BAB II PEMBANGKIT LISTRIK TENAGA PANAS BUMI (PLTP)

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II PEMBANGKIT LISTRIK TENAGA PANAS BUMI (PLTP)"

Transkripsi

1 9 BAB II PEMBANGKIT LISTRIK TENAGA PANAS BUMI (PLTP) Pembangkit Listrik Tenaga Panas Bumi (PLTP) merupakan suatu pembangkit listrik yang memanfaatkan tenaga panas dari perut bumi dalam bentuk uap air dan merupakan energi terbarukan bila penggunaannya menggunaan prinsip siklus dengan pompa injeksi. Di bawah ini akan membahas mengenai jenis-jenis sumber energi panas bumi dan beberapa jenis-jenis PLTP yang ada Jenis-Jenis Sumber Energi Panas Bumi Prinsip kerja PLTP sebenarnya bergantung pada jenis sumber panas bumi dan hal ini dibedakan berdasarkan cara mendapatkan sumber panas bumi itu sendiri. Oleh karena itu, jenis-jenis ini identik dengan seberapa dalam sumur-sumur produksi itu digali sebab kedalaman reservoir sumur produksi akan mempengaruhi temperatur serta tekanan fluida kerja. PLTP menggunakan energi panas (kalor)dari inti bumi atau magma yang panasnya mengalir menuju permukaan bumi. Maka dari itu, jika kita menggali lapisan demi lapisan bumi, maka kalor yang kita dapatkan akan semakin besar karena semakin dekat dengan sumbernya. Prinsip sederhana itulah yang digunakan dalam PLTP.Ditambah lagi, di dalam bumi ternyata terdapat rongga-rongga yang volumenya relatif besar dan kebanyakan rongga itu terisi oleh air. Panas dari perut bumi atau aliran

2 10 magma oleh sebab adanya gunung berapi, akan memanaskan air yang terjebak itu, sehingga air itu akan menjadi uap dan memiliki tekanan serta enthalpy yang tinggi. Hal inilah yang dimanfaatkan untuk dikonversikan kembali energinya menjadi energi listrik pada akhirnya. Gambar 2.1 menjelaskan bagaimana proses pemanfaatan sumber panas bumi menjadi energi listrik. Gambar 2.1 : Ilustrasi bagaimana sistem panas bumi digunakan untuk pembangkit energi listrik (Sumber ; Gordon Denbow Christopher, Pedagogical development and technical research in the area of geothermal power production, 2011) Ada empat jenis sumber panas bumi hingga saat ini dan terus berkembang, yaitu Hydrothermal, Geopressured, Petrothermal, dan Magma Energy.Semuanya dibedakan berdasarkan kedalaman letak reservoir-nya di dalam bumi dari permukaan.

3 11 Gambar Jenis-jenis sumber energi panas bumi Jenis yang paling banyak digunakan dalam PLTP di dunia adalah hydrothermal.sumber Sumber panas bumi jenis in ini memiliki kedalaman rata-rata rata m dan temperatur fluidanya dapat mencapai 315 C dengan tekanan bar tergantung kualitas reservoir-nya.sumber nya.sumber panas bumi ini memiliki dua sub-tipe tipe lagi sesuai dengan jenis fluidanya, yakni hidrotermal dominasi uap dan hidrotermal dominasi cairan. Gambar Sistem Panas Bumi Hidrotermal ( Sumber : Pudjanarsa, A. dan Nursuhud,Djati, Nursuhud,Djati,Mesin Mesin Konversi Energi Edisi Revisi, Revisi hal. 251).

4 12 Geopressured merupakan sumber panas bumi yang kedalaman sumur produksinya sekitar m dan kondisi fluidanya bertemperatur lebih rendah, yakni sekitar 160 C namun bertekanan yang sangat tinggi (sekitar 1000 bar) dan memiliki kadar garam yang sangat tinggi. Biasanya berbentuk jenuh dengan gas alam, umumnya CH 4. 3 Untuk sumber panas bumi berjenis petrothermal atau lebih dikenal dengan sebutan Hot Dry Rock (HDR), kedalamannya hampir sama dengan jenis geopressured, akan tetapi, tidak ada fluida yang diambil dari reservoir. Sumber panas ini hanya memanfaatkan batuan panas dekat magma bumi untuk memanaskan air yang diinjeksikan dari permukaan bumi dan hasil pemanasan tersebut (sudah berupa uap kering) diambil kembali untuk memutar turbin atau memanaskan fluida kerja di permukaan.reservoir yang berupa rongga-rongga dalam bumi juga dibuat dengan menggunakan bom, bukan terbentuk secara alamiah. Sedangkan, untuk energi magma hingga saat ini sedang masih dikembangkan dan belum ada yang beroperasi secara komersil. Jenis sumber panas bumi ini kedalamannya lebih dalam dari geopressured dan menggunakan cara yang hampir sama dengan HDR Jenis-Jenis PLTP Berjenis Hydrothermal Seperti yang digambarkan pada gambar 2.2, bahwa ada dua kelas sumber energi panas bumi yang berjenis hydrothermal, yakni uap air berdominasi uap (vapor dominated steam) dan uap air berdominasi cairan (liquid dominated steam).oleh karena 3 Persentasi Energi Panas Bumi (Geothermal) silde 34 oleh Dr. Ir. T. A. Fauzi Soelaiman (Dosen ITB) pada Januari 2008.

5 13 bentuk sumber energi yang berbeda itu, maka secara garis besar sistem pembangkit yang digunakan untuk memanfaatkan energi tersebut juga berbeda Dry Steam System Untuk uap air berdominasi uap, sistem pembangkitnya sangat lebih sederhana. Hal ini dikarenakan sumber energi di dalam reservoir sudah berupa uap air (berfase gas) dan cenderung lebih bersih daripada jenis lainnya. Walaupun lapangannya sangat jarang ditemukan, sumber energi panas bumi jenisini adalah yang paling cocok untuk dijadikan pembangkit listrik karena biaya per kwh-nya sangat murah dibandingkan jenis lainnya, seperti yang tertera pada tabel 2.1 di bawah ini. Tabel.2.1 : Perbandingan dari dasar sistem konversi energi panas bumi. Type of Plant Reservoir temperatures, C Utilization efficiency, % Plant cost and complexity Current usage Single-flash moderate Widespread Double-flash Moderate è high Widespread Dry-steam Low è moderate Special sites Basic Binary Moderate è high Widespread (Sumber :DiPippo Ronald, Geothermal Power Plants; Principles, Applications, Case Studies and Environment Impact. Elsevier, 2008, Hal 193) Dari tabel di atas, kita juga dapat melihat bahwa untuk PLTP jenis dry steam merupakan jenis PLTP yang sangat baik, dimana efisiensi pemanfaatannya merupakan yang paling baik dan paling murah biaya pembuatannya daripada jenis yang lainnya.

6 14 Prinsip kerja untuk sebuah PLTP jenis ini juga sangat sederhana.seperti yang dijelaskan pada gambar 2.4 di bawah ini, uap air dari reservoir dialirkan langsung ke turbin dan hanya disaring oleh moisture removal yang berfungsi untuk membuang air yang terkondensasi di dalam pipa.non Condensible Gas (NCG) yang terkandung juga relatif lebih sedikit dibandingkan jenis lainnya. Sedangkan gambar 2.5 menjelaskan bagaimana proses termodinamika secara umum. Gambar 2.4 :Skematik PLTP dry-steam secara sederhana Seperti yang digambarkan pada gambar 2.4, siklus untuk PLTP berjenis drysteam tampak sederhana, dimana uap dari sumur produksi dialirkan langsung ke turbin untuk diubah energi panasnya menjadi energi mekanik dan akhirnya diubah lagi menjadi energi listrik di generator.uap dari turbin kembali dikondensasikan menjadi air kondensat di kondensor dimana air pendinginnya berasal dari cooling tower dan kembali ke cooling tower lagi setelah dari kondensor.air kondensat dari kondensor dialirkan ke cooling tower jika jumlah air pendingin di cooling tower

7 15 berada di bawah level minimumnya, sedangkan jika jumlah air pendingin cukup, maka air kondensat akan dialirkan menuju sumur-sumur injeksi untuk diinjeksikan kembali ke dalam bumi. Dari gambar 2.5, kita dapat melihat bahwa titik 1 merupakan titik yang menggambarkan tekanan, temperatur, dan enthalpy uap air yang berada pada inlet turbin, di titik tersebut air dalam fase uap jenuh dengan derajat kekeringan 100%. Sedangkan, proses 1-2 merupakan proses ekspansi yang berlangsung pada turbin secara aktual, Proses 1-2a merupakan proses ekspansi isentropis ideal pada turbin, sedangkan 2-3 merupakan proses kondensasi yang terjadi pada kondensor. Gambar 2.5 : Diagram Tekanan- Enthalpy (P-h) dan Temperatur-Entropy (T-s) proses PLTP dry-steam secara sederhana Single Flash Steam System Salah satu jenis PLTP yang digunakan untuk memanfaatkan sumber energi panas bumi liquid dominated steam adalah PLTP single flash steam system. Jenis PLTP ini merupakan jenis yang paling banyak di Indonesia, bahkan di dunia jika

8 16 dibandingkan dengan jenis PLTP-PLTP yang lainnya. 4 Hal ini dikarenakan jenis ini adalah jenis yang paling sederhana untuk memanfaatkan sumber energi panas bumi dominasi cairan. Gambar 2.6 menggambarkan skema aliran uap untuk PLTP single flash steam system dimana uap dari dalam bumi keluar dalam bentuk fluida dua fase (mixture steam-liquid).oleh karena adanya penurunan tekanan (pressure drop) yang terjadi pada katup di sumur produksi dan cyclone separator, maka fase uap dan cairnya terpisah yang juga dipisahkan pada separator tadi. Penurunan tekanan pada enthalpy tetap disebut proses throttling. Dalam dunia PLTP, proses ini disebut proses flashing 5, karena bukan hanya terjadi penurunan tekanan semata, akan tetapi proses ini membuat derajat kekeringan steam meningkat dan artinya menjadi lebih bersih dan aman untuk turbin. Dapat dikatakan bahwa proses ini juga merupakan proses pencucian/pemisahan uap sehingga uap dapat dimanfaatkan. Hasil pemisahan fluida dua fase (geofliud)pada separator yang berfase gas (uap) adalah steam.steam dari separator kemudian dialirkan ke turbin. Dari titik ini, prosesnya sama seperti dry-steam, dimana uap akan memutar turbin yang di-couple dengan generator dan menghasilkan listrik. Uap dari turbin juga dikondensasikan untuk diinjeksikan kembali ke bumi. Sedangkan, bagian cair dari geofluid yang dipisahkan di dalam separator disebut brine.brine pada PLTP jenis ini langsung dikirimkan ke sumur-sumur injeksi 5 Ada yang menyebutkan proses cetus pada beberapa referensi yang artinya dalam kamus besar bahasa Indonesia adalah pecah

9 17 untuk diinjeksikan kembali ke bumi, walau sebenarnya masih memiliki panas kandung yang cukup tinggi. Gambar 2.6 : Skematik PLTP Single Flash Steam System secara sederhana Ada beberapa cara dalam penempatan separator. Ada yang menempatkan di tiap-tiap sumur kemudian menyalurkan uap ke power house(gambar 2.7a). Ada yang menempatkannya di suatu titik dan menggabungkan pipa-pipa dari beberapa sumur dan menyalurkan satu pipa ke power house(gambar 2.7b). Ada juga yang menempatkannya di dekat power house dan menggabungkan semua pipa-pipa dari sumur produksi (gambar 2.7c).

10 18 Gambar 2.7 : Jenis-jenis sistem-sistem separator Secara termodinamika, gambar 2.8 menjelaskan secara sederhana bagaimana aliran uap dan proses PLTP jenis ini. Titik 1-2 merupakan aliran fluida dua fase dari reservoir hingga ke separator. Di sinilah proses flashing terjadi. Titik 2-5 merupakan proses pemisahan brine, sedangkan 2-3 merupakan proses pemisahan steam dankeduanya terjadi di cyclone separator. Titik 3-4a merupakan proses ekspansi pada turbin ideal yang berlangsung isentopis, dan titik 3-4 adalah proses ekspansi aktualnya. Pada titik 4-5 steam dikondensasikan di kondensor. Gambar 2.8 : Diagram Tekanan- Enthalpy (P-h) proses PLTP single flash steam system secara sederhana

11 Double Flash Steam System Pembangkit listrik dengan tipe double flash steam system merupakan pengembangan dari pembangkit jenis single flash system. Skema proses untuk double flash steam system tidak jauh berbeda dari single flash steam system. Hanya ada penambahan flasher pada sisi keluaran separator yang berfungsi sebagai pemisah atau pengekstrak uap kembali dari brine dengan menggunakan prinsip yang hampir sama dengan separator. Skema dari PLTP double flash terlihat pada gambar 2.9. Gambar 2.9 Skematik PLTP Double Flash Steam System Binary Cycle System Pembangkit listrik dengan tipe Binary Cycle ini berbeda dengan flash steam, yang dalam operasinya air atau uap air dari reservoir tidak berhubungan langsung dengan unit turbin/generator. Umunya fluida panas bumi yang digunakan untuk

12 20 pembangkit listrik adalah fluida yang mempunyai temperatur sedang C, tetapi secara tidak langsung fluida panas bumi temperatur sedang berkisar antara (100 0 C C) juga dapat digunakan untuk pembangkit listrik yaitu dengan cara memanasi fluida organik yang mempunyai titik didih rendah seperti terlihat Gambar Uap dari fluida organik ini kemudian digunakan untuk menggerakkan turbin sehingga menghasilkan listrik. Gambar Siklus Biner dengan brine dari separator sebagai media pemanas Cara kerjanya adalah uap panas dialirkan kesalah satu pipa di heat exchanger untuk menguapkan cairan dipipa lainnya yang disebut dengan pipa kerja.cairan di pipa kerja memakai cairan yang memiliki titik didih yang rendah seperti Iso-butana atau Iso-Pentana.Uap yang dihasilkan oleh heat exchanger dialirkan untuk memutar turbin dan selanjutnya menggerakkan generator untuk menghasilkan listrik.uap panas yang dihasilkan di heat exchanger inilah disebut secondary (binary) fluid. Keuntungan dari teknologi binary cycle ini adalah dapat dimanfaatkan oleh panas bumi bersuhu rendah. Selain itu teknologi ini tidak mengeluarkan emisi.

13 21 Karena alasan tersebut teknologi ini diperkirakan akan banyak dipakai dimasa yang akan datang Pemilihan Fluida Kerja ORC adalah sebuah proses yang menjanjikan untuk mengkonversi panas bersuhu rendah dan medium menjadi tenaga listrik. Proses ini bekerja seperti sebuah Clausius-Rankine steam power plant, tetapi menggunakan sebuah fluida kerja sebagai ganti air. Sehingga, thermal efficiency pada binary cycle akan lebih kecil daripada teknologi konvensional direct/flashing steam karena temperatur sumber fluida panas bumi relatif lebih rendah. Oleh karena itu untuk meningkatkan thermal efficiency, parameter-parameter yang mempengaruhi efisiensi ini, seperti misalnya disain heat exchanger dan pemilihan fluida kerja, menjadi tantangan tersendiri untuk dikaji lebih mendalam. Proses ini harus memiliki efisiensi termal yang tinggi dan harus dapat menggunakan sumber panas yang tersedia. Lebih lanjut, fluida kerja harus memenuhi kriteria keamanan, harus ramah lingkungan dan relatif berharga murah. Pemilihan fluida kerja yang optimal merupakan tantangan tersendiri, karena jumlah fluida yang tersedia dan jumlah parameter yang perlu dikaji sangat banyak. Kihara dan Fukunaga (1975) dan West, dkk. (1979) merekomendasikan beberapa kriteria minimal yang dapat digunakan untuk menseleksi fluida kerja, antara lain: a) Ketersediaan Properti Fluida Fluida kerja bisa berupa senyawa non organik (air, ammonia, karbondioksida) atau senyawa organik (hidrokarbon, halokarbon). Fluida jenis organik dipilih karena properti fisika dan termodinamika fluida-fluida tersebut telah banyak diketahui dan mudah diperoleh.

14 22 b) Tekanan Kondensasi Tekanan kondensasi pada titik kondensasi awal dalam kondenser harus seminimal mungkin untuk meminimalisir harga kondenser per unit permukaan transfer panas, akan tetapi harus lebih besar dari pada tekanan atmosfer. Fluida dengan tekanan kondensasi kurang dari tekanan atmosfer akan beroperasi pada kondisi vakum sehingga menyebabkan kemungkinan terjadinya kebocoran udara masuk ke dalam sistem. Oleh karena itu fluida dengan tekanan kondensasi di bawah 1 bar abs.akan dieliminasi dari pemilihan fluida kerja. c) Temperatur Kritis Semua fluida yang mempunyai temperatur kritis kurang dari temperatur kondensasi terendah 37 C (catatan: dengan asumsi sink temperature 27 C dan perbedaan pinch point temperature 10 C) akan dieliminasi dari pemilihan fluida kerja. Selain itu, fluida yang selalu berada pada kondisi fase uap superheated akan dieliminasi karena fluida ini akan relatif memerlukan pompa dengan daya tinggi. d) Berat Molekul Berat molekul fluida akan mempengaruhi disain turbin. Hasil eksperimen oleh para ahli turbin menunjukkan bahwa untuk menghasilkan power output yang sama, meningkatnya berat molekul akan meningkatkan mass flowrate (laju alir) yang diperlukan, menurunkan tip speed turbin dan menurunkan kecepatan suara di dalam fluida.

15 23 e) Bentuk Kurva Uap Jenuh Untuk menghindari superheat yang berlebihan dalam kondenser dan kondensasi pada saat keluar turbin, uap jenuh fluida kerja harus berada hampir vertikal pada diagram suhu-entropi. Superheat tidak diinginkan karena koefisien transfer panas pada daerah superheat lebih kecil dari pada daerah penguapan dan kondensasi. Kondisi fluida kerja pada saat keluar dari turbin ditentukan oleh kemiringan kurva uap jenuh pada diagram T-s (temperatur entropi). Fluida yang mempunyai kurva vertikal pada uap jenuhnya cenderung akan mempunyai efisiensi tinggi. Fluida yang berada pada kondisi campuran cair dan uap (yaitu berada di sebelah kiri kurva uap jenuh) akan menyebabkan masalah korosi, sedangkan uap superheated (yaitu berada di sebelah kanan kurva uap jenuh) akan menyebabkan naiknya heat rejection di dalam kondenser. Untuk memprediksi kondisi-kondisi tersebut, parameter I-factor direkomendasikan oleh Kihara dan Fukunaga (1975) sesuai dengan persamaan 2.1 berikut. I= 1- T cond C ( dt ds). sat.vap (2.1) dimana, I T cond C (dt/ds) sat.vap. : I - faktor : Temperatur kondensasi yang terkait dengan tekanan kondensasi. : Specific heat pada tekanan konstan. : Temperature gradient pada temperatur saturasi di diagram T-s.

16 24 Pada turbin outlet, fluida yang mempunyai kurva uap vertikal, I = 1; fluida dengan campuran basah, I < 1; dan untuk uap superheated, I > 1. I- factor didalam batasan 0,65 I 1,50 akan dipilih menjadi batas screening awal. f) Pertimbangan Keamanan Fluida kerja harus memiliki kestabilan termal yang tinggi, nonfouling, tidak korosif, tidak beracun dan tidak mudah terbakar. Fluida yang mempunyai tingkat toxic tinggi atau mudah terbakar (flammable) akan dieliminasi, kecuali fluida-fluida tersebut mempunyai keunggulan menyolok dibandingkan dengan kategori lain. Berdasarkan pada kriteria-kriteria diatas, fluida kerja yang telah dikaji oleh para ahli bisa dikelompokkan kedalam 4 grup, yaitu: karbondioksida, amonia, halokarbon dan hidrokarbon. Pada proses screening awal, penggunaan karbondioksida dan amonia dapat dieliminasi dengan alasan: - Temperatur kritis karbondioksida sangat rendah (31 C). - Walaupun secara thermal stabil, amonia adalah fluida yang sangat beracun dan mudah terbakar. Fluida halokarbon dan hidrokarbon menunjukkan banyak keunggulan dalam hal properti termodinamika untuk penerapannya di binary cycle. Properti fluida-fluida hidrokarbon dan hidrokarbon yang telah dipelajari oleh Kihara dan Fukunaga adalah seperti yang ditunjukkan pada Tabel 2.2.

17 25 Tabel 2.2. Properti Fluida Kerja untuk Rankine Cycle* Fluid Molecular Weight Critical Temperature ( C ) Critical Pressure ( bar abs ) Condensing Pressure ( bar abs ) I-Factor Heat Transfer Coefficient ( W/m 2 K ) HALOCARBONS R , R , R , R , HYDROCARBONS Propane 44, n-butane 58, n-pentane 72, Isobutane 58, Isopentane 75, * Source : Kihara and Fukunaga(1975), West, et.al. (1979) and Reynold (1979) Dari hal-hal diatas dapat disimpulkan bahwa hidrokarbon merupakan pilihan terbaik untuk aplikasi fluida kerja pada binary cycle. Untuk detail design PLTP Binary dipilih n-pentane sebagai fluida kerjanya karena tidak mudah terbakar kalau bersentuhan dengan api dan telah teruji Analisis Neraca Massa dan Neraca Panas (Heat and Mass Balance Analysis) Seperti yang telah dijelaskan diatas, proses kerja PLTP binary cycle adalah berdasarkan pada proses Siklus Rankine Organik Sederhana (SIMPLE DESIGN ORC). Gambar 2.10 dan 2.11 masing-masing memperlihatkan diagram T-s dan diagram P-h. Proses termodinamika yang terjadi di dalam setiap komponen PLTP binary cycle dihitung sebagai sebuah control volume yang berada dalam kondisi tetap (steady state) dengan mengacu kepada mass balance dan heat balance, dan siklus ini diasumsikan bekerja dalam kondisi ideal dan reversible

18 26 (friction dan heat losses diabaikan).selain itu, pinch point juga ditetapkan untuk setiap alat penukar kalor (Heat Exchanger). Gambar Diagram T-s pada Fluida n-pentane Gambar Diagram P-h pada Fluida n-pentane Dari analisa ini, kita dapat melihat bahwa yang dapat diubah-ubah dalam merencanakan PLTP jenis single flash system menjadi binary cycle system adalah jalur separator-nya dengan menyalurkan air panas yang semula menuju

19 27 turbin menjadi menuju heat exchangers. Separatornya pun beralih fungsi menjadi pemisah kotoran saja.

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System 32 BAB IV HASIL ANALISA DAN PEMBAHASAN 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System PLTP Gunung Salak merupakan PLTP yang berjenis single flash steam system. Oleh karena itu, seperti yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat besar. Hampir 27.000 MWe potensi panas bumi tersimpan di perut bumi Indonesia. Hal ini dikarenakan

Lebih terperinci

OPTIMALISASI PEMBANGKIT LISTRIK SIKLUS BINER DENGAN MEMPERHATIKAN FLUIDA KERJA YANG DIGUNAKAN

OPTIMALISASI PEMBANGKIT LISTRIK SIKLUS BINER DENGAN MEMPERHATIKAN FLUIDA KERJA YANG DIGUNAKAN Proseding Seminar Nasional Fisika dan Aplikasinya Sabtu, 19 November 2016 Bale Sawala Kampus Universitas Padjadjaran, Jatinangor OPTIMALISASI PEMBANGKIT LISTRIK SIKLUS BINER DENGAN MEMPERHATIKAN FLUIDA

Lebih terperinci

MODEL PEMBANGKIT LISTRIK TENAGA PANAS BUMI SISTEM HYBRID FLASH-BINARY DENGAN MEMANFAATKAN PANAS TERBUANG DARI BRINE HASIL FLASHING

MODEL PEMBANGKIT LISTRIK TENAGA PANAS BUMI SISTEM HYBRID FLASH-BINARY DENGAN MEMANFAATKAN PANAS TERBUANG DARI BRINE HASIL FLASHING MODEL PEMBANGKIT LISTRIK TENAGA PANAS BUMI SISTEM HYBRID FLASH-BINARY DENGAN MEMANFAATKAN PANAS TERBUANG DARI BRINE HASIL FLASHING Muhamad Ridwan Hamdani a), Cukup Mulyana b), Renie Adinda Pitalokha c),

Lebih terperinci

TEKANAN FLASHING OPTIMAL PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI SISTEM DOUBLE-FLASH

TEKANAN FLASHING OPTIMAL PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI SISTEM DOUBLE-FLASH DOI: doi.org/10.21009/03.snf2017.02.ere.01 TEKANAN FLASHING OPTIMAL PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI SISTEM DOUBLE-FLASH Rafif Tri Adi Baihaqi a), Hensen P. K. Sinulingga b), Muhamad Ridwan Hamdani

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Penelitian Energi memiliki peranan penting dalam menunjang kehidupan manusia. Seiring dengan perkembangan zaman, kebutuhan akan energi terus meningkat. Untuk dapat

Lebih terperinci

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT KONVERSI ENERGI PANAS BUMI HASBULLAH, MT TEKNIK ELEKTRO FPTK UPI, 2009 POTENSI ENERGI PANAS BUMI Indonesia dilewati 20% panjang dari sabuk api "ring of fire 50.000 MW potensi panas bumi dunia, 27.000 MW

Lebih terperinci

Analisa Efisiensi Thermal Pembangkit Listrik Tenaga Panas Bumi Lahendong Unit 5 Dan 6 Di Tompaso

Analisa Efisiensi Thermal Pembangkit Listrik Tenaga Panas Bumi Lahendong Unit 5 Dan 6 Di Tompaso Jurnal Teknik Elektro dan Komputer vol 7 no 2, 2018, ISSN : 2301-8402 123 Analisa Efisiensi Thermal Pembangkit Listrik Tenaga Panas Bumi Lahendong Unit 5 Dan 6 Di Tompaso Gerry A. Kusuma, Glanny Mangindaan,

Lebih terperinci

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI Pembangkit Listrik Tenaga Panas Bumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya pada PLTU uap

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi menjadi peran penting dalam menunjang kehidupan manusia. Ketersediaan energi Indonesia saat ini masih didominasi oleh energi fosil. Energi fosil Indonesia jumlahnya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 8 BAB I PENDAHULUAN 11 Latar Belakang Energi memiliki peranan penting dalam menunjang kehidupan manusia Seiring dengan perkembangan zaman kebutuhan akan energi pun terus meningkat Untuk dapat memenuhi

Lebih terperinci

TURBIN UAP. Penggunaan:

TURBIN UAP. Penggunaan: Turbin Uap TURBIN UAP Siklus pembangkitan tenaga terdiri dari pompa, generator uap (boiler), turbin, dan kondenser di mana fluida kerjanya (umumnya adala air) mengalami perubaan fasa dari cair ke uap

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Indonesia merupakan negara pemilik potensi energi panas bumi terbesar di dunia, mencapai 28.617 megawatt (MW) atau setara dengan 40% total potensi dunia yang tersebar

Lebih terperinci

BAB V HASIL PENELITIAN DAN PEMBAHASAN

BAB V HASIL PENELITIAN DAN PEMBAHASAN BAB V HASIL PENELITIAN DAN PEMBAHASAN 5.1. Gambaran Umum Lokasi Penelitian Lokasi penelitian terletak di kaki Gunung Salak tepatnya terletak di daerah Awi Bengkok. Lokasi Awi Bengkok tersebut termasuk

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1]

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1] BAB I PENDAHULUAN I.1. Latar Belakang Dewasa ini kelangkaan sumber energi fosil telah menjadi isu utama. Kebutuhan energi tersebut setiap hari terus meningkat. Maka dari itu, energi yang tersedia di bumi

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

Analisa Efisiensi Pembangkit Listrik Tenaga Panas Bumi (PLTP) Tipe Single Flash Sistem Yang Dirubah Menjadi Binary Cycle Sistem Di Gunung Salak

Analisa Efisiensi Pembangkit Listrik Tenaga Panas Bumi (PLTP) Tipe Single Flash Sistem Yang Dirubah Menjadi Binary Cycle Sistem Di Gunung Salak TUGAS AKHIR Analisa Efisiensi Pembangkit Listrik Tenaga Panas Bumi (PLTP) Tipe Single Flash Sistem Yang Dirubah Menjadi Binary Cycle Sistem Di Gunung Salak Diajukan Guna Memenuhi Syarat Kelulusan Mata

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori PLTGU atau combine cycle power plant (CCPP) adalah suatu unit pembangkit yang memanfaatkan siklus gabungan antara turbin uap dan turbin gas. Gagasan awal untuk

Lebih terperinci

Gambar 2.1 Skema siklus cetus tunggal sederhana pada sistem pembangkit. Gambar 2.22 Diagram T-s untuk siklus cetus tunggal sederhana.

Gambar 2.1 Skema siklus cetus tunggal sederhana pada sistem pembangkit. Gambar 2.22 Diagram T-s untuk siklus cetus tunggal sederhana. BAB 2 STUDI PUSTAKA 2.1 Pendahuluan Energi panas bumi adalah energi panas yang tersimpan dalam bentuk batuan atau fluida yang terkandung di bawah permukaan bumi. Energi panas bumi telah dimanfaatkan untuk

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Listrik merupakan salah satu energi yang sangat dibutuhkan oleh manusia pada era modern ini. Tak terkecuali di Indonesia, negara ini sedang gencargencarnya melakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

Program Studi Teknik Mesin BAB I PENDAHULUAN. manusia berhubungan dengan energi listrik. Seiring dengan pertumbuhan

Program Studi Teknik Mesin BAB I PENDAHULUAN. manusia berhubungan dengan energi listrik. Seiring dengan pertumbuhan BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat berperan penting dalam kehidupan manusia saat ini, dimana hampir semua aktifitas manusia berhubungan

Lebih terperinci

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN Ilham Bayu Tiasmoro. 1), Dedy Zulhidayat Noor 2) Jurusan D III Teknik Mesin Fakultas

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Energi listrik merupakan salah satu kebutuhan pokok yang cukup penting bagi manusia dalam kehidupan. Saat ini, hampir setiap kegiatan manusia membutuhkan energi

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

SKRIPSI / TUGAS AKHIR

SKRIPSI / TUGAS AKHIR SKRIPSI / TUGAS AKHIR ANALISIS PEMANFAATAN GAS BUANG DARI TURBIN UAP PLTGU 143 MW UNTUK PROSES DESALINASI ALBERT BATISTA TARIGAN (20406065) JURUSAN TEKNIK MESIN PENDAHULUAN Desalinasi adalah proses pemisahan

Lebih terperinci

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas I. PENDAHULUAN 1.1. Latar Belakang Energi panas bumi (Geothermal) merupakan sumber energi terbarukan berupa energi thermal (panas) yang dihasilkan dan disimpan di dalam inti bumi. Saat ini energi panas

Lebih terperinci

OPTIMALISASI MODEL PEMBANGKIT LISTRIK TENAGA PANAS BUMI TERINTEGRASI DENGAN MEMANFAATKAN BRINE HASIL FLASHING

OPTIMALISASI MODEL PEMBANGKIT LISTRIK TENAGA PANAS BUMI TERINTEGRASI DENGAN MEMANFAATKAN BRINE HASIL FLASHING Proseding Seminar Nasional Fisika dan Aplikasinya Sabtu, 19 November 2016 Bale Sawala Kampus Universitas Padjadjaran, Jatinangor OPTIMALISASI MODEL PEMBANGKIT LISTRIK TENAGA PANAS BUMI TERINTEGRASI DENGAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

ANALISIS PEMANFAATAN GEOTHERMAL BRINE UNTUK PEMBANGKITAN LISTRIK DENGAN MENGGUNAKAN HEAT EXCHANGER

ANALISIS PEMANFAATAN GEOTHERMAL BRINE UNTUK PEMBANGKITAN LISTRIK DENGAN MENGGUNAKAN HEAT EXCHANGER Halaman Judul TUGAS AKHIR - TF 141581 ANALISIS PEMANFAATAN GEOTHERMAL BRINE UNTUK PEMBANGKITAN LISTRIK DENGAN MENGGUNAKAN HEAT EXCHANGER ALOYSIUS AFRIANDI NRP. 2413 100 127 Dosen Pembimbing Dr. Ridho Hantoro,

Lebih terperinci

Perancangan Siklus Rankine Organik Untuk Pemanfaatan Gas Buang Pada PLTU di Indonesia

Perancangan Siklus Rankine Organik Untuk Pemanfaatan Gas Buang Pada PLTU di Indonesia Jurnal Rekayasa Hijau No.2 Vol. I ISSN 2550-1070 Juli 2017 Perancangan Siklus Rankine Organik Untuk Pemanfaatan Gas Buang Pada PLTU di Indonesia Mohammad Azis M Jurusan Teknik Mesin, Fakultas Teknik Industri,

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

Optimisasi Teknologi Proses Geothermal Sistem Flash Steam pada Pembangkit Listrik Tenaga Panas Bumi di Indonesia

Optimisasi Teknologi Proses Geothermal Sistem Flash Steam pada Pembangkit Listrik Tenaga Panas Bumi di Indonesia Optimisasi Teknologi Proses Geothermal Sistem Flash Steam pada Pembangkit Listrik Tenaga Panas Bumi di Indonesia Daril Ridho Zuchrillah 1, Renanto Handogo 1, *, Juwari 1 1 Teknik Kimia ITS Surabaya, Jalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

PENGARUH REKUPERATOR TERHADAP PERFORMA DARI PEMBANGKIT LISTRIK SIKLUS BINER

PENGARUH REKUPERATOR TERHADAP PERFORMA DARI PEMBANGKIT LISTRIK SIKLUS BINER Proseding Seminar Nasional Fisika dan Aplikasinya Sabtu, 19 November 2016 Bale Sawala Kampus Universitas Padjadjaran, Jatinangor PENGARUH REKUPERATOR TERHADAP PERFORMA DARI PEMBANGKIT LISTRIK SIKLUS BINER

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

Analisa Energi, Exergi dan Optimasi pada Pembangkit Listrik Tenaga Uap Super Kritikal 660 MW Nasruddin*, Pujo Satrio

Analisa Energi, Exergi dan Optimasi pada Pembangkit Listrik Tenaga Uap Super Kritikal 660 MW Nasruddin*, Pujo Satrio Analisa Energi, Exergi dan Optimasi pada Pembangkit Listrik Tenaga Uap Super Kritikal 660 MW Nasruddin*, Pujo Satrio Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia Kampus UI Depok 16424

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pembangkit listrik tenaga panas bumi adalah pembangkit listrik yang

II. TINJAUAN PUSTAKA. Pembangkit listrik tenaga panas bumi adalah pembangkit listrik yang II. TINJAUAN PUSTAKA 2.1. Pembangkit Listrik Tenaga Panas Bumi (PLTP) Pembangkit listrik tenaga panas bumi adalah pembangkit listrik yang menggunakan panas bumi (geothermal) sebagai energi penggeraknya.

Lebih terperinci

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA 1 PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP Oleh BAYU AGUNG PERMANA JASIRON NENI SUSANTI (0615021007) TEKNIK MESIN UNILA (0715021012)

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebutuhan manusia akan tenaga listrik terus meningkat. Tenaga listrik digunakan pada berbagai lini kehidupan seperti rumah tangga, perkantoran, industri baik home industry,

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sejak Tahun 1961, Indonesia merupakan salah satu negara yang tergabung dalam OPEC (Organization Petroleum Exporting Countries), dimana anggotanya merupakan negara-negara

Lebih terperinci

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara PERANCANGAN HEAT RECOVERY STEAM GENERATOR (HRSG) YANG MEMANFAATKAN GAS BUANG TURBIN GAS DI PLTG PT. PLN (PERSERO) PEMBANGKITAN DAN PENYALURAN SUMATERA BAGIAN UTARA SEKTOR BELAWAN Tekad Sitepu, Sahala Hadi

Lebih terperinci

BAB I PENDAHULUAN. Tabel 1.1. Perkembangan Neraca Listrik Domestik Indonesia [2].

BAB I PENDAHULUAN. Tabel 1.1. Perkembangan Neraca Listrik Domestik Indonesia [2]. BAB I PENDAHULUAN I.1. Latar Belakang Saat ini, kebutuhan listrik telah menjadi kebutuhan dasar manusia. Kebutuhan listrik sendiri didasari oleh keinginan manusia untuk melakukan aktivitas lebih mudah

Lebih terperinci

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-137 Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure Ryan Hidayat dan Bambang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. listrik adalah salah stu kebutuhan pokok yang sangat penting

BAB I PENDAHULUAN. 1.1 Latar Belakang. listrik adalah salah stu kebutuhan pokok yang sangat penting BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik adalah salah stu kebutuhan pokok yang sangat penting dalam kehidupan sehari-hari saat ini, dimana hampir semua aktifitas manusia berhubungan dengan energi

Lebih terperinci

BAB III KAJIAN PUSTAKA DAN KERANGKA PEMIKIRAN

BAB III KAJIAN PUSTAKA DAN KERANGKA PEMIKIRAN BAB III KAJIAN PUSTAKA DAN KERANGKA PEMIKIRAN 3.1. Kajian Teori 3.1.1. Energi Listrik Energi merupakan salah satu kebutuhan penting bagi kehidupan manusia. Berbagai hal mulai dari transportasi, penerangan

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN A. Latar Belakang PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN Pembangkit listrik yang terdapat di Indonesia sebagian besar menggunakan sumber daya tidak terbarukan untuk memenuhi kebutuhan listrik

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam tugas akhir ini akan dilakukan perancangan bejana tekan vertikal dan simulasi pembebanan eksentrik pada nozzle dengan studi kasus pada separator kluster 4 Fluid

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem refrigerasi kompresi uap Sistem refrigerasi yang umum dan mudah dijumpai pada aplikasi sehari-hari, baik untuk keperluan rumah tangga, komersial dan industri adalah sistem

Lebih terperinci

ANALISA TERMODINAMIKA PADA SISTEM PEMBANGKIT TENAGA UAP DENGAN VARIASI PEMBEBANAN DI UNIT PEMBANGKIT TENAGA UAP PT

ANALISA TERMODINAMIKA PADA SISTEM PEMBANGKIT TENAGA UAP DENGAN VARIASI PEMBEBANAN DI UNIT PEMBANGKIT TENAGA UAP PT ANALISA TERMODINAMIKA PADA SISTEM PEMBANGKIT TENAGA UAP DENGAN VARIASI PEMBEBANAN DI UNIT PEMBANGKIT TENAGA UAP PT. PERTAMINA (PERSERO) REFINERY UNIT IV CILACAP SKRIPSI Skripsi yang Diajukan untuk Melengkapi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Di dunia industri terutama dibidang petrokimia dan perminyakan banyak proses perubahan satu fluida ke fluida yang lain yang lain baik secara kimia maupun non kimia.

Lebih terperinci

Oleh : Dwi Dharma Risqiawan Dosen Pembimbing : Ary Bachtiar K.P, ST, MT, PhD

Oleh : Dwi Dharma Risqiawan Dosen Pembimbing : Ary Bachtiar K.P, ST, MT, PhD STUDI EKSPERIMEN PERBANDINGAN PENGARUH VARIASI TEKANAN MASUK TURBIN DAN VARIASI PEMBEBANAN GENERATOR TERHADAP PEFORMA TURBIN PADA ORGANIC RANKINE CYCLE Oleh : Dwi Dharma Risqiawan 2109100120 Dosen Pembimbing

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

STUDI EKSPERIMEN PENGARUH PEMBEBANAN GENERATOR PADA PERFORMA SISTEM ORGANIC RANKINE CYCLE (ORC)

STUDI EKSPERIMEN PENGARUH PEMBEBANAN GENERATOR PADA PERFORMA SISTEM ORGANIC RANKINE CYCLE (ORC) CHRISNANDA ANGGRADIAR (2109 106 036) Dosen Pembimbing Ary Bachtiar Khrisna Putra, ST, MT, Ph.D STUDI EKSPERIMEN PENGARUH PEMBEBANAN GENERATOR PADA PERFORMA SISTEM ORGANIC RANKINE CYCLE (ORC) Latar Belakang

Lebih terperinci

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM Ign. Djoko Irianto Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN) BATAN ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI

Lebih terperinci

Desain Proses Pengelolaan Limbah Vinasse dengan Metode Pemekatan dan Pembakaran pada Pabrik Gula- Alkohol Terintegrasi

Desain Proses Pengelolaan Limbah Vinasse dengan Metode Pemekatan dan Pembakaran pada Pabrik Gula- Alkohol Terintegrasi Desain Proses Pengelolaan Limbah Vinasse dengan Metode Pemekatan dan Pembakaran pada Pabrik Gula- Alkohol Terintegrasi Disusun oleh : Iqbal Safirul Barqi 2308 100 151 Muhammad Fauzi 2308 100 176 Dosen

Lebih terperinci

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02 ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN Disusun Oleh: GRACE ELIZABETH 30408397 3 ID 02 JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA 2011 ENERGI TERBARUKAN Konsep energi

Lebih terperinci

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan kebutuhan energi listrik pada zaman globalisasi ini, Indonesia melaksanakan program percepatan pembangkitan listrik sebesar 10.000 MW dengan mendirikan

Lebih terperinci

BAB I PENDAHULUAN. Sistem refrigerasi telah memainkan peran penting dalam kehidupan

BAB I PENDAHULUAN. Sistem refrigerasi telah memainkan peran penting dalam kehidupan 1 BAB I PENDAHULUAN 1.1. Latar belakang Sistem refrigerasi telah memainkan peran penting dalam kehidupan sehari-hari, tidak hanya terbatas untuk peningkatan kualitas dan kenyamanan hidup, namun juga telah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Refrigeran merupakan media pendingin yang bersirkulasi di dalam sistem refrigerasi kompresi uap. ASHRAE 2005 mendefinisikan refrigeran sebagai fluida kerja

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS Gambar 4.1 Lokasi PT. Indonesia Power PLTP Kamojang Sumber: Google Map Pada gambar 4.1 merupakan lokasi PT Indonesia Power Unit Pembangkitan dan Jasa Pembangkitan Kamojang terletak

Lebih terperinci

BAB IV ANALISIS HASIL SIMULASI KCS 34

BAB IV ANALISIS HASIL SIMULASI KCS 34 BAB IV ANALISIS HASIL SIMULASI KCS 34 4.1 KCS 34 HUSAVIC, ISLANDIA Pembangkit daya sistem siklus Kalina yang telah berjalan dan dilakukan komersialisasi didunia, yakni yang berada di negara Islandia. Akan

Lebih terperinci

BAB III PEMODELAN SIKLUS KALINA DENGAN CYCLE TEMPO 5.0

BAB III PEMODELAN SIKLUS KALINA DENGAN CYCLE TEMPO 5.0 BAB III PEMODELAN SIKLUS KALINA DENGAN CYCLE TEMPO 5.0 3. SIKLUS KALINA 2 MW Sistem siklus Kalina 34 atau (KCS 34) digunakan dalam pembuatan pembangkat daya dan dirancang oleh Dr. Alexander Kalina yang

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Skema Oraganic Rankine Cycle Pada penelitian ini sistem Organic Rankine Cycle secara umum dibutuhkan sebuah alat uji sistem ORC yang terdiri dari pompa, boiler, turbin dan

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung (Indirect Cooling System) Sistem pendinginan tidak langsung (indirect Cooling system) adalah salah satu jenis proses pendinginan dimana digunakannya

Lebih terperinci

SILABUS MATA KULIAH D4 REFRIGERASI DASAR KURIKULUM 2011 tahun ajaran 2010/2011. Materi Tujuan Ket.

SILABUS MATA KULIAH D4 REFRIGERASI DASAR KURIKULUM 2011 tahun ajaran 2010/2011. Materi Tujuan Ket. SILABUS MATA KULIAH D4 REFRIGERASI DASAR KURIKULUM 2011 tahun ajaran 2010/2011 No Minggu ke 1 1-2 20 Feb 27 Feb Materi Tujuan Ket. Pendahuluan, Jenis dan Contoh Aplikasi system Refrigerasi Siswa mengetahui

Lebih terperinci

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008 TERMODINAMIKA II Semester Genap TA 007/008 Siklus Kompresi Uap Ideal (A Simple Vapor-Compression Refrigeration Cycle) Mempunyai komponen dan proses.. Compressor: mengkompresi uap menjadi uap bertekanan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter A. Prasetyadi, FA. Rusdi Sambada Jurusan Teknik Mesin, Fakultas Sains dan Teknologi, Universitas Sanata Dharma Kampus 3, Paingan, Maguwoharjo,

Lebih terperinci

Teknologi Desalinasi Menggunakan Multi Stage Flash Distillation (MSF)

Teknologi Desalinasi Menggunakan Multi Stage Flash Distillation (MSF) Teknologi Desalinasi Menggunakan Multi Stage Flash Distillation (MSF) IFFATUL IZZA SIFTIANIDA (37895) Program Studi Teknik Nuklir FAKULTAS TEKNIK UNIVERSITAS GADJAH MADA ABSTRAK Teknologi Desalinasi Menggunakan

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini BAB II TINJAUAN PUSTAKA 21 Mesin Refrigerasi Secara umum bidang refrigerasi mencakup kisaran temperatur sampai 123 K Sedangkan proses-proses dan aplikasi teknik yang beroperasi pada kisaran temperatur

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 1 BAB I PENDAHULUAN I.1 Latar Belakang Energi listrik memegang peran penting dalam kehidupan manusia pada saat ini. Hampir semua aktivitas manusia berhubungan dengan energi listrik. Seperti yang ditunjukkan

Lebih terperinci

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin BELLA TANIA Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya May 9, 2013 Abstrak Mesin

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008 BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

GEOTHERMAL SEBAGAI ENERGI ALTERNATIF

GEOTHERMAL SEBAGAI ENERGI ALTERNATIF GEOTHERMAL SEBAGAI ENERGI ALTERNATIF Makalah ini diajukan untuk memenuhi tugas MID AMISCA 2008 Disusun oleh: Kelompok 1 Kelompok 2 Fazri Azhar (10507001) Dinda Husna (10507057) Mila Vanesa (10507013) Sukmawati

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Latar Belakang Pengkondisian udaraa pada kendaraan mengatur mengenai kelembaban, pemanasan dan pendinginan udara dalam ruangan. Pengkondisian ini bertujuan bukan saja sebagai penyejuk

Lebih terperinci

Oleh KNIK NEGERI MEDAN MEDAN

Oleh KNIK NEGERI MEDAN MEDAN ANALISA PERPINDAHAN PANAS PADA KONDENSER DENGAN KAPASITAS AIR PENDINGIN 179001 M 3 /JAM STAR ENERGY GEOTHERMAL WAYANG WINDU LIMITED LAPORAN TUGAS AKHIR Diajukan Untuk Memenuhii Sebagian Persyaratan n dalam

Lebih terperinci

PERANCANGAN DAN SIMULASI SISTEM OPERASIONAL SIKLUS KALINA KAPASITAS STEAM 50 TON/JAM DENGAN MEMANFAATKAN UAP DARI VENT VALVE SYSTEM PLTP KAMOJANG

PERANCANGAN DAN SIMULASI SISTEM OPERASIONAL SIKLUS KALINA KAPASITAS STEAM 50 TON/JAM DENGAN MEMANFAATKAN UAP DARI VENT VALVE SYSTEM PLTP KAMOJANG TUGAS AKHIR (KONVERSI ENERGI) TM 091585 PERANCANGAN DAN SIMULASI SISTEM OPERASIONAL SIKLUS KALINA KAPASITAS STEAM 50 TON/JAM DENGAN MEMANFAATKAN UAP DARI VENT VALVE SYSTEM PLTP KAMOJANG ILHAM ARDI PRATAMA

Lebih terperinci

Basic Comfort Air Conditioning System

Basic Comfort Air Conditioning System Basic Comfort Air Conditioning System Manual Book (CAC BAC 09K) 5 PERCOBAAN 32 5.1. KOMPONEN KOMPONEN UTAMA DALAM SISTEM PENDINGIN TUJUAN: Setelah melakukan percobaan ini siswa akan dapat : 1. Memahami

Lebih terperinci

8.1. Ketersediaan dan Sifat

8.1. Ketersediaan dan Sifat Topik Substansi Tujuan Pembelajaran Waktu : Pemanfaatan Energi Panas Bumi : Teori dasar pemanfaatan energi panas bumi (Ketersediaan sumber energi panas bumi, formula dasar pemanfaatan sumber energi panas

Lebih terperinci

PLTU (PEMBANGKIT LISTRIK TENAGA UAP)

PLTU (PEMBANGKIT LISTRIK TENAGA UAP) PLTU (PEMBANGKIT LISTRIK TENAGA UAP) I. PENDAHULUAN Pusat pembangkit listrik tenaga uap pada saat ini masih menjadi pilihan dalam konversi tenaga dengan skala besar dari bahan bakar konvensional menjadi

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA Disusun oleh : 1. Fatma Yunita Hasyim (2308 100 044)

Lebih terperinci

Session 17 Steam Turbine Theory. PT. Dian Swastatika Sentosa

Session 17 Steam Turbine Theory. PT. Dian Swastatika Sentosa Session 17 Steam Turbine Theory PT. Dian Swastatika Sentosa DSS Head Office, 27 Oktober 2008 Outline 1. Pendahuluan 2. Bagan Proses Tenaga Uap 3. Air dan Uap dalam diagram T s dan h s 4. Penggunaan Diagram

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi Jurnal FEMA, Volume 1, Nomor 3, Juli 2013 Kajian Analitis Sistem Pembangkit Uap Kogenerasi Lamsihar S. Tamba 1), Harmen 2) dan A. Yudi Eka Risano 2) 1) Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SIKLUS RANKINE (STEAM POWER PLANT SYSTEM) SEBAGAI BAHAN PEMBELAJARAN TERMODINAMIKA TEKNIK

PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SIKLUS RANKINE (STEAM POWER PLANT SYSTEM) SEBAGAI BAHAN PEMBELAJARAN TERMODINAMIKA TEKNIK Jurnal Mekanikal, Vol. 4 No. 1, Januari 2013: 337-344 ISSN 2086-3403 PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SIKLUS RANKINE (STEAM POWER PLANT SYSTEM) SEBAGAI BAHAN PEMBELAJARAN TERMODINAMIKA TEKNIK

Lebih terperinci

BAB 3 SIMULASI SIKLUS CETUS-BINER PADA PLTP

BAB 3 SIMULASI SIKLUS CETUS-BINER PADA PLTP BAB 3 SIMULASI SIKLUS CETUS-BINER PADA PLTP 3.1 Pemilihan Persamaan Tingkat Keadaan Memilih persamaan tingkat keadaan yang sesuai merupakan hal yang penting pada langkah awal proses simulasi. Persamaan

Lebih terperinci