PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama"

Transkripsi

1 PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS. LATAR BELAKANG Tidak semua fungsi mudah dievaluasi, terlebih fungsi yang rumit. Pendekatan dengan polinomial merupakan pendekatan sederhana fungsi. Pendekatan minimaks adalah pendekatan polinomial terbaik sebab pendekatan tersebut dapat meminimumkan eror maksimum polinomial pendekatan fungsi pada seluruh interval dan eror pendekatan bersifat equal ripple. Namun, pendekatan minimaks sulit dikonstruksi sehingga perlu pendekatan lain dengan eror yang bersifat near equal ripple. Pendekatan yang mendekati pendekatan minimaks tersebut dikenal sebagai pendekatan near minimaks. 2. PERUMUSAN MASALAH Dari latar belakang dapat dirumuskan tiga masalah, yaitu () bagaimana menurunkan ulang algoritma near minimaks, (2) bagaimana menerapkan algoritma pendekatan near minimaks pada suatu kasus, dan (3) bagaimana menganalisis eror hasil penerapan kasus tersebut. 3. TUJUAN Tujuan penulisan artikel ini adalah () dapat menurunkan ulang algoritma near minimaks, (2) dapat menerapkan algoritma pendekatan near minimaks pada suatu kasus, dan (3) dapat menganalisis eror hasil penerapan kasus.

2 4. PEMBAHASAN 4.. Pendekatan Minimaks. Menurut May [3], jika φ(x; a 0, a,..., a n ) pendekatan f(x) pada interval [a, b], maka maksimum eror pendekatan sebesar E = maks a x b f(x) φ(x; a 0, a,..., a n ). Pendekatan minimaks (pendekatan terbaik) f(x) dihasilkan dari pemilihan parameter a 0, a,..., a n sedemikian sehingga nilai E yang dihasilkan minimum. Jika maks f(x) a x b p n(x) maks f(x) p n(x) a x b untuk semua polinomial p n (x) berderajat n, maka polinomial p n(x) merupakan pendekatan minimaks dari f(x). Eror pendekatan minimaks memiliki sifat equal ripple yaitu f(x) p n(x) memiliki n + 2 nilai ekstrim dengan tanda yang saling berganti dan n + akar (May [3]) Polinomial Chebyshev. Akan ditunjukkan polinomial Chebyshev memiliki sifat equal ripple pada interval [-,]. Untuk x [, ], polinomial Chebyshev didefinisikan dengan sehingga T n (x) = cos(n arccos x), untuk setiap n 0, (4.) T 0 (x) = dan T (x) = x. Untuk n >, jika diambil subsitusi θ = arccos x, persamaan (4.) menjadi Dengan hubungan rekursi diperoleh T n (θ(x)) T n (θ) = cos(nθ), dengan θ [0, π]. 2xT n (x) T n (x) = cos nθ cos θ sin nθ sin θ = cos(n + )θ = T n+ (x). Karena T n (x) = cos nθ, maka polinomial Chebyshev memiliki sifat equal ripple pada interval [-,]. Dengan demikian, dikonstruksi pendekatan dengan eror yang bersifat equal ripple dari polinomial Chebyshev Konstruksi Pendekatan Near Minimaks. Polinomial Chebyshev T n (x) berderajat n memiliki n akar sederhana pada ( ) 2k + x k = cos π, k =, 2,..., n. 2n Lebih lanjut, T n (x) memiliki nilai ekstrim, x, pada ( ) kπ x k = cos, dengan T n ( x n k) = ( ) k, k = 0,, 2,..., n.

3 Polinomial monik (polinomial dengan koefisien pangkat tertinggi sama dengan satu) Chebyshev T n (x) diturunkan dari polinomial Chebyshev T n (x) dengan dikalikan 2 n dan diperoleh T 0 (x) = dan T n (x) = 2 n T n(x), n 2. Karena T n (x) merupakan kelipatan T n (x), akar-akar T n (x) juga terletak pada ( ) 2k + x k = cos π, k =, 2,..., n 2n dan nilai ekstrim T n (x), untuk n, terletak pada ( ) kπ x k = cos, dengan T n ( x n k) = ( )k, k = 0,, 2,..., n. 2n Misal n menotasikan himpunan semua polinomial monik berderajat n. Burden dan Faires [2] menyatakan bahwa polinomial T n (x) memiliki sifat = maks 2n x [,] T n (x) maks P n(x), untuk semua P n (x) n. (4.2) x [,] Jika x 0,..., x n [, ] dan f fungsi pada interval [-,], maka untuk setiap x [, ] terdapat ξ x [, ] sedemikian sehingga f(x) P (x) = f n+ (ξ x ) (n + )! (x x 0)(x x )... (x x n ), dengan P (x) polinomial interpolasi. Karena ξ x tertentu, maka untuk meminimumkan eror di sekitar titik-titik x 0,..., x n, akan dicari x 0,..., x n yang meminimumkan pada interval [-,]. (x x 0 )(x x )... (x x n ) Karena (x x 0 )(x x )... (x x n ) polinomial monik berderajat n +, dari (4.2) minimum diperoleh jika (x x 0 )(x x )... (x x n ) = T n (x). Nilai maksimum (x x 0 )(x x )... (x x n ) akan minimum jika x k merupakan n + akar pertama T n (x) atau dengan kata lain, Karena maks x [,] T n (x) = 2, maka n x k = x k = cos 2k + π, k = 0,, n. 2n n = maks x [,] (x x 0)(x x )... (x x n ) maks x [,] (x x 0)(x x )... (x x n ), untuk sembarang x 0, x,..., x n pada interval [-,]. Akibatnya P (x) (polinomial interpolasi berderajat sekurang-kurangnya n dengan titik-titik interpolasi pada akar-akar T n+ (x)) merupakan pendekatan near minimaks (Burden dan Faires [2]).

4 Untuk titik-titik pada interval [a, b] digunakan transformasi xk = 2 ((b a) x k + a + b), k = 0,,..., n (4.3) yang mentransformasikan x k pada interval [-,] ke x k pada interval [a, b] yang bersesuaian. Titik-titik (4.3) disebut titik Chebyshev. Jadi, untuk menurunkan pendekatan minimaks (pendekatan near minimaks), dicari polinomial interpolasi pada titik-titik Chebyshev. 5. PENERAPAN KASUS Diberikan dua kasus pendekatan near minimaks. Kasus pertama adalah pendekatan near minimaks pada fungsi eksponensial dan kasus kedua adalah pendekatan near minimaks pada fungsi invers tangen. Proses perhitungan menggunakan software Mathematica 7.0 Kasus 5.. Kasus diambil dari Burden dan Faires [2] halaman 57. Akan dicari pendekatan near minimaks fungsi f(x) = e x, x [, ] berderajat dua, tiga, dan empat. Berdasarkan soal diketahui a =, b =, dan n = 2, 3, dan 4. Untuk pendekatan berderajat dua, fungsi f(x) = e x diinterpolasi pada titik-titik ( ) 2k + xk = cos π, k = 0,, 2. 6 Tabel selisih terbagi Newton untuk titik-titik Chebyshev tersebut terlihat pada Tabel. Tabel. Tiga titik Chebyshev, fungsi e x pada titik-titik Chebyshev, dan formula selisih terbagi Newton. xk f( x k ) Df[ x k ] D 2 f[ x k ] Jadi, pendekatan f(x) = e x berderajat dua adalah p 2 (x) = (x ) ( (x) ( )). (5.) Untuk pendekatan berderajat tiga, fungsi f(x) = e x diinterpolasi pada titik-titik ( ) 2k + xk = cos π, k = 0,, 2, 3. 8 Tabel selisih terbagi Newton untuk titik-titik Chebyshev tersebut terlihat pada Tabel 2.

5 Tabel 2. Empat titik Chebyshev, fungsi e x pada titik-titik Chebyshev, dan formula selisih terbagi Newton. xk f( x k ) Df[ x k ] D 2 f[ x k ] D 3 f[ x k ] Jadi, pendekatan f(x) = e x berderajat tiga adalah p 3 (x) = (x )( (x ) ( (x )( ))) (5.2) Dengan cara yang sama diperoleh pendekatan f(x) = e x berderajat empat, yaitu p 4 (x) = (x )( (x )( (x)( (x )( )))) (5.3) Akan dibandingkan eror masing-masing pendekatan. Eror pendekatan berderajat dua (5.) berupa garis putus-putus, berderajat tiga (5.2) berupa garis tebal, dan berderajat empat (5.3) berupa garis tipis x x Gambar. Eror pendekatan berderajat dua dan berderajat tiga dari f(x) = e x (kiri) serta berderajat tiga dan berderajat empat dari f(x) = e x (kanan). Dari Gambar terlihat bahwa eror pendekatan berderajat dua, tiga, dan empat bersifat ripple dan harga mutlak ekstrimnya berkisar di (berderajat dua), (berderajat tiga) dan 0.00 (berderajat empat). Karena harga mutlak ekstrimnya berkisar pada suatu nilai

6 tertentu, maka eror pendekatan berderajat dua, tiga, dan empat bersifat near equal ripple. Karena eror pendekatan bersifat near equal ripple maka pendekatan berderajat dua, tiga, dan empat adalah pendekatan near minimaks. Pendekatan dengan polinomial berderajat empat adalah pendekatan terbaik sebab memiliki eror maksimum yang lebih kecil daripada polinomial berderajat dua dan tiga. Kasus 5.2. Kasus diambil dari Atkinson [] halaman 244. Akan dicari pendekatan near minimaks fungsi f(x) = tan x, x [0, ] berderajat dua, tiga, empat, dan lima. Berdasarkan soal diketahui a = 0, b =, dan n = 2, 3, 4 dan 5. Untuk pendekatan berderajat dua, fungsi f(x) = tan x diinterpolasi pada titik-titik xj = 2 ( ( ) ) 2j + cos π +, j = 0,, 2. 6 Tabel selisih terbagi Newton untuk titik-titik Chebyshev tersebut terlihat pada Tabel 3 Tabel 3. Tiga titik Chebyshev, fungsi tan x pada titik-titik Chebyshev, dan formula selisih terbagi Newton. xj f( x j ) Df[ x j ] D 2 f[ x j ] Jadi, pendekatan f(x) = tan x berderajat dua adalah p 2 (x) = (x )( (x 0.5)( )). (5.4) Dengan cara yang sama diperoleh pendekatan f(x) = tan x berderajat tiga, empat, dan lima, yaitu p 3 (x) = (x )( (x ) ( (x )( ))), (5.5) p 4 (x) = (x )( (x )( (x 0.5)( (x )(0.426)))), (5.6)

7 dan p 5 (x) = (x )( (x )( (x ) ( (x )( (x )( ))))). (5.7) Akan dibandingkan eror masing-masing pendejatan. Eror pendekatan near minimaks berderajat dua (5.4) berupa garis putus-putus, berderajat tiga (5.5) berupa garis tebal, berderajat empat (5.6) berupa garis tipis, dan berderajat lima (5.7) berupa garis putus-putus tebal x Gambar 2. Eror pendekatan berderajat dua dan berderajat tiga dari f(x) = tan x (kiri) serta berderajat empat dan lima dari f(x) = tan x (kanan). Dari Gambar 2 dan Gambar 3, eror pendekatan berderajat dua, tiga, empat, dan lima bersifat ripple. Harga mutlak ekstrim pada eror pendekatan berderajat dua tidak berkisar pada nilai tertentu yang hampir sama dan eror pada x = 0 cukup besar sehingga eror pendekatan berderajat dua tidak near equal ripple. Dengan demikian pendekatan berderajat dua bukan pendekatan near minimaks. Harga mutlak ekstrim pendekatan berderajat tiga, empat, dan lima berkisar di nilai Karena harga mutlak ekstrimnya berkisar pada suatu nilai tertentu, maka eror pendekatan berderajat tiga, empat, dan lima bersifat near equal ripple. Dengan demikian pendekatan berderajat tiga, empat, dan lima merupakan pendekatan near minimaks. Pendekatan dengan polinomial berderajat lima adalah pendekatan terbaik sebab memiliki eror maksimum yang lebih kecil daripada polinomial berderajat empat. 6. KESIMPULAN Dari pembahasan dan penerapan kasus, diperoleh kesimpulan () pendekatan near minimaks fungsi diperoleh dari polinomial interpolasi pada titik-titik Chebyshev, (2) eror pendekatan near minimaks bersifat near equal ripple,

8 (3) dari Kasus pendekatan near minimaks adalah pendekatan berderajat empat bila dibandingkan dengan derajat dua dan tiga dan dari Kasus 2 pendekatan near minimaks adalah pendekatan berderajat lima bila dibandingkan dengan derajat dua, tiga, dan empat. Pustaka [] Atkinson, K. E., An Introduction to Numerical Analysis, John Wiley and Sons, New York, 987. [2] Burden, R. L. and Faires, J. D., Numerical Analysis, Brooks/Cole, California, 200. [3] May, R. L., Approximation and Quadrature, Royal Melbourne Institute of Technology Ltd, Melbourne, 99. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, UNS, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 5726

PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU

PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS 1. LATAR BELAKANG

Lebih terperinci

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA Irpan Riski M 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

INTERPOLASI CHEBYSHEV MAKALAH. Disusun untuk memenuhi tugas Mata Kuliah Metode Numerik yang dibimbing oleh. Dr. Trisilowati, S.Si., M.

INTERPOLASI CHEBYSHEV MAKALAH. Disusun untuk memenuhi tugas Mata Kuliah Metode Numerik yang dibimbing oleh. Dr. Trisilowati, S.Si., M. ITERPOLASI CHEBYSHEV MAKALAH Disusun untuk memenuhi tugas Mata Kuliah Metode umerik yang dibimbing oleh Dr. Trisilowati, S.Si., M.Sc Disusun Oleh: Danang Indrajaya (146090400111008) M. Adib Jauhari Dwi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 148 153 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yolla Sarwenda 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI

FUNGSI DAN GRAFIK FUNGSI FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

untuk i = 0, 1, 2,..., n

untuk i = 0, 1, 2,..., n RANGKUMAN KULIAH-2 ANALISIS NUMERIK INTERPOLASI POLINOMIAL DAN TURUNAN NUMERIK 1. Interpolasi linear a. Interpolasi Polinomial Lagrange Suatu fungsi f dapat di interpolasikan ke dalam bentuk interpolasi

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

III. FUNGSI POLINOMIAL

III. FUNGSI POLINOMIAL III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61 TERAPAN TURUNAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 61 Topik Bahasan 1 Nilai Maksimum dan Minimum 2 Teorema Nilai Rataan (TNR) 3 Turunan

Lebih terperinci

SEMINAR NASIONAL BASIC SCIENCE II

SEMINAR NASIONAL BASIC SCIENCE II ISBN : 978-60-975-0-5 PROSEDING SEMINAR NASIONAL BASIC SCIENCE II Konstribusi Sains Untuk Pengembangan Pendidikan, Biodiversitas dan Metigasi Bencana Pada Daerah Kepulauan SCIENTIFIC COMMITTEE: Prof. H.J.

Lebih terperinci

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK Resdianti Marny 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

Kurikulum 2013 Antiremed Kelas 11 Matematika

Kurikulum 2013 Antiremed Kelas 11 Matematika Kurikulum 03 Antiremed Kelas Matematika Turunan Fungsi dan Aplikasinya Soal Doc. Name: K3ARMATPMT060 Version: 05-0 halaman 0. Jika f(x) = 8x maka f (x). (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui

Lebih terperinci

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria 1, Agusni, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN 10.1 PENDAHULUAN Sebelum mambahas it fungsi di suatu titik terlebih dahulu kita akan mengamati perilaku suatu fungsi bila peubahnya mendekati suatu bilangan ril c tertentu. Misal

Lebih terperinci

PENURUNAN METODE NICKALLS DAN PENERAPANNYA PADA PENYELESAIAN PERSAMAAN KUBIK

PENURUNAN METODE NICKALLS DAN PENERAPANNYA PADA PENYELESAIAN PERSAMAAN KUBIK Jurnal Matematika UNAND Vol. 5 No. Hal. 40 47 ISSN : 2303 290 c Jurusan Matematika FMIPA UNAND PENURUNAN METODE NICKALLS DAN PENERAPANNYA PADA PENYELESAIAN PERSAMAAN KUBIK MISNAWATI Program Studi Matematika,

Lebih terperinci

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT Yenni May Sovia, Agusni 2 Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN Nurholilah Siagian, Samsudhuha, Khozin Mu tamar Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Anisa Rizky Apriliana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika

Lebih terperinci

Analisis Riil II: Diferensiasi

Analisis Riil II: Diferensiasi Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang

Lebih terperinci

MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL)

MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) KATA PENGANTAR Puji dan Syukur kami panjatkan ke Hadirat Tuhan Yang Maha Esa, karena berkat limpahan Rahmat dan Karunia-nya sehingga kami dapat menyusun makalah

Lebih terperinci

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL N.D. Monti 1, M. Imran, A. Karma 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA A. MATA KULIAH RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA Nama Mata Kuliah : Matematika II Kode/sks : MAS 4116/ 3 Semester : III Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAS 4215

Lebih terperinci

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI Amelia Riski, Putra. Supriadi 2, Agusni 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT

FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM Oktario Anjar Pratama Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika

K13 Revisi Antiremed Kelas 11 Matematika K3 Revisi Antiremed Kelas Matematika Turunan - Latihan Soal Doc. Name: RK3ARMATWJB080 Version: 06- halaman 0. Jika f(x) = 8x maka f'(x) =. (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui y = sin ( π x),

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret trigonometri tersebut

Lebih terperinci

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =.

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =. 1. Jika f ( x ) sin² ( 2x + ), maka nilai f ( 0 ). a. 2 b. 2 c. d. e. 2. Diketahui f(x) sin³ (3 2x). Turunan pertama fungsi f adalah f (x). a. 6 sin² (3 2x) cos (3 2x) b. 3 sin² (3 2x) cos (3 2x) c. 2

Lebih terperinci

Materi UTS. Kalkulus 1. Semester Gasal Pengajar: Hazrul Iswadi

Materi UTS. Kalkulus 1. Semester Gasal Pengajar: Hazrul Iswadi Materi UTS Kalkulus 1 Semester Gasal 2016-2017 Pengajar: Hazrul Iswadi Daftar Isi Pengantar...hal 1 Pertemuan 1...hal 2-5 Pertemuan 2...hal 6-10 Pertemuan 3...hal 11-13 Pertemuan 4...hal 14-21 Pertemuan

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA Prosiding Seminar Nasional Volume 02, Nomor 1 ISSN 2443-1109 KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA Rio Fabrika Pasandaran 1, Patmaniar 2 Universitas Cokroaminoto

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA Jurnal Matematika UNAND Vol. No. 4 Hal. 9 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA MARNISYAH ANAS Program Studi Magister Matematika, Fakultas

Lebih terperinci

Interpolasi Polinom dan Applikasi pada Model Autoregresif

Interpolasi Polinom dan Applikasi pada Model Autoregresif Interpolasi Polinom dan Applikasi pada Model Autoregresif Rio Cahya Dwiyanto 13506041 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel.

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. Definisi. (i) Suatu fungsi f(x, y) memiliki minimum lokal pada titik

Lebih terperinci

Bab II LANDASAN TEORI

Bab II LANDASAN TEORI Bab II LANDASAN TEORI Bab ini terdiri dari 3 bagian. Pada bagian pertama berisi tinjauan pustaka dari penelitian-penelitian sebelumnya. Pada bagian kedua diberikan teori penunjang untuk mencapai tujuan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB IV DERET FOURIER

BAB IV DERET FOURIER BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut

Lebih terperinci

BAB 3. LIMIT DAN KEKONTINUAN FUNGSI

BAB 3. LIMIT DAN KEKONTINUAN FUNGSI BAB. LIMIT DAN KEKONTINUAN FUNGSI A. Definisi it Sebelum mendefinisikan it, terlebih dahulu perhatikan gambar berikut! y L + ε ε ε f() f() - L L f() - L f() L - ε c - δ c c + δ c- -c δ δ Gambar. Dari gambar

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal P Doc. Name: UNSMAIPA008MATP Doc. Version : 0-0 halaman 0. Ingkaran dari pernyataan "Semua anak-anak suka bermain air." Tidak ada anak-anak yang suka bermain air. Semua

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

BILANGAN KOMPLEKS. Muhammad Hajarul Aswad Pendidikan Matematika Institut Agama Islam Negeri (IAIN) Palopo. Aswad

BILANGAN KOMPLEKS. Muhammad Hajarul Aswad Pendidikan Matematika Institut Agama Islam Negeri (IAIN) Palopo. Aswad 4. Kompleks Kojugate (Sekawan) 5. Bentuk Polar & Eksponensial Bilangan Kompleks BILANGAN KOMPLEKS Muhammad Hajarul Aswad Pendidikan Matematika Institut Agama Islam Negeri (IAIN) Palopo 6. Perkalian & Pembagian

Lebih terperinci

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 47 55 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING LIDYA PRATIWI, MAHDHIVAN SYAFWAN, RADHIATUL HUSNA

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR Yeni Cahyati 1, Agusni 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-6 Babak Penyisihan Tingkat SMA Minggu, 8 November 015 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

Deret Fourier. (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya. Fungsi Genap dan Fungsi Ganjil

Deret Fourier. (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya. Fungsi Genap dan Fungsi Ganjil TKS 4007 Matematika III Deret Fourier (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Fungsi Genap dan Fungsi Ganjil Perhitungan koefisien-koefisien Fourier sering kali

Lebih terperinci

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 Tornados P. Silaban 1, Faiz Ahyaningsih 2 1) FMIPA, UNIMED, Medan, Indonesia email: tornados.p_silaban@yahoo.com 2)

Lebih terperinci

FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI

FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI Irvan Agus Etioko 1, Farikhin 2, Widowati 3 1,2,3 Program Studi Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H. Tembalang

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB 2. FUNGSI & GRAFIKNYA

BAB 2. FUNGSI & GRAFIKNYA . Fungsi BAB. FUNGSI & GRAFIKNYA Seara intuitif, kita pandang sebagai fungsi dari jika terdapat aturan dimana nilai (tunggal) mengkait nilai. Contoh:. a. 5 b. Definisi: Suatu fungsi adalah suatu himpunan

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini METODE NUMERIK, oleh Sri Adi Widodo, M.Pd. Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

Daimah 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Daimah 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE NEWTON BISECTRIX UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Daimah 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smart Solution UJIAN NASIONAL TAHUN PELAJARAN 0/0 Disusun Sesuai Indikator Kisi-Kisi UN 0 Matematika SMA (Program Studi IPA) Disusun oleh : Hario Pamungkas 4.. Menyelesaikan persamaan trigonometri. Nilai

Lebih terperinci

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22 TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika

Lebih terperinci

V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI

V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI 5.1 Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat: 1. menyebutkan definisi sinus, cosinus dan tangen dalam segitiga

Lebih terperinci

Muhafzan TURUNAN. Muhafzan, Ph.D

Muhafzan TURUNAN. Muhafzan, Ph.D 1 TURUNAN, Ph.D TURUNAN 3 1 Turunan Kita mulai diskusi ini dengan memperkenalkan denisi turunan suatu fungsi Denisi 1. Misalkan I R; f : I! R dan c 2 I: Bilangan L 2 R dikatakan merupakan turunan dari

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

Materi W8e TRIGONOMETRI 1. Kelas X, Semester 2. E. Grafik Fungsi Trigonometri.

Materi W8e TRIGONOMETRI 1. Kelas X, Semester 2. E. Grafik Fungsi Trigonometri. Materi W8e TRIGONOMETRI 1 Kelas X, Semester 2 E. Grafik Fungsi Trigonometri www.yudarwi.com E. Grafik Fungsi Trigonometri tata koordinat Cartesius fungsi trigonometri sumbu-x sebagai nilai sudut sumbu-y

Lebih terperinci

PERHITUNGAN NILAI PENDEKATAN TRIGONOMETRI DAN TRIGONOMETRI INVERS SECARA MANUAL

PERHITUNGAN NILAI PENDEKATAN TRIGONOMETRI DAN TRIGONOMETRI INVERS SECARA MANUAL PERHITUNGAN NILAI PENDEKATAN TRIGONOMETRI DAN TRIGONOMETRI INVERS SECARA MANUAL Moh. Affaf STKIP PGRI Bangkalan, mohaffaf@stkippgri-bkl.ac.id Abstrak-Pada pengaplikasiannya, perhitungan nilai trigonometri

Lebih terperinci

KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT

KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR Rio Kurniawan Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci