seperti terlihat pada gambar 5.1. Dari grafik ini akan terbaca kemampuan dari pompa untuk memenui head pada kapasitas aliran tertentu. Pada operasinya, disamping harus memenui head pompa, pompa juga harus memenui head dari sistem instalasi. Head sistem adalah head yang diperlukan untuk megalirkan zat cair melalui sistem pipa, head ini adalah sama dengan head untuk megatasi kerugian gesek ditambah head statis sistem. Head statis adalah head potensial dari beda ketinggihan permukaan dan beda tekanan statis pada kedua permukaan zat cair ditadah isap dan ditadah keluar. Dari grafik pada gambar 5.1 dapat dilihat terdapat titik perpotongan antara head pompa dengan sistem. Titik perpotong tersebut merupakan titik kerja pompa dan sistem. Pada titik ini menunjukan bahwa head yang dibutuhkan sistem sama dengan head yang bisa diberikan pompa pada kapasitas yang sama. Kurva head laju aliran dari sistem berubah sebagai contoh karena head statis atau tahanan sistem pipa berubah. Apabila hal demikian terjadi maka titik kerja pompa sistem juga berubah. Dapat dilihat pada gambar 5. adalah contoh perubahan dari titik kerja. Head statis berubah dari Hst1 menjadi H st, kurva sisitem berubah dari S 1 ke S dan titik kerja berubah dari K 1 menjadi K. Kapasitasnya pun berubah dari Q 1 menjadi Q. Pada gambar 5.3 menunjukan perubahan dari titik kerja K 1 mejadi K, hal ini terjadi karena adanya perubahan kurva sistem S 1 menjdi S. Dari perubahan itu 4

41 mengakibatkan kapasitas berubah dari Q 1 menjadi Q. Kenaikan tahanan pompa dapat terjadi karena katup pengaturan diperkecil pembukaannya. Dari dua contoh diatas menunjukan bahwa selama operasi pompa apabila terjadi perubahan head statis dan head kerugian gesek, akan menggeser kurva sistem dari pompa. Sehingga titik kerja dari pompa juga akan berubah dan selanjutnya kapasitasnya pun berubah. P (pompa) S (sistem) head tekanan (gesekan) head statis kapasitas Q ( m 3 ) Gambar 5.1 Grafik kurva head kapasitas P (pompa) S (sistem) K S 1 K 1 S H st H st1 kapasitas Q ( m 3 ) Q Q 1 Gambar 5. Kurva head pompa dengan variasi head statis 43

42 P (pompa) S (sistem) K S K 1 S 1 H st kapasitas Q ( m 3 ) Q Q 1 Gambar 5.3 Kurva head pompa dengan kenaikan tahanan 5.. Operasi Pompa pada Kapasitas tidak Normal Operasi instalasi pompa dengan melayani head tertentu akan berjalan normal dan mencapai harga efisiensi maksimum pada kapasitas aliran mencapai harga normal atau pada kapasitas penuh, seperti terlihat pada gambar 5.4 kurang normal kapasitas (%) Gambar 5.4 Grafik head kapasitas dengan variasi operasi pompa Dari grafik diatas, pompa yang beroperasi pada kapasitas tidak penuh atau berlebih, efisiensi operasinya rendah. Kasus khusus yaitu pada kapasitas tidak penuh, daya poros yang diperlukan bertambah besar. Sebaliknya, untuk operasi pompa pada kondisi kapasitas melebihi normal, daya poros bertambah turun, 44

43 tetapi dengan head yang juga menurun. Jadi, ada dua kasus khusus operasi pompa yang tidak efisien, dan ini mengakibatkan kerugian, berikut ini penjelasan lebih lanjut kasus tersebut Operasi dengan kapasitas tidak penuh Pompa yang beroperasi pada kapasitas tidak penuh akan timbul banyak permasalahan, akibatnya efisiensinya menjadi turun. Untuk pompa radial pada kapasitas rendah, gaya radial menjadi besar, pada pompa aksial daya poros semakin besar [gambar 5.5], timbul suara dan getaran. Pada pompa volut dengan kondisi operasi tersebut gaya radial yang ditimbulkan sangat besar dan tidak seimbang, apabila pompa beroperasi lama akan menyebabkan poros pompa patah. Gejala lain yang selalu muncul pada pompa dengan kapasitas aliran yang terlalu kecil atau bahkan mendekati nol, yaitu pompa akan mejadi panas, dan ini adalah kerugian operasi. Panas akan timbul pada impeler karena kurang pendinginan dari zat cair. melebihi normal di bawah kapasitas (%) Gambar 5.5 Grafik head kapasitas pompa axial Panas yang timbul pada operasi kapasitas tidak penuh akan terbawa aliran. Apabila pompa beroperasi dalam keadaan katup tertutup atau terbuka sangat kecil, maka kerugian akan meningkat, sedangkan panas yang dibawa keluar 45

44 sangat sedikit. Hal ini mengakibatkan temperatur pompa akan naik dengan cepat. Kenaikan temperatur pompa dapat dihitung dengan rumus sebagai berikut ; t 1 H 47 dimana t = adalah kenaikan temperatur ( 0 C ) = efisiensi pompa pada titik operasi H = head total pompa pada titik operasi Apabila pompa dengan head tinggi dioperasikan pada kapasitas rendah, temperatur akan naik dan menyebabkan kesulitan seperti kavitasi, pada kondisi ini penguapan zat cair sangat banyak dan menimbulkan kerusakan pada komponen pompa, khususnya impeler. Kerusakan akan lebih parah pada operasi pompa dengan zat cair panas. Untuk mengatasinya, sebagian zat cair terpaksa harus dibocorkan keluar bila laju aliran sangat kecil, hal ini dilakukan untuk mencegah naiknya temperatur melebihi batas normal. Kenaikan temperatur yang diizinkan adalah 10 0 C, khusus untuk pompa yang digunakan untuk pengisi ketel, kenaikan yang diizinkan harus diperhitungkan atas dasar kondisi dimana tidak akan terjadi penguapan pada ruang pengimbang Operasi dengan kapasitas melebihi normal Permasalahan akan timbul pada operasi pompa dengan kapasitas melebihi normal atau diatas titik efisiensi optimumnya. Dapat dilihat pada gambar 5.5 pada pompa sentrifugal, dengan kenaikan kapasitas aliran efisiensi menurun dan daya poros naik. Permasalahan lain yang timbul adalah terjadi kavitasi, karena NPSH yang diperlukan akan naik. Untuk mengatasinya perlu disediakan NPSH pada laju aliran maksimum yang lebih besar dari pada NPSH yang diperlukan. Jika pompa sentrifugal dengan n s rendah dan dioperasikan pada kondisi kapasitas melebihi normal, daya poros yang dibutuhkan akan naik, untuk itu, perlu dipilih motor penggerak berdaya besar, sehingga mampu mengatasi operasi pompa yang berlaku. Jika hal tersebut tidak dilakukan, motor akan mengalami pembebanan berlebih, dan mengakibatkan kerusakan. 46

45 BAB 6 GANGUAN OPERASI POMPA Pada instalasi pompa sering dijumpai berbagai kerusakan peralatan, misalnya katup- katup, pipa-pipa, sambungan, dan komponen-komponen dalam pompa sendiri. Kerusakan-kerusakan tersebut diakibatkan oleh gangguangangguan yang terjadi selama pompa beroperasi. Ganguan-gangguan yang sering terjadi adalah benturan air, surging dan fluktuasi tekanan Benturan Air (Water Hammer) Gejala benturan air sering terjadi pada operasi pompa dan pada kondisi ini banyak menimbulkan kerusakan pada peralatan instalasi. Benturan air terjadi karena pada aliran terjadi kenaikan dan penurunan tekanan secara tiba-tiba. Benturan air dapat terjadi karena dua sebab yaitu 1. Penutupan katup secara tiba-tiba. Pompa mendadak berhenti bekerja Sebab pertama banyak terjadi pada waktu pengaturan kapasitas aliran, jika pengaturannya tidak benar, maka katup menutup penuh secara tiba-tiba, aliran akan terhenti dan seolah-olah zat cair membentur katup. Karena kondisi tersebut, timbul tekanan yang melonjak dan diikuti fluktuasi tekanan di sepanjang pipa untuk beberapa saat. Selama pompa beroperasi, poros pompa menggunakan penggerak dari luar, yang biasa digunakan yaitu motor listrik atau motor bakar. Khusus untuk pompa yang meggunakan motor listrik sebagai penggeraknya, masalah akan timbul apabila listrik tiba-tiba mati yaitu motor listrik tidak bekerja, akibatnya pompa akan berhenti mendadak. Aliran air akan terhalang impeler sehingga mengalami perlambatan yang mendadak, hal tersebut menyebabkan lonjakan tekanan pada pompa dan pipa. Dari dua sebab tersebut diatas, terlihat apabila terjadi gangguan operasi pompa, masalah yang akan timbul adalah terjadi lonjakan tekanan yang tiba-tiba karena aliran terhalang dan berhenti, kemudian terjadi benturan air pada perlatan. Kerusakan yang timbul disamping karena lonjakan tekanan, jatuhnya tekanan juga bisa menyebabkan kerusakan. 47

46 6.1.. Pencegahan benturan air Proses terjadinya benturan air yaitu karena head pompa tidak dapat mengatasi head sistem sehingga terjadi tekanan negatif pada sisi keluar pompa, kondisi ini menyebabkan aliran balik dari sisi keluar pompa menuju pompa. Selanjutnya terjadi kenaikan tekanan yang drastis yang menuju impeler pompa. Maka dari kondisi tersebut, untuk melakukan pencegahan benturan air, tekanan negatif dan lonjakan tekanan hars dicegah. 6.. Gejala Surjing Gejala surjing sering terjadi pada operasi pompa, laju aliran berubah-ubah secara periodik dan pada aliran terjadi fluktuasi tekanan. Gejala ini timbul karena pompa beroperasi dengan head yang semakin menurun dan head sistem yang naik. Atau, head pompa tidak mampu mengatasi head dari sistem secara normal. Untuk mecegah surjing harus dipilih pompa dengan head yang cukup tinggi, sehingga pada waktu pompa head nya menurun tidak sampai terjadi surjing Tekanan Berubah-ubah Gejala tekanan yang berubah ubah atau berfluktuatif sepanjang aliran banyak terjadi pada pompa sentrifugal, khususnya pada pompa volut. Di dalam pompa ada daerah antara sisi luar impeler dan ujung dari volut (cut water), yang apabila setiap kali impeler berputar dan melewati daerah ini, tekanan zat cair akan berdenyut. Denyut yang terus-menerus akan dirasakan sebagai fluktuasi tekanan yang merambat pada zat cair di dalam pipa keluar. Apabila denyut tekanan zat cair beresonansi dengan kolom air menyebabkan getaran dan bunyi. Untuk mencegah dari fluktuasi tekanan antara pompa dan jalur pipa keluar, pada jalur kelaur pompa dipasang peredam bunyi yaitu kamar ekspansi. Kamar ekspansi akan memotong rambatan gelombang dari fluktuasi tekanan sehingga tidak sampai beresonansi dengan kolom air. 48

47 POMPA 7 PERPINDAHAN POSITIF 7.1. Klasifikasi Pompa Perpindahan Positif Pompa perpindahan positif yaitu pompa yang bekerja menghisap zat cair, kemudian menekan zat cair tersebut, selanjutnya zat cair dikeluarkan melalui katup atau lubang keluar. Jenis pompa ini sudah diciptakan pada tahun 106 M oleh orang turki yaitu Al jazari. Al jazari mendesain dan membuat pompa torak kerja ganda yang digunakan untuk memompa air. Perkembangan selanjutnya pompa jenis perpindahan positif sangat beragam. Namun, secara umum pompa perpindahan positif dibagi mejadi dua yaitu jenis gerak bolak-balik (reciprocating) dan gerak putar (rotary). Adapun klasifikasi pompa perpindahan positif adalah sebagai berikut ; 1. Pompa gerak bolak-balik (reciprocating) A. Pompa Piston atau plunger 1. Pompa aksi langsung ( simplex atau duplex). Pompa daya A. Aksi tunggal atau aksi ganda B. Simplex, duplex, triplex, atau multiplex B. Pompa Diagfragma 1.Penggerak mekanik atau penggerak fluida.simplex, atau duplex. Pompa gerak putar (rotary) A. Rotor tunggal Pompa Vane, torak, ulir, atau pompa flexible member B. Rotor banyak Pompa roda gigi, lobe, ulir, atau pompa circumferential piston 49

48 No Nama Komponen 1 Mesin penggerak torak Cincin torak penggerak 3 Batang torak penggerak 4 Packing 5 Torak 6 Silinder penggerak 7 Katup gas 8 Packing 9 Mekanika katub pemicu 10 Bantalan 11 Pelapis silinder 1 Torak pompa 13 Cincin torak pompa 14 Silinder pompa 15 Katup keluar 16 Katup masuk 17 mesin penggerak 18 Pompa 19 Tumpuan bantalan Gambar 7.1 Pompa perpindahan positif gerak bolak-balik 50

49 No Nama Komponen 1 Lintasan torak Penutup 3 Packing 4 Silinder 5 Fluida masuk 6 Fluida keluar 7 Plunger 8 Batang torak 9 Engkol Gambar 7. Pompa perpindahan positif gerak putar (rotary) screw atau ulir buang lobe isap buang isap Gambar 7.3 Pompa perpindahan positif gerak putar (rotary) 51

50 7.. Penggunaan Pompa jenis perpindahan positif banyak digunakan untuk melayani sistem instalasi yang membutuhkan head yang tinggi dengan kapasitas rendah. Dengan efisiensi yang lebih tinggi, pompa perpidahan positif dapat mengatasi head tinggi dari sistem, dibanding dengan menggunakan pompa jenis sentrifugal. Untuk mengatasi head yang sama, pompa sentrifugal memerlukan kontruksi yang lebih kuat dan memerlukan daya yang lebih besar. Sehingga dengan alasan tersebut, lebih menguntungkan untuk head sistem yang tinggi digunakan pompa perpindahan positif apabila kapasitas aliran tidak menjadi tujuan utama dari pemompaan. Dari definisi, pompa jenis ini menghasilkan tekanan tinggi dengan kecepatan aliran yang rendah. Dengan alasan tersebut pompa ini banyak digunakan untuk peralatan dengan zat cair yang abrasif dan kekentalan tinggi Pompa Gerak Bolak balik Pompa torak atau punger adalah pompa yang mempunyai komponen pemompa (torak atau torak, plunger, atau diagfragma) bergerak bolak-balik. Zat cair dihisap melalui katup hisap kemudian ditekan menuju katup buang. Pompa jenis ini dapat diklasifiaksi menjadi beberapa macam, dilihat dari sumber penggeraknya dibagi menjadi dua yaitu pompa tenaga dan pompa aksi. Dari posisi komponen pemompa (torak), dibagi menjadi dua yaitu pompa horizontal dan vertikal. Kalau dilihat dari jumlah langkah buang persiklusnya per batang penggerak, pompa jenis ini dibagi menjadi pompa aksi tunggal atau pompa aksi ganda Cara kerja pemompaan Pada pompa torak setiap silinder minimal ada dua katup yaitu katup isap dan buang. Pada langkah isap yaitu torak bergerak menjauhi katup, tekanan didalam silinder menjadi turun. Hal ini menyebabkan perbeadaan tekanan antara diluar silinder dengan didalam silinder bertambah besar, sehingga memaksa katup isap terbuka, zat cair kemudian terhisap kedalam silinder. Apabila torak pada posisi akhir langkah isap dan mulai bergerak menuju katup, katup isap mentup kembali 5

51 Setelah zat cair masuk silinder kemudia didorong torak menuju katup buang, tekanan didalam silinder menjadi naik, sehingga mampu memaksa katup buang terbuka. Selanjutnya zat cair mengalir melewati katup buang keluar silinder dengan dorongan torak yang menuju katup sampai akhir langkah buang Pemakaian Pompa torak banyak digunakan untuk aplikasi yang memerlukan tekanan tinggi dan kapasitas rendah. Sebagai contoh penggunaan, yaitu pompa jet tekanan tinggi untuk pembersihan dan pemotongan [gambar 63], injeksi glikol, pompa pendorong pada pipa minyak mentah, pompa tenaga hidrolik dan lain lain. Tekanan kerja pompa torak adalah 3500 kpa sampai 100 Mpa. Pompa torak juga digunakan untuk tes hidrostatik dengan tekanan kerja sampai 700 MPa [gambar 7.4] No Nama Komponen 1 Pelumasan Seal 3 Plunger 4 Katup masuk 5 Katup keluar Gambar 7.4 Pompa plunger tekanan tinggi 53

52 No Nama Komponen 1 Silinder tekanan rendah Batang torak tekanan tinggi 3 Tekanan tinggi spesial 5 seal torak 4 Penghubung Dobel kerucut tekanan tinggi 5 Pelumasan Gambar 7.5 Pompa plunger tekanan tinggi 7.6. Kerkurangan pompa bolak-balik Pompa gerak bolak-balik (reciprocating) bekerja denga prinsip penghisapan, penekanan, kemudian pembuangan. Jadi melewati tiga langkah untuk menghasilkan laju aliran zat cair keluar, sehingga untuk semua jenis pompa torak, laju alirannya tidak kontinyu tetapi berdenyut menyesuaikan irama pemompaan [gambar 7.6] Disamping kekurangan dari pompa torak di atas, dibandingkan dengan pompa jenis sentrifugal, biaya pembuatan dan perawatan pompa torak lebih mahal. Gambar 7.6 Kapasitas aliran pada pompa torak 54

53 7.7. Komponen pompa gerak bolak-balik Satu set pompa torak atau plunger terdiri dari dua bagian komponen yaitu bagian komponen penggerak ( drive end) dan bagian pompa sendiri ( liquid end). Komponen utama bagian drive end [gambar] terdiri dari a. Drive cylinder ( silinder penggerak) b. Drive piston ( torak pengerak) c. Piston rod (batang torak) d. Valve actuating mechanism (Mekanik katup penggerak) Komponen utama pompa (liquid end); a. Silnder b. Katup isap dan buang [gambar 7.7] c. Torak disk valve. elastomeric-insert valve. double-ported disk valve wing-guided valve ball valve. Gambar 7.7 Macam-macam katup 55

54 7.8. Pompa daya Pompa daya adalah pompa yang porosnya digerakan dengan daya dari luar, daya yang dipakai biasanya adalah motor listrik dan motor bakar. Komponen utama dari pompa ini adalah silinder dengan katup isap dan buang, torak pemompa, dan poros engkol pompa. Poros pompa dihubungkan dengan poros penggerak dengan transmisi pengatur putaran. Pada gambar 7.8 adalah contoh dari pompa daya Pemilihan jenis penggerak adalah berdasarkan ketersedian dan kepraktisan dari penggunaan penggerak. Untuk penggerak motor listrik banyak digunakan untuk penggerak pompa dengan daerah operasi pompa dekat dengan sumber listrik. Keuntungan dari penggunaan penggerak jenis ini adalah pengoperasiannya mudah, bebas polusi, tidak berisik dan perawatannya mudah. Kendalanya adalah kalau sumber listriknya mati, pompa tidak beropersi. Untuk penggerak motor bakar biasanya digunakan untuk menggerakan pompa yang beroperasi pada daerah yang jauh dari sumber llistrik. Dengan menggunakan penggerak jenis ini pompa lebih fleksibel untuk beroperasi disemua tempat. Kendalanya adalah biaya perawata lmahal dan berisik. Motor bakar yang sering digunakan adalah mesin diesel, karena putarannya lebih stabil dengan tenaga besar. katup keluar torak zat cair tekanan tinggi zat cair dihisap poros yang terhubung penggerak mula katup masuk Gambar 7.8 Cara kerja pompa torak 56

55 No Nama Komponen 1 Katup masuk Packing 3 Plunger 4 Torak 5 Deflector 6 Tumpuan 7 Pasak bantalan 8 Bantalan 9 Batang torak 10 Pasak bantalan engkol 11 Rangka penggerak 1 Poros engkol 13 Breader 14 Penghubung torak 15 Lubang plunger 16 Kotak bantalan 17 Silinder pompa 18 Katup keluar 19 Pompa 0 Penggerak Gambar 7.9 Pompa torak Komponen utama bagian power end [gambar 7.9] terdiri dari Poros engkol Batang torak 57

56 Piston Crosshead ( torak pengerak) Komponen utama pompa (liquid end); Silnder Katup isap dan buang [gambar 7.7] Plunger 7.9. Pompa aksi langsung Pompa aksi langsung adalah pompa yang menggunakan energi dari luar untuk menggerakan torak. Energi dari luar diperoleh dari fluida yang mempunyai beda tekanan. Prinsip pemompaannya sama dengan pompa tenaga, yang berbeda hanya komponen penggeraknya. Komponennya dibagi menjadi dua yaitu, komponen pompa dan komponen penggerak. Komponen utama bagian drive end [gambar 7.1] terdiri dari Silinder penggerak (Drive cylinder ) Torak pengerak (Drive piston) Batang torak (Piston rod ) Mekanik katup penggerak (Valve actuating mechanism) Komponen utama pompa (liquid end); Silnder Katup isap dan buang [gambar 7.7] Diagfragma [gambar 7.10, 7.11, 7.1] diagfragma katup keluar penggerak katup masuk Gambar 7.10 Cara kerja pompa diagfragma penggerak mekanik 58

57 No Nama Komponen 1 Katup otomatis Katup bola keluar 3 Katup bola masuk 4 diagfragma 5 Process fluid 6 Hydraulic fluid 7 Intermediate fluid 8 Pengatur oli 9 Katup isi 10 Katup relief Gambar 7.11 Pompa diagfragma penggerak hidrolik 59

58 No Nama Komponen 1 Baut pengatur Plunger bolak-balik 3 Pegas kembali 4 Katup bola keluar 5 Katup bola masuk 6 Pemicu diagfragma mekanis 7 Nok eksentrik 8 Process fluid Gambar 7.1 Pompa diagfragma penggerak pegas mekanik Pompa Rotari Pompa rotari adalah termasuk pompa perpindahan positif yang komponen pemompanya berputar (rotary), seperti lobe, roda gigi, ulir,vanes, roller. Cara kerjanya yaitu menghisap zat cair pada sisi isap, zat cair masuk ke celah atau ruangan tekan diantara komponen pemompaan, kemudian ditekan sehingga celah semakin kecil selanjutnya zat cair dikeluarkan melalui sisi buang. Pompa rotari tidak mempunyai katup isap dan buang, penggunaannya banyak dipakai dengan zat cair yang mempunyai kekentalan tinggi. Tekanan kerja 60

59 yang dihasilkan sedang atau lebih rendah dari pompa torak atau plunger. Laju alirannya stabil tidak berdenyut dengan kapasitas yang rendah Pompa roda gigi Pompa ini mempunyai komponen pemompaan berbentuk roda gigi. Cara kerjanya yaitu apabila gigi dari roda gigi mulai menutup (disengage),zat cair terhisap kecelah antar gigi, kemudian ketika roda gigi membuka (engage) zat cair ditekan keluar kesisi buang. Zat cair yang dipompa juga sekaligus melumasi roda gigi. Pompa roda gigi dibagi mejadi dua yaitu internal gears pump [gambar 7.13 A] dan external gear pump [gambar 7.13 B]. Pompa roda gigi banyak dipakai untuk pompa pelumas pada mesin roda gigi internal A roda gigi external aliran keluar aliran masuk B Gambar 7.13 Pompa roda gigi internal eksternal 61

60 Lobe, Screw, vanes, flexibel tube, radial axial plunger dan circumferential pump. Dengan prinsip kerja yang sama dibawah ini adalah contoh contoh dari pompa rotari. Penamaan jenis pompa disamakan dengan nama komponen pemompaan. tekanan lebih tinggi tekanan rendah zat cai dikeluarkan zat cair terhisap poros penyempitan celah lobe buah lobe buah lobe poros terhubung dengan penggerak Gambar 7.14 Pompa lobe 6

61 3 buah lobe aliran fluida masuk aliran fluida keluar Gambar 7.15 Pompa lobe dengan 3 buah lobe poros utama ulir atama rumah pompa ulir samping bantalan pompa Gambar 7.16 Pompa ulir dengan 3 buah ulir Pada gambar 7.16 adalah pompa ulir (screw) dengan tiga buah ulir, zat cair akan masuk dari sisi isap, kemudian akan ditekan di ulir yang mempunyai bentuk khusus. Dengan bentuk ulir tersebut, zat cair akan masuk di ruang antara ulir-ulir, 63

62 dan dengan mekanisme penyempitan volume, zat cair tersebut terus ditekan sampai sisi buang. Sama dengan pompa rotari yang lainnya, zat cair yang dipompa juga berfungsi sebagi pelumas. aliran zat cair masuk tekanan tinggi tekanan rendah aliran zat cair keluar Gambar 7.17 Prose penekanan zat cait pada pompa buah ulir lubang keluar ulir bantalan ulir poros utama terhubung dengan penggerak lubang masuk Gambar 7.18 Pompa ulir dengan buah ulir Pada gambar adalah prinsip kerja dari pompa ulir, zat cair akan masuk ke pompa dan menuju celah celah antara dua poros yang berulir. Kemudian, karena dua buah poros berulir tadi berputar, zat cair tedorong ke arah kanan dengan gaya sentrifugal ulir. Metode penekanan sama dengan pompa perpindahan positif lainnya, yaitu memperkecil volume celah pemompaan, sehingga zat cair pada sisi kanan bertekanan lebih besar 64

63 lubang keluar lubang masuk poros utama ulir tunggal bantalan Gambar 7.19 Pompa ulir tunggal ( progresive cavity singgle screw pump) poros penyempitan celah sliding vane celah pompa Gambar 7.0 Pompa vane (sliding vane rotary pump) penyempitan celah poros sliding vane celah Gambar 7.1 Pompa vane dengan 5 buah vane 65

64 Pada gambar 7.0 adalah prinsip kerja dari pompa rotary vane, zat cair terhisap masuk kecelah antara vane dengan rumah pompa kemudian poros pompa berputar demikian juga vanenya. Karean volume celah semakin sempit, tekanan zat cair naik dan dapat mendesak katup keluar terbuka. Prinsip kerja yang sama untuk gambar 7.1 yaitu pompa dengan 5 buah vane celah poros pompa Fleible tube Gambar 7. Fleible tube pump radial plunger axial plunger Gambar 7.3 Radial plunger dan axial plunger rotary pump 66

BAB 5 DASAR POMPA. pompa

BAB 5 DASAR POMPA. pompa BAB 5 DASAR POMPA Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Zat cair tersebut contohnya adalah air, oli atau minyak pelumas,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB 3 POMPA SENTRIFUGAL

BAB 3 POMPA SENTRIFUGAL 3 BAB 3 POMPA SENTRIFUGAL 3.1.Kerja Pompa Sentrifugal Pompa digerakkan oleh motor, daya dari motor diberikan kepada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Zat cair yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

15 BAB III TINJAUAN PUSTAKA 3.1 Pengertian Pompa Pompa adalah mesin fluida yang berfungsi untuk memindahkan fluida cair dari suatu tempat ke tempat lain dengan cara memberikan energi mekanik pada pompa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros)

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros) BAB II TINJAUAN PUSTAKA 2.1. Pengertian Pompa Pompa adalah salah satu mesin fluida yang termasuk dalam golongan mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros) menjadi energi

Lebih terperinci

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut. BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

Lebih terperinci

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan BAB II DASAR TEORI 2.1. DASAR TEORI POMPA 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian pompa Pompa adalah peralatan mekanis untuk meningkatkan energi tekanan pada cairan yang di pompa. Pompa mengubah energi mekanis dari mesin penggerak pompa menjadi energi

Lebih terperinci

TUGAS KHUSUS POMPA SENTRIFUGAL

TUGAS KHUSUS POMPA SENTRIFUGAL AUFA FAUZAN H. 03111003091 TUGAS KHUSUS POMPA SENTRIFUGAL Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

POMPA. yusronsugiarto.lecture.ub.ac.id

POMPA. yusronsugiarto.lecture.ub.ac.id POMPA yusronsugiarto.lecture.ub.ac.id PENGERTIAN KARAKTERISTIK SISTIM PEMOMPAAN JENIS-JENIS POMPA PENGKAJIAN POMPA Apa yang dimaksud dengan pompa dan sistem pemompaan? http://www.scribd.com/doc/58730505/pompadan-kompressor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Dasar-dasar Pompa Sentrifugal Pada industri minyak bumi, sebagian besar pompa yang digunakan ialah pompa bertipe sentrifugal. Gaya sentrifugal ialah sebuah gaya yang timbul akibat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG

TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG Tugas Akhir ini Disusun dan Diajukan Guna Memperoleh Gelar Sarjana Strata Satu Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

LOGO POMPA CENTRIF TR UGAL

LOGO POMPA CENTRIF TR UGAL LOGO POMPA CENTRIFUGAL Dr. Sukamta, S.T., M.T. Pengertian Pompa Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Klasifikasi

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahkan fluida dari satu tempat ketempat lainnya, melalui suatu media aluran pipa dengan cara menambahkan energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Teknologi dispenser semakin meningkat seiring perkembangan jaman. Awalnya hanya menggunakan pemanas agar didapat air dengan temperatur hanya hangat dan panas menggunakan heater, kemudian

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL Oleh: ANGGIA PRATAMA FADLY 07 171 051 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengetahuan Dasar Pompa Pompa adalah suatu peralatan mekanis yang digerakkan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA POMPA Kriteria pemilihan pompa (Pelatihan Pegawai PUSRI) Pompa reciprocating o Proses yang memerlukan head tinggi o Kapasitas fluida yang rendah o Liquid yang kental (viscous liquid) dan slurrie (lumpur)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Hidrodinamika 2.1.1 Definisi Hidrodinamika Hidrodinamika merupakan salah satu cabang ilmu yang berhubungan dengan gerak liquid atau lebih dikhususkan pada gerak air. Skala

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat lain yang diinginkan. Pompa beroperasi dengan membuat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Prinsip Kerja Pompa Sentrifugal Pompa digerakkan oleh motor. Daya dari motor diberikan kepada poros pompa untuk memutar impeler yang terpasang pada poros tersebut. Zat cair

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pompa merupakan mesin fluida yang digunakan untuk memindahkan fluida cair dari suatu tempat ke tempat lainnya melalui sistem perpipaan. Pada prinsipnya, pompa mengubah

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menambah energi pada cairan dan berlangsung secara kontinyu.

BAB II TINJAUAN PUSTAKA. menambah energi pada cairan dan berlangsung secara kontinyu. BAB II TINJAUAN PUSTAKA 2.1. Dasar Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahk an cairan dari suatu tempat ke tempat lainnya melalui suatu media dengan cara menambah energi

Lebih terperinci

BAB II DASAR TEORI QQ =... (2.1) Dimana: VV = kebutuhan air (mm 3 /hari) tt oooo = lama operasi pompa (jam/hari) nn pp = jumlah pompa

BAB II DASAR TEORI QQ =... (2.1) Dimana: VV = kebutuhan air (mm 3 /hari) tt oooo = lama operasi pompa (jam/hari) nn pp = jumlah pompa 4 BAB II DASAR TEORI 1.1 Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 7 BAB II LANDASAN TEORI 2.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HATOP

Lebih terperinci

PERTEMUAN III HIDROSTATISTIKA

PERTEMUAN III HIDROSTATISTIKA PERTEMUAN III HIDROSTATISTIKA Pengenalan Statika Fluida (Hidrostatik) Hidrostatika adalah ilmu yang mempelajari perilaku zat cair dalam keadaan diam. Konsep Tekanan Tekanan : jumlah gaya tiap satuan luas

Lebih terperinci

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin :

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin : BOILER FEED PUMP A. PENGERTIAN BOILER FEED PUMP Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan dengan cara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA 1. POMPA MENURUT PRINSIP DAN CARA KERJANYA 1. Centrifugal pumps (pompa sentrifugal) Sifat dari hidrolik ini adalah memindahkan energi pada daun/kipas pompa dengan dasar pembelokan/pengubah aliran (fluid

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah suatu peralatan mekanik yang digerakkan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat lain, dimana

Lebih terperinci

BAB V KESIMPULAN DAN SARAN

BAB V KESIMPULAN DAN SARAN BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Tabel 5.1 Hasil perhitungan data NO Penjelasan Nilai 1 Head kerugian mayor sisi isap 0,14 m 2 Head kerugian mayor sisi tekan 3,423 m 3 Head kerugian minor pada

Lebih terperinci

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari, penggunaan pompa sangat luas hampir disegala bidang, seperti industri, pertanian, rumah tangga dan sebagainya. Pompa merupakan alat yang

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sifat Sifat Zat Air zat cair mempunyai atau menunjukan sifat-sifat atau karakteristik-karakteristik yang dapat ditunjukkan sebagai berikut. 2.1 Tabel Sifat-sifat air sebagai fungsi

Lebih terperinci

BAB II PEMBAHASAN MATERI. fluida incompressible (fluida yang tidak mampu mampat) dari tempat yang rendah

BAB II PEMBAHASAN MATERI. fluida incompressible (fluida yang tidak mampu mampat) dari tempat yang rendah 11 BAB II PEMBAHASAN MATERI Pompa adalah suatu jenis mesin yang digunakan untuk memindahkan fluida incompressible (fluida yang tidak mampu mampat) dari tempat yang rendah ke tempat lebih tinggi alau dari

Lebih terperinci

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik.

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik. BAB III LANDASAN TEORI 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin Pompa air dengan menggunakan tenaga angin merupakan sistem konversi energi untuk mengubah energi angin menjadi putaran rotor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI 2.1 Pengairan Tanah Pertambakan Pada daerah perbukitan di Atmasnawi Kecamatan Gunung Sindur., terdapat banyak sekali tambak ikan air tawar yang tidak dapat memelihara ikan pada

Lebih terperinci

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat 1 BAB I PENDAHULUAN 1.1 Pandangan Umum Pompa Pompa adalah suatu jenis mesin yang digunakan untuk memindahkan fluida dari suatu tempat yang rendah ketempat yang lebih tinggi atau dari tempat yang bertekanan

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis 1 BAB FLUIDA 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis Massa Jenis Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan. Yang termasuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Sistem plambing merupakan bagian yang tidak dapat dipisahkan dalam pembangunan gedung. Oleh karena itu, perencanaan dan perancangan sistem plambing haruslah dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

BAB IV PERHITUNGAN DAN ANALISA DATA

BAB IV PERHITUNGAN DAN ANALISA DATA BAB IV PERHITUNGAN DAN ANALISA DATA 4. 1. Perhitungan Pompa yang akan di pilih digunakan untuk memindahkan air bersih dari tangki utama ke reservoar. Dari data survei diketahui : 1. Kapasitas aliran (Q)

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

ANALISIS PENURUNAN KAPASITAS POMPA NATRIUM HIDROKSIDA (NaOH) DENGAN KAPASITAS 60 M 3 /JAM

ANALISIS PENURUNAN KAPASITAS POMPA NATRIUM HIDROKSIDA (NaOH) DENGAN KAPASITAS 60 M 3 /JAM Hal 35-45 ANALISIS PENURUNAN KAPASITAS POMPA NATRIUM HIDROKSIDA (NaOH) DENGAN KAPASITAS 60 M 3 /JAM Agus Setyo Umartono, Ahmad Ali Fikri Program Studi Teknik Mesin, Fakultas Teknik Universitas Gresik ABSTRAK

Lebih terperinci

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52 EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52 KINERJA MULTISTAGE HP/IP FEED WATER PUMP PADA HRSG DI SEKTOR PEMBANGKITAN PLTGU CILEGON F Gatot Sumarno, Suwarti Program Studi Teknik Konversi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Tentang Pompa Hydrant Hydrant merupakan suatu sistem keamanan untuk perlindungan kebakaran yang mekanisme kerjanya menggunakan sistem pompa air dengan tekanan cukup tinggi

Lebih terperinci

Jurnal Kajian Teknik Mesin Vo. 2 No. 1 April

Jurnal Kajian Teknik Mesin Vo. 2 No. 1 April ANALISA KINERJA POMPA MINYAK (POMPA BONGKAR KARGO) PADA MT. ACCORD Andi Saidah, MT Dosen Fakultas Teknik Universitas 17 Agustus 1945 Jakarta Abstrak Penelitian ini bertujuan menganalisa kinerja pompa cargo,

Lebih terperinci

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Beberapa topik tegangan permukaan

Lebih terperinci

MENINGKATKAN KAPASITAS DAN EFISIENSI POMPA CENTRIFUGAL DENGAN JET-PUMP

MENINGKATKAN KAPASITAS DAN EFISIENSI POMPA CENTRIFUGAL DENGAN JET-PUMP MENINGKATKAN KAPASITAS DAN EFISIENSI POMPA CENTRIFUGAL DENGAN JET-PUMP Suhariyanto, Joko Sarsetyanto, Budi L Sanjoto, Atria Pradityana Jurusan Teknik Mesin FTI-ITS Surabaya Email : - ABSTRACT - ABSTRAK

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB III ANALISA DAN PERHITUNGAN

BAB III ANALISA DAN PERHITUNGAN BAB III ANALISA DAN PERHITUNGAN 3.1 Kapasitas Pompa 3.1.1 Kebutuhan air water cooled packaged (WCP) Kapasitas pompa di tentukan kebutuhan air seluruh unit water cooled packaged (WCP)/penyegar udara model

Lebih terperinci

BAB I PENDAHULUAN. Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan

BAB I PENDAHULUAN. Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan team membuat alat simulator radiator agar dapat digunakan dan dimanfaatkan sebagai praktikum

Lebih terperinci

PERENCANAAN POMPA SENTRIFUGAL DENGAN KAPASITAS 1,5 M 3 / MENIT

PERENCANAAN POMPA SENTRIFUGAL DENGAN KAPASITAS 1,5 M 3 / MENIT NASKAH PUBLIKASI PERENCANAAN POMPA SENTRIFUGAL DENGAN KAPASITAS 1,5 M 3 / MENIT Makalah Seminar Tugas Akhir ini disusun sebagai syarat untuk mengikuti Ujian Tugas Akhir pada Jurusan Teknik Mesin Fakultas

Lebih terperinci

PELATIHAN PENGELASAN DAN PENGOPERASIAN KOMPRESOR

PELATIHAN PENGELASAN DAN PENGOPERASIAN KOMPRESOR MAKALAH PELATIHAN PENGELASAN DAN PENGOPERASIAN KOMPRESOR PROGRAM IbPE KELOMPOK USAHA KERAJINAN ENCENG GONDOK DI SENTOLO, KABUPATEN KULONPROGO Oleh : Aan Ardian ardian@uny.ac.id FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara BAB II TINJAUAN PUSTAKA Analisa Termodinamika Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu pembangkit daya uap Siklus Rankine berbeda dengan siklus-siklus udara ditinjau

Lebih terperinci

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI MASSA JENIS Massa jenis atau kerapatan suatu zat didefinisikan sebagai perbandingan massa dengan olum zat tersebut m V ρ = massa jenis zat (kg/m 3 ) m = massa

Lebih terperinci

POMPA SENTRIFUGAL. Oleh Kelompok 2

POMPA SENTRIFUGAL. Oleh Kelompok 2 POMPA SENTRIFUGAL Oleh Kelompok 2 M. Salman A. (0810830064) Mariatul Kiptiyah (0810830066) Olyvia Febriyandini (0810830072) R. Rina Dwi S. (0810830075) Suwardi (0810830080) Yayah Soraya (0810830082) Yudha

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

JENIS-JENIS POMPA DAN KOMPRESOR

JENIS-JENIS POMPA DAN KOMPRESOR JENIS-JENIS POMPA DAN KOMPRESOR KOMPRESOR Sebelum membahas mengenai jenis-jenis kompresor yang ada, lebih baiknya kita pahami dahulu apa itu kompressor dan bagaimana cara kerjanya. Kompressor merupakan

Lebih terperinci

BAB I PENDAHULUAN 1.1. LATAR BELAKANG

BAB I PENDAHULUAN 1.1. LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1. LATAR BELAKANG Dalam sistem instalasi pemipaan fenomena kavitasi sering tidak diperhatikan, sedangkan kavitasi sendiri adalah salah satu kerugian di dalam sistem instalasi pemipaan.

Lebih terperinci

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Fluida merupakan sesuatu yang dapat mengalir sehingga sering disebut sebagai zat alir. Fasa zat cair dan gas termasuk ke

Lebih terperinci

ANALISA PENGARUH JUMLAH SUDU IMPELER TERHADAP GETARAN PADA POMPA SENTRIFUGAL

ANALISA PENGARUH JUMLAH SUDU IMPELER TERHADAP GETARAN PADA POMPA SENTRIFUGAL NASKAH PUBLIKASI ANALISA PENGARUH JUMLAH SUDU IMPELER TERHADAP GETARAN PADA POMPA SENTRIFUGAL Naskah Publikasi ini disusun sebagai syarat untuk mengikuti Wisuda Universitas Muhammadiyah Surakarta Disusun

Lebih terperinci

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2012

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2012 PERANCANGAN POMPA SENTRIFUGAL DENGAN KAPASITAS 100m 3 /jam DAN HEAD POMPA 44m UNTUK SUPLAI AIRBAROMETRIK KONDENSER SKRIPSI Skripsi Yang Diajukan Untuk memenuhi Syarat Memperoleh Gelar SarjanaTeknik ISKANDAR

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang bertekanan lebih rendah dari tekanan atmosfir. Dalam hal ini disebut pompa

BAB II TINJAUAN PUSTAKA. yang bertekanan lebih rendah dari tekanan atmosfir. Dalam hal ini disebut pompa BAB II TINJAUAN PUSTAKA 2.1. Pengertian Kompresor Kompresor adalah mesin untuk memampatkan udara atau gas. Kompresor udara biasanya mengisap udara dari atsmosfir. Namun ada pula yang mengisap udara atau

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Mesin fluida adalah mesin yang berfungsi untuk merubah energi mekanik menjadi energi

BAB II TINJAUAN PUSTAKA. Mesin fluida adalah mesin yang berfungsi untuk merubah energi mekanik menjadi energi BAB II TINJAUAN PUSTAKA 2.1. Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk merubah energi mekanik menjadi energi potensial dan sebaliknya, merubah energi mekanik dalam bentuk fluida, dimana

Lebih terperinci

LU N 1.1 PE P N E G N E G R E TI T AN

LU N 1.1 PE P N E G N E G R E TI T AN BAB I PENDAHULUAN 1.1 PENGERTIAN POMPA Pompa adalah peralatan mekanis yang diperlukan untuk mengubah kerja poros menjadi energi fluida (yaitu energi potensial atau energi mekanik). Pada umumnya pompa digunakan

Lebih terperinci

TUGAS SARJANA MESIN-MESIN FLUIDA

TUGAS SARJANA MESIN-MESIN FLUIDA TUGAS SARJANA MESIN-MESIN FLUIDA POMPA SENTRIFUGAL UNTUK MEMOMPAKAN CAIRAN LATEKS DARI TANGKI MOBIL KE TANGKI PENAMPUNGAN DENGAN KAPASITAS 56 TON/HARI PADA SUATU PABRIK KARET Oleh : BOBY AZWARDINATA NIM

Lebih terperinci