LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI"

Transkripsi

1 NAMA : KELAS : A. RUMUS PENJUMLAHAN DAN PENGURANGAN SUDUT TRIGONOMETRI 1. Rumus Penjumlahan dan Pengurangan Sin dan Cos Kegiatan 1 Perhatikan segitiga ABC di Samping! LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI Ingat kembali bahwa cos α = sin (90 o α) Cos (α+β) Cos α =. Maka dapat disimpulkan: Cos β =. L. ABC =.. L. ADC =.. L. BDC = L. ABC = L. ABC + L. ABC = = Maka dapat disimpulkan: Sin(α+β) = + Contoh: Sin 75 o Untuk: Sin(α-β) =.. =.. =.. Maka dapat disimpulkan: Sin(α-β) = - Contoh: Sin 15 o Cos(α+β) = - Contoh: Cos 105 o Untuk: Cos (α-β) Maka dapat disimpulkan: Cos(α-β) = + Contoh: Cos 15 o 2. Rumus Penjumlahan dan Pengurangan Tangen Ingat kembali bahwa tan α = sin α cos α Tan (α+β) = sin (α+β) cos (α+β) Maka dapat dismpulkan: Tan(α+β) = 1

2 sin (α β) Tan (α-β) = cos (α β) 4. Maka dapat disimpulkan: Tan(α-β) = Contoh: Tan 195 o 5. Latihan

3

4 SOAL TANTANGAN 26. 4

5 Jika tan (3x+2y) = 3 dan tan (3x 2y) = 2. Tentukan besar sudut x. sin (a b) 31. Buktikan bahwa = cos a. cos b. tan a tan b 28. Jika sin (45 o + x) = 3 sin (45 o x), tentukan nilai dari cot x + sec x. 29. Diketahui: x-y = 30 o dan cos y = 2 cos x Tentukan tan x. cot y cos (a+b) 32. cos (a b) = 3 dan a + b = 45o 4 Tentukan nilai tan a + tan b. 5

6 B. RUMUS SUDUT RANGKAP SIN, COS DAN TAN Kegiatan 2 Lengkapilah isian berikut: (gunakan penjumlahan sudut) 1. Bentuk Sudut Rangkap Sinus Sin (2A) = sin (A + A) 2. Jawab = Bentuk Sudut Rangkap Cosinus Cos (2A) = cos(a + A) 3. =... =.. Gunakan bentuk sin 2 A + cos 2 A = 1, maka dapat diperoleh bentuk lain cos 2A. Cos 2A =.... = cos 2 A (1 ) 4. = Atau Cos 2A =.... = (1 ) Sin 2 A = 3. Bentuk Sudut Rangkap Tangen Tan (2A) = tan (A + A) 5. = = 1.. Latihan

7

8 SOAL TANTANGAN 16. Buktikan bahwa: sin 3A = 3 sin A 4 sin 3 A 19. Jika Sin (½ A) = 3, tentukan nilai Tan (2A) diketahui cos A = 3, A sudut lancip. 4 Tentukan nilai dari: a. sin 6A b cos 9A 17. Buktikan bahwa: cos 3A = 4 cos 3 3 cos A 18. tan 3A = 3 tan A tan 3 A 1 3 tan 2 A 20. Diketahui segitiga ABC siku-siku di B. Titik D dan E terletak pada sisi BC sehingga BAD = DAE = EAC. Jika panjang AB = 2 cm dan BD = 1 cm. Tentukan panjang DE dan EC. 8

9 C. RUMUS SUDUT PERTENGAHAN SIN, COS DAN TAN Kegiatan 3 Lengkapi Isian di bawah! Misalkan: A = ½ x 2A = x Cos 2A = 1 2 sin 2 A 2 sin 2 A =. Sin 2 A =... Bentuk lain dari tan ( 1 x) bisa didapat dengan mengalikan 2 dengan bentuk sekawan dari pembilang atau penyebutnya. Bentuk lain tersebut adalah: Tan ( 1 2 x) = sin x 1+cos x Tan ( 1 1 cos x x) = 2 sin x Latihan 3 1. Dik: sin 3a = 1 8, 0 < a < 75o, tentukan nilai dari sin 3 2 a. Sin A =. Kembalikan permisalan sudut A = ½ x dan 2A = x, maka dapat disimpulkan: Sin ( ) = ±. Cos 2A = 2 cos 2 A 1 2 cos 2 A =. Cos 2 A =... Cos A =. Kembalikan permisalan sudut A = ½ x dan 2A = x, maka dapat disimpulkan: 2. segitiga ABC diketahui cos A = 3 5 dan cos B = Tentukan nilai cos 1 2 C Cos ( ) = ±. tan ( 1 2 x) = sin 1 2 x cos 1 2 x = = Tan ( ) = ±.. 9

10 3. Hitunglah nilai dari: a. sin 22,5 o b. cos 67,5 o c. tan 15 o d. sin 7,5 o 6. Dik: segitiga ABC dan cos C = Hitunglah nilai dari sin 1 2 (A+B) 7. Dik: cos x = Tentukan nilai dari sin 3 2 x. 4. cos x + sin x = 4 2, x sudut lancip. 5 Tentukan nilai dari sin x dan cos x. 8. Diketahui cos 10 o = a. Tentukan nilai dari (nyatakan jawaban dalam a) a. sin 85 o b. cos 40 o 5. Dik: tan A = 3 4 dan 270o < A < 360 o. Tentukan nilai dari cos 1 2 A dan cot 1 2 A 10

11 D. RUMUS PERKALIAN SINUS DAN COSINUS Kegiatan 4 Lengkapilah isian berikut! 1. Latihan Berdasarkan hasil(1),(2),(3), dan (4) yang diperoleh maka kesimpulannya adalah: 5. 11

12 Hitunglah nilai cos 37,5 o (cos 22,5 o sin 37,5 o ) 11. SOAL TANTANGAN: 8. 12

13 E. RUMUS PENJUMLAHAN DAN PENGURANGAN SINUS DAN COSINUS Kegiatan 5 Lengkapilah isian berikut! Berdasarkan hasil (1) dan (2), maka dapat disimpulkan: 7. Latihan

14 SOAL TANTANGAN: (tan 4x) 14

15 17. sin 2 54 o + cos 2 72 o = A. 0 D. 3/4 B. 1/4 E. 1 C. 1/2 Latihan nilai dari sin 3 10 cos cos 3 50 = A. - 3/8 D. 3/8 B. - 3/4 E. 3/4 C. - 1/ Diketahui A, B dan C adalah sudut-sudut dalam segitiga maka sin 2A + sin 2B sin 2C identik dengan A. 4.cosA. sin B. sin C B. 4 cos A. cos B. sin C C. 4 cos A. cos B. cos C D. 4 sin A. cos B.sin C E. 4 sin A. cos B. cos C 4. F. IDENTITAS TRIGONOMETRI Identitas Trigonometri adalah bentuk trigonometri yang memiliki nilai sama. Sebelumnya beberapa bentuk trigonometri yang sudah di buktikan memiliki nilai yang sama, yaitu: 15

16 tan x 2 = 1 cos x sin x = sin x 1+cos x (Untuk soal 6 sampai 19) Buktikan bahwa: sin 2x 6. 1+cos 2x = tan x 3 4 cos 2x+cos 4x sin 4 x = 7. co t x tan x = cos 2x cot x+tan x 12. cosec 2x cot 2x = tan x 8. cos 2 ( 1 π - x) 4 sin2 ( 1 π - x) = sin 2x 4 cot A.sec A 13. = 1+cot A tan A 9. sin 2x sin x cos 2x cos x = sec x 16

17 = 4 tan A. Sec A 1 Sin A 1+Sin A 18. (sin x cos x) 2 + sin 2x = sin 2t+sin t cos 2t+cos t+1 = tan t 19. Sin 2 x + sin 2 x cos 2 x + cos 4 x = cos 4x = 8.cos 4 x 8.cos 2 x + 1 jawab: 20. Jika sin A = 2 cos B sin C, buktikan bahwa ABC sama kaki. 1+cos 2x+cos 4x 17. sin 4x+sin 2x = cot 2x 17

LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI

LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI NAMA : KELAS : A. RUMUS PENJUMLAHAN DAN PENGURANGAN SUDUT TRIGONOMETRI Rumus Penjumlahan dan Pengurangan Sin dan Cos Kegiatan 1 Perhatikan segitiga ABC di Samping! LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI

Lebih terperinci

SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I

SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I Trigonometri umumnya terdiri dari beberapa bab yang dibahas secara bertahap sesuai dengan tingkatannya. untuk kelas X, biasanya pelajaran trigonometri

Lebih terperinci

TRIGONOMETRI Pengertian Sinus, Cosinus dan Tangen Hubungan Fungsi Trigonometri :

TRIGONOMETRI Pengertian Sinus, Cosinus dan Tangen Hubungan Fungsi Trigonometri : SMA - TRIGONOMETRI Pengertian Sinus, Cous dan Tangen Sin r y r y Cos r x x Tan x y Hubungan Fungsi Trigonometri :. + cos. tan 3. sec cos cos 4. cosec 5. cotan cos 6. tan + sec + cos + cos cos cos cos tan

Lebih terperinci

Trigonometri. Trigonometri

Trigonometri. Trigonometri Penggunaan Rumus Sinus dan Cosinus Jumlah Dua Sudut, Selisih ; Dua Sudut, dan Sudut Ganda Rumus Jumlah dan Selisih Sinus dan Cosinus ; Menggunakan Rumus Jumlah dan Selisih Sinus dan Cosinus ; Pernahkah

Lebih terperinci

Ukuran Sudut. Perbandingan trigonometri. 1 putaran = 360 derajat (360 ) = 2π radian. Catatan:

Ukuran Sudut. Perbandingan trigonometri. 1 putaran = 360 derajat (360 ) = 2π radian. Catatan: Ukuran Sudut 1 putaran = 360 derajat (360 ) = 2π radian Perbandingan trigonometri Catatan: Sin = sinus Cos = cosinus Tan/Tg = tangens Sec = secans Cosec/Csc = cosecans Cot/Ctg = cotangens Dari gambar tersebut

Lebih terperinci

Trigonometri - IPA. Tahun 2005

Trigonometri - IPA. Tahun 2005 Trigonometri - IPA Tahun 5. Sebuah kapal berlayar ke arah timur sejauh mil. Kemudian kapal melanjutkan perjalanan dengan arah sejauh 6 mil. Jarak kapal terhadap posisi saat kapal berangkat adalah... A.

Lebih terperinci

TRIGONOMETRI. B Nilai Perbandingan Trigonometri Sudut Istimewa

TRIGONOMETRI. B Nilai Perbandingan Trigonometri Sudut Istimewa TRIGONOMETRI PERBANDINGAN TRIGONOMETRI A Nilai Perbandingan Trigonometri Perhatikan segitiga berikut! Y Sin = r y Cosec = y r r y Cos = r x Sec = x r O x X Tan = x y Cotan = y x Selanjutnya nilai perbandingan

Lebih terperinci

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1 PERSIAPAN TES SKL X, MATEMATIKA 1. Pangkat, Akar dan Logaritma Menentukan hasil operasi bentuk pangkat (1 6) Menentukan hasil operasi bentuk akar (7 11) Menentukan hasil operasi bentuk logarithma (12 15)

Lebih terperinci

BAB 3 TRIGONOMETRI. csc = sec = cos. cot = tan

BAB 3 TRIGONOMETRI. csc = sec = cos. cot = tan BB TRIGONOMETRI RINGKSN MTERI. Perbandingan C a B c b a proyektor b proyektum c proyeksi b a + c sin b a cos b c tan sin a cos c. Sifat-sifat Kwadran csc sec cot b sin a b cos c c tan a sin + cos tan +

Lebih terperinci

MATEMATIKA WAJIB MATERI DAN PENJELASAN TENTANG TRIGONOMETRI

MATEMATIKA WAJIB MATERI DAN PENJELASAN TENTANG TRIGONOMETRI MATEMATIKA WAJIB MATERI DAN PENJELASAN TENTANG TRIGONOMETRI DISUSUN OLEH : 1. Jaka kanu 2. Nada putri 3. fahzlin 4. Anastasia 5. Lutfiah 6. Febi ferdiansyah PEMERINTAH KABUPATEN BANGKA BARAT DINAS PENDIDIKAN,

Lebih terperinci

TRIGONOMETRI. 5. tan (A + B) = tan A.tan. Pengertian Sinus, Cosinus dan Tangen. 6. tan (A - B) = Sin α = r. Rumus-rumus Sudut Rangkap :

TRIGONOMETRI. 5. tan (A + B) = tan A.tan. Pengertian Sinus, Cosinus dan Tangen. 6. tan (A - B) = Sin α = r. Rumus-rumus Sudut Rangkap : TRIGONOMETRI 5. tan (A + B) tan A + tan B tan A.tan B Pengertian Sinus, Cosinus dan Tangen r Hubungan Fungsi Trigonometri :. sin +. tan. sec 4. cosec 5. cotan 6. 7. cos sin cos cos sin cos sin tan + cot

Lebih terperinci

5. TRIGONOMETRI II. A. Jumlah dan Selisih Dua Sudut 1) sin (A B) = sin A cos B cos A sin B 2) cos (A B) = cos A cos B sin A sin B.

5. TRIGONOMETRI II. A. Jumlah dan Selisih Dua Sudut 1) sin (A B) = sin A cos B cos A sin B 2) cos (A B) = cos A cos B sin A sin B. 5. TRIGONOMETRI II A. Jumlah dan Selisih Dua Sudut ) sin (A B) = sin A cos B cos A sin B ) cos (A B) = cos A cos B sin A sin B tan A tan B ) tan (A B) = tan A tan B. UN 00 Nilai sin 5º cos 5º + cos 5º

Lebih terperinci

BAB VII. TRIGONOMETRI

BAB VII. TRIGONOMETRI BAB VII. TRIGONOMETRI 5. tan (A + B) tan A + tan B tan A.tan B Pengertian Sinus, Cosinus dan Tangen r x Hubungan Fungsi Trigonometri :. sin +. tan 3. sec 4. cosec 5. cotan cos sin cos cos sin cos sin Sin

Lebih terperinci

TRIGONOMETRI 3. A. Aturan Sinus dan Cosinus 11/20/2015. Peta Konsep. A. Aturan Sinus dan Kosinus. Nomor W4801 Aturan Sinus

TRIGONOMETRI 3. A. Aturan Sinus dan Cosinus 11/20/2015. Peta Konsep. A. Aturan Sinus dan Kosinus. Nomor W4801 Aturan Sinus Jurnal Materi Umum Perbandingan dan Trigonometri Peta Konsep Peta Konsep Daftar Hadir Materi SoalLatihan TRIGONOMETRI 3 Kelas XI, Semester 4 A. Aturan Sinus dan Kosinus Ukuran Sudut Perbandingan trigonometri

Lebih terperinci

MATEMATIKA KELAS X SEMESTER II

MATEMATIKA KELAS X SEMESTER II MODUL MATEMATIKA KELAS X SEMESTER II Muhammad Zainal Abidin Personal Blog SMAN Bone-Bone Luwu Utara Sulsel http://meetabied.wordpress.com TRIGONOMETRI Standar Kompetensi : Menggunakan perbandingan fungsi,

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA Makalah Ini Disusun Guna Memenuhi Tugas Mata Kuliah Kalkulus Dosen Pengampu : Muhammad Istiqlal, M.Pd. Disusun Oleh:. Mukhammad Rif an Alwi (070600).

Lebih terperinci

MAKALAH MATEMATIKA TRIGONOMETRI

MAKALAH MATEMATIKA TRIGONOMETRI MAKALAH MATEMATIKA TRIGONOMETRI DISUSUN OLEH : Nama Kelompok : Nurul Fadhila Larasati Nur Faizah Mujahidah Azzam Safitri Ramadhani Sitti Masyita Sitti Rabithatul Jannah Kelas Guru Mata Pelajaran : XI IPA

Lebih terperinci

V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI

V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI 5.1 Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat: 1. menyebutkan definisi sinus, cosinus dan tangen dalam segitiga

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

5. TRIGONOMETRI II. A. Jumlah dan Selisih Dua Sudut 1) sin (A ± B) = sin A cos B ± cos A sin B 2) cos (A ± B) = cos A cos B m sin A sin B

5. TRIGONOMETRI II. A. Jumlah dan Selisih Dua Sudut 1) sin (A ± B) = sin A cos B ± cos A sin B 2) cos (A ± B) = cos A cos B m sin A sin B . TRIGONOMETRI II A. Jumlah dan Selisih Dua Sudut ) sin (A ± B) = sin A cs B ± cs A sin B ) cs (A ± B) = cs A cs B m sin A sin B tan A ± tan B ) tan (A ± B) = m tan A tan B. UN 00 PAKET B Diketahui p dan

Lebih terperinci

PERBANDINGAN DAN FUNGSI TRIGONOMETRI

PERBANDINGAN DAN FUNGSI TRIGONOMETRI PERBANDINGAN DAN FUNGSI TRIGONOMETRI D. Rumus Perbandingan Trigonometri di Semua Kuadran Dalam pembahasan sebelumna, kita telah melihat nilai perbandingan trigonometri untuk sudut sudut istimewa ang besarna

Lebih terperinci

TRIGONOMETRI Matematika

TRIGONOMETRI Matematika TRIGONOMETRI FTP UB Pokok Bahasan Sudut Identitas Trigonometrik Rumus Trigonometrik Fungsi Trigonometrik Pokok Bahasan Sudut Identitas Trigonometrik Rumus Trigonometrik Fungsi Trigonometrik Sudut Rotasi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO. 09/2

RENCANA PELAKSANAAN PEMBELAJARAN NO. 09/2 RENCANA PELAKSANAAN PEMBELAJARAN NO. 09/ Nama Sekolah : SMK Diponegoro Lebaksiu Mata Pelajaran : Matematika Kelas / Semester : X / Alokasi Waktu : 8 45 menit ( pertemuan) Standar Kompetensi Kompetensi

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

trigonometri 4.1 Perbandingan Trigonometri

trigonometri 4.1 Perbandingan Trigonometri tigonometi 4.1 Pebandingan Tigonometi 0 Y x P(x,y) y X x disebut absis y disebut odinat jai-jai sudut positif diuku dai sumbu X belawanan aah putaan jaum jam Definisi : = x + y sin = y cos = x tan = y

Lebih terperinci

Modul 10. Fungsi Trigonometri

Modul 10. Fungsi Trigonometri Modul 10 Fungsi Trigonometri 10.1. Fungsi Gonometri Sudut Lancip A c a b 0 A Sudut adalah sudut lancip dengan titik sudut 0, sedang titik A adalah salah satu titik pada kaki sudut tersebut. Jika 0A diproeksikan

Lebih terperinci

TRIGONOMETRI. Jika cos x = a, maka inversnya adalah x = arc cos a. Begitu juga perbandingan trigonometri lainnya, inversnya dilambangkan menjadi

TRIGONOMETRI. Jika cos x = a, maka inversnya adalah x = arc cos a. Begitu juga perbandingan trigonometri lainnya, inversnya dilambangkan menjadi Pelatihanosn.com TRIGONOMETRI Konversi Sudut = π putaran= rad = 6 menit 36 8 (6 ) = 36 detik (36") rad = 8 π = π putaran ket : yang didalam kurung merupakan cara penulisan Perbandingan Geometri sin t =

Lebih terperinci

Siswa menyelesaikan soal-soal prasyarat pada modul.

Siswa menyelesaikan soal-soal prasyarat pada modul. DOKUMENTASI Guru mengucapkan salam kepada siswa. Guru memberikan apersepsi dan motivasi melalui pendahuluan yang terdapat pada awal Modul III dimana berisi hal-hal yang akan dipelajari pada Modul III.

Lebih terperinci

Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama.

Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama. Gracia Education Page 1 of 6 Trigonometri Pengertian Dasar Jumlah sudut-sudut dalam suatu segitiga selalu 180. Segitiga-segitiga istimewa: 1. Segitiga Siku-siku (Right-angled Triangle) - Salah satu sudutnya

Lebih terperinci

Bab1. Sistem Bilangan

Bab1. Sistem Bilangan Modul Pra Kalkulus -0. Bab. Sistim Bilangan Bab. Sistem Bilangan. Sistim Bilangan Jenis bilangan berkembang sejalan dengan perkembangan peradaban dan ilmu pengetahuan. Jenis bilangan yang pertama kali

Lebih terperinci

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri

Lebih terperinci

Trigonometri. Bab. Di unduh dari : Bukupaket.com

Trigonometri. Bab. Di unduh dari : Bukupaket.com Bab Trigonometri A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu:. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap disiplin,

Lebih terperinci

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Blog:

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si   Blog: PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Email: sebelasseptember@yahoo.com Blog: http://istiyanto.com Berikut soal-soal yang dapat Anda gunakan untuk latihan dalam menghadapi

Lebih terperinci

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t Fungsi Trigonometri Fungsi trigonometri berdasarkan lingkaran satuan (C), dengan jari-jari 1 dan pusat dititik asal. X 2 + y 2 = 1 Panjang busur AP = t Keliling C = 2π y Jika t = π, maka P setengah C P(,y)

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

Trigonometri. Bab. Sudut Derajat Radian Kuadran Perbandingan Sudut (Sinus,Cosinus, tangen, cotangen, cosecan, dan secan) Identitas trigonometri

Trigonometri. Bab. Sudut Derajat Radian Kuadran Perbandingan Sudut (Sinus,Cosinus, tangen, cotangen, cosecan, dan secan) Identitas trigonometri Bab Trigonometri A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu:. menghayati pola hidup disiplin, kritis, bertanggungjawab, konsisten dan jujur

Lebih terperinci

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI BALONGAN RENCANA PELAKSANAAN PEMBELAJARAN Kode. Dok PBM.0 Edisi/Revisi A/0 Tanggal 7 Juli 07 Halaman dari 8 RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Lebih terperinci

LA - WB (Lembar Aktivitas Warga Belajar) PERBANDINGAN FUNGSI, PERSAMAAN, DAN IDENTITAS TRIGONOMETRI

LA - WB (Lembar Aktivitas Warga Belajar) PERBANDINGAN FUNGSI, PERSAMAAN, DAN IDENTITAS TRIGONOMETRI L - W (Lembar ktivitas Warga elajar) PERNDINGN FUNGSI, PERSMN, DN IDENTITS TRIGONOMETRI Oleh: Hj. IT YULIN, S.Pd, M.Pd MTEMTIK PKET C TINGKT V DERJT MHIR 1 SETR KELS X Created y Ita Yuliana 51 Perbandingan

Lebih terperinci

Nama Sekolah :... Perbandingan trigonometri Panjang sisi dan besar susut segitiga siku siku Perbandingan trigonometri diberbagai kuadran

Nama Sekolah :... Perbandingan trigonometri Panjang sisi dan besar susut segitiga siku siku Perbandingan trigonometri diberbagai kuadran RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas/Semester : XI/3 Pertemuan ke : 1, 2, 3 dan 4 Alokasi Waktu : 8 x 45 Standar Kompetensi : Menerapkan perbandingan,

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

RANGKUMAN MATERI TRIGONOMETRI (SK 4)

RANGKUMAN MATERI TRIGONOMETRI (SK 4) RNGKUMN MTERI TRIGONOMETRI (SK 4). Perbandingan Trignmetri. Perbandingan trignmetri dan terema Phytagras Pada sebuah segitiga siku-siku berlaku: Terema Phytagras: Sisi miring (terpanjang) kuadrat sama

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

4. TRIGONOMETRI I. A. Trigonometri Dasar y. sin α = r. cos α = r. tan α = x

4. TRIGONOMETRI I. A. Trigonometri Dasar y. sin α = r. cos α = r. tan α = x 4. TRIGONOMETRI I A. Trigonometri Dasar y sin α = r cos α = r x tan α = x y B. Perandingan trigonometri sudut Istimewa (0º, 4º, 60º) Nilai perandingan trigonometri sudut istimewa dapat dicari dengan menggunakan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN RENCANA PELAKSANAAN PEMBELAJARAN Kode. Dok PBM.10 Edisi/Revisi A/0 Tanggal 17 Juli 2017 Halaman 1 dari 8 RENCANA PELAKSANAAN PEMBELAJARAN

Lebih terperinci

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

6. Jika diketahui fungsi f ( x) 5 putaran sama dengan.. 1. Besar sudut 6. maka nilai. f adalah. a. 150 o b. 180 o c. 210 o d. 240 o e. 300 o. b.

6. Jika diketahui fungsi f ( x) 5 putaran sama dengan.. 1. Besar sudut 6. maka nilai. f adalah. a. 150 o b. 180 o c. 210 o d. 240 o e. 300 o. b. KERJAKAN SECARA JUJUR DAN MANDIRI Page of. Besar sudut putaran sama dengan.. 0 o 0 o 0 o 0 o 00 o. Jika ABC sama kaki dan siku-siku di B maka nilai cos A 0. Jika diketahui sin x = untuk π < x < π maka

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

Bermain Sambil Belajar Trigonometri

Bermain Sambil Belajar Trigonometri Bermain Sambil Belajar Trigonometri Memahami Trigonometri Melalui Permainan Matematika Trigonometri adalah salah satu pelajaran matematika yang banyak digunakan pada bidang astronomi, navigasi dan penyelidikan

Lebih terperinci

DERIVATIVE (continued)

DERIVATIVE (continued) DERIVATIVE (continued) (TURUNAN) Kus Prihantoso Krisnawan November 25 rd, 2011 Yogyakarta Aturan Turunan Trigonometri Aturan Turunan Trigonometri d (sin x) = cos x d (cos x) = sin x Aturan Turunan Trigonometri

Lebih terperinci

MAT. 09. Trigonometri 1

MAT. 09. Trigonometri 1 MAT. 09. Trigonometri Kode MAT.09 Trigonometri SUDUT SIN COS TAN 0 0 0 0 0 0 45 0 60 0 90 0 0 BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

KOMPETENSI. Menentukan nilai perbandingan trigonometri suatu sudut.

KOMPETENSI. Menentukan nilai perbandingan trigonometri suatu sudut. TRIGONOMETRI KOMPETENSI SK Menerapkan perbandingan, fungsi, persamaan, dan identitas trigonometri dalam pemecahan masalah KD Menentukan nilai perbandingan trigonometri suatu sudut. Mengkonversi koordinat

Lebih terperinci

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA 1) Sebuah barisan baru diperoleh dari barisan bilangan bulat positif 1, 2, 3, 4, dengan menghilangkan bilangan kuadrat yang ada di dalam barisan tersebut.

Lebih terperinci

VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA

VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA 6. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi eksponen; 2. menggambar grafik fungsi eksponen;

Lebih terperinci

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif,

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif, 000 SOAL UNTUK MATEMATIKA CEPAT TEPAT MATEMATIKA. Fungsi kuadrat y ( p ) ( p ) = + + + definit postif untuk konstanta p yang memenuhi adalah. Jika persamaan kuadrat p ( p p) + 4 = 0 mempunyai dua akar

Lebih terperinci

MENENTUKAN SUDUT ISTIMEWA TRIGONOMETRI DENGAN ATURAN LIMA JARI

MENENTUKAN SUDUT ISTIMEWA TRIGONOMETRI DENGAN ATURAN LIMA JARI ISSN 5-587 Vol No Feb 6 MENENTUKAN SUDUT ISTIMEWA TRIGONOMETRI DENGAN ATURAN LIMA JARI Farid Gunadi Universitas Wiralodra, gunadi_farid@yahoocom ABSTRAK Mata pelajaran yang paling tidak dikuasai oleh beberapa

Lebih terperinci

BAB 3 TRIGONOMETRI. Gambar 3.1

BAB 3 TRIGONOMETRI. Gambar 3.1 Standar Kompetensi BAB TRIGONOMETRI Menurunkan rumus trigonometri dan penggunaannya. Kompetensi Dasar. Menggunakan rumus sinus dan kosinus jumlah dua sudut, selisih dua sudut, dan sudut ganda untuk menghitung

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smart Solution UJIAN NASIONAL TAHUN PELAJARAN 0/0 Disusun Sesuai Indikator Kisi-Kisi UN 0 Matematika SMA (Program Studi IPA) Disusun oleh : Hario Pamungkas 4.. Menyelesaikan persamaan trigonometri. Nilai

Lebih terperinci

e. 238 a. -2 b. -1 c. 0 d. 1 e Bilangan bulat ganjil positip disusun sebagai berikut Angka yang terletak pada baris 40, kolom 20 adalah

e. 238 a. -2 b. -1 c. 0 d. 1 e Bilangan bulat ganjil positip disusun sebagai berikut Angka yang terletak pada baris 40, kolom 20 adalah Soal Babak Penyisihan OMITS 007. Jikaf R R dengan R bilangan real. Jikaf x + x = x + x maka nilai f 5. Nilaidari a. 5 5 4 5 5 d. 5 e. 5 k= 4 k +.5 k+ + 7 k a. 0 5 9 d. 40 e. 45. Sukubanyakx + 5x + x dan

Lebih terperinci

TRIGONOMETRI. STANDAR KOMPETENSI: 2.Menurunkan rumus trigonometri dan penggunaannya

TRIGONOMETRI. STANDAR KOMPETENSI: 2.Menurunkan rumus trigonometri dan penggunaannya TRIGONOMETRI STANDAR KOMPETENSI: 2.Menurunkan rumus trigonometri dan penggunaannya KOMPETENSI DASAR : 2.1 Menggunakan rumus sinus dan cosinus jumlah dua sudut, selisih dua sudut, dan sudut ganda untuk

Lebih terperinci

TRIGONOMETRI. Untuk XI IPA sylvia nopiani risa p. Andini tresnaningsih. +CD Interaktif

TRIGONOMETRI. Untuk XI IPA sylvia nopiani risa p. Andini tresnaningsih. +CD Interaktif TRIGONOMETRI Andini tresnaningsih Untuk XI IPA sylvia nopiani risa p. +CD Interaktif Judul Buku : Trigonometri Penyusun : Andini Tresnaningsih dan Sylvia Nopiani Risa Prihatini Koordinator/ Editor : Andini

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SEGITIGA BOLA. Kelompok 7. Saraswati Basuki Putri Nila Muna Intana Hesti Nikmah Safitri Alik Sus Adi

SEGITIGA BOLA. Kelompok 7. Saraswati Basuki Putri Nila Muna Intana Hesti Nikmah Safitri Alik Sus Adi SEGITIGA BOLA Kelompok 7 Saraswati Basuki Putri Nila Muna Intana Hesti Nikmah Safitri Alik Sus Adi Geometri Bola dibentuk oleh: Lingkaran Besar Lingkaran Kecil Sudut-sudut bola Lingkaran Besar Lingkaran

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

MATEMATIKA SET 1 PERSAMAAN KUADRAT MATERI DAN LATIHAN SOAL SBMPTN ADVANCE AND TOP LEVEL A. BENTUK UMUM B. MENCARI AKAR/SOLUSI

MATEMATIKA SET 1 PERSAMAAN KUADRAT  MATERI DAN LATIHAN SOAL SBMPTN ADVANCE AND TOP LEVEL A. BENTUK UMUM B. MENCARI AKAR/SOLUSI 0 WWW.E-SBMPTN.COM MATERI DAN LATIHAN SOAL SBMPTN ADVANCE AND TOP LEVEL MATEMATIKA SET PERSAMAAN KUADRAT A. BENTUK UMUM a + b + c = 0, a 0 B. MENCARI AKAR/SOLUSI a. Faktorisasi b. Rumus ABC C. OPERASI

Lebih terperinci

Unit 4 KONSEP DASAR TRIGONOMETRI. R. Edy Ambar Roostanto. Pendahuluan

Unit 4 KONSEP DASAR TRIGONOMETRI. R. Edy Ambar Roostanto. Pendahuluan Unit 4 KONSEP DASAR TRIGONOMETRI Pendahuluan P R. Edy Ambar Roostanto ada unit ini kita akan mempelajari beberapa konsep dasar dalam trigonometri. Namun sebelum membahas konsep tersebut, Anda diajak untuk

Lebih terperinci

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat 1. AB = 1, CE = 8, BD =, CD =. Tentukan panjang EF! 0 BCD : ABE : BC BC BC CD BC 4 BD 9 1 AB 1 BE 144 AE 4 8 AE 0 AE AE EF EF 0 AFE : AE AF 0 0 EF EF 400 400 800 . Keliling ABC = 4, Luas ABC = 4. Tentukan

Lebih terperinci

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E.

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E. PAKET 4 Jumlah Soal : 0 soal Kompetensi :. Bangun Datar. Trigonometri. Bangun Ruang 4. Barisan dan Deret Compile By : Syaiful Hamzah Nasution No Soal Jawaban Luas Segiempat PQRS pada gambar di bawah ini

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

UN SMA IPA 2003 Matematika

UN SMA IPA 2003 Matematika UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan

Lebih terperinci

karena limit dari kiri = limit dari kanan

karena limit dari kiri = limit dari kanan A. DEFINISI LIMIT Istilah it dalam matematika hampir sama artinya dengan istilah mendekati. Akibatnya, nilai it sering dikatakan sebagai nilai pendekatan.. Pengertian Limit secara Intusi Untuk memahami

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

ANALISIS RUMUS TRIGONOMETRI DALAM PENENTUAN ARAH KIBLAT

ANALISIS RUMUS TRIGONOMETRI DALAM PENENTUAN ARAH KIBLAT ANALISIS RUMUS TRIGONOMETRI DALAM PENENTUAN ARAH KIBLAT SKRIPSI Diajukan untuk memenuhi tugas dan melengkapi syarat guna memperoleh gelar Sarjana Pendidikan dalam Ilmu Pendidikan Matematika Oleh : Susheri

Lebih terperinci

OSN Guru Matematika SMA (Olimpiade Sains Nasional)

OSN Guru Matematika SMA (Olimpiade Sains Nasional) ocsz Pembahasan Soal OSN Guru 2012 OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE

Lebih terperinci

+ 19) = 0 adalah α dan β. Jikaα > β

+ 19) = 0 adalah α dan β. Jikaα > β TRY OUT MATEMATIKA PAKET B TAHUN 00 PETUNJUK KHUSUS Pilihlah salah satu jawaban yang paling benar, dengan menghitamkan bulatan lembar jawab(ljk) yang tersedi. Diketahui pernyataan sebagai berikut: Jika

Lebih terperinci

LIMIT FUNGSI TRIGONOMETRI

LIMIT FUNGSI TRIGONOMETRI M A T E M A T I K A LIMIT FUNGSI TRIGONOMETRI Matematika Kelas XI MIA Semester S M A h tan h h tan Disusun oleh : Markus Yuniarto, S.Si Tahun Pelajaran 6 7 SMA Santa Angela Jl. Merdeka No. 4 Bandung PENGANTAR

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Matematika EBTANAS Tahun 2001

Matematika EBTANAS Tahun 2001 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Luas maksimum persegipanjang OABC pada gambar adalah satuan luas satuan luas C B(,y) satuan luas + y = satuan luas satuan luas O A EBT-SMA-0-0 Diketahui + Maka nilai

Lebih terperinci

PETUNJUK UMUM PETUNJUK KHUSUS

PETUNJUK UMUM PETUNJUK KHUSUS LEMBAR SOAL PERSIAPAN UJIAN NASIONAL SMA/MA Tahun Ajaran 00/009 MATEMATIKA Program Studi IPA (Berdasarkan Lampiran Permendiknas No.77 Tahun 00) Try Out UN Matematika IPA SMA/MA - Esis PETUNJUK UMUM. Tuliskan

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 013 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 94 + 013 = a + b 013 = 61

Lebih terperinci

Robot Besar Canadarm

Robot Besar Canadarm Sumber: www.wikipedia.com Robot Besar Canadarm Segitiga siku-siku? Tentu istilah ini telah kalian kenal sejak kecil. Jenis segitiga ini memang pantas dipelajari sebab bangun datar ini memiliki banyak terapan.

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan.

Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Skalar hanya memiliki besaran saja, contoh : temperatur,

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT PROVINSI 007 TIM OLIMPIADE MATEMATIKA INDONESIA 008 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika

Lebih terperinci

PEMBAHASAN SOAL SESUAI KISI-KISI UAS

PEMBAHASAN SOAL SESUAI KISI-KISI UAS PEMBAHASAN SOAL SESUAI KISI-KISI UAS MATEMATIKA PEMINATAN XI - IPA SOAL Perhatikan segitiga di bawah ini! Tentukan nilai sec cosec cot INGAT definisi: sin depan miring cosec sin miring depan cos samping

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA

SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA. Diketahui premis-premis : (): Jika Ani lulus ujian maka ia bekerja atau kuliah di luar negeri (): Jika rajin dan tekun

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS Bab 4 PERSAMAAN GARIS LURUS A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar 1. Mampu mentransformasi diri dalam berpilaku jujur, tangguh mengadapi masalah, kritis dan disiplin dalam melakukan

Lebih terperinci

TRIGONOMETRI 1. E. Grafik Fungsi Trigonometri 11/13/ Peta Konsep. E. Grafik Fungsi Trigonometri

TRIGONOMETRI 1. E. Grafik Fungsi Trigonometri 11/13/ Peta Konsep. E. Grafik Fungsi Trigonometri //05 Jurnal Peta Konsep Daftar Hadir MateriE TRIGONOMETRI SoalLK Kelas X, Semester E. Grafik Fungsi Trigonometri SoalLatihan Materi Umum Ukuran Sudut Perbandingan trigonometri Perbandingan trigonometri

Lebih terperinci